/* * Copyright (C) 2008 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.base; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtCompatible; import com.google.common.annotations.GwtIncompatible; import java.util.Arrays; import java.util.BitSet; import javax.annotation.CheckReturnValue; /** * Determines a true or false value for any Java {@code char} value, just as {@link Predicate} does * for any {@link Object}. Also offers basic text processing methods based on this function. * Implementations are strongly encouraged to be side-effect-free and immutable. * *

Throughout the documentation of this class, the phrase "matching character" is used to mean * "any character {@code c} for which {@code this.matches(c)} returns {@code true}". * *

Note: This class deals only with {@code char} values; it does not understand * supplementary Unicode code points in the range {@code 0x10000} to {@code 0x10FFFF}. Such logical * characters are encoded into a {@code String} using surrogate pairs, and a {@code CharMatcher} * treats these just as two separate characters. * *

Example usages:

 *   String trimmed = {@link #WHITESPACE WHITESPACE}.{@link #trimFrom trimFrom}(userInput);
 *   if ({@link #ASCII ASCII}.{@link #matchesAllOf matchesAllOf}(s)) { ... }
* *

See the Guava User Guide article on * {@code CharMatcher}. * * @author Kevin Bourrillion * @since 1.0 */ @Beta // Possibly change from chars to code points; decide constants vs. methods @GwtCompatible(emulated = true) public abstract class CharMatcher implements Predicate { // Constants /** * Determines whether a character is a breaking whitespace (that is, a whitespace which can be * interpreted as a break between words for formatting purposes). See {@link #WHITESPACE} for a * discussion of that term. * * @since 2.0 */ public static final CharMatcher BREAKING_WHITESPACE = new CharMatcher() { @Override public boolean matches(char c) { switch (c) { case '\t': case '\n': case '\013': case '\f': case '\r': case ' ': case '\u0085': case '\u1680': case '\u2028': case '\u2029': case '\u205f': case '\u3000': return true; case '\u2007': return false; default: return c >= '\u2000' && c <= '\u200a'; } } @Override public String toString() { return "CharMatcher.BREAKING_WHITESPACE"; } }; /** * Determines whether a character is ASCII, meaning that its code point is less than 128. */ public static final CharMatcher ASCII = inRange('\0', '\u007f', "CharMatcher.ASCII"); private static class RangesMatcher extends CharMatcher { private final char[] rangeStarts; private final char[] rangeEnds; RangesMatcher(String description, char[] rangeStarts, char[] rangeEnds) { super(description); this.rangeStarts = rangeStarts; this.rangeEnds = rangeEnds; checkArgument(rangeStarts.length == rangeEnds.length); for (int i = 0; i < rangeStarts.length; i++) { checkArgument(rangeStarts[i] <= rangeEnds[i]); if (i + 1 < rangeStarts.length) { checkArgument(rangeEnds[i] < rangeStarts[i + 1]); } } } @Override public boolean matches(char c) { int index = Arrays.binarySearch(rangeStarts, c); if (index >= 0) { return true; } else { index = ~index - 1; return index >= 0 && c <= rangeEnds[index]; } } } // Must be in ascending order. private static final String ZEROES = "0\u0660\u06f0\u07c0\u0966\u09e6\u0a66\u0ae6\u0b66\u0be6" + "\u0c66\u0ce6\u0d66\u0e50\u0ed0\u0f20\u1040\u1090\u17e0\u1810\u1946\u19d0\u1b50\u1bb0" + "\u1c40\u1c50\ua620\ua8d0\ua900\uaa50\uff10"; private static final String NINES; static { StringBuilder builder = new StringBuilder(ZEROES.length()); for (int i = 0; i < ZEROES.length(); i++) { builder.append((char) (ZEROES.charAt(i) + 9)); } NINES = builder.toString(); } /** * Determines whether a character is a digit according to * Unicode. */ public static final CharMatcher DIGIT = new RangesMatcher( "CharMatcher.DIGIT", ZEROES.toCharArray(), NINES.toCharArray()); /** * Determines whether a character is a digit according to {@link Character#isDigit(char) Java's * definition}. If you only care to match ASCII digits, you can use {@code inRange('0', '9')}. */ public static final CharMatcher JAVA_DIGIT = new CharMatcher("CharMatcher.JAVA_DIGIT") { @Override public boolean matches(char c) { return Character.isDigit(c); } }; /** * Determines whether a character is a letter according to {@link Character#isLetter(char) Java's * definition}. If you only care to match letters of the Latin alphabet, you can use {@code * inRange('a', 'z').or(inRange('A', 'Z'))}. */ public static final CharMatcher JAVA_LETTER = new CharMatcher("CharMatcher.JAVA_LETTER") { @Override public boolean matches(char c) { return Character.isLetter(c); } }; /** * Determines whether a character is a letter or digit according to {@link * Character#isLetterOrDigit(char) Java's definition}. */ public static final CharMatcher JAVA_LETTER_OR_DIGIT = new CharMatcher("CharMatcher.JAVA_LETTER_OR_DIGIT") { @Override public boolean matches(char c) { return Character.isLetterOrDigit(c); } }; /** * Determines whether a character is upper case according to {@link Character#isUpperCase(char) * Java's definition}. */ public static final CharMatcher JAVA_UPPER_CASE = new CharMatcher("CharMatcher.JAVA_UPPER_CASE") { @Override public boolean matches(char c) { return Character.isUpperCase(c); } }; /** * Determines whether a character is lower case according to {@link Character#isLowerCase(char) * Java's definition}. */ public static final CharMatcher JAVA_LOWER_CASE = new CharMatcher("CharMatcher.JAVA_LOWER_CASE") { @Override public boolean matches(char c) { return Character.isLowerCase(c); } }; /** * Determines whether a character is an ISO control character as specified by {@link * Character#isISOControl(char)}. */ public static final CharMatcher JAVA_ISO_CONTROL = inRange('\u0000', '\u001f') .or(inRange('\u007f', '\u009f')) .withToString("CharMatcher.JAVA_ISO_CONTROL"); /** * Determines whether a character is invisible; that is, if its Unicode category is any of * SPACE_SEPARATOR, LINE_SEPARATOR, PARAGRAPH_SEPARATOR, CONTROL, FORMAT, SURROGATE, and * PRIVATE_USE according to ICU4J. */ public static final CharMatcher INVISIBLE = new RangesMatcher("CharMatcher.INVISIBLE", ( "\u0000\u007f\u00ad\u0600\u06dd\u070f\u1680\u180e\u2000\u2028\u205f\u206a\u3000\ud800\ufeff" + "\ufff9\ufffa").toCharArray(), ( "\u0020\u00a0\u00ad\u0604\u06dd\u070f\u1680\u180e\u200f\u202f\u2064\u206f\u3000\uf8ff\ufeff" + "\ufff9\ufffb").toCharArray()); private static String showCharacter(char c) { String hex = "0123456789ABCDEF"; char[] tmp = {'\\', 'u', '\0', '\0', '\0', '\0'}; for (int i = 0; i < 4; i++) { tmp[5 - i] = hex.charAt(c & 0xF); c >>= 4; } return String.copyValueOf(tmp); } /** * Determines whether a character is single-width (not double-width). When in doubt, this matcher * errs on the side of returning {@code false} (that is, it tends to assume a character is * double-width). * *

Note: as the reference file evolves, we will modify this constant to keep it up to * date. */ public static final CharMatcher SINGLE_WIDTH = new RangesMatcher("CharMatcher.SINGLE_WIDTH", "\u0000\u05be\u05d0\u05f3\u0600\u0750\u0e00\u1e00\u2100\ufb50\ufe70\uff61".toCharArray(), "\u04f9\u05be\u05ea\u05f4\u06ff\u077f\u0e7f\u20af\u213a\ufdff\ufeff\uffdc".toCharArray()); /** Matches any character. */ public static final CharMatcher ANY = new FastMatcher("CharMatcher.ANY") { @Override public boolean matches(char c) { return true; } @Override public int indexIn(CharSequence sequence) { return (sequence.length() == 0) ? -1 : 0; } @Override public int indexIn(CharSequence sequence, int start) { int length = sequence.length(); Preconditions.checkPositionIndex(start, length); return (start == length) ? -1 : start; } @Override public int lastIndexIn(CharSequence sequence) { return sequence.length() - 1; } @Override public boolean matchesAllOf(CharSequence sequence) { checkNotNull(sequence); return true; } @Override public boolean matchesNoneOf(CharSequence sequence) { return sequence.length() == 0; } @Override public String removeFrom(CharSequence sequence) { checkNotNull(sequence); return ""; } @Override public String replaceFrom(CharSequence sequence, char replacement) { char[] array = new char[sequence.length()]; Arrays.fill(array, replacement); return new String(array); } @Override public String replaceFrom(CharSequence sequence, CharSequence replacement) { StringBuilder retval = new StringBuilder(sequence.length() * replacement.length()); for (int i = 0; i < sequence.length(); i++) { retval.append(replacement); } return retval.toString(); } @Override public String collapseFrom(CharSequence sequence, char replacement) { return (sequence.length() == 0) ? "" : String.valueOf(replacement); } @Override public String trimFrom(CharSequence sequence) { checkNotNull(sequence); return ""; } @Override public int countIn(CharSequence sequence) { return sequence.length(); } @Override public CharMatcher and(CharMatcher other) { return checkNotNull(other); } @Override public CharMatcher or(CharMatcher other) { checkNotNull(other); return this; } @Override public CharMatcher negate() { return NONE; } }; /** Matches no characters. */ public static final CharMatcher NONE = new FastMatcher("CharMatcher.NONE") { @Override public boolean matches(char c) { return false; } @Override public int indexIn(CharSequence sequence) { checkNotNull(sequence); return -1; } @Override public int indexIn(CharSequence sequence, int start) { int length = sequence.length(); Preconditions.checkPositionIndex(start, length); return -1; } @Override public int lastIndexIn(CharSequence sequence) { checkNotNull(sequence); return -1; } @Override public boolean matchesAllOf(CharSequence sequence) { return sequence.length() == 0; } @Override public boolean matchesNoneOf(CharSequence sequence) { checkNotNull(sequence); return true; } @Override public String removeFrom(CharSequence sequence) { return sequence.toString(); } @Override public String replaceFrom(CharSequence sequence, char replacement) { return sequence.toString(); } @Override public String replaceFrom(CharSequence sequence, CharSequence replacement) { checkNotNull(replacement); return sequence.toString(); } @Override public String collapseFrom(CharSequence sequence, char replacement) { return sequence.toString(); } @Override public String trimFrom(CharSequence sequence) { return sequence.toString(); } @Override public String trimLeadingFrom(CharSequence sequence) { return sequence.toString(); } @Override public String trimTrailingFrom(CharSequence sequence) { return sequence.toString(); } @Override public int countIn(CharSequence sequence) { checkNotNull(sequence); return 0; } @Override public CharMatcher and(CharMatcher other) { checkNotNull(other); return this; } @Override public CharMatcher or(CharMatcher other) { return checkNotNull(other); } @Override public CharMatcher negate() { return ANY; } }; // Static factories /** * Returns a {@code char} matcher that matches only one specified character. */ public static CharMatcher is(final char match) { String description = "CharMatcher.is('" + showCharacter(match) + "')"; return new FastMatcher(description) { @Override public boolean matches(char c) { return c == match; } @Override public String replaceFrom(CharSequence sequence, char replacement) { return sequence.toString().replace(match, replacement); } @Override public CharMatcher and(CharMatcher other) { return other.matches(match) ? this : NONE; } @Override public CharMatcher or(CharMatcher other) { return other.matches(match) ? other : super.or(other); } @Override public CharMatcher negate() { return isNot(match); } @GwtIncompatible("java.util.BitSet") @Override void setBits(BitSet table) { table.set(match); } }; } /** * Returns a {@code char} matcher that matches any character except the one specified. * *

To negate another {@code CharMatcher}, use {@link #negate()}. */ public static CharMatcher isNot(final char match) { String description = "CharMatcher.isNot(" + Integer.toHexString(match) + ")"; return new FastMatcher(description) { @Override public boolean matches(char c) { return c != match; } @Override public CharMatcher and(CharMatcher other) { return other.matches(match) ? super.and(other) : other; } @Override public CharMatcher or(CharMatcher other) { return other.matches(match) ? ANY : this; } @GwtIncompatible("java.util.BitSet") @Override void setBits(BitSet table) { table.set(0, match); table.set(match + 1, Character.MAX_VALUE + 1); } @Override public CharMatcher negate() { return is(match); } }; } /** * Returns a {@code char} matcher that matches any character present in the given character * sequence. */ public static CharMatcher anyOf(final CharSequence sequence) { switch (sequence.length()) { case 0: return NONE; case 1: return is(sequence.charAt(0)); case 2: return isEither(sequence.charAt(0), sequence.charAt(1)); default: // continue below to handle the general case } // TODO(user): is it potentially worth just going ahead and building a precomputed matcher? final char[] chars = sequence.toString().toCharArray(); Arrays.sort(chars); StringBuilder description = new StringBuilder("CharMatcher.anyOf(\""); for (char c : chars) { description.append(showCharacter(c)); } description.append("\")"); return new CharMatcher(description.toString()) { @Override public boolean matches(char c) { return Arrays.binarySearch(chars, c) >= 0; } @Override @GwtIncompatible("java.util.BitSet") void setBits(BitSet table) { for (char c : chars) { table.set(c); } } }; } private static CharMatcher isEither( final char match1, final char match2) { String description = "CharMatcher.anyOf(\"" + showCharacter(match1) + showCharacter(match2) + "\")"; return new FastMatcher(description) { @Override public boolean matches(char c) { return c == match1 || c == match2; } @GwtIncompatible("java.util.BitSet") @Override void setBits(BitSet table) { table.set(match1); table.set(match2); } }; } /** * Returns a {@code char} matcher that matches any character not present in the given character * sequence. */ public static CharMatcher noneOf(CharSequence sequence) { return anyOf(sequence).negate(); } /** * Returns a {@code char} matcher that matches any character in a given range (both endpoints are * inclusive). For example, to match any lowercase letter of the English alphabet, use {@code * CharMatcher.inRange('a', 'z')}. * * @throws IllegalArgumentException if {@code endInclusive < startInclusive} */ public static CharMatcher inRange(final char startInclusive, final char endInclusive) { checkArgument(endInclusive >= startInclusive); String description = "CharMatcher.inRange('" + showCharacter(startInclusive) + "', '" + showCharacter(endInclusive) + "')"; return inRange(startInclusive, endInclusive, description); } static CharMatcher inRange(final char startInclusive, final char endInclusive, String description) { return new FastMatcher(description) { @Override public boolean matches(char c) { return startInclusive <= c && c <= endInclusive; } @GwtIncompatible("java.util.BitSet") @Override void setBits(BitSet table) { table.set(startInclusive, endInclusive + 1); } }; } /** * Returns a matcher with identical behavior to the given {@link Character}-based predicate, but * which operates on primitive {@code char} instances instead. */ public static CharMatcher forPredicate(final Predicate predicate) { checkNotNull(predicate); if (predicate instanceof CharMatcher) { return (CharMatcher) predicate; } String description = "CharMatcher.forPredicate(" + predicate + ")"; return new CharMatcher(description) { @Override public boolean matches(char c) { return predicate.apply(c); } @Override public boolean apply(Character character) { return predicate.apply(checkNotNull(character)); } }; } // State final String description; // Constructors /** * Sets the {@code toString()} from the given description. */ CharMatcher(String description) { this.description = description; } /** * Constructor for use by subclasses. When subclassing, you may want to override * {@code toString()} to provide a useful description. */ protected CharMatcher() { description = super.toString(); } // Abstract methods /** Determines a true or false value for the given character. */ public abstract boolean matches(char c); // Non-static factories /** * Returns a matcher that matches any character not matched by this matcher. */ public CharMatcher negate() { return new NegatedMatcher(this); } private static class NegatedMatcher extends CharMatcher { final CharMatcher original; NegatedMatcher(String toString, CharMatcher original) { super(toString); this.original = original; } NegatedMatcher(CharMatcher original) { this(original + ".negate()", original); } @Override public boolean matches(char c) { return !original.matches(c); } @Override public boolean matchesAllOf(CharSequence sequence) { return original.matchesNoneOf(sequence); } @Override public boolean matchesNoneOf(CharSequence sequence) { return original.matchesAllOf(sequence); } @Override public int countIn(CharSequence sequence) { return sequence.length() - original.countIn(sequence); } @GwtIncompatible("java.util.BitSet") @Override void setBits(BitSet table) { BitSet tmp = new BitSet(); original.setBits(tmp); tmp.flip(Character.MIN_VALUE, Character.MAX_VALUE + 1); table.or(tmp); } @Override public CharMatcher negate() { return original; } @Override CharMatcher withToString(String description) { return new NegatedMatcher(description, original); } } /** * Returns a matcher that matches any character matched by both this matcher and {@code other}. */ public CharMatcher and(CharMatcher other) { return new And(this, checkNotNull(other)); } private static class And extends CharMatcher { final CharMatcher first; final CharMatcher second; And(CharMatcher a, CharMatcher b) { this(a, b, "CharMatcher.and(" + a + ", " + b + ")"); } And(CharMatcher a, CharMatcher b, String description) { super(description); first = checkNotNull(a); second = checkNotNull(b); } @Override public boolean matches(char c) { return first.matches(c) && second.matches(c); } @GwtIncompatible("java.util.BitSet") @Override void setBits(BitSet table) { BitSet tmp1 = new BitSet(); first.setBits(tmp1); BitSet tmp2 = new BitSet(); second.setBits(tmp2); tmp1.and(tmp2); table.or(tmp1); } @Override CharMatcher withToString(String description) { return new And(first, second, description); } } /** * Returns a matcher that matches any character matched by either this matcher or {@code other}. */ public CharMatcher or(CharMatcher other) { return new Or(this, checkNotNull(other)); } private static class Or extends CharMatcher { final CharMatcher first; final CharMatcher second; Or(CharMatcher a, CharMatcher b, String description) { super(description); first = checkNotNull(a); second = checkNotNull(b); } Or(CharMatcher a, CharMatcher b) { this(a, b, "CharMatcher.or(" + a + ", " + b + ")"); } @GwtIncompatible("java.util.BitSet") @Override void setBits(BitSet table) { first.setBits(table); second.setBits(table); } @Override public boolean matches(char c) { return first.matches(c) || second.matches(c); } @Override CharMatcher withToString(String description) { return new Or(first, second, description); } } /** * Returns a {@code char} matcher functionally equivalent to this one, but which may be faster to * query than the original; your mileage may vary. Precomputation takes time and is likely to be * worthwhile only if the precomputed matcher is queried many thousands of times. * *

This method has no effect (returns {@code this}) when called in GWT: it's unclear whether a * precomputed matcher is faster, but it certainly consumes more memory, which doesn't seem like a * worthwhile tradeoff in a browser. */ public CharMatcher precomputed() { return Platform.precomputeCharMatcher(this); } /** * Subclasses should provide a new CharMatcher with the same characteristics as {@code this}, * but with their {@code toString} method overridden with the new description. * *

This is unsupported by default. */ CharMatcher withToString(String description) { throw new UnsupportedOperationException(); } private static final int DISTINCT_CHARS = Character.MAX_VALUE - Character.MIN_VALUE + 1; /** * This is the actual implementation of {@link #precomputed}, but we bounce calls through a * method on {@link Platform} so that we can have different behavior in GWT. * *

This implementation tries to be smart in a number of ways. It recognizes cases where * the negation is cheaper to precompute than the matcher itself; it tries to build small * hash tables for matchers that only match a few characters, and so on. In the worst-case * scenario, it constructs an eight-kilobyte bit array and queries that. * In many situations this produces a matcher which is faster to query than the original. */ @GwtIncompatible("java.util.BitSet") CharMatcher precomputedInternal() { final BitSet table = new BitSet(); setBits(table); int totalCharacters = table.cardinality(); if (totalCharacters * 2 <= DISTINCT_CHARS) { return precomputedPositive(totalCharacters, table, description); } else { // TODO(user): is it worth it to worry about the last character of large matchers? table.flip(Character.MIN_VALUE, Character.MAX_VALUE + 1); int negatedCharacters = DISTINCT_CHARS - totalCharacters; return new NegatedFastMatcher(toString(), precomputedPositive(negatedCharacters, table, description + ".negate()")); } } /** * A matcher for which precomputation will not yield any significant benefit. */ abstract static class FastMatcher extends CharMatcher { FastMatcher() { super(); } FastMatcher(String description) { super(description); } @Override public final CharMatcher precomputed() { return this; } @Override public CharMatcher negate() { return new NegatedFastMatcher(this); } } static final class NegatedFastMatcher extends NegatedMatcher { NegatedFastMatcher(CharMatcher original) { super(original); } NegatedFastMatcher(String toString, CharMatcher original) { super(toString, original); } @Override public final CharMatcher precomputed() { return this; } @Override CharMatcher withToString(String description) { return new NegatedFastMatcher(description, original); } } /** * Helper method for {@link #precomputedInternal} that doesn't test if the negation is cheaper. */ @GwtIncompatible("java.util.BitSet") private static CharMatcher precomputedPositive( int totalCharacters, BitSet table, String description) { switch (totalCharacters) { case 0: return NONE; case 1: return is((char) table.nextSetBit(0)); case 2: char c1 = (char) table.nextSetBit(0); char c2 = (char) table.nextSetBit(c1 + 1); return isEither(c1, c2); default: return isSmall(totalCharacters, table.length()) ? SmallCharMatcher.from(table, description) : new BitSetMatcher(table, description); } } private static boolean isSmall(int totalCharacters, int tableLength) { return totalCharacters <= SmallCharMatcher.MAX_SIZE && tableLength > (totalCharacters * 4 * Character.SIZE); // err on the side of BitSetMatcher } @GwtIncompatible("java.util.BitSet") private static class BitSetMatcher extends FastMatcher { private final BitSet table; private BitSetMatcher(BitSet table, String description) { super(description); if (table.length() + Long.SIZE < table.size()) { table = (BitSet) table.clone(); // If only we could actually call BitSet.trimToSize() ourselves... } this.table = table; } @Override public boolean matches(char c) { return table.get(c); } @Override void setBits(BitSet bitSet) { bitSet.or(table); } } /** * Sets bits in {@code table} matched by this matcher. */ @GwtIncompatible("java.util.BitSet") void setBits(BitSet table) { for (int c = Character.MAX_VALUE; c >= Character.MIN_VALUE; c--) { if (matches((char) c)) { table.set(c); } } } // Text processing routines /** * Returns {@code true} if a character sequence contains at least one matching character. * Equivalent to {@code !matchesNoneOf(sequence)}. * *

The default implementation iterates over the sequence, invoking {@link #matches} for each * character, until this returns {@code true} or the end is reached. * * @param sequence the character sequence to examine, possibly empty * @return {@code true} if this matcher matches at least one character in the sequence * @since 8.0 */ public boolean matchesAnyOf(CharSequence sequence) { return !matchesNoneOf(sequence); } /** * Returns {@code true} if a character sequence contains only matching characters. * *

The default implementation iterates over the sequence, invoking {@link #matches} for each * character, until this returns {@code false} or the end is reached. * * @param sequence the character sequence to examine, possibly empty * @return {@code true} if this matcher matches every character in the sequence, including when * the sequence is empty */ public boolean matchesAllOf(CharSequence sequence) { for (int i = sequence.length() - 1; i >= 0; i--) { if (!matches(sequence.charAt(i))) { return false; } } return true; } /** * Returns {@code true} if a character sequence contains no matching characters. Equivalent to * {@code !matchesAnyOf(sequence)}. * *

The default implementation iterates over the sequence, invoking {@link #matches} for each * character, until this returns {@code false} or the end is reached. * * @param sequence the character sequence to examine, possibly empty * @return {@code true} if this matcher matches every character in the sequence, including when * the sequence is empty */ public boolean matchesNoneOf(CharSequence sequence) { return indexIn(sequence) == -1; } /** * Returns the index of the first matching character in a character sequence, or {@code -1} if no * matching character is present. * *

The default implementation iterates over the sequence in forward order calling {@link * #matches} for each character. * * @param sequence the character sequence to examine from the beginning * @return an index, or {@code -1} if no character matches */ public int indexIn(CharSequence sequence) { int length = sequence.length(); for (int i = 0; i < length; i++) { if (matches(sequence.charAt(i))) { return i; } } return -1; } /** * Returns the index of the first matching character in a character sequence, starting from a * given position, or {@code -1} if no character matches after that position. * *

The default implementation iterates over the sequence in forward order, beginning at {@code * start}, calling {@link #matches} for each character. * * @param sequence the character sequence to examine * @param start the first index to examine; must be nonnegative and no greater than {@code * sequence.length()} * @return the index of the first matching character, guaranteed to be no less than {@code start}, * or {@code -1} if no character matches * @throws IndexOutOfBoundsException if start is negative or greater than {@code * sequence.length()} */ public int indexIn(CharSequence sequence, int start) { int length = sequence.length(); Preconditions.checkPositionIndex(start, length); for (int i = start; i < length; i++) { if (matches(sequence.charAt(i))) { return i; } } return -1; } /** * Returns the index of the last matching character in a character sequence, or {@code -1} if no * matching character is present. * *

The default implementation iterates over the sequence in reverse order calling {@link * #matches} for each character. * * @param sequence the character sequence to examine from the end * @return an index, or {@code -1} if no character matches */ public int lastIndexIn(CharSequence sequence) { for (int i = sequence.length() - 1; i >= 0; i--) { if (matches(sequence.charAt(i))) { return i; } } return -1; } /** * Returns the number of matching characters found in a character sequence. */ public int countIn(CharSequence sequence) { int count = 0; for (int i = 0; i < sequence.length(); i++) { if (matches(sequence.charAt(i))) { count++; } } return count; } /** * Returns a string containing all non-matching characters of a character sequence, in order. For * example:

   {@code
   *
   *   CharMatcher.is('a').removeFrom("bazaar")}
* * ... returns {@code "bzr"}. */ @CheckReturnValue public String removeFrom(CharSequence sequence) { String string = sequence.toString(); int pos = indexIn(string); if (pos == -1) { return string; } char[] chars = string.toCharArray(); int spread = 1; // This unusual loop comes from extensive benchmarking OUT: while (true) { pos++; while (true) { if (pos == chars.length) { break OUT; } if (matches(chars[pos])) { break; } chars[pos - spread] = chars[pos]; pos++; } spread++; } return new String(chars, 0, pos - spread); } /** * Returns a string containing all matching characters of a character sequence, in order. For * example:
   {@code
   *
   *   CharMatcher.is('a').retainFrom("bazaar")}
* * ... returns {@code "aaa"}. */ @CheckReturnValue public String retainFrom(CharSequence sequence) { return negate().removeFrom(sequence); } /** * Returns a string copy of the input character sequence, with each character that matches this * matcher replaced by a given replacement character. For example:
   {@code
   *
   *   CharMatcher.is('a').replaceFrom("radar", 'o')}
* * ... returns {@code "rodor"}. * *

The default implementation uses {@link #indexIn(CharSequence)} to find the first matching * character, then iterates the remainder of the sequence calling {@link #matches(char)} for each * character. * * @param sequence the character sequence to replace matching characters in * @param replacement the character to append to the result string in place of each matching * character in {@code sequence} * @return the new string */ @CheckReturnValue public String replaceFrom(CharSequence sequence, char replacement) { String string = sequence.toString(); int pos = indexIn(string); if (pos == -1) { return string; } char[] chars = string.toCharArray(); chars[pos] = replacement; for (int i = pos + 1; i < chars.length; i++) { if (matches(chars[i])) { chars[i] = replacement; } } return new String(chars); } /** * Returns a string copy of the input character sequence, with each character that matches this * matcher replaced by a given replacement sequence. For example:

   {@code
   *
   *   CharMatcher.is('a').replaceFrom("yaha", "oo")}
* * ... returns {@code "yoohoo"}. * *

Note: If the replacement is a fixed string with only one character, you are better * off calling {@link #replaceFrom(CharSequence, char)} directly. * * @param sequence the character sequence to replace matching characters in * @param replacement the characters to append to the result string in place of each matching * character in {@code sequence} * @return the new string */ @CheckReturnValue public String replaceFrom(CharSequence sequence, CharSequence replacement) { int replacementLen = replacement.length(); if (replacementLen == 0) { return removeFrom(sequence); } if (replacementLen == 1) { return replaceFrom(sequence, replacement.charAt(0)); } String string = sequence.toString(); int pos = indexIn(string); if (pos == -1) { return string; } int len = string.length(); StringBuilder buf = new StringBuilder((len * 3 / 2) + 16); int oldpos = 0; do { buf.append(string, oldpos, pos); buf.append(replacement); oldpos = pos + 1; pos = indexIn(string, oldpos); } while (pos != -1); buf.append(string, oldpos, len); return buf.toString(); } /** * Returns a substring of the input character sequence that omits all characters this matcher * matches from the beginning and from the end of the string. For example:

   {@code
   *
   *   CharMatcher.anyOf("ab").trimFrom("abacatbab")}
* * ... returns {@code "cat"}. * *

Note that:

   {@code
   *
   *   CharMatcher.inRange('\0', ' ').trimFrom(str)}
* * ... is equivalent to {@link String#trim()}. */ @CheckReturnValue public String trimFrom(CharSequence sequence) { int len = sequence.length(); int first; int last; for (first = 0; first < len; first++) { if (!matches(sequence.charAt(first))) { break; } } for (last = len - 1; last > first; last--) { if (!matches(sequence.charAt(last))) { break; } } return sequence.subSequence(first, last + 1).toString(); } /** * Returns a substring of the input character sequence that omits all characters this matcher * matches from the beginning of the string. For example:
 {@code
   *
   *   CharMatcher.anyOf("ab").trimLeadingFrom("abacatbab")}
* * ... returns {@code "catbab"}. */ @CheckReturnValue public String trimLeadingFrom(CharSequence sequence) { int len = sequence.length(); for (int first = 0; first < len; first++) { if (!matches(sequence.charAt(first))) { return sequence.subSequence(first, len).toString(); } } return ""; } /** * Returns a substring of the input character sequence that omits all characters this matcher * matches from the end of the string. For example:
 {@code
   *
   *   CharMatcher.anyOf("ab").trimTrailingFrom("abacatbab")}
* * ... returns {@code "abacat"}. */ @CheckReturnValue public String trimTrailingFrom(CharSequence sequence) { int len = sequence.length(); for (int last = len - 1; last >= 0; last--) { if (!matches(sequence.charAt(last))) { return sequence.subSequence(0, last + 1).toString(); } } return ""; } /** * Returns a string copy of the input character sequence, with each group of consecutive * characters that match this matcher replaced by a single replacement character. For example: *
   {@code
   *
   *   CharMatcher.anyOf("eko").collapseFrom("bookkeeper", '-')}
* * ... returns {@code "b-p-r"}. * *

The default implementation uses {@link #indexIn(CharSequence)} to find the first matching * character, then iterates the remainder of the sequence calling {@link #matches(char)} for each * character. * * @param sequence the character sequence to replace matching groups of characters in * @param replacement the character to append to the result string in place of each group of * matching characters in {@code sequence} * @return the new string */ @CheckReturnValue public String collapseFrom(CharSequence sequence, char replacement) { // This implementation avoids unnecessary allocation. int len = sequence.length(); for (int i = 0; i < len; i++) { char c = sequence.charAt(i); if (matches(c)) { if (c == replacement && (i == len - 1 || !matches(sequence.charAt(i + 1)))) { // a no-op replacement i++; } else { StringBuilder builder = new StringBuilder(len) .append(sequence.subSequence(0, i)) .append(replacement); return finishCollapseFrom(sequence, i + 1, len, replacement, builder, true); } } } // no replacement needed return sequence.toString(); } /** * Collapses groups of matching characters exactly as {@link #collapseFrom} does, except that * groups of matching characters at the start or end of the sequence are removed without * replacement. */ @CheckReturnValue public String trimAndCollapseFrom(CharSequence sequence, char replacement) { // This implementation avoids unnecessary allocation. int len = sequence.length(); int first; int last; for (first = 0; first < len && matches(sequence.charAt(first)); first++) {} for (last = len - 1; last > first && matches(sequence.charAt(last)); last--) {} return (first == 0 && last == len - 1) ? collapseFrom(sequence, replacement) : finishCollapseFrom( sequence, first, last + 1, replacement, new StringBuilder(last + 1 - first), false); } private String finishCollapseFrom( CharSequence sequence, int start, int end, char replacement, StringBuilder builder, boolean inMatchingGroup) { for (int i = start; i < end; i++) { char c = sequence.charAt(i); if (matches(c)) { if (!inMatchingGroup) { builder.append(replacement); inMatchingGroup = true; } } else { builder.append(c); inMatchingGroup = false; } } return builder.toString(); } // Predicate interface /** * Equivalent to {@link #matches}; provided only to satisfy the {@link Predicate} interface. When * using a reference of type {@code CharMatcher}, invoke {@link #matches} directly instead. */ @Override public boolean apply(Character character) { return matches(character); } /** * Returns a string representation of this {@code CharMatcher}, such as * {@code CharMatcher.or(WHITESPACE, JAVA_DIGIT)}. */ @Override public String toString() { return description; } /** * A special-case CharMatcher for Unicode whitespace characters that is extremely * efficient both in space required and in time to check for matches. * * Implementation details. * It turns out that all current (early 2012) Unicode characters are unique modulo 79: * so we can construct a lookup table of exactly 79 entries, and just check the character code * mod 79, and see if that character is in the table. * * There is a 1 at the beginning of the table so that the null character is not listed * as whitespace. * * Other things we tried that did not prove to be beneficial, mostly due to speed concerns: * * * Binary search into the sorted list of characters, i.e., what * CharMatcher.anyOf() does * * Perfect hash function into a table of size 26 (using an offset table and a special * Jenkins hash function) * * Perfect-ish hash function that required two lookups into a single table of size 26. * * Using a power-of-2 sized hash table (size 64) with linear probing. * * --Christopher Swenson, February 2012. */ private static final String WHITESPACE_TABLE = "\u0001\u0000\u00a0\u0000\u0000\u0000\u0000\u0000" + "\u0000\u0009\n\u000b\u000c\r\u0000\u0000\u2028\u2029\u0000\u0000\u0000\u0000\u0000\u202f" + "\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0020\u0000\u0000\u0000\u0000\u0000" + "\u0000\u0000\u0000\u0000\u0000\u3000\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000" + "\u0000\u0000\u0085\u2000\u2001\u2002\u2003\u2004\u2005\u2006\u2007\u2008\u2009\u200a" + "\u0000\u0000\u0000\u0000\u0000\u205f\u1680\u0000\u0000\u180e\u0000\u0000\u0000"; /** * Determines whether a character is whitespace according to the latest Unicode standard, as * illustrated * here. * This is not the same definition used by other Java APIs. (See a * comparison of several * definitions of "whitespace".) * *

Note: as the Unicode definition evolves, we will modify this constant to keep it up * to date. */ public static final CharMatcher WHITESPACE = new FastMatcher("CharMatcher.WHITESPACE") { @Override public boolean matches(char c) { return WHITESPACE_TABLE.charAt(c % 79) == c; } }; }