{-# OPTIONS --type-in-type #-} {-# OPTIONS --no-termination-check #-} module AST where open import Prelude open import IxFun open import Nat ---------------------------------------------------------------------- -- AST ---------------------------------------------------------------------- {- -- Index type AST : Set AST = ⊤ + ⊤ expr = inl tt decl = inr tt -- Codes for the functors (1 parameter, 2 recursive positions) `ExprF' : Code (⊤ + AST) AST `ExprF' = K Nat ⊕ I (inr expr) ⊗ I (inr expr) ⊕ I (inl tt) ⊕ I (inr decl) ⊗ I (inr expr) `DeclF' : Code (⊤ + AST) AST `DeclF' = I (inl tt) ⊗ I (inr expr) ⊕ I (inr decl) ⊗ I (inr decl) ⊕ U `ASTF' : Code (⊤ + AST) AST `ASTF' = ! expr ⊗ `ExprF' ⊕ ! decl ⊗ `DeclF' -- Code for the fixpoint `AST' : Code ⊤ AST `AST' = Fix `ASTF' -- The actual datatypes mutual data Expr (A : Set) : Set where econst : Nat -> Expr A add : Expr A -> Expr A -> Expr A evar : A -> Expr A elet : Decl A -> Expr A -> Expr A data Decl (A : Set) : Set where assign : A -> Expr A -> Decl A seq : Decl A -> Decl A -> Decl A none : Decl A -- Conversions mutual fromExpr : {A : Set} -> Expr A -> ⟦ `AST' ⟧ (T A) expr fromExpr (econst x) = ⟨ inl (refl , inl x) ⟩ fromExpr (add x y) = ⟨ inl (refl , inr (inl (fromExpr x , fromExpr y))) ⟩ fromExpr (evar x) = ⟨ inl (refl , inr (inr (inl x))) ⟩ fromExpr (elet d e) = ⟨ inl (refl , inr (inr (inr (fromDecl d , fromExpr e))))⟩ fromDecl : {A : Set} → Decl A → ⟦ `AST' ⟧ (T A) decl fromDecl (assign x e) = ⟨ inr (refl , inl (x , fromExpr e)) ⟩ fromDecl (seq d₁ d₂) = ⟨ inr (refl , inr (inl (fromDecl d₁ , fromDecl d₂)))⟩ fromDecl none = ⟨ inr (refl , inr (inr tt))⟩ mutual toExpr : {A : Set} → ⟦ `AST' ⟧ (T A) expr → Expr A toExpr ⟨ inl (refl , inl x) ⟩ = econst x toExpr ⟨ inl (refl , inr (inl (x , y))) ⟩ = add (toExpr x) (toExpr y) toExpr ⟨ inl (refl , inr (inr (inl x))) ⟩ = evar x toExpr ⟨ inl (refl , inr (inr (inr (d , e)))) ⟩ = elet (toDecl d) (toExpr e) toExpr ⟨ inr (() , _) ⟩ toDecl : {A : Set} → ⟦ `AST' ⟧ (T A) decl → Decl A toDecl ⟨ inl (() , _) ⟩ toDecl ⟨ inr (refl , inl (x , e)) ⟩ = assign x (toExpr e) toDecl ⟨ inr (refl , inr (inl (d₁ , d₂))) ⟩ = seq (toDecl d₁) (toDecl d₂) toDecl ⟨ inr (refl , inr (inr tt)) ⟩ = none IAST : (A : Set) → AST → Set IAST A (inl tt) = Expr A IAST A (inr tt) = Decl A fromAST : {A : Set} → IAST A ⇉ ⟦ `AST' ⟧ (T A) fromAST (inl tt) e = fromExpr e fromAST (inr tt) d = fromDecl d toAST : {A : Set} → ⟦ `AST' ⟧ (T A) ⇉ IAST A toAST (inl tt) e = toExpr e toAST (inr tt) d = toDecl d -- Concrete map mapExpr : {A B : Set} → (A → B) → Expr A → Expr B mapExpr f e = toExpr (map `AST' (↑ f) expr (fromExpr e)) mapDecl : {A B : Set} → (A → B) → Decl A → Decl B mapDecl f d = toDecl (map `AST' (↑ f) decl (fromDecl d)) -- Catamorphism IASTr : Set → Set → AST → Set IASTr x _ (inl tt) = x IASTr _ x (inr tt) = x cataAST : ∀ {A R R′} → (Nat → R) → (R → R → R) → (A → R) → (R′ → R → R) → (A → R → R′) → (R′ → R′ → R′) → R′ → IAST A ⇉ IASTr R R′ cataAST {A} {R} {R′} c p v l a s n i ast = cata `ASTF' f i (fromAST i ast) where f : ⟦ `ASTF' ⟧ (T A ∣ IASTr R R′) ⇉ IASTr R R′ f (inl tt) (inl (refl , inl y)) = c y f (inl tt) (inl (refl , inr (inl (y , y')))) = p y y' f (inl tt) (inl (refl , inr (inr (inl y)))) = v y f (inl tt) (inl (refl , inr (inr (inr (y , y'))))) = l y y' f (inl tt) (inr (() , y')) f (inr tt) (inl (() , y')) f (inr tt) (inr (refl , inl (y , y'))) = a y y' f (inr tt) (inr (refl , inr (inl (y , y')))) = s y y' f (inr tt) (inr (refl , inr (inr tt))) = n -} -- Indices AST : Set AST = Fin 3 expr : AST expr = zero decl : AST decl = (suc zero) nat : AST nat = suc (suc zero) {- data ASTView : Fin 3 → Set where vnat : ASTView nat vexpr : ASTView expr vdecl : ASTView decl viewAST : (ast : AST) → ASTView ast viewAST zero = vexpr viewAST (suc zero) = vdecl viewAST (suc (suc zero)) = vnat viewAST (suc (suc (suc ()))) -} -- Codes for the functors (1 parameter, 3 recursive positions) `ExprF' : Code (⊤ + AST) AST `ExprF' = I (inr nat) ⊕ I (inr expr) ⊗ I (inr expr) ⊕ I (inl tt) ⊕ I (inr decl) ⊗ I (inr expr) `DeclF' : Code (⊤ + AST) AST `DeclF' = I (inl tt) ⊗ I (inr expr) ⊕ I (inr decl) ⊗ I (inr decl) ⊕ U -- Adapting `Nat' to this family data OWiden {A : Set} : A → ⊤ → Set where oWiden : {x : A} → OWiden x tt `Nat2' : Code (⊤ + AST) AST `Nat2' = X (const tt) (Y (λ ()) `Nat') `ASTF' : Code (⊤ + AST) AST `ASTF' = ! expr ⊗ `ExprF' ⊕ ! decl ⊗ `DeclF' ⊕ ! nat ⊗ `Nat2' -- Code for the fixpoint `AST' : Code ⊤ AST `AST' = Fix `ASTF' -- The actual datatypes mutual data Expr (A : Set) : Set where econst : Nat -> Expr A add : Expr A -> Expr A -> Expr A evar : A -> Expr A elet : Decl A -> Expr A -> Expr A data Decl (A : Set) : Set where assign : A -> Expr A -> Decl A seq : Decl A -> Decl A -> Decl A none : Decl A -- Conversions mutual fromExpr : {r : ⊤ → Set} → Expr (r tt) → ⟦ `AST' ⟧ r expr fromExpr (econst x) = ⟨ inl (refl , inl (fromNat2 x)) ⟩ fromExpr (add x y) = ⟨ inl (refl , inr (inl (fromExpr x , fromExpr y))) ⟩ fromExpr (evar x) = ⟨ inl (refl , inr (inr (inl x))) ⟩ fromExpr (elet d e) = ⟨ inl (refl , inr (inr (inr (fromDecl d , fromExpr e))))⟩ fromDecl : {r : ⊤ → Set} → Decl (r tt) → ⟦ `AST' ⟧ r decl fromDecl (assign x e) = ⟨ inr (inl (refl , inl (x , fromExpr e))) ⟩ fromDecl (seq d₁ d₂) = ⟨ inr (inl (refl , inr (inl (fromDecl d₁ , fromDecl d₂))))⟩ fromDecl none = ⟨ inr (inl (refl , inr (inr tt)))⟩ fromNat2 : {r : ⊤ → Set} → Nat → ⟦ `AST' ⟧ r nat fromNat2 n = ⟨ (inr (inr (refl , map {r = (λ ())} `Nat' (λ ()) tt (fromNat n)))) ⟩ mutual toExpr : {r : ⊤ → Set} → ⟦ `AST' ⟧ r expr → Expr (r tt) toExpr ⟨ inl (refl , inl x) ⟩ = econst (toNat2 x) toExpr ⟨ inl (refl , inr (inl (x , y))) ⟩ = add (toExpr x) (toExpr y) toExpr ⟨ inl (refl , inr (inr (inl x))) ⟩ = evar x toExpr ⟨ inl (refl , inr (inr (inr (d , e)))) ⟩ = elet (toDecl d) (toExpr e) toExpr ⟨ inr (inl (() , _)) ⟩ toExpr ⟨ inr (inr (() , _)) ⟩ toDecl : {r : ⊤ → Set} → ⟦ `AST' ⟧ r decl → Decl (r tt) toDecl ⟨ inl (() , _) ⟩ toDecl ⟨ inr (inl (refl , inl (x , e))) ⟩ = assign x (toExpr e) toDecl ⟨ inr (inl (refl , inr (inl (d₁ , d₂)))) ⟩ = seq (toDecl d₁) (toDecl d₂) toDecl ⟨ inr (inl (refl , inr (inr tt))) ⟩ = none toDecl ⟨ inr (inr (() , _)) ⟩ toNat2 : {r : ⊤ → Set} → ⟦ `AST' ⟧ r nat → Nat toNat2 ⟨ inl (() , _) ⟩ toNat2 ⟨ inr (inl (() , _)) ⟩ toNat2 ⟨ inr (inr (refl , x)) ⟩ = toNat {r = (λ ())} (map `Nat' (λ ()) tt x) IAST : (r : ⊤ → Set) → AST → Set IAST r zero = Expr (r tt) IAST r (suc zero) = Decl (r tt) IAST _ (suc (suc zero)) = Nat IAST _ (suc (suc (suc ()))) fromAST : {r : ⊤ → Set} → IAST r ⇉ ⟦ `AST' ⟧ r fromAST zero e = fromExpr e fromAST (suc zero) d = fromDecl d fromAST (suc (suc zero)) n = fromNat2 n fromAST (suc (suc (suc ()))) _ toAST : {r : ⊤ → Set} → ⟦ `AST' ⟧ r ⇉ IAST r toAST zero e = toExpr e toAST (suc zero) d = toDecl d toAST (suc (suc zero)) n = toNat2 n toAST (suc (suc (suc ()))) _ epAST : (r : ⊤ → Set) (o : AST) → IAST r o ≃ ⟦ `AST' ⟧ r o epAST r o = record { from = fromAST o ; to = toAST o ; iso₁ = nothing ; iso₂ = nothing } `ASTE' : Code ⊤ AST `ASTE' = EP `AST' (λ f i → IAST f i) epAST -- Concrete map mapAST : {r : ⊤ → Set} {s : ⊤ → Set} → (r tt → s tt) → IAST r ⇉ IAST s mapAST {r} {s} f i = map `ASTE' g i where g : r ⇉ s g tt = f mapExpr : {A B : Set} → (A → B) → Expr A → Expr B mapExpr {A} {B} f = mapAST {λ _ → A} {λ _ → B} f expr mapDecl : {A B : Set} → (A → B) → Decl A → Decl B mapDecl {A} {B} f = mapAST {λ _ → A} {λ _ → B} f decl mapNat2 : {A B : Set} → (A → B) → Nat → Nat -- identity function mapNat2 {A} {B} f = mapAST {λ _ → A} {λ _ → B} f nat -- Catamorphism IASTr : Set → Set → Set → AST → Set IASTr x _ _ zero = x IASTr _ x _ (suc zero) = x IASTr _ _ x (suc (suc zero)) = x IASTr _ _ _ (suc (suc (suc ()))) cataAST : ∀ {R R′ R′′} → {r : ⊤ → Set} → (R′′ → R) → (R → R → R) → ((r tt) → R) → (R′ → R → R) → ((r tt) → R → R′) → (R′ → R′ → R′) → R′ → R′′ → IAST r ⇉ IASTr R R′ R′′ cataAST {R} {R′} {R′′} {r} c p v l a s n z i ast = cata `ASTF' f i (fromAST i ast) where f : ⟦ `ASTF' ⟧ (r ∣ IASTr R R′ R′′) ⇉ IASTr R R′ R′′ f zero (inl (refl , inl x)) = c x f zero (inl (refl , inr (inl (x1 , x2)))) = p x1 x2 f zero (inl (refl , inr (inr (inl x)))) = v x f zero (inl (refl , inr (inr (inr (d , e))))) = l d e f zero (inr (inl ((), _))) f zero (inr (inr ((), _))) f (suc zero) (inl ((), _)) f (suc zero) (inr (inr ((), _))) f (suc zero) (inr (inl (refl , inl (x , e)))) = a x e f (suc zero) (inr (inl (refl , inr (inl (d1 , d2))))) = s d1 d2 f (suc zero) (inr (inl (refl , inr (inr tt)))) = n f (suc (suc zero)) (inl ((), _)) f (suc (suc zero)) (inr (inl (() , _))) f (suc (suc zero)) (inr (inr (refl , _))) = z f (suc (suc (suc ()))) _ -- Example values decl1 : Decl Nat decl1 = seq (assign 0 (econst 5)) (seq (assign 1 (econst 6)) none) expr1 : Expr Nat expr1 = elet decl1 (add (evar 0) (evar 1)) -- Increment all variables exASTMap : IAST (T Nat) ⇉ IAST (T Nat) exASTMap = mapAST suc