{-# OPTIONS --no-termination-check #-} module SemiEq where open import Prelude open import IxFun -- Semi-decidable equality _⇒_ : ∀ {I} → Indexed I → Indexed I → Set r ⇒ s = ∀ i → (x y : r i) → Maybe (x ≡ y) infixr 5 _∦_ _∦_ : {I J : Set} {r : Indexed I} {s : Indexed J} → (r ⇒ r) → (s ⇒ s) → (r ∣ s) ⇒ (r ∣ s) (f ∦ g) (inl x) = f x (f ∦ g) (inr y) = g y deqt : {I O : Set} {r : Indexed I} (C : I ▸ O) → (r ⇒ r) → (⟦ C ⟧ r ⇒ ⟦ C ⟧ r) deqt Z f o () y deqt U f o tt tt = just refl deqt (I i) f o x y = f i x y deqt (F ↗ g ↘ h) f o x y = deqt F (f ∘ g) (h o) x y deqt (F ⊕ G) f o (inl x) (inl y) = mapMaybe (cong≡ inl) (deqt F f o x y) deqt (F ⊕ G) f o (inl x) (inr y) = nothing deqt (F ⊕ G) f o (inr x) (inl y) = nothing deqt (F ⊕ G) f o (inr x) (inr y) = mapMaybe (cong≡ inr) (deqt G f o x y) deqt (F ⊗ G) f o (x1 , x2) (y1 , y2) = deqt F f o x1 y1 >>= λ l → deqt G f o x2 y2 >>= λ r → just (cong≡₂ _,_ l r) deqt (F ⊚ G) f o x y = deqt F (deqt G f) o x y deqt (! o) f .o refl refl = just refl deqt (Σ {C = C} g) f o (some {i1} x) (some {i2} y) with deqt {r = λ _ → _} C (λ ()) tt i1 i2 deqt (Σ g) f o (some x0) (some y) | nothing = nothing deqt (Σ g) f o (some {i} x0) (some y') | just refl = mapMaybe (cong≡ some) (deqt (g i) f o x0 y') deqt (Fix F) f o ⟨ x ⟩ ⟨ y ⟩ = mapMaybe (cong≡ ⟨_⟩) (deqt F (f ∦ deqt (Fix F) f) o x y) deqt {r = r} (Iso C D e) f o x y with e r o deqt (Iso C D e) f o x y | ep with _≃_.iso₁ ep {x} | _≃_.iso₁ ep {y} | deqt C f o (_≃_.from ep x) (_≃_.from ep y) deqt (Iso C D e) f o x y | ep | p₁ | p₂ | just p = just (trans≡ (sym≡ p₁) (trans≡ (cong≡ (_≃_.to ep) p) p₂)) deqt (Iso C D e) f o x y | ep | p₁ | p₂ | nothing = nothing