package Examples ; /** * A class implementing unbalanced binary search tree. Note that all * "matching" is based on the compareTo method. * *

Adapted from original code by Mark Weiss. * *

Is this class correct....? * * @author Mark Allen Weiss * */ // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x // Comparable find( x ) --> Return item that matches x // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void printTree( ) --> Print tree in sorted order public class BinarySearchTree { /** * Construct the tree. */ public BinarySearchTree( ) { root = null; } /** * Insert x into the tree; duplicates are ignored. * @param x the item to insert. */ public void insert( Comparable x ) { // System.out.println(".") ; root = insert(x,root ); } /** * A specification for insert, saying that after insert(x) x * should be in the tree. */ /* public void insert_spec(Comparable x) { insert(x) ; assert (find(x) != null) : "POST" ; } */ /** * Remove from the tree. Nothing is done if x is not found. * @param x the item to remove. */ public void remove( Comparable x ) { root = remove( x, root ); } /** * a specification for remove, saying that after the remove x * should no longer be in the tree. */ /* public void remove_spec(Comparable x) { remove(x) ; assert (find(x) == null) : "POST" ; } */ /** * Find the smallest item in the tree. * @return smallest item or null if empty. */ public Comparable findMin( ) { return elementAt( findMin( root ) ); } /** * The spec of findMin. It says that the returned value, if not * null, should be an element of the tree. */ /* public void findMin_spec() { boolean wasEmpty = isEmpty() ; Comparable x = findMin() ; assert (wasEmpty || find(x) == x) : "POST" ; } */ /** * Find the largest item in the tree. * @return the largest item of null if empty. */ public Comparable findMax( ) { return elementAt( findMax( root ) ); } /** * Find an item in the tree. * @param x the item to search for. * @return the matching item or null if not found. */ public Comparable find( Comparable x ) { return elementAt( find( x, root ) ); } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = null; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == null; } /** * Print the tree contents in sorted order. */ /* private void printTree( ) { if( isEmpty( ) ) System.out.println( "Empty tree" ); else printTree( root ); } */ /** * Internal method to get element field. * @param t the node. * @return the element field or null if t is null. */ private Comparable elementAt( BinaryNode t ) { return t == null ? null : t.element; } /** * Internal method to insert into a subtree. * @param x the item to insert. * @param t the node that roots the tree. * @return the new root. */ private BinaryNode insert( Comparable x, BinaryNode t ) { /* 1*/ if( t == null ) /* 2*/ t = new BinaryNode( x, null, null ); /* 3*/ else if( x.compareTo( t.element ) < 0 ) /* 4*/ t.left = insert( x, t.left ); /* 5*/ else if( x.compareTo( t.element ) > 0 ) /* 6*/ t.right = insert( x, t.right ); /* 7*/ else /* 8*/ ; // Duplicate; do nothing /* 9*/ return t; } class BinaryNode { Comparable element ; BinaryNode left ; BinaryNode right ; BinaryNode(Comparable x, BinaryNode u, BinaryNode v) { element = x ; left = u ; right = v ; } } /** * Internal method to remove from a subtree. * @param x the item to remove. * @param t the node that roots the tree. * @return the new root. */ private BinaryNode remove( Comparable x, BinaryNode t ) { if( t == null ) return t; // Item not found; do nothing if( x.compareTo( t.element ) < 0 ) // search further in left child t.left = remove( x, t.left ); else if( x.compareTo( t.element ) > 0 ) // search in right child t.right = remove( x, t.right ); else // element found in this node !! if( t.left != null && t.right != null ) // Two children { // find minimum of the right, move it to this node: t.element = findMin( t.right ).element; t.right = remove( t.element, t.right ); } else if ( t.left != null ) t = t.left ; // left child is not null, right child is null else t = t.right ; // left child is null (right child may be null) return t; } /** * Internal method to find the smallest item in a subtree. * @param t the node that roots the tree. * @return node containing the smallest item. */ private BinaryNode findMin( BinaryNode t ) { if( t == null ) return null; else if( t.left == null ) return t; return findMin( t.left ); } /** * Internal method to find the largest item in a subtree. * @param t the node that roots the tree. * @return node containing the largest item. */ private BinaryNode findMax( BinaryNode t ) { if( t != null ) while( t.right != null ) t = t.right; return t; } /** * Internal method to find an item in a subtree. * @param x is item to search for. * @param t the node that roots the tree. * @return node containing the matched item. */ private BinaryNode find( Comparable x, BinaryNode t ) { if( t == null ) return null; if( x.compareTo( t.element ) < 0 ) return find( x, t.left ); else if( x.compareTo( t.element ) > 0 ) return find( x, t.right ); else return t;// Match } /** * Internal method to print a subtree in sorted order. * @param t the node that roots the tree. */ /* private void printTree( BinaryNode t ) { if( t != null ) { printTree( t.left ); System.out.println( t.element ); printTree( t.right ); } } */ /** The tree root. */ private BinaryNode root; }