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Abstract

The visitor design pattern is often applied to program traversal algorithms over Abstract Syntax Trees
(ASTs). It defines a visitor, an object with a visit method that is executed for each node in the AST.
These visitors have the advantage that the order of traversal is explicitly under control of the programmer,
which is essential to deal with side-effectful computations. Unfortunately, the exchange of results between
traversals is error-prone.
Attribute Grammars (AGs) are an alternative way to write multi-traversal algorithms. An attribute eval-
uator decorates the AST with attributes in one or more traversals. The attributes form a convenient
mechanism to exchange results between traversals. Unfortunately, AGs discourage the use of side effect.
In this paper, we present ruler-front, a language capturing the combination of the above approaches. A
ruler-front grammar can be translated to traversal algorithms in multiple languages. In this paper, we
translate to the imperative, dynamically-typed language JavaScript.
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1 Introduction

Algorithms for traversing tree-shaped data structures appear in many applications,

especially in compilers. A lot of effort has been invested in proper abstractions

for tree traversals, for example in the form of Attribute Grammars (AGs) [13]. In

the last years, we applied AGs in many small projects (to teach compiler construc-

tion [24], master projects, etc.), and several large projects, including the Utrecht
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Haskell Compiler [5], the Helium [9] compiler for learning Haskell, and the edi-

tor Proxima [22]. The use of AGs in these projects is invaluable, for reasons that

become clear in Section 2.

Tree traversals play their role in many other fields, including end-user appli-

cations. Web applications, for example, traverse and compute properties of DOM

trees. Sadly, the nice abstractions emerging from the compiler field are not used

to write such traversals. One of these reasons is that AGs require an additional

language to be learned. Also, the AG formalism poses too severe restrictions to

be used effectively in these areas, such as prohibition of side effect, or tool support

may simply be absent for the programming language in question. The purpose of

this paper and associated work is to treat the above two technical challenges.

Considering the first challenge, for imperative languages like JavaScript, a

programmer either writes recursive functions, or takes a more structured approach

via the visitor design pattern [8,20,19]. Tool support for the visitor design pattern

is available for many languages. For example, the parser generator SableCC [7]

generates visitor skeleton code for the ASTs that the parser produces, and we used

these once to write a type checker for MiniJava [21]. We also used ASM [3], a library

used in many big Java projects that provides visitor skeleton code to traverse Java

bytecode, to transactify Java programs [1]. With visitors, we use side-effect to carry

results computed in one visit over to the next. In our experience, scheduling visits

and side effect is an error-prone process, due to absence of the define-before-use

guarantee. We elaborate on this in Section 2.1.

Attribute grammars offer a programming model where each AST node has at-

tributes (named values per node). The programmer writes code that computes

attributes in terms of other attributes. The attribute grammar evaluator automat-

ically schedules this code over visits, and define-before-use can be verified with the

circularity test of AGs. The implicitness of scheduling is a serious advantage, be-

cause it saves us from writing this scheduling manually, and cannot do it wrong.

Unfortunately, the implicitness of scheduling comes with a severe restriction: side

effect cannot be used reliably and should not be used in attribute computations. In

web applications, for example, we typically would like to use a bit of side effect to

influence the contents of a webpage. We elaborate on this in Section 2.2.

The main contribution of this paper is an extension of attribute grammars that

has an explicit notion of visits, which offers a hybrid model between visitors and

attribute grammars, while maintaining the best of both worlds. In fact, besides

being more expressive, our extension make attribute grammars more intuitive to

use.

In the workshop version of this paper [18], we presented an earlier version of

a visitor-extension of attribute grammars to model more complex traversals. We

improved this idea to deal with iterative traversals, and trees that change during

evaluation. In this paper, we incorporate the notation of side effect, such that these

ideas are not limited to ASTs of compilers, but tree traversals in a much wider

range of applications.

To accomplish this goal, we also address the second challenge, which is to make

our approach available for many target languages. We present ruler-front, a

small but powerful language for tree traversals. We managed to isolate the language-
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dependent part into a small subset called ruler-core, and show the translation

from ruler-core to JavaScript. In a related paper [17], we showed a transla-

tion to Haskell. With these two languages, we cover the implementation issues

regarding the full spectrum of mainstream general purpose programming languages

available today.

Similar to Yacc, SableCC and UUAG [23], the idea is to embed code fragments

of the target language for the computations of attributes. This keeps general-

purpose programming constructs out of ruler-core, and allows the programmer

to express computations without having to learn a special language. In particular,

ruler-core is suitable as a target language for attribute grammars.

In summary, we present two languages ruler-front and ruler-core. We im-

plemented both in a single tool written in Haskell using UUAG 2 . In Section 2 we in-

vestigate the above challenges in more detail. In Section 3 we present ruler-core,

with a translation to JavaScript in Section 4, and a translation from ruler-front

in Section 5.

2 Example

In this section, we motivate the claims of the introduction in more detail, and intro-

duce the background information relevant for the remainder of the paper. We take

as usecase the alignment of an HTML menu in a web application using JavaScript,

based on a multi-visit tree traversal over an abstract description of the menu. We

first show a solution using the visitor-pattern, then a near-solution using attribute

grammars, finally followed by two solutions using ruler-front.

2.1 Visitor design pattern.

In the visitor design pattern, each node of the Abstract Syntax Tree (AST) is

modelled as an object, which stores references to the subtrees, and has an accept

method. The accept method takes a visitor as parameter. A visitor is an object

with a visit-method for each type of node. The accept method of the AST node

calls the appropriate visit-method on the visitor and passes the node as argument.

This visit method consists of statements that manipulate the state of the visitor or

the AST node, and can visit a subtree by calling the accept method on the root of

a subtree, with the visitor-object as parameter.

Figure 1 shows an example of a visitor that layouts HTML items as a menu in a

tree-like fashion, as visualized in the upper-right corner. The menus are aligned to

the right, and submenus are slightly indented. Furthermore, we desire the smallest

layout, based on the contents of the HTML items. The variable root contains an

abstract description of the menu as a tree of Menu objects (the AST). Associated

with each Menu object is an HTML item with the same name. We interpret the

menu structure to layout the HTML items. In the first visit to the menu tree, we

query the widths of the corresponding HTML items. In the second visit, we adjust

the positions and sizes of these items. Some information (such as indentation based

2 Downloadable from svn: https://subversion.cs.uu.nl/repos/project.ruler.systems/ruler-core/
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item a

very big item b

not so big c

tiny

function Menu (name, children) { -- constructor of a Menu AST node
this.name = name; -- the name of the element to align
this.children = children; -- an array of children menus
}
Menu.prototype.accept = function (visitor) {

visitor .visitMenu (this); -- invokes the appropriate visit method on the visitor
}
function Visitor () { -- constructor of a Visitor object

this.depth = 0; -- the depth so far in the menu tree
this.maximum = 0; -- the maximum width observed so far
this.count = 0; -- the number of menus laid out so far
}
var root = -- the menu tree and corresponding html nodes

new Menu ("a", [ -- <div id="a">item a</div>
new Menu ("b", [ -- <div id="b">very big item b</div>

new Menu ("c", [ ]) -- <div id="c">not so big c</div>
, new Menu ("d", [ ]) -- <div id="d">tiny</div>
])

]); -- <div id="anchor" onLoad="align(root,this);"></div>

function align (root , anchor) { -- aligns the html nodes according to the menu tree
var v = new Visitor (); -- creates visitor with empty state

v .visitMenu = function (menu) { -- first visit method (gets menu node as param)
menu.elem = document .getElementById (menu.name);
menu.depth = this.depth; -- remember depth for the second visit

this.maximum = Math.max (this.maximum, this.depth ∗ 20 + menu.elem.clientWidth);

for (var i in menu.children) {
this.depth = menu.depth + 1; -- reset this.depth to one deeper than the current depth
menu.children [i ].accept (this); -- invokes visitor on children
}

}
root .accept (v); -- invokes the first visit (on the root)

v .visitMenu = function (menu) { -- second visit method (gets menu node as param)
var offset = menu.depth ∗ 20;
menu.elem.style.left = (anchor .offsetLeft + offset) + "px";
menu.elem.style.top = (anchor .offsetTop + this.count ∗ 30) + "px";
menu.elem.style.width = (this.maximum − offset) + "px";
menu.elem.style.height = 30 + "px";

this.count ++; -- inorder numbering of nodes

for (var i in menu.children) { -- invokes visitor on menus children
menu.children [i ].accept (this); -- count should not be reset in this case
}

}
root .accept (v); -- invokes the second visit (on the root)
}

Fig. 1: Pseudocode dualvisit menu alignment.

on the depth) is computed in the first visit, and also needed in the second visit.

That information we store as additional fields in the menu objects.

The order in which the tree is visited is clearly defined by the explicit accept-

calls in the visit-methods. This is important to deal with side effect: we need to

have queried all the sizes of the HTML items before we start resizing them.

However, there are a number of issues with the above solution. In the second

visit, we require a number of values computed in the first visit. We store these in

the state of the AST nodes during the first visit. However, there is no guarantee

that we actually stored them there in the first visit. Furthermore, we never remove

any of these values from the state, and thus retain all memory until the AST gets
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deallocated. This especially becomes a problem when using large AST storing many

results.

Furthermore, we have to take care of the order of the statements. For example,

the this.depth needs to be reset at the appropriate place, and requires that the

assignment to menu.depth is done before. Similarly, the increment to this.count

needs to be positioned carefully. These are actually separate aspects which we would

like to implement in isolation, without having to worry about their composition.

Finally, we need to explicitly write visits to children using accept . Some tools

generate depth-first visitors, which alleviates the need to do so, but these come with

restrictions. For example, all statements must be written before the invocations to

children. In Figure 1 we reset this.depth in between visits to children. To use a

depth-first visitor, we would have to move this statement (which may not be easy).

Moreover, in the simple example that we showed, the two visits are invoked after

each other at the root. In practice, for example in type checking languages with

principal types, we actually invoke multiple visits on a subtree before moving on to

the next subtree. This rules out depth-first visitors, and is also error-prone to write

manually.

The example in Figure 1 can easily be made more complicated, for example by

having menus that share submenus, and form an acyclic graph instead of a tree.

With each of such complications, the above mentioned problems grow worse. As a

sidenote, in this paper, we treat the AST as a fixed datastructure. For example, we

do not consider adding menu entries on the fly. The ideas we propose can deal with

the dynamic construction of proof trees [17], and we think that this is sufficient to

deal with dynamic changes to the AST as well, but leave this topic as future work.

Below, we look for a way to generate code similar to above, but from a description

that does not have the aforementioned problems.

2.2 Attribute grammars

Attribute grammars take care of the problems mentioned above related to visitors,

but are not flexible enough to take side effect into account. We briefly consider why

attribute grammars appear a promising solution, and why side effect is a problem.

Before we show the example, we first give some background information on attribute

grammars, and their encoding in JavaScript. As syntax, we take a mixture of

UUAG’s syntax [23], and ruler-front (which are closely related).

An attribute grammar is an extension of a context-free grammar, where nonter-

minals are annotated with attributes, and productions specify equations between

attributes. The context-free grammar specifies the structure of the AST: each node

of the AST is associated to a production. A node is also associated to the non-

terminal of the left-hand side of the production, and each child of a node to the

corresponding nonterminal in the right-hand side of the production.

For example, we can denote a production as well as the structure of a node in

the AST using a data-type definition (explained below).

data Menus -- nonterminal Menus

con Cons hd :Menu tl :Menus -- production Cons, with two nonterminals

con Nil -- production Nil , empty
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This data-type declaration introduces a nonterminal Menus with two productions,

representing a cons-list. The first production is named Cons, and corresponds in

BNF to Menus → Menu Menus. The two nonterminals Menu and Menus in the

right-hand side (RHS) have explicitly been given the respective names hd and tl .

Terminals only have a name (shown later in Figure 2).

Furthermore, this data-type declaration introduces JavaScript constructor func-

tions to construct ASTs. Each production is mapped to a constructor function that

gets as parameter an object corresponding to the symbols in the RHS of the pro-

duction. Each nonterminal is mapped to a constructor function that creates a base

object that each of the objects corresponding to the productions inherits. Due to

the inheritance, we can verify at the point of construction that the AST matches

the grammar.

function Menus () { } -- nonterminal Menus: base class

function Menus Cons (hd , tl) { -- production Cons: subclass

this.hd = hd ; assert (hd instanceof Menu);

this.tl = tl ; assert (tl instanceof Menus);

}
Menus Cons.prototype = new Menus ();

Menus Cons.prototype.constructor = Menus Cons;

function Menus Nil () { } -- production Nil : subclass

Menus Nil .prototype = new Menus ();

Menus Nil .prototype.constructor = Menus Nil ;

Cons-lists occur often. As a shortcut, we alternatively write the following shorthand

for the above instead.

type Menus : [Menu ]

As an additional bonus, we can represent a list of menus as a Javascript array.

Evaluation of an attribute grammar runs an evaluation algorithm on each node,

derived from the equations of its associated production, that decorates each node

with attributes. We assume that attributes are physically represented as Javascript

properties of the AST objects. Nodes are decorated with two types of attributes:

inherited attributes are computed during evaluation of the parent of that node, and

synthesized attributes are computed during evaluation of the node itself.

We declare the attributes of a nonterminal using an attribute declaration.

attr Menu inh depth -- inherited attribute

syn gathMax -- synthesized attribute

These attribute names are mapped to object properties named inh depth and

syn gathMax . At some point during attribute evaluation, given a participating

Menu object m, the objects properties m . inh depth and m . syn gathMax will be

defined. An inherited attribute may have the same name as a synthesized attribute:

they are mapped to differently named properties. As an aside, nodes may define a

number of local attributes, which can be seen as local variables.
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To give a semantics to these attributes, we specify equations (rules) per produc-

tion (explained below).

datasem Menu -- nonterminal Menu

clause Menu -- production Menu

cs :depth = 1 + lhs :depth -- rule

loc :width = 20 ∗ lhs :width -- rule

lhs :gathMax = Math.max (loc :width, cs :gathMax ) -- rule

The left-hand side of an equation designates an inherited attribute, using the no-

tation childname : attrname, which allows us to distinguish attribute names from

properties. The names loc and lhs are special: loc indicates a local attribute, and

lhs refers to a synthesized attribute of the current node. As left-hand side appear

thus the attributes we need to define. For example, the above attribute designa-

tions are refer to the JavaScript properties this.cs . inh depth, this . loc width,

and this . syn gathMax respectively.

Similarly, the right-hand side consists of a JavaScript expression, with embed-

ded attribute references. In this case, we may refer to the synthesized attributes of

children, or with lhs to the inherited attributes of the current node. The terminals

of a production are available as local attributes. In production Menu, there is a

terminal called name, which is available as attribute loc :name. The translation of

attribute references is similar as described above.

The last rule expands to the JavaScript statement:

this . syn gathMax = Math.max (this . loc width, this.cs . syn gathMax );

Evaluation of an attribute grammar corresponds to traversing the AST one or more

times, and executing rules, according to an evaluation strategy. In this paper, we

restrict ourselves to the class of well-defined attribute grammars, whose attribute

dependencies can be statically proved to be acyclic [13]. For those grammars, a

traversal is possible that visits each subtree a bounded number of times. This

corresponds precisely with typical uses of the visitor-design pattern.

Out of the semantic definitions for e.g. Menu, a function sem Menu is generated

containing the evaluation algorithm. Furthermore, to interface with the decorated

tree from JavaScript code, a function eval Menu is generated that takes the AST,

the function sem Menu, and an object containing values for the inherited attributes.

It applies the semantic value, and returns an object with the synthesized attributes.

var inhs = new Inh Menu ();

inhs.depth = 0; -- provide inh attrs of root

syns = eval Menu (sem Menu,menu, inhs); -- initiate evaluation

window .alert (syns.gathMax ); -- access syn attrs of root

In Figure 2, we show an attribute grammar version of the example presented

earlier. It is a non-solution, for reasons explained later, but exhibits various impor-

tant properties. The keywords written in bold indicate a switch from JavaScript

code to AG code, and layout determines the switch back.
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data Root con Root root :Menu -- node with a child named root
data Menu con Menu name cs :Menus -- node with a property name, and a child named cs
type Menus : [Menu ] -- conceptually a cons-list, physically an array

var root = new Root Root ( -- the Menus are physically represented
new Menu Menu ("a", [ -- as an array. However, conceptually

new Menu Menu ("b", [ -- we define its attributes using the
new Menu Menu ("c", [ ]) -- above cons-list representation.
,new Menu Menu ("d", [ ])])]));

attr Menu Menus inh depth finMax count -- gathMax : width of submenu, finMax is global max
syn gathMax count -- two attributes with the name count

function align (root , anchor) { -- uses embedded attribute grammars
datasem Root clause Root -- equations of production Root of nonterm Root

root :depth = 0 -- initial depth
root :count = 0 -- initial count
root :finMax = root :gathMax -- global max is the gathered max of entire menu

datasem Menu clause Menu -- equations of production Menu of nonterm Menu
cs :depth = 1 + lhs :depth -- increase depth for submenus
cs :count = 1 + lhs :count -- increase count
lhs :count = cs :count -- provide the updated count to the parent

loc :elem = document .getElementById (loc :name)
loc :offset = lhs :depth ∗ 20 -- indentation
loc :width = loc :offset + loc :elem.clientWidth
lhs :gathMax = Math.max (cs :gathMax , loc :width)
cs :finMax = lhs :finMax -- pass down final maximum

loc :dummy = (function () { -- side-effectful statements (wrapped as function)
loc :elem.style.left = (anchor .offsetLeft + loc :offset) + ".px";
loc :elem.style.right = (anchor .offsetTop + lhs :count ∗ 30) + ".px";
loc :elem.style.width = (lhs :finMax − loc :offset) + ".px";
loc :elem.style.height = 30 + ".px";
}) () -- directly call the anonymous function

datasem Menus -- equations of productions Cons and Nil
clause Cons

hd :depth = lhs :depth -- pass depth downwards through the menus
tl :depth = lhs :depth

hd :count = lhs :count -- thread the count through the menus, in an
tl :count = hd :count -- in-order fashion. First to the head, then to
lhs :count = tl :count -- the tail, then back up to the parent.

lhs :gathMax = Math.max (hd :gathMax , tl :gathMax)
hd :finMax = lhs :finMax -- pass global maximum downwards through the tree
tl :finMax = lhs :finMax

clause Nil
lhs :count = lhs :count -- thread count through without changing it

lhs :gathMax = 0 -- initial maximum

var inhs = new Inh Root (); -- contains inh attrs of the root
eval Root (sem Root , root , inhs); -- run the attribute evaluator
}

Fig. 2: Attribute grammar-based near-solution to menu alignment.

The attribute grammar code starts with a number of data type definitions that

describe the structure of the menu tree. We then define a number of attributes.

In particular, the idea is that we gather a maximum gathMax (synthesized), and

use its value at the root, to pass down the global maximum finMax (inherited).

Moreover, we count the menus. The inherited attribute count specifies the count

for the current menu, and the synthesized count is the count incremented with the

total number of children.

The semantics for these attributes, we define in the function align, such that we

have access to the parameters root and anchor in the right-hand sides of rules.
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To layout the HTML item, we need to execute a number of statements, and

encode this as an expression. In JavaScript, this can be accomplished in a variety

of ways. In the example, we choose to use a parameterless anonymous function.

In the semantic of Menus, rules are given to compute the attributes for lists

of menus. These rules follow standard patterns: a topdown passing of depth and

finMax , bottomup computation of gathMax, and an inorder threading of count . In

the visitor-example, the fields in the visitor combined with side-effect took care of

this behavior. With attribute grammars, we have to describe it explicitly. How-

ever, there are mechanisms to abstract from these patterns, in the form of copy

rules [23], collection rules [16], or a generalization called default rules [17]. With

such abstractions, the semantics of Menus can be written in a much conciser way

(as we see later).

The AG code has several nice properties. The order of appearance of the rules

is irrelevant. This allows the rules for e.g. depth and count to be written separately

and merged automatically [23]. In the example, we give all the rules in one go to

fit the page, however, for bigger projects the ability to write such rules separately

is important to write coherent code.

Another nice property is the absence of invocations of visits (the accept calls in

the visitor-example). The number of visits is totally implicit. From the dependen-

cies between attributes in the rules, the attribute evaluator determines automati-

cally that the attribute root :gathMax (in the semantics of Root) must be computed

first in a visit, before it can be passed as root :finMax .

Finally, we check statically if there is an evaluation order of statements such that

all attributes are defined before their value is accessed. The attribute declarations

describe the attributes that must be defined, and those that are available. The

rules describe what attributes must be available before computing an attribute,

and an evaluation order is possible if the transitive closure of the dependencies is

non-cyclic [13].

However, the above code has a number of problems, because the order of evalu-

ation of rules is determined only by dependencies on attributes. In particular, the

side-effect that rearranges the HTML items is not a dependency of any rule. Thus

it is not clear when it is evaluated, if it is evaluated at all. Similarly, it is neither

clear at what moment the widths of the HTML items are obtained. When there are

other rules in play that have side effect that effects these widths, the interleaving of

these side effects becomes even harder to predict. Finally, the root of the tree does

not have any attributes defined, so there is actually no reason to expect any of the

rules to be executed in the first place.

2.3 Ruler-front

We now present a solution using ruler-front. The syntax of ruler-front re-

sembles the syntax of the AG in Figure 2, but is different. Before we jump into the

example, we first discuss some of the differences.

The central idea is to make visits to an AST node during attribute evaluation

explicit. We then associate side effect with individual visits.

Interfaces. Instead of declaring attributes for a nonterminal, we declare an inter-
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data Root con Root root :Menu -- node with a child named root
data Menu con Menu name cs :Menus -- node with a property name, and a child named cs
type Menus : [Menu ] -- conceptually a cons-list, physically an array

var root = new Root Root ( -- the Menus are physically represented
new Menu Menu ("a", [ -- as an array. However, conceptually

new Menu Menu ("b", [ -- we define its attributes using the
new Menu Menu ("c", [ ]) -- above cons-list representation.
,new Menu Menu ("d", [ ])])]));

itf Root -- interface for nonterminal Root (root node)
visit perform -- one visit, named perform

inh ast -- menu-AST is inherited attribute

itf Menu Menus -- interface for nonterminals Menus (menu nodes)
visit gather -- first visit: compute maximum

inh ast depth -- needs AST and depth
syn gathMax -- computes maximum width of the menu

visit layout -- second visit: layout the HTML items
inh finMax count -- needs global maximum width
syn count -- produces updated count

function align (root , anchor) { -- uses embedded attribute grammars
datasem Root clause Root -- equations of production Root of nonterm Root

root :depth = 0 -- initial depth
root :count = 0 -- initial count
root :finMax = root :gathMax -- global max is the gathered max of entire menu
invoke layout of root -- require that visit layout of root is invoked

datasem Menu clause Menu -- equations scheduled to visits of Menu
cs :depth = 1 + lhs :depth -- increase depth for submenus
cs :count = 1 + lhs :count -- increase count
lhs :count = cs :count -- provide the updated count to the parent

match loc :elem = document .getElementById (loc :name)
loc :offset = lhs :depth ∗ 20 -- indentation
loc :width = loc :offset + loc :elem.clientWidth
lhs :gathMax = Math.max (cs :gathMax , loc :width)
cs :finMax = lhs :finMax -- pass down final maximum

visit layout -- equations for visit layout and later
match = (function () { -- side-effectful statements (wrapped as function)

loc :elem.style.left = (anchor .offsetLeft + loc :offset) + ".px";
loc :elem.style.right = (anchor .offsetTop + lhs :count ∗ 30) + ".px";
loc :elem.style.width = (lhs :finMax − loc :offset) + ".px";
loc :elem.style.height = 30 + ".px";
}) () -- directly call the anonymous function

datasem Menus -- standard patterns for Menus
default depth = function (depths) {return depths [depths.length − 1]; }
default finMax = function (maxs) {return maxs [maxs.length − 1]; }
default gathMax = function (maxs) {return Math.max .apply (Math,maxs); }
default count = function (counts) {return counts [0]; }
clause Cons -- a clause must be given for each production,
clause Nil -- otherwise easy to forget one

var inhs = new Inh Root perform (); -- contains inh attrs for the root
inhs.ast = root -- AST as inherited attribute
eval Root perform (sem Root , inhs); -- run the attribute evaluator
}

Fig. 3: ruler-front solution to menu alignment.

face for a nonterminal. An interface declaration specifies the visits of a nonterminal,

and attributes per visit. In the following example, we specify that the attributes of

Menu are computed in two visits.

itf Menu -- interface for nonterminal Menu

visit gather -- declaration of first visit

inh ast -- inherited attr defined prior to visit
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syn gathMax -- synthesized attr computed by visit

visit layout -- declaration second visit

inh finMax count -- two inherited attributes

syn count -- synthesized attr computed by visit

The order of appearance of visit declarations dictates the order of visits to AST

nodes with this interface. In order to visit a node, all previous visits must have

occurred: the actual visits on a node must be a prefix of the declared visits. Values

for inherited attributes must be provided prior to the visit. Values for synthesized

attributes are only available after a visit has been performed.

In a conventional AG, the AST to traverse can be seen as hidden inherited at-

tribute. In ruler-front, the AST must actually be provided explicitly as inherited

attribute ast in the first visit. Section 2.4 motivates this choice.

Scheduling. The rules of a semantics-block are automatically scheduled over

visits using an as-late-as-possible strategy. Visits to children are automatically

inferred based on the attribute requirements of rules. However, since Root has

no attributes, there is no need to invoke any visits of root . Therefore, we specify

through an invoke rule that visit layout must be invoked, which requires through

attribute dependencies that also visit gather must be invoked, and kickstarts the

evaluation.

Scheduling constraints. Rules can be constrained to visits. With a visit-block,

we constrain rules to that visit, or a later visit. The example below illustrates the

various possibilities. An attribute definition prefixed with the keyword match is

an exception. It is constrained to the visit it appears in, and is executed even if the

attribute it defines is never needed. We explain its precise meaning later.

datasem Menu -- rules for nonterminal Menu

clause Menu -- rules for production Menu

cs :count = lhs :count + 1 -- scheduled in visit gather or later

match loc :elem = ... -- precisely in visit gather

visit layout -- rules for visit layout or later

match = ... -- precisely in visit layout

lhs :count = cs :count -- constrained to layout or later

With an underscore, we bind the value of the RHS of a rule to an anonymous

attribute that we cannot refer to.

A visit-block also introduces a subscope. A local attribute defined in a visit-block

is not available for a rule defined in a higher scope, even if that rule is scheduled to

a subscope.

After all these preparations, we can finally present the ruler-core solution in

Figure 3. In this example, we express that the side effect that queries the widths of

the HTML items, is constrained to the first visit, and the side effect that changes

the location and dimensions is constrained to the second.

For the Menus-nonterminal, we give default-rules for equality named attributes

in its productions. If such an attribute does not have an explicit definition, these

are implicitly defined by the default rule. The idea is that the default-rule provides

a function that gets an area with all attribute values of the same name of previously
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visited children (or lhs). Formally, given a default-rule for attribute a, suppose that

a child ki ∈ k1, ..., kn , lhs has an attribute k .a (synthesized if k = lhs, inherited

otherwise), but lacks an explicit definition for it. The default-rule gives an implicit

definition, by invoking the RHS of the default-rule with an array defined as follows.

For each child cj ∈ ki−1, ..., k1, lhs that has an attribute a (inherited if k = lhs,

synthesized otherwise), in this order, the array has a value cj .a. In particular, the

first entry is the value of the closest child, and the last entry is that of lhs (if such

attributes exist).

In the above example, we combined both side effect and attribute evaluation. We

retain the advantages that AGs offer, such as the ease of adding attributes. Further-

more, the extension is orthogonal to various optimizations for attribute grammars,

including incremental evaluation and multi-core parallel evaluation.

However, we require the programmer to manually assign attributes to visits,

and constrain side-effectful rules to particular visits, which is not necessary for

conventional attribute grammars. In practice, this is only a minimal amount of

extra work that has as additional advantages that it makes attribute evaluation

more predictable and thus easier to understand.

2.4 Desugared Ruler-Front

In Figure 4 (explained below), we give another way to write the same example in

ruler-front. Both Figure 4 and Figure 3 are valid ruler-front programs. The

former is, however, a desugared version of the latter. This desugared version only

uses a subset of ruler-front that we call ruler-core. It naturally generalizes

over Higher-Order [26] and Conditional [2] Attribute Grammars. We use this exam-

ple as preparation for ruler-core in the next section. To save space, we omitted

the data-type declarations, interface declaration, and root variable, which are equal

to those in the first half of Figure 3.

We present sem-blocks of the form sem nonterm : Interface, which introduces

a nonterminal nonterm, with visits and attributes described by Interface. The

productions are not defined by a data-type definition, but through clauses and rules

per visit, as we explain below. Additionally, the code generated from a semantics-

block is a constructor-function that produces an AST node described by Interface,

which we can store in a variable, and may use in rules.

In Figure 4, we start with a definition of the semantics for the root. The interface

Root declares one visit. We generalize over productions for a nonterminal by having

clauses for each visit. Each clause provides an alternative way to compute the

attribute values. We thus give clauses for the visit perform, in this case only one

clause.

Clauses and visits may contain rules. Rules given for a visit are in scope of all

clauses declared for that visit. Rules for a clause are only visible in that clause.

We also see another type of rule, called a child-rule, which introduces a child. For

example, we introduce a child root , with interface Menu, and the semantics defined

by the JavaScript value sem Menu.

The left-hand sides of an evaluation-rule may be a pattern. This is either an

attribute reference, an underscore or a constant. Evaluation of such a rule fails
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function align (root , anchor) { -- uses embedded attribute grammars
var sem Root = -- semantic function with itf Root

sem ntRoot :Root -- equations for itf Root
visit perform -- equations for the perform, the only visit

clause Root -- production named Root
child root :Menu = sem Menu -- introduce a child root of nonterm Menu
root :ast = lhs :ast -- use lhs :ast as AST

root :depth = 0 -- initial depth
root :count = 0 -- initial count
root :finMax = root :gathMax -- global max is the gathered max of entire menu

invoke layout of root -- demand that the visit layout of root is invoked

var sem Menu = -- semantic function with itf Menu
sem ntMenu :Menu -- equations for itf Menu

visit gather -- equations for first visit
clause Menu -- production named Menu

child cs :Menus = sem Menus -- introduce a child cs of nonterm Menus
cs.ast = lhs :ast .cs -- pass submenus as AST for cs

cs :depth = 1 + lhs :depth -- increase depth for submenus

match loc :elem = document .getElementById (loc.name)
loc :offset = lhs :depth ∗ 20 -- indentation
loc :width = loc :offset + loc :elem.clientWidth
lhs :gathMax = Math.max (cs :gathMax , loc :width)
cs :finMax = lhs :finMax -- pass down global maximum

visit layout -- equations for visit layout
clause Menu ′ -- subproduction named Menu ′

cs :count = 1 + lhs :count -- increase count
lhs :count = cs :count -- provide the updated count to the parent
match = (function () { -- side-effectful statements (wrapped as function)

loc :elem.style.left = (anchor .offsetLeft + loc :offset) + ".px";
loc :elem.style.right = (anchor .offsetTop + lhs :count ∗ 30) + ".px";
loc :elem.style.width = (lhs :finMax − loc :offset) + ".px";
loc :elem.style.height = 30 + ".px";
}) () -- directly call the anonymous function

var sem Menus = -- semantic function, also itf Menu
sem ntMenus :Menu -- equations for itf Menu

visit gather -- equations for visit gather
default depth = function (depths) {return depths [depths.length − 1]; }
default finMax = function (maxs) {return maxs [maxs.length − 1]; }
default gathMax = function (maxs) {return Math.max .apply (Math,maxs); }
default count = function (counts) {return counts [0]; }
clause Cons -- production Cons

match true = lhs :ast .length > 1 -- clause matches if array has an element

child hd :Menu = sem Menu -- introduce child named hd using sem Menu
hd .ast = lhs :ast [0] -- head of the array

child tl :Menu = sem Menus -- introduce child named tl using sem Menus
tl .ast = lhs :ast .slice (1) -- tail of the array

clause Nil -- production Nil (matches always)

var inhs = new Inh Root perform (); -- contains inh attrs for the root
inhs.ast = root -- AST as inherited attribute
eval Root perform (sem Root , inhs); -- run the attribute evaluator
}

Fig. 4: Desugared ruler-front solution to menu alignment.

when its execution throws an exception, or the left-hand side is a value that is not

equal to the value computed for the right-hand side.

During attribute evaluation, the clauses of a visit are tried at runtime in the

order of appearance. The next clause is tried when either a match-rule fails, or

when there is no succeeding clause for a visit to a child. Failure of any other form

of rule simply aborts the entire evaluation. This way, the match-rules allow us to
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distinguish clauses Cons and Nil of ntMenus by matching on the length of the list.

Missing visits are implicitly defined with a single empty clause. A visit without

clauses implicitly has a single clause. Therefore, we neither have to specify the visit

layout nor clauses for it in the semantics of ntMenus. Also, due to the automatic

ordering of rules, many of the rules defined in visit layout of ntMenu, could also be

defined one level higher, in visit gather .

Note that this representation is more general than conventional attribute gram-

mars, and that an attribute grammar can easily be mapped to this representation,

as shown by the difference between Figure 3 and Figure 4.

e ::= J [b ] -- embedded ruler-front blocks b in J
b ::= i | s | o -- ruler-front blocks

i ::= itf I v -- interface decl, with visits v
v ::= visit x inh x1 syn x2 -- visit decl, with atributes x1 and x2

s ::= sem x :I t -- semantics expr, defines nonterm x
t ::= visit x r c -- visit def, with common rules r
| ε -- no visit (serves as terminator)

c ::= clause x r t -- clause definition, with next visit t

r ::= p = e -- assert-rule, evaluates e, bind to pattern p
| match p = e -- match-rule, backtracking variant
| invoke x of c -- invoke-rule, invokes visit x on c
| child c :I = e -- child-rule, introduces a child c of itf I

o ::= c :x -- attribute reference in some embedded code

p ::= c :x -- attribute reference in pattern
| -- underscore
| k -- constant

x , c I , p, e -- identifiers, child identifiers, patterns, expressions respectively

Γ,Σ ::= ε -- attr+child environment (used in semantics)
| Γ, ◦ -- new scope
| Γ, inh c :x -- inh attr c :x
| Γ, syn c :x -- syn attr c :x
| Γ, c :I v -- child c with available visits v

Φ ::= ε -- interface environment (used in semantics)
| Φ, I v -- itf I with visit decls v

Fig. 5: Syntax of ruler-core

3 Static Semantics of ruler-core

In this section, we introduce ruler-core, a small subset of ruler-front, but

sufficiently rich to serve as intermediate language for ruler-front. Figure 5 lists

the syntax of ruler-core. A ruler-front program e is a JavaScript program J ,

with embedded ruler-core blocks b. A block b is either an interface declaration,

semantics-block, or attribute reference. We explain the individual forms of syntax

in more detail below.

There are some essential differences in contrast to ruler-front that we grad-

ually introduced by example in the previous section. The order of appearance of

rules the evaluation order, and each invocation of a visit must explicitly be stated

through an invoke rule. Special syntax for data-types is not part of ruler-core.

Through clauses and (match) rules, we have a general mechanism to inspect and

perform case distinction on arbitrary JavaScript datastructures.
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We make no assumptions about the syntax of J . The embedded blocks may

occur anywhere in a JavaScript program. It is up to the programmer to ensure

that semantic-blocks and attribute references occur at expression-positions, and

that interface-declarations occur at statement positions. Neither do we make any

assumptions about scopes of J ; instead, we assume that all embedded blocks are in

the same scope.

itf S visit v1 inh l syn ∅ -- decompose array l down
visit v2 inh ∅ syn s -- compute sum s up

var sumArr = sem sum :S
visit v1 ∅ -- first visit

clause sumNil -- when list is empty
match 0 = lhs : l .length -- match empty l

visit v2 ∅ -- second visit
clause sumNil2 -- single clause

lhs :s = 0 -- empty list, zero sum
() -- no next visit

clause sumCons -- when list non-empty
loc :x = lhs : l [0] -- head of the list
loc :xs = lhs : l .slice (1) -- tail of the list
child tl :S = sumArr -- recursive call
tl : l = loc :xs -- l param of call
invoke v1 of tl -- invoke on child

visit v2 ∅ -- second visit
clause sumCons2 -- single clause

invoke v2 of tl -- invoke on child
lhs :s = loc :x + tl :s -- sum of head and tail
() -- no next visit

Fig. 6: Example of ruler-core syntax: summing an array of integers.

Figure 6 shows an example ruler-core program to sum an array of integers in

two visits. The first visit has two clauses: a clause sumNil when the array is empty,

and sumCons when there is at least one element. In the second visit, we compute

the actual sum, depending on the clause chosen in the first visit.

A semantics-block introduces a visitor-object with an interface I . The interface

dictates what visits can be made to the object, and what the inputs (inherited

attributes) and outputs are (synthesized attributes).

The outputs for a visit are produced by executing rules. We write these rules

down in a tree of clauses and visits, as illustrated by the indentation in Figure 6

and the state diagram:

v1 ∅ SumNil

SumCons
v2 ∅ SumCons2 ()

v2 ∅ SumNil2 ()

The black nodes represent the state of the AST-node prior to a visit, and the

white nodes indicate a branch point. Upon creation, an AST node is in the state

represented by the root node. With each edge are alternately associated the rules

of a visit or of a clause. With each visit, an AST node tries to switch state to a

next black node by executing the rules on the path to such a node. Execution of
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all of the rules must succeed. At a branch-point, rules on edges of clauses are tried

in order of appearance. Results produced by executing rules are in scope of rules

further along the path.

There are four types of rules.

• match p = e -- match-rule

match loc :x = 3 -- example that succeeds

match true = false -- example that fails

The pattern p must match the value of the right hand side. If the evaluation of e

results in an exception, or the match fails, a backtrack is made to the next clause.

If p represents an attribute, the attribute gets defined.

• p = e -- assert-rule (not prefixed with a keyword)

Similar to the above, except that the match is expected to succeed. If not, the

evaluation itself aborts with an exception.

• child c :I = e -- child-rule

child root :Menu = ntMenu -- example that introduces a Menu child

Evaluation of the rule above creates a child c, visitable according to the interface

I , and created by executing the constructor function e.

• invoke x of c -- invoke rule

Executes visit x of child c. The inherited attributes of x must be defined, and all

prior visits to c must have been performed. The invocation may fail if no clause

matches. In that case, it causes the current AST node to backtrack to the next

clause. If successful, the synthesized attributes of x become available.

Figure 7 shows a static semantics for ruler-core. A ruler-core program

that satisfies these conditions never crashes due to an undefined attribute, invalid

rule order, or forgotten invocation to a child. Dynamic or static type checking we

leave as responsibility of the host language.

We briefly consider some aspect of these rules. Two environments play an im-

portant role: Γ represents the children and attributes defined so far (to test for

missing and duplicated definitions), and Σ the attributes that are allowed to be

defined (to test for definitions of unknown attributes). As additional constraint on

environments, we consider it a static error when there is a duplicate attribute in

the environment within two scope markers.

Visits must be specified in the proper order, and none may be omitted. The

relation for visits t gets a sequence of pending visits v as declared in the interface.

In rule visit, we verify that the name of the visit matches the expected visit in the

head of v . The next visit must match the head of the tail of this list, until in the end

v is empty. We also add the inherited attributes of the visits to the environment.

The function avail defines which attributes may be defined. Higher-up in the

visit-clauses-tree, we may only define those attributes that are common to all lower
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Γ ` s v ; Γ ` t Σ ; Γ0 ` r : Γ1 ` i ` v
Γ ` o v ; x ; Γ ` c Σ ; Γ0 ` p : Γ1 Γ ` e

I unique

I v ∈ Φ

` itf I v
itf

inh ai unique

syn bj unique

` visit x inh a syn b
attr

x unique

I v ∈ Φ v ; Γ, ◦ ` t

Γ ` sem x :I t
sem

[ ] ; Γ ` ε end

Γ0 ∪ avail (visit x r c) ; Γ0 ` r : Γ1

v ; s ; Γ1 ∪ {inh lhs :a | a ∈ i } ` ci

visit x inh i syn s, v ; Γ0 ` visit x r c
visit

x unique Γ0 ∪ avail (clause x r c) ; Γ0 ` r : Γ1

v ; Γ1 ` t {(syn lhs :a) | a ∈ s } ⊆ Γ1

v ; s ; Γ0 ` clause x r t
clause

Σ ; Γ0 ` p : Γ1 Γ0 ` e

Σ ; Γ0 ` p = e : Γ1

assert
Σ ; Γ0 ` p : Γ1 Γ0 ` e

Σ ; Γ0 ` p = e : Γ1

match

Φ (Ic) = v visit x inh i syn s ∈ v

c :Ic w ∈ Γ0 next w v = x {inh c :a | a ∈ i } ⊆ Γ0

Γ1 = Γ0 ∪ {syn c :a | a ∈ s } ∪ {c :Ic (w ,visit x inh i syn s)}
Σ ; Γ0 ` invoke x of c : Γ1

invoke

Γ0 ` e Γ1 = Γ0 ∪ {c :I ∅}
Σ ; Γ0 ` child c :I = e : Γ1

child
inh lhs :a ∈ Γ

Γ ` lhs :a
occ.lhs

syn c :a ∈ Γ

Γ ` c :a
occ.child

syn lhs :a ∈ Σ

Σ ; Γ0 ` lhs :a : Γ0, syn lhs :a
pat.lhs

Σ ; Γ0 ` loc :a : Γ0, syn loc :a pat.loc

inh c :a ∈ Σ

Σ ; Γ0 ` c :a : Γ0, inh c :a
pat.child

Σ ; Γ ` k : Γ const Σ ; Γ ` : Γ any

avail (visit x r c) = avail∪ (r) ∪ avail∩ (c)

∪ {syn lhs :b | visit x inh a syn b ∈ Φ (Ix )}
avail (clause x r t) = avail∪ (r) ∪ avail (t)

avail (p = e) = ∅
avail (match p = e) = ∅
avail (invoke x of c) = {inh c :a | a ∈ a,visit x inh a syn b ∈ Φ (Ic)}
avail (child c :I = e) = {c :I (Φ I )}

Fig. 7: Static semantics of ruler-core
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clauses. In rules pat.lhs and pat.child, we verify that we are indeed defining an

attribute belonging to a certain child.

In rule invoke, we verify that x is indeed the next visit in the expected sequence of

visits v , given the previous invocations w . We furthermore verify that the inherited

attributes for the visit of c are defined, and add the synthesized attributes to the

environment.

var sumArr = function () { -- semantic function
function nt sum ( inps) { -- visit v1

var lhsIl = inps.l ; -- extract lhs : l
try { -- try clause sumNil

if (lhsIl .length ! = 0) throw eEval ; -- if lhs : l is empty

var res = new Object (); -- produce results of v1
res . next = function ( inps) { -- cont. for visit v2

var lhsSs = 0; -- lhs :s rule

var res = new Object (); -- produce results of v2
res . next = null ; -- no next visit
res.s = lhsSs; -- store lhs :s
return res; -- return result of v2
};

return res; -- return result of v1
} catch (err) { -- try clause sumCons

var locLx = lhsIl [0]; -- loc :x rule
var locLxs = lhsIl .slice (1); -- loc :xs rule
var vis tl = sumArr (); -- creation of child tl
tlIl = locLxs; -- tl : l rule

var args = new Object (); -- inputs for v1 of tl
args.l = tlIl ; -- store tl : l
var res = vis tl ( args); -- invoke v1 of tl
var vis tl = res . next ; -- extract results

var res = new Object (); -- produce results of v1
res . next = function ( inps) { -- cont. for visit v2
var args = new Object (); -- inputs for v2 of tl
var res = vis tl ( args); -- invoke v2 of tl
var tlSs = res.s; -- extract tl :s result

var lhsSs = locLx + tlSs; -- compute lhs :s

var res = new Object (); -- produce results of v1
res . next = null ; -- no next visit
res.s = lhsSs; -- store lhs :s
return res; -- return result of v2
};

return res; -- return result of v1
}}; return nt sum; }; -- return visitor function

Fig. 8: Example translation

4 Translation of ruler-core to JavaScript

In this section, we describe how to translate ruler-core programs to JavaScript.

We translate each semantics-block to a coroutine, implemented as one-shot contin-

uations. Each call to the coroutine corresponds with a visit. The parameters of the

coroutine are the inherited attributes of the visit. The result of the call is an object

containing values for the synthesized attributes, and the continuation to call for the

visit.

As an example, we show in Figure 8 the translation of the example in the previous
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Jsem x :I tK ; function () {var Jnt xK = JtKI ; return Jnt xK; }
Jc :xK ; Jinp c xK
J()KI ; null
Jvisit x r cKI ; function ( inps) {

Jinp lhs (inhs I x)K = inps.Jinhs I xK;
JrK; JcKI ,syns I x ; }

J[ ]KI ,s ; throw eEval ;
Jc :cKI ,s ; try {JcKI ,s ; }

catch (err) {
if (err == eEval) {JcKI ,s ; }
else throw err ; }

Jclause x r tKI ,s ; JrK;
var outs = new Object ();
outs . next = JtKI ;
outs.s = Jout lhs sK;
return outs;

Jp = eK ; var res; try { res = JeK} catch (err) {
if (err == eEval) throw eAbort ; else throw err ; }

JpKeAbort

Jmatch p = eK ; var res = JeK; JpKeEval ;
Jchild c :I = eK ; var Jvis cK = (JeK) ();
Jinvoke x of cK ; var args = new Object ();

args.Jinhs Ic xK = Jout c (inhs Ic x)K;
var res = Jvis cK ( args);
var Jinp c (syns Ic x)K = res.Jsyns Ic xK;
var Jvis cK = res . next ;

Jc :aKe ; Jout c aK = res;
J Ke ; ;
JkKe ; if ( res ! = k) throw e;

out "loc" x = "locL" x inp "loc" x = "locI" x
out "lhs" x = "lhsS" x inp "lhs" x = "lhsI" x
out c x = c "I" x inp c x = c "S" x
vis c = "vis_" c "_" x nt x = "nt_" x
syns I x inhs I x -- respectively, inh and syn attrs of x of I

Fig. 9: Denotational semantics of ruler-core

section. To deal with backtracking, we use the exception mechanism, and throw an

exception to switch to the next clause. Note that this does not rollback any side

effect that the partial execution of the rules may have caused. To be able to do so,

we can run the rules in a software transaction [10], for which many programming

languages have tool support nowadays. Alternatively, when the side effect matters,

the programmer can schedule it to an earlier or later visit, such that it is not

influenced by backtracking.

To deal with continuations, we use closures. The function to be used for the

next visit, we build in the previous visit. This function has access to all the results

computed in the previous visit. Furthermore, we store values for attributes in local

variables. Those values that are not needed anymore, are automatically cleaned up

by the garbage collector.

Figure 9 shows the general tranlation scheme, and naming scheme for attributes.

In particular, for each visit, we generate a closure that takes values for inherited

attributes as parameter. Clauses are dealt with through exception handling. When

a clause successfully executed all statements, it returns an object containing values

for synthesized attributes, as well as the continuation function for the next visit.
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The above translation is relatively straightforward. In practice, the selection of

a clause is functionally dependent on the value of an inherited attribute, or a local

attribute computed in a previous visit. In those cases, the selection of clauses can

be implemented more efficiently using conventional branching mechanisms.

We verified that the above implementation runs in time linear to the size of

the tree, when we use version of the slice operation that does not make a copy of

the array. With a throughput of about hundred array elements per microsecond,

and about a thousand per microsecond with the exception handling replaced by

conventional branching, this is still about one or two orders of magnitude slower

than using a hand-written loop. In our experience, however, performance is rarely

an issue. In general, the asymptotic complexity of the traversal is linear in the size of

the tree, and the actual time taken by traversing the trees is insignificant compared

to the work performed by the right-hand sides of the rules in a real application.

5 Translation of ruler-front to ruler-core

In Section 2.4, we showed by example how a ruler-front program can be en-

coded using only syntax in ruler-core. For space reasons, we omit the data-type

driven translation from a datasem into a sem, nor the translation of default-rules.

Instead, in this section we assume that ruler-front consists of those programs

that after insertion of invoke-rules and reordering of rules are a valid ruler-core

program.

5.1 Implicit Invocations

In ruler-front, invoke-rules may be omitted. From a ruler-front program, we

derive a number of implicit invocatations. We first determine the needed attributes.

From these we determine the maximum needed visit, and thus the sequence of visits

needed. An invoke-rule needs to be inserted if there is no invoke-rule for any of these

visits yet. We start the insertion-process at the root of the tree, and check at each

level downwards which invokes need to be inserted. With this process, we insert

the invoke-rules at the lowest point, while still being in scope of all rules that need

it. Automatic rule ordering then positions the invokes at their appropriate places.

A synthesized attribute a of child c is needed if there exists a rule which has the

attribute reference c :a in its right-hand side. The needed attributes may differ per

clause and visit, which we define in a similar way as avail in Section 3:

need (visit x r c) = need∪ r ∪ need∩ c

need (clause x r t) = need∪ r ∪ need t

need (p = e) = need e

The actual implementation is a bit more complicated. A default-rule may indi-

rectly express a need on an attribute (and corresponding visit). Furthermore, when

a programmer provided an explicit invoke, we disable the generation of implicit in-

vokes for that visit. Apparently, the programmer had a reason to explicitly invoke

the visit, and we rather warn the programmer when he did not provide this invoke

in, for example, another branch where it is also needed.
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source node target node

begin visit end prev visit

end visit begin visit, clauses, syn attr def. rules, match rules

clause begin visit

any rule begin visit or clause

invoke rule prev invoke or child, inh attr def. rules

any rule w. rhs begin visit for inh attrs, loc attrs def., invoke of attr

20: v2@11<

12: |sumNil2@17

lhs.s

13: |sumCons2@21

lhs.s

11: >v2@11

lhs.s 18: 9@23

lhs.s

19: 3@18

lhs.s
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6: |sumNil@17 4: |sumCons@21
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17: tl.v2@23

16: tl.v1@23

14: @25

tl.l
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15: 8@22
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lhs.l

lhs.l

loc.x

loc.x

loc.x

loc.xs

loc.xs

lhs.l

lhs.l

Fig. 10: Dependencies between ruler-front entities.

5.2 Rule Ordering

To order the rules, we first create a dependency graph. Per semantics-block, in this

graph, we have a begin and end node for each visit in the interface. For each clause

and each rule we also have a node. Figure 10 lists what directed edges there are

between these nodes, and gives a rough impresses what the dependency graph for

the sum example in Figure 6 looks like. The ovals represent attribute definitions,

the square boxes represent begin and end of visits, clauses, and invocations. If this

dependency graph is cycle-free, the rules can be ordered.

The graph represents a partial order. We turns this order into a total order by

giving attribute definitions precedence over invoke rules, invoke rules precedence

over clauses, and otherwise take the lexical order. This is important, as it keeps

the child-order stable, orders rules common to all clauses to be evaluated once (if

possible) before selecting clauses, and orders match-rules up front in clauses. A

topological sort over the graph gives a rank for each node. We move rules down the

clauses-tree to the highest-ranked visit or clause with a rank less than the rule. To

move a rule down a visit, we duplicate it to all branches.

Sometimes, rules can be scheduled to more than one visit. The exact visit a rule

ends up influences the amount of data that has to be transported between visits.

The inputs for the rule need to be transported to the visit of the rule, and the result

of the rule to the visits where these results are used. With the above algorithm,

rules are scheduled to the earliest possible visit. Scheduling to the last possible visit

seems more intuitive: we only compute attributes at the moment it is really going

to be used.

With a small preprocessing step, we can implement the as-late-as-possible schedul-

ing strategy. Starting from the sinks of the graph, we preform a reversed depth-first

search, marking each node with the last end-visit-node encountered (without over-

writing a mark once assigned). This gives us for each rule the latest possible visit,

and we add a dependency of this rule on the begin of that visit to the graph. If the

graph is acyclic, it stays acyclic.

The implicit invokes and automatic ordering allow a straightforward transforma-

tion from a datasem-block to a sem-block. Essentially, a datasem-block is syntactic

sugar for a number of clauses, each with a match-rule, and a number of child-rules.

We also allow in ruler-front omitted visits and clauses to be implicitly defined.
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Combined with implicit invocations, this makes it easy to add additional visits to an

interface. Furthermore, the automatic rule ordering allows us to write independent

rules separately from each other (possibly in separate files) and use a preprocessing

step to merge the rules together.

6 Discussion

The expressiveness of ruler-front depends on the host language. However,

given a host language that supports only global storage, and the two boolean con-

stants, then we can still express general recursion and branching. In principle,

ruler-front is turing complete. In practice, we use ruler-front as an alter-

native for attribute grammars, and in particular for traversals over tree-like data

structures.

To a limited extend it may be applicable to graphs traversals that are technically

tree traversals (such as a traversal over a depth-first forest). Loops and iteration

can be expressed in some extend via recursion. In related work, we expressed these

by iterating visits [17]). ruler-front is not suitable to express traversals over

drastically changing data structures.

We implemented several extensions to make ruler-front more expressive. One

extension is the notion of internal visits. A conventional visit is invoked externally

by the parent, and can choose a clause. This means that we can only conditionally

compute attributes once per visit. In contrast, an internal visit is invoked at the

end of the clause, and is not visible externally. An internal visit may again have

clauses, and these clauses may again specify an internal visit as next visit, or a

conventional visit. With this relatively simple extension, we can arbitrarily often

branch inside a visit.

Furthermore, we integrated demand-driven attribute evaluation. With demand-

driven evaluation, certain circular grammars may still produce values for attributes:

those that have no runtime circular dependencies. We either use statically ordered

evaluation of a visit, or demand-driven one. A demand-driven visit may not use

side effect, nor have multiple clauses. With visits, we can adequately model this

combination.

In the Haskell-version of ruler-front, we require type signatures for attributes.

In JavaScript, instead of type signatures, the notion of a type signature is a dy-

namic check in the form of assertion-functions that validate the values for attributes.

7 Related Work

Related to this paper are various visitor-like approaches and attribute grammar

techniques.

The purpose of the Visitor design pattern [8] is to decouple traversal operations

from the specification of the tree to be traversed, in order to make it easier to add

new operations without changing the existing specification of the tree. This allows

us to write a multi-visit traversal using a separate visitor per traversal.

In Section 2.1, we discussed advantages and disadvantages of modeling traversals

with this pattern. In particular, side effect is permitted, and used to store results
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for use in later visits. The side effect makes it hard to predict if results needed in

a next visit are actually stored by a first visit. This is a fundamental problem of

visitors. Oliveira, et al. [19], for example, show many enhancements with respect to

the type safety of visitors, but do not address the transfer of results between visits.

Multi-methods [4] are supposed to replace the visitor pattern. A multi-method

allows overloading of methods on multiple parameters, and makes accept-methods

superfluous. This, however, is orthogonal to the problems and solutions presented

in this paper.

Attribute grammars [13,14] were considered to be a promising implementation

for compiler construction, but several success stories aside, did not meet these ex-

pectations [27]. The bets may be turning again. We are not worried about every

byte of memory consumption anymore. Instead, multi-core processor utilization be-

comes an issue, and parallel evaluation of AGs was well studied in the past [12,15],

but not yet applied in the presence of multi-core processors. The work in this paper

is orthogonal to results in those areas.

Recently, many Attribute Grammar systems arose for mainstream languages,

such as Silver [28] and JastAdd [6] for Java, and UUAG [23] for Haskell. In con-

trast to the work in this paper, these systems strictly discourage or even forbit the

use of side effect. The design of ruler-core is inspired by the language of exe-

cution plans of UUAG. In certain languages it is possible to implement AGs via

meta-programming facilities, which obliviates the need of a preprocessor. Viera, et

al. [25] show how to implement AGs into Haskell through type level programming.

The ideas presented in this paper are orthogonal to such approaches, although the

necessary dependency analysis may be difficult to express depending on the expres-

siveness of the meta language.

Several attribute grammar techniques are important to our work. Kastens [11]

introduces ordered attribute grammars. In OAGs, the evaluation order of attribute

computations as well as attribute lifetime can be determined statically, allowing

severe optimizations.

Boyland [2] introduces conditional attribute grammars. In such a grammar,

semantic rules may be guarded. A rule may be evaluated if its guard holds. Evalu-

ation of guards may influence the evaluation order, which makes the evaluation less

predictable. In comparison, in our clauses-in-visits model, we have to explicitly in-

dicate in what visits guards are evaluated (the match-statements of a clause), which

makes evaluation clear. Our approach has the additional benefit that children may

be conditionally introduced and visited.

The work for this paper is carried out for a research project to support the

implementation of the type inference component of the Utrecht Haskell compiler.

In the workshop version of this paper [18], we presented an earlier version of

ruler-front’s clauses-per-visit model to allow attribute grammars to implement

functions that perform case distinction on more than a single AST. In a later pa-

per [17], we improved on this model to allow iteration of visits, and dynamic growing

of trees, to model fixpoint construction of proof trees. That work was carried out

using Haskell as target language. In this paper, we made an explicit connection

between AGs and ruler-front, and use this connection to express side effect in

AGs.
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8 Conclusion

We introduced the language ruler-front, an extension of Attribute Grammars

that makes visits to nonterminals explicit. As a consequence, it is possible to use

side effects in rules. It combines the freedom of visitors as described by the Visitor

Design Pattern with the convenience of programming with attributes, as shown in

Section 2.

Moreover, we presented ruler-core, a subset of ruler-front, which serves as

a small core language for visitor-based Attribute Grammars. In ruler-core, the

lifetime of attributes is explicit, as well as the evaluation order of rules and visits

to children. A ruler-core program has a straightforward translation to many

languages. In Section 4, we showed a translation to JavaScript . Furthermore, we

described how ruler-front programs are mapped to ruler-core in Section 5.

There are many directions for future work. The parallel evaluation of Attribute

Grammars received a lot of interest in the past, but during a time that multi-

core processors were not commonly available. The small ruler-core language is

suitable for experimentation with different evaluation strategies.

Another direction of research is to allow destructive updates on attributed trees.

For example, to support event-handling traversals over data structures that are

dynamically changed based on user input or external events. In ruler-front,

the visits performed on an attributed tree explicitly specify which attributes are

defined. When we apply a destructive update to the tree, we thus know precisely

what information is based upon the previous structure of the tree, which is beneficial

when reasoning about mutations to the tree. Incremental evaluation of Attribute

Grammars received attention in the past, and may be used to efficiently recompute

attributes after an AST change.

More fundamentally, the idea of this paper is to deal with the scheduling of rules

in the presence of side effect. This is not possible with conventional attribute gram-

mars, because the effects are not visible in attribute dependencies. In the Haskell

version of ruler-front, the left-hand side of a rule can be a match against a data

constructor. If this data constructor is a GADT, the match brings type assumptions

in scope, to be used to coerce types in rules that follow. Similarly to side effect,

these type assumptions are implicit. However, with ruler-front, we can explicitly

schedule rules to be after such a match. This allows us to combine GADT features

with Attribute Grammars. This may be sufficient to target dependently-typed pro-

gramming languages, and a direction towards verified compilers using AGs.
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