---------------------------------------------------------------- -- Daan Leijen (c) 2001 -- -- $Revision$ -- $Author$ -- $Date$ ---------------------------------------------------------------- module QueensStrict where instruction primAdd "addint" :: Int -> Int -> Int instruction primSub "subint" :: Int -> Int -> Int instruction primNeq "neint" :: Int -> Int -> Bool data List a = Nil | Cons a (List a) data Bool = False | True add x y = case y of y -> case x of x-> primAdd x y sub x y = case y of y -> case x of x-> primSub x y neq x y = case y of y -> case x of x-> primNeq x y and x y = case x of False -> False True -> y length xs = let len n xs = case xs of Nil -> n Cons x xx -> case primAdd n 1 of m -> len m xx in len 0 xs {- safe x d [] = True safe x d (y:ys) = x /= y && x+d /= y && x-d /= y && safe x (d+1) ys -} safe x d ys = case ys of Nil -> True Cons y yy -> case y of y -> case primNeq x y of False -> False _ -> case primAdd x d of a -> case primNeq a y of False -> False _ -> case primSub x d of b -> case primNeq b y of False -> False _ -> case primAdd d 1 of d -> safe x d yy {- queens k 0 = [[]] queens k n = [ (x:xs) | xs <- queens k (n-1), x <- [1..k], safe x 1 xs ] == queens k n = let xss = queens k (n-1) walk [] = [] walk (xs:xss) = let walkx 0 = walk xss walkx x | safe x 1 xs = (x:xs):walkx (x-1) | otherwise = walkx (x-1) in walkx k in walk xss -} queens k n = case n of 0 -> Cons Nil Nil -- [[]] n -> let xss = case primSub n 1 of m -> queens k m walk xss = case xss of Nil -> Nil Cons xs xss -> let walkx x = case x of 0 -> walk xss x -> case safe x 1 xs of False -> case primSub x 1 of x1 -> walkx x1 True -> let ys = case primSub x 1 of x1 -> walkx x1 in Cons (Cons x xs) ys in walkx k in walk xss; main = length (queens 9 9)