{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE LiberalTypeSynonyms #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE FlexibleInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Generics.MultiRec.FoldAlgK -- Copyright : (c) 2009 Universiteit Utrecht -- License : BSD3 -- -- Maintainer : generics@haskell.org -- Stability : experimental -- Portability : non-portable -- -- A variant of fold that allows the specification of the algebra in a -- convenient way, and that fixes the result type to a constant. -- ----------------------------------------------------------------------------- module Generics.MultiRec.FoldAlgK where import Generics.MultiRec.Base import Generics.MultiRec.HFunctor -- * The type family of convenient algebras. -- | The type family we use to describe the convenient algebras. type family Alg (f :: (* -> *) -> (* -> *) -> * -> *) (s :: * -> *) -- system (r :: *) -- result type :: * -- | For a constant, we take the constant value to a result. type instance Alg (K a) (s :: * -> *) r = a -> r -- | For a unit, no arguments are available. type instance Alg U (s :: * -> *) r = r -- | For an identity, we turn the recursive result into a final result. -- Note that the index can change. type instance Alg (I xi) (s :: * -> *) r = r -> r -- | For a sum, the algebra is a pair of two algebras. type instance Alg (f :+: g) s r = (Alg f s r, Alg g s r) -- | For a product where the left hand side is a constant, we -- take the value as an additional argument. type instance Alg (K a :*: g) s r = a -> Alg g s r -- | For a product where the left hand side is an identity, we -- take the recursive result as an additional argument. type instance Alg (I xi :*: g) s r = r -> Alg g s r -- | A tag changes the index of the final result. type instance Alg (f :>: xi) s r = Alg f s r -- | Constructors are ignored. type instance Alg (C c f) s r = Alg f s r -- | The algebras passed to the fold have to work for all index types -- in the system. The additional witness argument is required only -- to make GHC's typechecker happy. type Algebra s r = forall ix. Ix s ix => s ix -> Alg (PF s) s r -- * The class to turn convenient algebras into standard algebras. -- | The class fold explains how to convert a convenient algebra -- 'Alg' back into a function from functor to result, as required -- by the standard fold function. class Fold (f :: (* -> *) -> (* -> *) -> * -> *) where alg :: (Ix s ix) => Alg f s r -> f s (K0 r) ix -> r instance Fold (K a) where alg f (K x) = f x instance Fold U where alg f U = f instance Fold (I xi) where alg f (I (K0 x)) = f x instance (Fold f, Fold g) => Fold (f :+: g) where alg (f, g) (L x) = alg f x alg (f, g) (R x) = alg g x instance (Fold g) => Fold (K a :*: g) where alg f (K x :*: y) = alg (f x) y instance (Fold g) => Fold (I xi :*: g) where alg f (I (K0 x) :*: y) = alg (f x) y instance (Fold f) => Fold (f :>: xi) where alg f (Tag x) = alg f x instance (Fold f) => Fold (C c f) where alg f (C x) = alg f x -- * Interface -- | Variant of fold that takes an additional witness argument. fold_ :: forall s ix r . (Ix s ix, HFunctor (PF s), Fold (PF s)) => s ix -> Algebra s r -> ix -> r fold_ ix f = (alg :: Alg (PF s) s r -> (PF s) s (K0 r) ix -> r) (f ix) . hmap (\ _ (I0 x) -> K0 (fold_ index f x)) . from -- | Fold with convenient algebras. fold :: forall s ix r . (Ix s ix, HFunctor (PF s), Fold (PF s)) => Algebra s r -> ix -> r fold = fold_ index -- * Construction of algebras infixr 5 & -- | For constructing algebras that are made of nested pairs rather -- than n-ary tuples, it is helpful to use this pairing combinator. (&) :: a -> b -> (a, b) (&) = (,)