
Programming type rules

Programming type rules

Arie Middelkoop, ariem@cs.uu.nl
Universiteit Utrecht, The Netherlands

(based on a presentation by Atze Dijkstra)

July 4, 2008

Arie Middelkoop

Programming type rules > Motivation

Our Mission

Develop languages, technologies and tools for the specification and
implementation of (domain specific) languages.

Jurriaan Hage

Program Analysis
Helium

Johan Jeuring

Generics

Doaitse Swierstra

Parser Combinators
Attribute Grammars
EHC

Arie Middelkoop

Programming type rules > Motivation

Use Case: EHC

Development of a complex compiler (Haskell)

Language constructs (expressions, class system, records)

Aspects of language construct (code, type)

Type rules

Arie Middelkoop

Programming type rules > Motivation

Motivation

Our experimental compiler:

Essential Haskell (EHC project)

Our experiments:

higher-ranked types
impredicativity
existential types
implicit/explicit parameters

Our desire:

study isolated features
combine them
and keep it maintainable, understandable

Arie Middelkoop

Programming type rules > Motivation

Motivation

Programming language research lifecycle

Define syntax

Define semantics

Prove properties of semantics

Implement

Prove correctness of implementation

Document

Arie Middelkoop

Programming type rules > Motivation

Motivation: textbook example

Syntax Semantics Implementation

e ::= int
| i
| e e
| λi → e
| let i = e in e

i 7→ σ ∈ Γ
τ = inst (σ)

Γ `e i : τ
e.varE

data Expr
| Var i : {String }

attr Expr [g : Gam | c : C | ty : Ty]
sem Expr

| Var (lhs.uniq, loc.uniq1)
= rulerMk1Uniq @lhs.uniq

(loc.pty , loc.nmErrs)
= gamLookup @i @lhs.g

lhs.ty = tyInst @uniq1 @pty

Arie Middelkoop

Programming type rules > Motivation

Motivation: real-life example

Semantics

v fresh
o; Γ;Ck ; Ck ; v → σk `e e1 : �f ; → σ Cf ; Cf

oim;Cf `6
�f 6 Cf (v → σk) : CF

oinst−lr ; Γ;CFCf ; Cf ; v `e e2 : �a; Ca; Ca

fi+
alt , oinst−l ;Ca `6

�a 6 Cav : CA

C1 ≡ CACa

o; Γ;Ck ; Ck ; σk `e e1 e2 : C1σ
k ; σk C1; Ca

e.appI2

Implementation
sem Expr

| App (func.gUniq, loc.uniq1 , loc.uniq2 , loc.uniq3)
= mkNewLevUID3 @lhs.gUniq

loc .tvarv = mkTyVar @uniq1
func.knTy = [@tvarv] ‘mkArrow ‘ @lhs.knTy
loc .fo fitF = fitsIn oim @fe @uniq2 @func.imprTy (@func.imprTyCnstr ⊕ ([@tvarv] ‘mkArrow ‘ @lhs.knTy))
... -- lots of non-obvious code

Correctness

Arie Middelkoop

Programming type rules > Issues

The problem

It is hard to

Understand feature interaction

Say something about formal properties

Maintain consistency of semantics & implementation

Generate implementation

Arie Middelkoop

Programming type rules > Issues

Ruler

A system for specifying type rules

Ruler source

based
Attribute Grammar

implementation

Check rule
structure pretty print

LaTeX

x

Arie Middelkoop

Programming type rules > Issues

Programming Type Rules

Have abstraction mechanisms and strategies to specify type rules.

Abstraction mechanism example: views

Base case with increments
Declarative view, algorithmic view
Each view incorporates more detail

Strategy examples:

Restrict type rules to be functions instead of arbitrary relations by
specifying computation direction of variables
Restrict type rules to be syntax directed by specifying which
variable determines what rule to apply

Arie Middelkoop

Programming type rules > Issues

Ruler: example of multiple views

Start with specifying the first view on a rule (say, rule e.var)

i 7→ σ ∈ Γ
τ = inst (σ)

Γ `e i : τ
e.varE

equational/declarative view E (in Hindley-Milner type system)

Then specify the differences relative to previous view

i 7→ σ ∈ Γ
τ = inst (σ)

Ck ; Γ `e i : τ Ck e.varA

algorithmic view A (in Hindley-Milner type system)
blue indicates the changed parts

Arie Middelkoop

Programming type rules > Talk content

Content of remainder of talk

The tools Ruler and AG in more detail:

Concepts of Ruler

Case study: Hindley-Milner typing

Three views: E, A, AG
Ruler source texts and results

Omitted: feature isolation and more advanced type rule programming

Arie Middelkoop

Programming type rules > Background

Application of Ruler

lhs2TeX

latex

printable

HS

AG

latex main

AG main

HS main

executable

: b derived from a using x
x

ba

Ruler rules

hs compiler latex

lhs2TeXag compiler

ruler compiler

: source : derived

Arie Middelkoop

Programming type rules > Basics and views

Ruler concepts

Scheme

judgement structure: holes + templates
template (or judgement shape) used to specify/output a scheme
instance (a judgement)

Views of a scheme

hierarchy of views, a view is built on top of previous view
each scheme has views, views differ in holes + templates

Rule

premise judgements + conclusion judgement
judgement binds holes to expressions

Views of a rule

Rule judgement

each rule judgement has views, parallel to views of its scheme

Arie Middelkoop

Programming type rules > Basics and views

Syntactic structure

scheme Expr = ruleset expr rules scheme Expr =
view E = rule con =

holes ... view E =
judgespec ... judge ... -- premises
judgeuse
... −

view A = judge ... -- conclusion
holes ... view A = ...
judgespec ...
judgeuse ... rule app =
... view E = ...

view A = ...

Arie Middelkoop

Programming type rules > Basics and views

Ruler ‘dimensions’

Views allow incremental extension of a language

Schemes allow “by aspect” organisation by treating holes and
associated rules together

Ruler

combines views in a hierarchical, inheriting manner
(combines schemes into new schemes)
combine means overwrite of hole bindings

Arie Middelkoop

Programming type rules > Basics and views

Case study: HM typing

View 1: Equational (E)

scheme
rulesets
output

View 2: Algorithmic (A)

hierarchy
output
scheme
rulesets

View 3: Attribute Grammar translation (AG)

Arie Middelkoop

Programming type rules > Basics and views

View 1: equational view E , expr scheme

Structure/scheme for judgements

scheme expr =
view E =

holes [e : Expr , gam : Gam, ty : Ty]
judgespec gam ` e : ty
judgeuse tex gam ` .."e" e : ty

Type (ty : Ty):
τ ::= Int | Char literals

| v variable
| τ → τ abstraction

σ ::= τ type scheme
| ∀v .τ universally quantified type, abbreviated by ∀v .τ

Environment (gam : Gam):
Γ ::= i 7→ σ

Arie Middelkoop

Programming type rules > Basics and views

Ruleset

Set of rules of a scheme

ruleset expr .base scheme expr "Expression type rules" =
rule e.app =

view E =
judge A : expr = gam ` a : ty .a
judge F : expr = gam ` f : (ty .a → ty)
−
judge R : expr = gam ` (f a) : ty

...

ruleset displays as a figure in documentation

LATEX rendering (via lhs2TeX)

Arie Middelkoop

Programming type rules > Basics and views

LATEX rendering

Γ `e e : τ

Γ `e int : Int
e.intE

i 7→ σ ∈ Γ
τ = inst (σ)

Γ `e i : τ
e.varE

Γ `e a : τa

Γ `e f : τa → τ

Γ `e f a : τ
e.appE

(i 7→ τi), Γ `e b : τb

Γ `e λi → b : τi → τb
e.lamE

(i 7→ σe), Γ `e b : τb

Γ `e e : τe

σe = ∀v .τe , v /∈ ftv (Γ)

Γ `e let i = e in b : τb
e.letE

Arie Middelkoop

Programming type rules > Basics and views

Relation

Arbitrary conditions

rule e.var =
view E =

judge G : gamLookupIdTy = i 7→ pty ∈ gam
judge I : tyInst = ty ‘=‘ inst (pty)
−
judge R : expr = gam ` i : ty

Condition gamLookupIdTy : identifier must be bound to type in
environment

Condition tyInst: monotype is instantiation of polytype

Arie Middelkoop

Programming type rules > Basics and views

Relation

Relation

relation gamLookupIdTy =
view E =

holes [nm : Nm, gam : Gam, ty : Ty]
judgespec nm 7→ ty ∈ gam

LATEX rendering when used

i 7→ σ ∈ Γ
τ = inst (σ)

Γ `e i : τ
e.varE

Arie Middelkoop

Programming type rules > Basics and views

View 2: algorithmic view A

View hierarchy

viewhierarchy = E < A < AG

View A on top of view E

May be tree like hierarchy

Arie Middelkoop

Programming type rules > Basics and views

View A on App

Specify the differences (for rule e.app)

Previous

Γ `e a : τa

Γ `e f : τa → τ

Γ `e f a : τ
e.appE

New

Ck ; Γ `e f : τf Cf

Cf ; Γ `e a : τa Ca

v fresh
τa → v ∼= Caτf C

Ck ; Γ `e f a : C Cav C Ca
e.appA

Arie Middelkoop

Programming type rules > Basics and views

Direction of computation

New for scheme expr: holes with direction

scheme expr =
view A =

holes [inh gam : Gam, thread cnstr : C, syn ty : Ty]
judgespec cnstr .inh; gam ` e : ty cnstr .syn
judgeuse tex cnstr .inh; gam ` .."e" e : ty cnstr .syn

Algorithmic view

use of constraints/substitution
C ::= v 7→ τ

computation has direction

Arie Middelkoop

Programming type rules > Basics and views

Specify the differences

New for rule e.app in ruleset expr

view A =
judge V : tvFresh = tv
judge M : match = (ty .a → tv) ∼= (cnstr .a ty .f)

 cnstr
judge F : expr

| ty = ty .f
| cnstr .syn = cnstr .f

judge A : expr
| cnstr .inh = cnstr .f
| cnstr .syn = cnstr .a

−
judge R : expr

| ty = cnstr cnstr .a tv
| cnstr .syn = cnstr cnstr .a

Arie Middelkoop

Programming type rules > Attribute Grammars

Attribute Grammars

With Attribute Grammars you can define tree walks using intuitive
concepts of inherited and synthesized attributes

Concepts:

Abstract Syntax Tree
Attributes (inherited and synthesized)
Definitions

UUAGC is a preprocessor for Haskell that generates efficient tree
walks

Arie Middelkoop

Programming type rules > Attribute Grammars

Specification of the AST

data TypedExpr
| Con

x : String
| Var

x : String
| App

f : TypedExpr
a : TypedExpr

| Lam
x : String
tp : Ty
e : TypedExpr
b : TypedExpr

Terminology: Nonterminals, Terminals, Productions/alternatives

Arie Middelkoop

Programming type rules > Attribute Grammars

Attributes

attr Expr
inh gam : Gam
syn ty : Ty

sem Expr
| Con Var

lhs.ty = lookup @x @lhs.gam
| App

lhs.ty = if argPart @f .ty == @a.ty
then resPart @f .ty
else error "arg and res do not match."

| Lam
e.gam = insert @x @tp @lhs.gam
lhs.ty = if @tp == @e.ty

then @b.ty
else error "type for x does not match"

Arie Middelkoop

Programming type rules > Attribute Grammars

Interface

typecheck :: TypedExpr → Gam → Tp
typecheck e initialEnv

= let i = Inh Expr{gam Inh Expr = initialEnv }
s = wrap Expr (sem Expr e) i

in ty Syn Expr s

Arie Middelkoop

Programming type rules > Attribute Grammars

View 3: AG translation view AG

Built on top of view A

Mapping rules to data type alternatives

Mapping holes to attributes

either value construction or deconstruction

Fresh type variables

threading unique value

Error handling

‘side effect’: error messages in hidden attribute

The rest

parsing, pretty printing, ...

Arie Middelkoop

Programming type rules > Attribute Grammars

View AG

Binding an AST to rules

data definition (similar to Haskell/AG)
data Expr [expr]

view E
| App [e.app] f :: Expr

a :: Expr
| Int [e.int] int :: Int
| Var [e.var] i :: String
| Lam [e.lam] i :: String

b :: Expr
| Let [e.let] i :: String

e :: Expr
b :: Expr

Arie Middelkoop

Programming type rules > Attribute Grammars

View AG on App

Ck ; Γ `e f : τf Cf

Cf ; Γ `e a : τa Ca

v fresh
τa → v ∼= Caτf C

Ck ; Γ `e f a : C Cav C Ca
e.appA

sem Expr
| App (f .uniq, loc.uniq1)

= rulerMk1Uniq @lhs.uniq
loc.tv = Ty Var @uniq1
(loc.c , loc.mtErrs)

= (@a.ty ‘Ty Arr ‘ @tv) ∼= (@a.c ⊕ @f .ty)
lhs .ty = @c ⊕ @a.c ⊕ @tv

.c = @c ⊕ @a.c

Arie Middelkoop

Programming type rules > Attribute Grammars

Fresh type variable

Relation is inlined
relation tvFresh =

view A =
holes [|| tv : Ty]
judgespec tv
judgeuse tex tv (text "fresh")
judgeuse ag tv ‘=‘Ty Var unique

Keyword unique
insertion of rulerMk1Uniq
translated to uniq1

Type structure (supporting code)
type TvId = UID
data Ty = Ty Any | Ty Int | Ty Var TvId

| Ty Arr Ty Ty
| Ty All [TvId] Ty

deriving (Eq,Ord)

Arie Middelkoop

Programming type rules > Attribute Grammars

Rewriting Ruler expressions

Ruler expression

ty .a → ty pretty prints as τa → τ
but requires rewriting for AG

Rewrite rule
rewrite ag def a → r = (a) ‘Ty Arr ‘ (r)

target: ag
when value is def ined (constructed) for further use

Formatting identifiers (for target ag)
format ag cnstr = c
format ag gam = g

Arie Middelkoop

Programming type rules > Conclusion

Conclusion

Lightweight solution to two problems

consistency between type rules and (AG) implementation
understandability & manageability by stepwise (& aspectwise)
construction

Current state

major part of EHC type rules described by Ruler
focus of my research

See http://www.cs.uu.nl/wiki/Ehc/WebHome

Arie Middelkoop

	Motivation
	Issues
	Talk content
	Background
	Basics and views
	Attribute Grammars
	Conclusion

