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I. INTRODUCTION

This paper describes the benchmark set-up of the Java
Unit Testing Tools competition that run for SBST 2013
edition. According to [1] a benchmark should have three
parts: (1) a clearly defined objective of what is and what
can be evaluated (Section II-A and II-B); (2) a task sample
(Section II-C and II-E); (3) performance measures (Section
II-D and II-F).

II. DESIGNING THE BENCHMARK

A. Objective - What to achieve?

The objective of the benchmark is to evaluate tools that
generate JUnit test cases for Java classes. Evaluation will
be done with respect to a benchmark score that takes
into account test effectiveness (fault finding capability and
coverage) and test efficiency (time to prepare, generate
and execute). Two baselines for comparison will be used.
The baselines are each on an extreme end of the level of
intelligence that is used for generating the test cases. On the
one hand a random testing approach implemented by the tool
Randoop [2]. On the other hand, the manually created tests
that come with the classes that are part of the benchmark
data.

B. Uniform description of the tools being studied

In order to be able to unify and combine the results of the
benchmark and aggregate the results in secondary studies
[3], [4], we need to use a taxonomy (as [5] calls it) or a
hierarchy (as [3] calls it) or a characterisation schema (as
[6] calls it) of the tools under investigation. We decided to
use the taxonomy from [5], that we have adapted to software
testing and augmented with the results from [3], [7], [6].

To illustrate the resulting schema, Table I contains the
description of baseline Randoop [8].

Prerequisites
Static or dynamic Dynamic testing at the Java class level.
Software Type Java classes.
Lifecycle phase Unit testing for Java programs.
Environment In principle all development environments,

special versions/plugins exist for Eclipse
and the Microsoft .NET platform.

Knowledge required JUnit unit testing for Java.
Experience required Basic unit testing knowledge.

Input and Output of the tool
Input Java Classes (compiled)

Output JUnit test cases (source)

Operation
Interaction Through the command line.
User guidance Through the command line.
Source of information Manuals and papers online [2]
Maturity
Technology behind the tool Feedback-Directed Random testing

Obtaining the tool and information
License MIT License.
Cost Open source.
Support Could try to contact the developers directly.

Empirical evidence about the tool
Only studies about effectiveness have been found [9], [10], [11]

Table I
DESCRIPTION OF RANDOOP

C. Objects - the Java Classes Under Test (CUTs)

1) Selecting the CUTs: The motivation for selecting the
CUTs that constitute the benchmark was to have applications
that are reasonably small, but not trivial, so we can run the
competition and finish it in restricted time. Therefore, we
have selected classes from well-known test subjects used in
the SBST community that come with a number of manually
written JUnit test classes which we need for the previously
stated baseline [12], [13], [14], [15]. Classes for which at
least one manually written unit test existed in the project
are considered interesting, because developers had made the
effort to write a unit test for them. We decided not to use the



SF100 benchmark [16] because it is too large for the tools
to complete in reasonable time for the competition and it
contains many unconventional classes. Our final benchmark
only contains some classes that are unconventional in that
they contain difficult to test methods like for example a
constructor that takes a file as an argument. These come
from the sqlsheet [17] project.

Our competition relies on the coverage tool Cobertura [18]
to collect coverage information and the mutation testing tool
Javalanche [19] to compute the mutation score. Therefore,
we further restricted the classes based on the limitation of
each of those tools (and combined use) .

2) Characteristics of the CUTs: Table II shows the char-
acteristics of the classes that constitute the benchmark. AMC
denotes the Average Method Complexity per Class, i.e. the
sum of cyclomatic complexities of the methods of the given
class divided by the amount of methods; LOC denotes the
Lines of Code of the CUT; TLOC denotes the Lines of Code
of the Test Class that tests the CUT; TAss denotes the number
of invocations of JUnit assert<X>() and fail() meth-
ods that occur in the code of the corresponding test class.
These measures are given to aid benchmark participants in
analyzing the strengths and weaknesses of their tools when
comparing their results to the manual test cases.

3) Seeding mutants: In order to be able to evaluate the
fault finding effectiveness of the generated test cases, we
decided to use the mutation testing tool Javalanche [19].
The purpose of mutation testing is to insert artificial faults
into a program (i.e., faults a programmer might make), and
assess how good test cases are at detecting those faults. In
Javalanche a fault is considered detected (i.e., killed) if the
result of running a unit test on the original program and
the mutated version differs. This is typically indicated by
a passing test failing on a mutant program and is akin to
strong mutation testing [24]. Thus, the ability to kill mutants
generated by Javalanche depends upon how thorough a test
checks the output of a particular test execution. One example
in which this can be done is by using JUnit assert
functions to check properties of the class under test, or
simply check the return value of a method under test (if
applicable).

In theory one can generate a very large number of
mutants, because a program typically has many statements or
expressions that can be changed by a mutation tool. In order
to make mutation testing tractable, Javalanche only imple-
ments a subset of all possible mutation operators. These are:
replacing numerical constants, negating jump conditions, re-
placing arithmetic operators, and omitting method calls [19].

To further optimise the mutation testing process
Javalanche uses mutant schemata. Instead of generating
many copies of a class, each containing a single mutation,
Javalanche adds all supported mutations for a particular class
in one instrumented class file. It uses guard statements to
enable selective mutations and compute which mutants are
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1 ArrayUtils Apache Commons Lang 3.13 2046 2268 1025 [20]
2 Barcode Barbecue 1.53 234 177 25 [21]
3 BaseDateTimeField Joda Time 1.72 311 495 112 [22]
4 BlankModule Barbecue 1.00 17 7 1 [21]
5 BooleanUtils Apache Commons Lang 3.92 365 793 249 [20]
6 BuddhistChronology Joda Time 1.63 99 301 164 [22]
7 CalendarConverter Joda Time 2.20 54 121 28 [22]
8 CharRange Apache Commons Lang 2.42 150 300 177 [20]
9 Chronology Joda Time 1.00 116 230 72 [22]
10 CodabarBarcode Barbecue 2.20 98 151 48 [21]
11 Code128Barcode Barbecue 2.56 229 722 255 [21]
12 Code39Barcode Barbecue 1.80 86 175 25 [21]
13 CompositeModule Barbecue 1.42 49 59 5 [21]
14 ConverterManager Joda Time 1.92 268 826 146 [22]
15 ConverterSet Joda Time 5.33 178 144 19 [22]
16 DateConverter Joda Time 1.00 17 74 17 [22]
17 DateTimeComparator Joda Time 2.69 101 639 172 [22]
18 DateTimeFieldType Joda Time 2.37 285 267 170 [22]
19 DateTimeFormat Joda Time 4.02 437 824 176 [22]
20 DateTimeFormatter Joda Time 1.88 284 545 178 [22]
21 DateTimeFormatterBuilder Joda Time 2.89 1708 153 31 [22]
22 DateTimeUtils Joda Time 1.86 156 322 57 [22]
23 DateTimeZone Joda Time 2.41 518 723 207 [22]
24 Days Joda Time 1.80 156 298 104 [22]
25 DefaultEnvironment Barbecue 1.00 11 16 2 [21]
26 DurationField Joda Time 1.09 34 31 5 [22]
27 DurationFieldType Joda Time 2.29 150 140 67 [22]
28 EnvironmentFactory Barbecue 1.50 45 48 6 [21]
29 FieldUtils Joda Time 2.87 139 137 27 [22]
30 FixedBitSet Apache Lucene 2.50 283 230 32 [23]
31 Fraction Apache Commons Lang 3.73 443 1015 333 [20]
32 GJChronology Joda Time 2.02 672 401 166 [22]
33 GraphicsOutput Barbecue 1.83 51 73 13 [21]
34 GregorianChronology Joda Time 1.82 121 224 135 [22]
35 HeadlessEnvironment Barbecue 1.00 11 12 2 [21]
36 Hours Joda Time 1.84 159 295 106 [22]
37 ISOChronology Joda Time 1.53 110 359 174 [22]
38 ISODateTimeFormat Joda Time 2.69 923 414 134 [22]
39 ISOPeriodFormat Joda Time 1.83 116 132 41 [22]
40 IllegalFieldValueException Joda Time 1.42 167 291 160 [22]
41 Int2of5Barcode Barbecue 1.50 39 75 9 [21]
42 LenientChronology Joda Time 1.88 84 111 19 [22]
43 LinearBarcode Barbecue 2.33 41 161 16 [21]
44 LongConverter Joda Time 1.00 18 73 18 [22]
45 MillisDurationField Joda Time 1.09 81 156 48 [22]
46 Minutes Joda Time 1.65 144 280 96 [22]
47 Module Barbecue 2.00 64 67 15 [21]
48 ModuleFactory Barbecue 1.75 383 33 9 [21]
49 Modulo10 Barbecue 1.75 29 30 7 [21]
50 Months Joda Time 2.29 151 250 99 [22]
51 MutableDateTime Joda Time 1.22 454 178 26 [22]
52 NullConverter Joda Time 1.00 27 133 27 [22]
53 NumberUtils Apache Commons Lang 5.00 636 1049 507 [20]
54 OffsetDateTimeField Joda Time 1.19 90 431 119 [22]
55 PeriodFormat Joda Time 1.50 38 82 6 [22]
56 PeriodFormatter Joda Time 1.47 117 171 34 [22]
57 PeriodFormatterBuilder Joda Time 3.46 1166 679 308 [22]
58 PeriodType Joda Time 2.30 472 757 450 [22]
59 PreciseDateTimeField Joda Time 1.42 47 541 119 [22]
60 PreciseDurationDateTimeField Joda Time 1.50 62 541 123 [22]
61 PreciseDurationField Joda Time 1.27 52 208 66 [22]
62 ReadableDurationConverter Joda Time 1.25 27 77 20 [22]
63 ReadableInstantConverter Joda Time 1.80 40 97 28 [22]
64 ReadableIntervalConverter Joda Time 1.50 41 137 41 [22]
65 ReadablePartialConverter Joda Time 1.39 35 101 17 [22]
66 ReadablePeriodConverter Joda Time 1.00 22 72 20 [22]
67 ScaledDurationField Joda Time 1.29 80 224 67 [22]
68 Seconds Joda Time 1.65 144 272 93 [22]
69 SeparatorModule Barbecue 1.00 19 10 2 [21]
70 Std2of5Barcode Barbecue 1.62 58 77 9 [21]
71 StringConverter Joda Time 5.71 133 460 168 [22]
72 UCCEAN128Barcode Barbecue 5.11 180 54 8 [21]
73 UnsupportedDateTimeField Joda Time 1.11 195 374 104 [22]
74 WeakIdentityMap Apache Lucene 1.55 130 200 53 [23]
75 XlsSheetIterator sqlsheet 8.50 235 60 20 [17]
76 XlsxSheetIterator sqlsheet 6.20 256 55 18 [17]
77 Years Joda Time 1.85 124 232 81 [22]

Table II
THE CUTS THAT CONSTITUTE THE BENCHMARK

detected by a test case. Further, instead of executing all tests
for each mutant, Javalanche uses coverage information of
tests to determine a subset of tests to run for a particular
mutant. In order for a test to kill a mutant it must satisfy
three requirements: 1) reaching the mutated statement, 2)
infecting the program state after executing the mutant and
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Figure 1. Competition Execution Framework

3) propagating the infected state to the output checked by
the test oracle. Javalanche will only run those tests that can
satisfy condition 1) for a particular mutation, since a test that
does not exercise the piece of code containing the mutant
cannot kill that mutant.

D. Variables - Which data to collect?

Independent variables are the testing tools T1 . . .TN used.
Other factors that can affect the results are the selected CUTs
from Table II and the mutants that have been seeded by
Javalanche. Dependent variables are effectiveness (coverage)
and efficiency (time). The following measures are used to
calculate the benchmark-score for each Ti (for 1 ≤ i ≤ N ):

tprep preparation time that Ti needs before it starts
generating test cases (i.e. instrumentation, etc.)

And for each class listed in Table II:
tgen time it takes to generate the test cases
texec time it takes to execute these testcases
covl line coverage (measured by Cobertura [18])
covb branch coverage (measured by Cobertura [18])
covm (measured by Javalanche [19]) mutation coverage

E. Protocol - How has the benchmark been carried out?

Figure 1 shows the architecture of the framework used
to carry out the competition. T1 to TN are the testing tools
that participated in the competition. Each participant had
to implement a run tool, which is a wrapper around the
corresponding testing tool Ti and enables communication
with the benchmark framework. It implements a simple
protocol over the standard input and output streams, as
depicted in Figure 2. The benchmark framework starts the
protocol by sending the string “BENCHMARK” to the

standard output stream. It proceeds by sending the location
of the SUT’s source code, the compiled class files and its
dependencies (the Java classpath). Once the run tool received
this information, it may inform the framework about its
own dependencies which might be necessary to compile the
generated unit test cases. It therefore can send a classpath
string to the framework to be used during the compilation
stage. Once it has done this, it will emit “READY” to
inform the framework that it awaits the testing challenges.
The Framework then starts to send the fully qualified name
of the first CUT to stdout. The run tool reads this name,
analyzes the class, generates a unit test and creates one or
more JUnit test case files in the “temp/testcases” directory.
Then, it emits “READY”, after which the framework looks
into “temp/testcases”, compiles the file(s), executes the test
cases and measures the appropriate variables. These steps
are repeated until the run tool generated responses for all
CUT challenges in the benchmark.

Prior to the final benchmark, we offered a set of 5 test
benchmarks compiled from popular open source projects.
The participants were able to use these in order to test the
correct implementation of the protocol and to tune their
tool’s parameters. However, none of the classes of these test
benchmarks were part of the final benchmark.

We carried out the benchmarks on an Intel(R) Core(TM)2
Quad CPU Q9550 @ 2.83GHz with 8GB of main memory
running Ubuntu 12.04. 1 LTS. Since most of the tools work
non-deterministic and make use of random number genera-
tion, the results can slightly vary between distinct runs. Thus,
it was necessary to run the benchmark multiple times, in or-
der to obtain an average value for the achieved score. We car-
ried out 6 benchmark runs for each tool before we averaged
the achieved score over all runs. Due to time and resource
restrictions we were unable to carry out more runs. However,
we are confident that the obtained results are accurate
enough, since for each tool the sample standard deviation
and resulting confidence intervals of the scores were small.
All timing information was measured in wall clock time
using Java’s System.currentTimeMillis() method.
If a run tool crashed during a run or got stuck for more than
one hour, we continued the run with the remaining CUTs
and deducted all points for the CUT that caused the run tool
to crash.

After we obtained and averaged the data, we made the re-
sults available to all participants on our benchmark website.

F. Data Analysis - How to interpret the findings?

Having measured all variables during the benchmark runs,
we had to define a ranking scheme in order to determine
which tool performed best. We defined the two most im-
portant indicators of a tool’s quality to be the time needed
to pass the benchmark and the ability of the generated tests
to kill mutants. In addition, we rewarded a tool’s ability
to generate tests with good code coverage. To express the



run tool 
for Tool T

Benchmark
Framework

"BENCHMARK"

Src Path / Bin Path / ClassPath 

ClassPath for JUnit Compilation 

"READY"

.

.

.

name of CUT
.
.
.

generate file in
./temp/testcases

"READY"

compile + execute
 + measure test case

lo
op

preparation

Figure 2. Benchmark Automation Protocol

quality of a tool T as a single number, we defined a
benchmark function which assigns each run of a test tool
T a score as a weighted sum over the measured variables:

scoreT :=
∑
class

[
ωl · covl(class) + ωb · covb(class)+

ωm · covm(class)

]
−

ωt ·
(
tprep +

∑
class

[
tgen(class) + texec(class)

])
where, consistent with Section II-D, covl, covb, covm refer
to achieved line, branch and mutation coverage and tprep,
tgen, texec referring to the tool’s preparation time, test case
generation time and test case execution time, measured in
hours. ωl, ωb, ωm and ωt are the weights, for which we
chose the values ωl = 1, ωb = 2, ωm = 4 and ωt = 5.
As mentioned before, we chose time and the ability to kill
mutants to be the most important quality indicators, thus ωt
and ωm have been assigned the highest values. Since it is
generally more difficult to obtain a good branch coverage
than a good line coverage, we chose ωb to be two times
the value of ωl. The reason why we included line coverage,
is to compensate for Cobertura’s non-standard definition of
branch coverage, where methods without conditional state-
ments are considered branch-free. Therefore, in the worst
case, it is possible to obtain 100% branch coverage, but at
the same time achieving only extremely low line coverage.

In order to obtain a benchmark score for the manual
test cases, it would be necessary to obtain the value of

tgen for each class. Since we do not know how much
time the developers of the manual tests spent writing the
corresponding JUnit classes, we cannot directly calculate a
score for the manual case.

The benchmark function and the chosen weight values
have been announced several days before the start of the
benchmark, so that the participants were able to tune their
tools’ parameters.

G. Threats to Validity of the Studies Performed

Conclusion validity The next threats could affect the ability
to draw the correct conclusion about relations between our
treatments (testing tools) and their respective outcomes:

Reliability of treatment implementation: It means that
there is a risk that application of treatments to subjects is not
similar. In order to reduce this threat, a clear protocol was
designed, by giving the same instructions to all participants
(developers of testing tools that will be evaluated) of the
unit testing tool competition.

Reliability of measures: Unreliable measures can invali-
date our competition. We tried to be as objective as pos-
sible for measuring the test efficiency and effectiveness.
For example, all timing information was measured in wall
clock time using Javas System.currentTimeMillis () method.
Effectiveness measures were automatically measured, by
Cobertura [18] and Javalanche [19]. Each of these tools are
widely used in the testing community but could still contain
faults that might threaten the validity of the results. Fur-
thermore, Cobertura has a non-standard definition of branch
coverage, where methods without conditional statements are
considered branch-free. To deal with this we also included
line coverage in the benchmark score. In this way, it is
possible to obtain 100% branch coverage, but at the same
time achieving only extremely low line coverage. Finally,
as the participants tools are based on non-deterministic
algorithms, it was necessary to run the benchmark multiple
times in order to obtain an average value for the measured
variables. However, due to time and resource restrictions we
could only run each tool a maximum of six times. This could
have affected in the accuracy of the results obtained, but our
benchmark was focused on obtaining an average score for
each tool that participated in the competition and not on the
underlying algorithms.
Internal validity The following threats could affect the
interpretability of the findings.

Artefacts used in the study: This is the effect caused by
the artifacts used for (experiment) competition execution,
such as selected CUTS and seeded mutants to be used in a
testing experiment. Our study could be affected negatively if
both artefacts (CUTS and seeded mutants) were not selected
appropriately. The CUTS have been taken from other ex-
periments that have been done in the SBST community and
the mutants are those seeded by Javalanch. Another artifacts
used for this study are the benchmark-tool and the run tools



that were specifically developed for this competition. To
ensure a good performance of the benchmark-tool, it was
previously tested by the benchmark developer. With respect
to the run-tools, implemented by each participant, they were
also tested to tune their tools parameters, by using 5 CUTS
that were not part of the final benchmark competition.
Construct validity relate to the admissibility of statements
about the underlying constructs on the basis of the opera-
tionalization. The following threat is identified

Inadequate preoperational explication of constructs: it is
related to the admissibility of statements about the underly-
ing constructs on the basis of the operationalization. In our
study, the final score is calculated based on a benchmark
function that defines weights were assigned in accordance
with the those quality indicators that are considered most
important. The weights were chosen based on the experience
gained through empirical studies evaluating other testing
tools in industry. Most of these studies conclude that for
companies the most important characteristics for a testing
tool is to find errors (mutation coverage) quickly (time).

III. CONCLUSION

The conclusion goes here.
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APPENDIX

A. Benchmark results for baselines

Tables III and IV show the benchmark results for Randoop
and manual testing, averaged over 6 runs. Since we only
have 6 samples, we calculated the confidence interval for
the Randoop score using Student’s t-distribution and Bessel’s
Correction to estimate the standard deviation from the sam-
ple data. For manual testing we cannot assign a concrete
benchmark score, since we do not know the values for tgen.
Instead, we provide the score as a function of tgen.

For convenience during interpretation, we listed tgen,
texec and tprep in seconds. However, for calculation of the
benchmark score, these are measured in hours!
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Variable (values are averaged over 6 runs, times are in seconds)
tprep = 0.1525 seconds
tgen (s) texec (s) covl covb covm

1 101.34 0.08 0.8538 0.6954 0.0312
2 100.35 0.00 0.0000 0.0000 0.0000
3 100.38 0.00 0.0000 0.0000 0.0000
4 102.13 0.16 0.4286 1.0000 0.4333
5 101.50 0.10 0.7211 0.5547 0.0344
6 101.20 0.00 0.0000 0.0000 0.0000
7 100.31 0.00 0.0000 0.0000 0.0000
8 100.32 0.00 0.0000 0.0000 0.0000
9 100.38 0.00 0.0000 1.0000 0.0000
10 100.58 0.08 0.5179 0.2083 0.0207
11 102.07 0.54 0.7714 0.4457 0.0077
12 101.87 0.46 1.0000 1.0000 0.0000
13 101.45 0.04 0.6800 0.6667 0.3394
14 102.52 4.12 0.5349 0.3548 0.0000
15 100.33 0.00 0.0000 0.0000 0.0000
16 100.33 0.00 0.0000 1.0000 0.0000
17 100.98 0.73 0.6786 0.5435 0.0030
18 100.30 0.00 0.0000 1.0000 0.0000
19 100.47 0.03 0.3300 0.1469 0.0449
20 100.39 0.00 0.0000 0.0000 0.0000
21 100.95 0.04 0.7981 0.6003 0.0226
22 100.35 0.01 0.2432 0.0789 0.0000
23 100.36 0.00 0.0000 0.0000 0.0000
24 100.98 0.10 0.6494 0.4103 0.0053
25 101.97 0.03 1.0000 1.0000 1.0000
26 100.31 0.00 0.0000 0.0000 0.0000
27 100.31 0.00 0.0000 1.0000 0.0000
28 100.30 0.00 0.7037 0.5000 0.0000
29 114.73 0.00 0.0000 0.0000 0.0000
30 101.23 1.53 0.9688 0.5325 0.0000
31 100.91 0.00 0.0000 0.0000 0.0000
32 101.13 0.11 0.8480 0.7273 0.0174
33 100.36 0.00 0.0000 0.0000 0.0000
34 101.14 0.07 0.7627 0.5714 0.0093
35 105.40 0.07 1.0000 1.0000 1.0000
36 101.12 0.12 0.6456 0.4000 0.0056
37 101.35 0.07 0.9111 0.7500 0.0181
38 100.40 0.07 0.7340 0.3511 0.0020
39 100.36 0.02 0.9783 0.5000 0.0000
40 104.38 0.67 0.4561 0.5000 0.4883
41 100.47 0.02 0.2667 0.5000 0.1765
42 101.19 0.00 0.0000 0.0000 0.0000
43 100.39 0.00 0.0000 0.0000 0.0000
44 100.36 0.00 0.0000 1.0000 0.0000
45 100.39 0.00 0.0000 0.0000 0.0000
46 101.33 0.13 0.6667 0.4571 0.0047
47 101.14 0.05 0.6571 0.6111 0.4340
48 100.42 0.01 0.9887 0.7000 0.0007
49 100.36 0.00 0.8000 0.6250 0.3696
50 100.98 0.08 0.6582 0.4773 0.0048
51 101.28 1.09 0.7081 0.1622 0.0000
52 100.39 0.00 0.0000 1.0000 0.0000
53 104.08 0.15 0.6756 0.4594 0.0900
54 102.31 0.00 0.0000 0.0000 0.0000
55 100.35 0.01 0.9333 0.5000 0.0000
56 100.46 0.00 0.0000 0.0000 0.0000
57 101.11 0.05 0.9180 0.6835 0.0478
58 100.95 0.03 0.8430 0.6731 0.0587
59 100.36 0.00 0.0000 0.0000 0.0000
60 100.33 0.00 0.0000 0.0000 0.0000
61 100.35 0.00 0.0000 0.0000 0.0000
62 100.38 0.00 0.0000 0.0000 0.0000
63 100.41 0.00 0.0000 0.0000 0.0000
64 100.40 0.00 0.0000 0.0000 0.0000
65 100.39 0.00 0.0000 0.0000 0.0000
66 100.40 0.00 0.0000 1.0000 0.0000
67 100.73 0.00 0.0000 0.0000 0.0000
68 100.98 0.06 0.6667 0.4571 0.0047
69 101.68 0.04 0.6250 1.0000 0.4638
70 102.00 0.34 1.0000 0.9000 0.0000
71 100.38 0.00 0.0000 0.0000 0.0000
72 101.86 0.54 0.6992 0.5789 0.0000
73 100.39 0.00 0.0000 0.0000 0.0000
74 101.28 0.06 0.9677 0.8333 0.2162
75 100.42 0.00 0.0000 0.0000 0.0000
76 100.40 0.00 0.0000 0.0000 0.0000
77 101.21 0.06 0.6393 0.4857 0.0048
Score 101.8129 (CI = [100.10, 103.52] with α = 0.05)

Table III
RESULTS FOR RANDOOP
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Variable (values are averaged over 6 runs, times are in seconds)
tprep = 0.00 seconds
tgen (s) texec (s) covl covb covm

1 unknown 0.08 0.6567 0.7830 0.0170
2 unknown 0.49 0.6991 0.6176 0.1218
3 unknown 0.08 0.7515 0.6111 0.0753
4 unknown 0.00 0.4286 1.0000 0.0500
5 unknown 0.01 1.0000 0.9609 0.0337
6 unknown 0.01 0.9259 0.7857 0.0121
7 unknown 0.06 1.0000 1.0000 0.6129
8 unknown 0.03 1.0000 0.9200 0.4346
9 unknown 0.14 1.0000 1.0000 0.0038
10 unknown 0.01 0.9643 0.9167 0.0925
11 unknown 0.12 0.9857 0.8913 0.0052
12 unknown 0.01 1.0000 1.0000 0.0238
13 unknown 0.01 0.7200 0.6667 0.1368
14 unknown 0.06 1.0000 1.0000 0.1226
15 unknown 0.01 0.7222 0.6938 0.4240
16 unknown 0.01 1.0000 1.0000 0.7059
17 unknown 0.07 0.9821 0.8696 0.0041
18 unknown 0.05 0.9867 1.0000 0.0075
19 unknown 0.10 0.7550 0.6573 0.0171
20 unknown 0.03 0.9294 0.7647 0.0205
21 unknown 0.06 0.6243 0.5825 0.0209
22 unknown 0.09 0.9459 1.0000 0.0040
23 unknown 0.14 0.8966 0.8188 0.0088
24 unknown 0.07 1.0000 0.9744 0.0045
25 unknown 0.00 1.0000 1.0000 0.1429
26 unknown 0.04 1.0000 1.0000 0.0028
27 unknown 0.04 0.9667 1.0000 0.0025
28 unknown 0.00 0.7407 0.7500 0.6364
29 unknown 0.00 0.1899 0.2069 0.2500
30 unknown 0.84 0.7604 0.3766 0.0584
31 unknown 0.11 0.9774 0.9184 0.1608
32 unknown 0.09 0.9006 0.8182 0.0205
33 unknown 0.01 0.5667 0.4000 0.1860
34 unknown 0.03 0.8475 0.6071 0.0183
35 unknown 0.00 1.0000 1.0000 0.3448
36 unknown 0.06 1.0000 0.9750 0.0040
37 unknown 0.07 0.9333 0.8125 0.0222
38 unknown 0.04 0.5455 0.3664 0.0213
39 unknown 0.01 1.0000 1.0000 0.0341
40 unknown 0.07 0.9474 0.7500 0.0035
41 unknown 0.01 0.8667 0.8333 0.0811
42 unknown 0.04 0.6863 0.3125 0.0165
43 unknown 0.02 1.0000 0.7500 0.2903
44 unknown 0.01 1.0000 1.0000 0.7222
45 unknown 0.03 1.0000 1.0000 0.0394
46 unknown 0.05 1.0000 0.9714 0.0036
47 unknown 0.01 0.7714 0.8333 0.2044
48 unknown 0.01 0.9887 0.7000 0.0006
49 unknown 0.00 0.8667 1.0000 0.8261
50 unknown 0.05 1.0000 0.9773 0.0049
51 unknown 0.06 0.2228 0.2162 0.0059
52 unknown 0.02 1.0000 1.0000 0.7727
53 unknown 0.01 0.9786 0.8712 0.1309
54 unknown 0.04 0.9487 0.7500 0.0681
55 unknown 0.02 1.0000 1.0000 0.0352
56 unknown 0.02 1.0000 0.8636 0.0335
57 unknown 0.02 0.8962 0.7848 0.0472
58 unknown 0.06 0.9522 0.8750 0.0074
59 unknown 0.04 0.9524 0.8333 0.0744
60 unknown 0.04 0.9630 0.9000 0.0771
61 unknown 0.04 1.0000 1.0000 0.0672
62 unknown 0.00 0.4167 0.0000 0.3750
63 unknown 0.01 1.0000 1.0000 0.6786
64 unknown 0.02 1.0000 1.0000 0.6970
65 unknown 0.02 1.0000 1.0000 0.6429
66 unknown 0.01 1.0000 1.0000 0.5000
67 unknown 0.04 1.0000 0.9286 0.0717
68 unknown 0.06 1.0000 0.9714 0.0042
69 unknown 0.00 1.0000 1.0000 0.1549
70 unknown 0.01 0.8889 0.8000 0.0902
71 unknown 0.04 0.9551 0.9242 0.1065
72 unknown 0.02 0.2602 0.1842 0.2231
73 unknown 0.03 0.9710 0.9167 0.0627
74 unknown 1.98 1.0000 0.8333 0.8304
75 unknown 12.33 0.5203 0.6479 0.2715
76 unknown 18.14 0.8043 0.7037 0.3214
77 unknown 0.05 1.0000 0.9714 0.0054
Score only score function (due to unknown generation time):

Score Function: 246.5554 − 5 · tgen (tgen in h!))
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