/***********************************************************************/ /* */ /* Objective Caml */ /* */ /* Damien Doligez, projet Para, INRIA Rocquencourt */ /* */ /* Copyright 1996 Institut National de Recherche en Informatique et */ /* en Automatique. All rights reserved. This file is distributed */ /* under the terms of the GNU Library General Public License. */ /* */ /***********************************************************************/ /***--------------------------------------------------------------------- Modified and adapted for the Lazy Virtual Machine by Daan Leijen. Modifications copyright 2001, Daan Leijen. This (modified) file is distributed under the terms of the GNU Library General Public License. ---------------------------------------------------------------------***/ /* $Id$ */ #include #include "config.h" #include "finalise.h" #include "freelist.h" #include "gc.h" #include "gc_ctrl.h" #include "major_gc.h" #include "memory.h" #include "mlvalues.h" #include "roots.h" #include "weak.h" extern unsigned long percent_free; /* major_gc.c */ extern void shrink_heap (char *); /* memory.c */ /* Encoded headers: the color is stored in the 2 least significant bits. (For pointer inversion, we need to distinguish headers from pointers.) s is a Wosize, t is a tag, and c is a color (a two-bit number) For the purpose of compaction, "colors" are: 0: pointers (direct or inverted) 1: integer or (unencoded) infix header 2: inverted pointer for infix header 3: integer or encoded (noninfix) header XXX Should be fixed: XXX The above assumes that all roots are aligned on a 4-byte boundary, XXX which is not always guaranteed by C. XXX (see [register_global_roots] and [init_exceptions]) XXX Should be able to fix it to only assume 2-byte alignment. */ #define Make_ehd(s,t,c) (((s) << 10) | (t) << 2 | (c)) #define Whsize_ehd(h) Whsize_hd (h) #define Wosize_ehd(h) Wosize_hd (h) #define Tag_ehd(h) (((h) >> 2) & 0xFF) #define Ecolor(w) ((w) & 3) static void invert_pointer_at (word *p) { word q = *p; Assert (Ecolor ((long) p) == 0); /* Use Ecolor (q) == 0 instead of Is_block (q) because q could be an inverted pointer for an infix header (with Ecolor == 2). */ if (Ecolor (q) == 0 && Is_in_heap (q)){ switch (Ecolor (Hd_val (q))){ case 0: case 3: /* Pointer or header: insert in inverted list. */ *p = Hd_val (q); Hd_val (q) = (header_t) p; break; case 1: /* Infix header: make inverted infix list. */ /* Double inversion: the last of the inverted infix list points to the next infix header in this block. The last of the last list contains the original block header. */ { /* This block as a value. */ value val = (value) q - Infix_offset_val (q); /* Get the block header. */ word *hp = (word *) Hp_val (val); while (Ecolor (*hp) == 0) hp = (word *) *hp; Assert (Ecolor (*hp) == 3); if (Tag_ehd (*hp) == Closure_tag){ /* This is the first infix found in this block. */ /* Save original header. */ *p = *hp; /* Link inverted infix list. */ Hd_val (q) = (header_t) ((word) p | 2); /* Change block header's tag to Infix_tag, and change its size to point to the infix list. */ *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3); }else{ Assert (Tag_ehd (*hp) == Infix_tag); /* Point the last of this infix list to the current first infix list of the block. */ *p = (word) &Field (val, Wosize_ehd (*hp)) | 1; /* Point the head of this infix list to the above. */ Hd_val (q) = (header_t) ((word) p | 2); /* Change block header's size to point to this infix list. */ *hp = Make_ehd (Wosize_bhsize (q - val), Infix_tag, 3); } } break; case 2: /* Inverted infix list: insert. */ *p = Hd_val (q); Hd_val (q) = (header_t) ((word) p | 2); break; } } } static void invert_root (value v, value *p) { invert_pointer_at ((word *) p); } static char *compact_fl; static void init_compact_allocate (void) { char *ch = heap_start; while (ch != NULL){ Chunk_alloc (ch) = 0; ch = Chunk_next (ch); } compact_fl = heap_start; } static char *compact_allocate (mlsize_t size) /* in bytes, including header */ { char *chunk, *adr; while (Chunk_size (compact_fl) - Chunk_alloc (compact_fl) <= Bhsize_wosize (3) && Chunk_size (Chunk_next (compact_fl)) - Chunk_alloc (Chunk_next (compact_fl)) <= Bhsize_wosize (3)){ compact_fl = Chunk_next (compact_fl); } chunk = compact_fl; while (Chunk_size (chunk) - Chunk_alloc (chunk) < (asize_t)size){ chunk = Chunk_next (chunk); Assert (chunk != NULL); } adr = chunk + Chunk_alloc (chunk); Chunk_alloc (chunk) += size; return adr; } void compact_heap (void) { char *ch, *chend; Assert (gc_phase == Phase_idle); gc_message (0x10, "Compacting heap...\n", 0); #ifdef DEBUG heap_check (); #endif /* First pass: encode all noninfix headers. */ { ch = heap_start; while (ch != NULL){ header_t *p = (header_t *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ header_t hd = Hd_hp (p); mlsize_t sz = Wosize_hd (hd); if (Is_blue_hd (hd)){ /* Free object. Give it a string tag. */ Hd_hp (p) = Make_ehd (sz, String_tag, 3); }else{ Assert (Is_white_hd (hd)); /* Live object. Keep its tag. */ Hd_hp (p) = Make_ehd (sz, Tag_hd (hd), 3); } p += Whsize_wosize (sz); } ch = Chunk_next (ch); } } /* Second pass: invert pointers. Link infix headers in each block in an inverted list of inverted lists. Don't forget roots and weak pointers. */ { /* Invert roots first because the threads library needs some heap data structures to find its roots. Fortunately, it doesn't need the headers (see above). */ do_roots (invert_root); final_do_weak_roots (invert_root); ch = heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; size_t sz, i; tag_t t; word *infixes; while (Ecolor (q) == 0) q = * (word *) q; sz = Whsize_ehd (q); t = Tag_ehd (q); if (t == Infix_tag){ /* Get the original header of this block. */ infixes = p + sz; q = *infixes; while (Ecolor (q) != 3) q = * (word *) (q & ~(unsigned long)3); sz = Whsize_ehd (q); t = Tag_ehd (q); } if (t < No_scan_tag){ for (i = 1; i < sz; i++) invert_pointer_at (&(p[i])); } p += sz; } ch = Chunk_next (ch); } /* Invert weak pointers. */ { value *pp = &weak_list_head; value p; word q; size_t sz, i; while (1){ p = *pp; if (p == (value) NULL) break; q = Hd_val (p); while (Ecolor (q) == 0) q = * (word *) q; sz = Wosize_ehd (q); for (i = 1; i < sz; i++){ if (Field (p,i) != 0) invert_pointer_at ((word *) &(Field (p,i))); } invert_pointer_at ((word *) pp); pp = &Field (p, 0); } } } /* Third pass: reallocate virtually; revert pointers; decode headers. Rebuild infix headers. */ { init_compact_allocate (); ch = heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; if (Ecolor (q) == 0 || Tag_ehd (q) == Infix_tag){ /* There were (normal or infix) pointers to this block. */ size_t sz; tag_t t; char *newadr; word *infixes = NULL; while (Ecolor (q) == 0) q = * (word *) q; sz = Whsize_ehd (q); t = Tag_ehd (q); if (t == Infix_tag){ /* Get the original header of this block. */ infixes = p + sz; q = *infixes; Assert (Ecolor (q) == 2); while (Ecolor (q) != 3) q = * (word *) (q & ~(unsigned long)3); sz = Whsize_ehd (q); t = Tag_ehd (q); } newadr = compact_allocate (Bsize_wsize (sz)); q = *p; while (Ecolor (q) == 0){ word next = * (word *) q; * (word *) q = (word) Val_hp (newadr); q = next; } *p = Make_header (Wosize_whsize (sz), t, Caml_white); if (infixes != NULL){ /* Rebuild the infix headers and revert the infix pointers. */ while (Ecolor ((word) infixes) != 3){ infixes = (word *) ((word) infixes & ~(unsigned long) 3); q = *infixes; while (Ecolor (q) == 2){ word next; q = (word) q & ~(unsigned long) 3; next = * (word *) q; * (word *) q = (word) Val_hp ((word *) newadr + (infixes - p)); q = next; } Assert (Ecolor (q) == 1 || Ecolor (q) == 3); *infixes = Make_header (infixes - p, Infix_tag, Caml_white); infixes = (word *) q; } } p += sz; }else{ Assert (Ecolor (q) == 3); /* This is guaranteed only if compact_heap was called after a nonincremental major GC: Assert (Tag_ehd (q) == String_tag); */ /* No pointers to the header and no infix header: the object was free. */ *p = Make_header (Wosize_ehd (q), Tag_ehd (q), Caml_blue); p += Whsize_ehd (q); } } ch = Chunk_next (ch); } } /* Fourth pass: reallocate and move objects. Use the exact same allocation algorithm as pass 3. */ { init_compact_allocate (); ch = heap_start; while (ch != NULL){ word *p = (word *) ch; chend = ch + Chunk_size (ch); while ((char *) p < chend){ word q = *p; if (Color_hd (q) == Caml_white){ size_t sz = Bhsize_hd (q); char *newadr = compact_allocate (sz); Assert (newadr <= (char *)p); /* bcopy (source, destination, length) */ /* bcopy (p, newadr, sz); */ memmove(newadr,p,sz); p += Wsize_bsize (sz); }else{ Assert (Color_hd (q) == Caml_blue); p += Whsize_hd (q); } } ch = Chunk_next (ch); } } /* Shrink the heap if needed. */ { /* Find the amount of live data and the unshrinkable free space. */ asize_t live = 0; asize_t free = 0; asize_t wanted; ch = heap_start; while (ch != NULL){ if (Chunk_alloc (ch) != 0){ live += Wsize_bsize (Chunk_alloc (ch)); free += Wsize_bsize (Chunk_size (ch) - Chunk_alloc (ch)); } ch = Chunk_next (ch); } /* Add up the empty chunks until there are enough, then remove the other empty chunks. */ wanted = percent_free * (live / 100 + 1); ch = heap_start; while (ch != NULL){ char *next_chunk = Chunk_next (ch); /* Chunk_next (ch) will be erased */ if (Chunk_alloc (ch) == 0){ if (free < wanted){ free += Wsize_bsize (Chunk_size (ch)); }else{ shrink_heap (ch); } } ch = next_chunk; } } /* Rebuild the free list. */ { ch = heap_start; fl_reset (); while (ch != NULL){ if (Chunk_size (ch) > Chunk_alloc (ch)){ header_t *p = (header_t *) (ch + Chunk_alloc (ch)); *p = Make_header (Wosize_bhsize (Chunk_size (ch) - Chunk_alloc (ch)), 0, Caml_white); fl_merge_block (Bp_hp (p)); } ch = Chunk_next (ch); } } ++ stat_compactions; gc_message (0x10, "done.\n", 0); } unsigned long percent_max; void compact_heap_maybe (void) { /* Estimated free words in the heap: FW = 1.5 * fl_cur_size Estimated live words: LW = stat_heap_size - FW We compact the heap if FW > percent_max / 100 * LW */ /*LVM: changed [float] to [double] */ double fw; Assert (gc_phase == Phase_idle); check_heap_size(); /* check for heap overflow */ /* LVM: we compact if FW > (percent_max/100) * stat_heap_size */ fw = 1.5 * fl_cur_size; if (fw > (percent_max * 0.01) * Wsize_bsize(stat_heap_size)) { finish_major_cycle(); compact_heap(); } /* if (percent_max >= 1000000) return; switch (percent_max){ case 0: finish_major_cycle (); compact_heap (); break; default: fw = 1.5 * fl_cur_size; if (fw > 0.01 * percent_max * (Wsize_bsize (stat_heap_size) - fw)){ finish_major_cycle (); compact_heap (); } break; } */ }