
Benchmarks for Combinations Calculation 

1. Intro 

The tests have been made in a laptop with a 2.40 GHz 2-core processor, without any other 

applications running in background. 

Due to the lazy evaluation from Haskell, to force the calculation of the combinations, they are 

saved into text files. Although this may produce a slight inaccuracy on the results, its still 

possible to get some concrete conclusions. 

As the minimal combinations and minimal ruled combinations produce a very small number of 

combinations, we can discard them, and focus testing in full ruled combinations. 

Two sets of results will be presented, each of them represents a different input with its 

respective set of rules. The first set will be a large one (580.000 possible combinations), and 

the second will be a smaller one (2.400 possible combinations). 

2. Results 

2.1. Set 1 

Total Categories: 10 

Total Classes: 40 

Total Possible Combinations: 580608 

 

Rules Full 1 2 3 4 5 6 

#Combinations 580608 290304 48384 32832 2592 456192 129024 

Time (seconds) 14,988 7,902 1,297 0,888 0,077 12,405 3,47 

 
2.2. Set 2 

Total Categories: 6 
Total Classes: 24 
Total Possible Combinations: 2400 
 

Rule Full 1 2 3 4 5 

#Combinations 2400 2040 1360 1200 600 900 

Time (seconds) 0,037 0,038 0,025 0,021 0,011 0,017 

 



3. Conclusions 

For big combinatorial trees, the results point to one simple conclusion: the less combinations 

the result has, the faster it is to execute. This happens because the time it takes to calculate 

the semantic of the rule is much smaller than the time necessary to fully combine with 

remaining categories. Therefore more restricting rules (ones with more categories specified, 

and therefore less possible combinations) will calculate faster. 

This, however, does not stand for smaller inputs. As we can see in the second set of results, 

some of the ruled combinations take longer to calculate than the full combination. As in this 

case the time to compute the combination with the remaining categories is much smaller, the 

time taken to compute the rule takes a bigger weight in the total processing time. 


