{-# LANGUAGE TemplateHaskell #-} {-# OPTIONS_GHC -w #-} ----------------------------------------------------------------------------- -- | -- Module : Generics.Regular.TH -- Copyright : (c) 2008--2009 Universiteit Utrecht -- License : BSD3 -- -- Maintainer : generics@haskell.org -- Stability : experimental -- Portability : non-portable -- -- This module contains Template Haskell code that can be used to -- automatically generate the boilerplate code for the regular -- library. -- ----------------------------------------------------------------------------- module Generics.Regular.TH ( deriveConstructors, deriveRegular, derivePF ) where import Generics.Regular.Base import Generics.Regular.Constructor import Language.Haskell.TH hiding (Fixity()) import Language.Haskell.TH.Syntax (Lift(..)) import Control.Monad -- | Given a datatype name, derive datatypes and -- instances of class 'Constructor'. deriveConstructors :: Name -> Q [Dec] deriveConstructors = constrInstance -- | Given the type and the name (as string) for the -- pattern functor to derive, generate the 'Regular' -- instance. deriveRegular :: Name -> String -> Q [Dec] deriveRegular n pfn = do pf <- derivePF pfn n fam <- deriveInst n return $ pf ++ fam -- | Derive only the 'PF' instance. Not needed if 'deriveRegular' -- is used. derivePF :: String -> Name -> Q [Dec] derivePF pfn n = fmap (:[]) $ tySynD (mkName pfn) [] (pfType n) deriveInst :: Name -> Q [Dec] deriveInst t = do fcs <- mkFrom t 1 0 t tcs <- mkTo t 1 0 t liftM (:[]) $ instanceD (cxt []) (conT ''Regular `appT` conT t) [funD 'from fcs, funD 'to tcs] constrInstance :: Name -> Q [Dec] constrInstance n = do i <- reify n -- runIO (print i) let cs = case i of TyConI (DataD _ _ _ cs _) -> cs _ -> [] ds <- mapM mkData cs is <- mapM mkInstance cs return $ ds ++ is stripRecordNames :: Con -> Con stripRecordNames (RecC n f) = NormalC n (map (\(_, s, t) -> (s, t)) f) stripRecordNames c = c mkData :: Con -> Q Dec mkData (NormalC n _) = dataD (cxt []) (mkName (nameBase n)) [] [] [] mkData r@(RecC _ _) = mkData (stripRecordNames r) mkData (InfixC t1 n t2) = mkData (NormalC n [t1,t2]) instance Lift Fixity where lift Prefix = conE 'Prefix lift (Infix a n) = conE 'Infix `appE` [| a |] `appE` [| n |] instance Lift Associativity where lift LeftAssociative = conE 'LeftAssociative lift RightAssociative = conE 'RightAssociative lift NotAssociative = conE 'NotAssociative mkInstance :: Con -> Q Dec mkInstance (NormalC n _) = instanceD (cxt []) (appT (conT ''Constructor) (conT $ mkName (nameBase n))) [funD 'conName [clause [wildP] (normalB (stringE (nameBase n))) []]] mkInstance r@(RecC _ _) = mkInstance (stripRecordNames r) mkInstance (InfixC t1 n t2) = do i <- reify n let fi = case i of DataConI _ _ _ f -> convertFixity f _ -> Prefix instanceD (cxt []) (appT (conT ''Constructor) (conT $ mkName (nameBase n))) [funD 'conName [clause [wildP] (normalB (stringE (nameBase n))) []], funD 'conFixity [clause [wildP] (normalB [| fi |]) []]] where convertFixity (Fixity n d) = Infix (convertDirection d) n convertDirection InfixL = LeftAssociative convertDirection InfixR = RightAssociative convertDirection InfixN = NotAssociative pfType :: Name -> Q Type pfType n = do -- runIO $ putStrLn $ "processing " ++ show n i <- reify n let b = case i of TyConI (DataD _ _ _ cs _) -> foldr1 sum (map (pfCon n) cs) TyConI (TySynD t _ _) -> conT ''K `appT` conT t _ -> error "unknown construct" --appT b (conT $ mkName (nameBase n)) b where sum :: Q Type -> Q Type -> Q Type sum a b = conT ''(:+:) `appT` a `appT` b pfCon :: Name -> Con -> Q Type pfCon ns (NormalC n []) = appT (appT (conT ''C) (conT $ mkName (nameBase n))) (conT ''U) pfCon ns (NormalC n fs) = appT (appT (conT ''C) (conT $ mkName (nameBase n))) (foldr1 prod (map (pfField ns . snd) fs)) where prod :: Q Type -> Q Type -> Q Type prod a b = conT ''(:*:) `appT` a `appT` b pfCon ns r@(RecC _ _) = pfCon ns (stripRecordNames r) pfCon ns (InfixC t1 n t2) = pfCon ns (NormalC n [t1,t2]) pfField :: Name -> Type -> Q Type pfField ns t@(ConT n) | n == ns = conT ''I pfField ns t = conT ''K `appT` return t mkFrom :: Name -> Int -> Int -> Name -> Q [Q Clause] mkFrom ns m i n = do -- runIO $ putStrLn $ "processing " ++ show n let wrapE e = lrE m i e i <- reify n let dn = mkName (nameBase n) let b = case i of TyConI (DataD _ _ _ cs _) -> zipWith (fromCon wrapE ns dn (length cs)) [0..] cs TyConI (TySynD t _ _) -> [clause [varP (field 0)] (normalB (wrapE $ conE 'K `appE` varE (field 0))) []] _ -> error "unknown construct" return b mkTo :: Name -> Int -> Int -> Name -> Q [Q Clause] mkTo ns m i n = do -- runIO $ putStrLn $ "processing " ++ show n let wrapP p = lrP m i p i <- reify n let dn = mkName (nameBase n) let b = case i of TyConI (DataD _ _ _ cs _) -> zipWith (toCon wrapP ns dn (length cs)) [0..] cs TyConI (TySynD t _ _) -> [clause [wrapP $ conP 'K [varP (field 0)]] (normalB $ varE (field 0)) []] _ -> error "unknown construct" return b fromCon :: (Q Exp -> Q Exp) -> Name -> Name -> Int -> Int -> Con -> Q Clause fromCon wrap ns n m i (NormalC cn []) = clause [conP cn []] (normalB $ wrap $ lrE m i $ conE 'C `appE` (conE 'U)) [] fromCon wrap ns n m i (NormalC cn fs) = -- runIO (putStrLn ("constructor " ++ show ix)) >> clause [conP cn (map (varP . field) [0..length fs - 1])] (normalB $ wrap $ lrE m i $ conE 'C `appE` foldr1 prod (zipWith (fromField ns) [0..] (map snd fs))) [] where prod x y = conE '(:*:) `appE` x `appE` y fromCon wrap ns n m i r@(RecC _ _) = fromCon wrap ns n m i (stripRecordNames r) fromCon wrap ns n m i (InfixC t1 cn t2) = fromCon wrap ns n m i (NormalC cn [t1,t2]) toCon :: (Q Pat -> Q Pat) -> Name -> Name -> Int -> Int -> Con -> Q Clause toCon wrap ns n m i (NormalC cn []) = clause [wrap $ lrP m i $ conP 'C [conP 'U []]] (normalB $ conE cn) [] toCon wrap ns n m i (NormalC cn fs) = -- runIO (putStrLn ("constructor " ++ show ix)) >> clause [wrap $ lrP m i $ conP 'C [foldr1 prod (zipWith (toField ns) [0..] (map snd fs))]] (normalB $ foldl appE (conE cn) (map (varE . field) [0..length fs - 1])) [] where prod x y = conP '(:*:) [x,y] toCon wrap ns n m i r@(RecC _ _) = toCon wrap ns n m i (stripRecordNames r) toCon wrap ns n m i (InfixC t1 cn t2) = toCon wrap ns n m i (NormalC cn [t1,t2]) fromField :: Name -> Int -> Type -> Q Exp fromField ns nr t@(ConT n) | n == ns = conE 'I `appE` varE (field nr) fromField ns nr t = conE 'K `appE` varE (field nr) toField :: Name -> Int -> Type -> Q Pat toField ns nr t@(ConT n) | n == ns = conP 'I [varP (field nr)] toField ns nr t = conP 'K [varP (field nr)] field :: Int -> Name field n = mkName $ "f" ++ show n lrP :: Int -> Int -> (Q Pat -> Q Pat) lrP 1 0 p = p lrP m 0 p = conP 'L [p] lrP m i p = conP 'R [lrP (m-1) (i-1) p] lrE :: Int -> Int -> (Q Exp -> Q Exp) lrE 1 0 e = e lrE m 0 e = conE 'L `appE` e lrE m i e = conE 'R `appE` lrE (m-1) (i-1) e