{-# LANGUAGE GADTs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE EmptyDataDecls #-} module ASTUse where import Generics.MultiRec.Base import AST -- * Instantiating the library for AST -- ** Index type data AST :: * -> * where Expr :: AST Expr Decl :: AST Decl Var :: AST Var -- ** Constructors data Const instance Constructor Const where conName _ = "Const" data Add instance Constructor Add where conName _ = "Add" data Mul instance Constructor Mul where conName _ = "Mul" data EVar instance Constructor EVar where conName _ = "EVar" data Let instance Constructor Let where conName _ = "Let" data Assign instance Constructor Assign where conName _ = ":=" conFixity _ = Infix NotAssociative 1 data Seq instance Constructor Seq where conName _ = "Seq" data None instance Constructor None where conName _ = "None" -- ** Functor encoding -- Variations of the encoding below are possible. For instance, -- the 'C' applications can be omitted if no functions that require -- constructor information are needed. Furthermore, it is possible -- to tag every constructor rather than every datatype. That makes -- the overall structure slightly simpler, but makes the nesting -- of 'L' and 'R' constructors larger in turn. type instance PF AST = ( C Const (K Int) :+: C Add (I Expr :*: I Expr) :+: C Mul (I Expr :*: I Expr) :+: C EVar (I Var) :+: C Let (I Decl :*: I Expr) ) :>: Expr :+: ( C Assign (I Var :*: I Expr) :+: C Seq (I Decl :*: I Decl) :+: C None U ) :>: Decl :+: ( (K String) ) :>: Var -- ** 'Ix' instances instance Ix AST Expr where from_ (Const i) = L (Tag (L (C (K i)))) from_ (Add e f) = L (Tag (R (L (C (I (I0 e) :*: I (I0 f)))))) from_ (Mul e f) = L (Tag (R (R (L (C (I (I0 e) :*: I (I0 f))))))) from_ (EVar x) = L (Tag (R (R (R (L (C (I (I0 x)))))))) from_ (Let d e) = L (Tag (R (R (R (R (C (I (I0 d) :*: I (I0 e)))))))) to_ (L (Tag (L (C (K i))))) = Const i to_ (L (Tag (R (L (C (I (I0 e) :*: I (I0 f))))))) = Add e f to_ (L (Tag (R (R (L (C (I (I0 e) :*: I (I0 f)))))))) = Mul e f to_ (L (Tag (R (R (R (L (C (I (I0 x))))))))) = EVar x to_ (L (Tag (R (R (R (R (C (I (I0 d) :*: I (I0 e))))))))) = Let d e index = Expr instance Ix AST Decl where from_ (x := e) = R (L (Tag (L (C (I (I0 x) :*: I (I0 e)))))) from_ (Seq c d) = R (L (Tag (R (L (C (I (I0 c) :*: I (I0 d))))))) from_ (None) = R (L (Tag (R (R (C U))))) to_ (R (L (Tag (L (C (I (I0 x) :*: I (I0 e))))))) = x := e to_ (R (L (Tag (R (L (C (I (I0 c) :*: I (I0 d)))))))) = Seq c d to_ (R (L (Tag (R (R (C U)))))) = None index = Decl instance Ix AST Var where from_ x = R (R (Tag (K x))) to_ (R (R (Tag (K x)))) = x index = Var