
1 Markers for FPH

The following extension for FPH also allows impredicative instantiation in the
expression of a binding, if the poly type to instantiate to appears only in deriva-
tions where all instantiations have been done. In this case, the impredicative
instantiation cannot result in an ambiguous type for the binding, as these ambi-
guities only arise when some of the instantiations do not have to be performed.

In order to do this, we indicate that some of the polymorphic types are safe,
by using a specially marked universal quantifier ∀∗:

σ ::= ∀a.ρ | ∀∗a.ρ
σ′ ::= ∀a.ρ′ | ∀∗a.ρ′

These marked universal quantifiers play a role during unboxing. Since we
allow impredicative instantiation for these ”safe” types, we can move the box
over the qualifier, as indicated by the following extra unboxing rule:

ρ v ρ′

∀∗a.ρ v ∀∗a.ρ′ LIFT

These marked universal quantifiers (short: markers) have to be introduced
somewhere. This is done by an extra rule for expressions:

Γ ` e : ρ′

Γ ` e : m(ρ′)
MARK

This rule applies the type of the expression to the relation m, but only if it
is a ρ′-type. This is essential, as we only allow universal quantifiers to be
marked safe if in the derivation that produces it, all instantiations have been
performed. Since a ρ′ type does not have any outermost quantifiers, this means
that no instantiation can be performed anymore. Then it is safe to to use the
relation m:

m(σ′) =

σ if σ′ = σ
a if σ′ = a
m(σ′

1) → m(σ′
2) if σ′ = σ′

1 → σ′
2

∀a.m(σ′′) or ∀∗a.m(σ′′) if σ′ = ∀a.σ′′

It traverses the type structure recursively. When it encounters a universal quan-
tifier, it may change it to a marked quantifier. This is a declarative aspect: later
in the derivation process it may turn out that that its only possible to construct
a derivation if the quantifier was not marked. The relation does not traverse
into boxes either, as the contents of a box must be guessed properly directly
during instantiation. This subtlety is shown in one of the examples later.

Finally, in order to get rid of the markers, there is the last extra rule for
expressions:

Γ ` e : σ′

Γ ` e : u(σ′)
UNMARK

1

Again, it delegates to the u function, defined as follows:

u(σ′) =

σ if σ′ = σ
a if σ′ = a
u(σ′

1) → u(σ′
2) if σ′ = σ′

1 → σ′
2

∀a.u(σ′′) if σ′ = ∀a.σ′′ or σ′ = ∀∗a.σ′′

The u function recursively traverses the type and turns all marked universal
quantifiers in plain ones.

Finally, we demand that types in the environment do not have these markers.
The reason for this is that it ensures that markers that matter can only occur
by means of the mark rule. To demand this, we introduce the type σΓ that
does not have the marked universal quantifiers, and change the definition of the
environment Γ accordingly:

Γ ::= Γ, (x :σΓ) | ·
σΓ ::= ∀a.ρ

The intended use is that the mark rule is applied just after the inst rule, and
the unmark rule just at the end of typing a binding. In fact, instead of separate
rules, the m and u can be moved to the instantiation and let rule respectively.

2 Inference for the runST example

It is possible to type the runST example with the proposed extension. Assume
that the environment is:

Γ = (($) : ∀ab.(a → b) → a → b), (runST : ∀c.(∀s.STs c) → c), ·

Then this is the derivation (cut into pieces otherwise it doesn’t fit):

∆apply ∆runST
Γ ` ($) runST : ∀∗s.STs r → r

app
∆unbox

Γ ` ($) runST : (∀∗s.STs r) → r
subs

Γ ` ($) runST : (∀s.STs r) → r {r}#Γ
Γ ` ($) runST : ∀r.(∀s.STs r) → r

gen

unmark

The result of the derivation is a non-boxy type without any marked universal
quantifiers. The marker is introduced in order to get rid of the box, as given in
the ∆unbox part of the derivation:

STs r v STs r
tbox

∀∗s.STs r v ∀∗s.STs r
lift

r v r
refl

∀∗s.STs r → r v (∀∗s.STs r) → r
cong

2

To get this marker there, it has to be guessed during instantiation of the type for
($). Since this is just a normal σ-type, this is allowed, as long as it is wrapped
in a box. The ∆apply part of the derivation shows this:

(($) : ∀ab.(a → b) → a → b) ∈ Γ
Γ ` ($) : ∀ab.(a → b) → a → b

var

Γ ` ($) : (∀∗s.STs r → r) → ∀∗s.STs r → r
inst

However, this marker results in the following obligation: the type of runST
now also needs to have this marker. Since the environment does not contain
any markers, the only way to get this is by using the mark rule. The mark rule
requires the type of runST to be a ρ′-type, which requires that all instantiations
have been performed in the ∆runST derivation:

(runST : ∀c.(∀s.STs c) → c) ∈ Γ
Γ ` runST : ∀c.(∀s.STs c) → c

var

Γ ` runST : (∀s.STs r) → r
inst

Γ ` runST : (∀∗s.STs r) → r
mark

3 Inference for higher-ranked choose id

A non-boxy rank-1 type can be inferred for choose id. A higher-rank type can
be inferred as well, but then it must contain a box. Is this still the case with
this extension? Here is a snipped of the derivation:

. . .

choose : ∀a.a → a → ∀a.a → a → ∀a.a → a
Inst

. . .

id : ∀a.a → a
var

choose id : ∀a.a → a → ∀a.a → a
App

In order to abuse the extension to get rid of these boxes, we could try to
get a marked universal quantifier. However, this is not possible. The mark rule
cannot be applied to the type of id, because the type is not in ρ′. Also, the
universal quantifiers after the application cannot be changed via the mark rule,
because the m relation does not traverse into boxes.

4 A non-inference

The following example is taken from the FPH paper, and should end up with
a box in the type. This is the case for the FPH type system, but what about
the extension? In this attempt, we try to use the mark rule to get a marked
universal quantifier, such that we can later use the extra unbox rule to remove
the box. However, it will turn out that this is not possible.

3

f :: ∀a.a → [a] → [a]
ids :: [∀a.a → a]
id :: ∀a.a → a

The following is an attempt to construct a derivation:

. . .

f : . → [.] → [.]
inst

. . .

id : ∀a.X
var

. . .

ids : [∀a.a → a]
var

ids : [∀∗a.a → a]
mark

f id ids : [∀∗a.a → a]
f id ids : [∀∗a.a → a]

subs

f id ids : [∀a.a → a]
mark

app

This attempt fails because the type of id has to have a marked universal
quantifier too. This is not possible, because the mark rule does not apply here,
since the type of id is not in ρ′.

However, note that it is possible to construct the derivation with the box
present. Either by omitting the mark rule, or by choosing not to change the
quantifier in the m relation. This is essential, because we would for example
want to be able to type const′3′(f id ids).

5 Implementation

Although the proposed extension is seemingly only a small change, it is likely
that actually implementing this extension is somewhat challenging. The diffi-
culty is caused by the declarative nature of the m relation. It’s implementation
needs to deal with the problem that during type inferencing not all type infor-
mation is known, that not all boxes have been resolved, and that instantiation
may take place later.

4

