package Sequenic.T2.Engines; import java.math.BigInteger; /** * The PermitationGenerator by Michael Gilleland. See * http://www.merriampark.com/perm.htm . * *

This implements a generator producing all permutations of n elements. * The algorithm is described by Kenneth H. Rosen, in * Discrete Mathematics and Its Applications, 2nd edition, McGraw-Hill, 1991, * pp. 282-284. * * @author Michael Gilleland, adapted by Wishnu Prasetya */ public class PermutationGenerator extends AbstractCombinationGenerator { private int[] a; private BigInteger numLeft; private BigInteger total; //----------------------------------------------------------- // Constructor. WARNING: Don't make n too large. // Recall that the number of permutations is n! // which can be very large, even when n is as small as 20 -- // 20! = 2,432,902,008,176,640,000 and // 21! is too big to fit into a Java long, which is // why we use BigInteger instead. //---------------------------------------------------------- public PermutationGenerator(int n) { if (n < 1) { throw new IllegalArgumentException("Min 1"); } a = new int[n]; total = getFactorial(n); reset(); } //------ // Reset //------ public void reset() { for (int i = 0; i < a.length; i++) { a[i] = i; } numLeft = new BigInteger(total.toString()); } /** * Return number of permutations not yet generated */ public BigInteger getNumLeft() { return numLeft; } /** * Return total number of permutations */ public BigInteger getTotal() { return total; } //----------------------------- // Are there more permutations? //----------------------------- public boolean hasMore() { return numLeft.compareTo(BigInteger.ZERO) == 1; } //------------------ // Compute factorial //------------------ private static BigInteger getFactorial(int n) { BigInteger fact = BigInteger.ONE; for (int i = n; i > 1; i--) { fact = fact.multiply(new BigInteger(Integer.toString(i))); } return fact; } /** * Generate next permutation (algorithm from Rosen p. 284) */ public int[] getNext() { if (numLeft.equals(total)) { numLeft = numLeft.subtract(BigInteger.ONE); return a; } int temp; // Find largest index j with a[j] < a[j+1] int j = a.length - 2; while (a[j] > a[j + 1]) { j--; } // Find index k such that a[k] is smallest integer // greater than a[j] to the right of a[j] int k = a.length - 1; while (a[j] > a[k]) { k--; } // Interchange a[j] and a[k] temp = a[k]; a[k] = a[j]; a[j] = temp; // Put tail end of permutation after jth position in increasing order int r = a.length - 1; int s = j + 1; while (r > s) { temp = a[s]; a[s] = a[r]; a[r] = temp; r--; s++; } numLeft = numLeft.subtract(BigInteger.ONE); return a; } }