
[Faculty of Science
Information and Computing Sciences]

Stepwise Attribute Grammar Evaluation
Or: Tweaking AG Evaluation

Arie Middelkoop

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
Web page: http://www.cs.uu.nl/wiki/Center

LDTA, 27 March ’11

http://www.cs.uu.nl/wiki/Center


[Faculty of Science
Information and Computing Sciences]

2

Introduction

Contents of talk:

I Computations over tree structures with attribute grammars

I Crazy Idea: Control evaluation!

I Different setting: construct tree while evaluating attributes

I Deal with: BFS, side-effect, graphs, parallelism

I Type inference: proof search

I Breadth-first mini-max

I Implementation in UUAG (using Haskell)

I Proof of concept Java example

I Extended version: www.cs.uu.nl/~ariem/thesis.pdf

www.cs.uu.nl/~ariem/thesis.pdf


[Faculty of Science
Information and Computing Sciences]

3

Relation to Yesterday’s Talks

I Control stategies to direct evaluation of children; in an AG,
such strategies are implicit

I Relation to Rinus’ workflows.



[Faculty of Science
Information and Computing Sciences]

4

What is an Attribute Grammar? (notation)

gram Pred -- grammar
prod Var term nm :: String
prod Or And
nonterm p : Pred
nonterm q : Pred

attr Pred -- attributes
inh env :: Map String Bool
syn val :: Bool

sem Pred -- rules
prod Var lhs.val = find nm lhs.env
prod Or lhs.val = p.val ∨ q .val
prod And lhs.val = p.val ∧ q .val
prod Or And

p.env = lhs.env
q .env = lhs.env



[Faculty of Science
Information and Computing Sciences]

5

Visualization

Or

And

Var x Var y

Var z

x : T , y : F , z : T

x : T , y : F , z : T

x : T , y : F , z : T T

T

T

F

F



[Faculty of Science
Information and Computing Sciences]

5

Visualization

Or

And

Var x Var y

Var z

x : T , y : F , z : T

x : T , y : F , z : T

x : T , y : F , z : T T

T

T

F

F



[Faculty of Science
Information and Computing Sciences]

5

Visualization

Or

And

Var x Var y

Var z

x : T , y : F , z : T

x : T , y : F , z : T

x : T , y : F , z : T T

T

T

F

F



[Faculty of Science
Information and Computing Sciences]

6

What is an Attribute Grammar? (model)

I Rules: (Pure) functions between attributes

I Declarative!

Evaluation algorithm?

Freedom: several algorithms with different properties.

I On-demand evaluation
I Evaluator performs the least evaluation for an attribute
I As supported by UUAG, JastAdd, Silver, ...

I But also: eager evaluation
I Evaluator dictates evaluation order
I Kennedy-Warren ’76
I Kastens ’80



[Faculty of Science
Information and Computing Sciences]

6

What is an Attribute Grammar? (model)

I Rules: (Pure) functions between attributes

I Declarative! Evaluation algorithm?

Freedom: several algorithms with different properties.

I On-demand evaluation
I Evaluator performs the least evaluation for an attribute
I As supported by UUAG, JastAdd, Silver, ...

I But also: eager evaluation
I Evaluator dictates evaluation order
I Kennedy-Warren ’76
I Kastens ’80



[Faculty of Science
Information and Computing Sciences]

6

What is an Attribute Grammar? (model)

I Rules: (Pure) functions between attributes

I Declarative! Evaluation algorithm?

Freedom: several algorithms with different properties.

I On-demand evaluation
I Evaluator performs the least evaluation for an attribute
I As supported by UUAG, JastAdd, Silver, ...

I But also: eager evaluation
I Evaluator dictates evaluation order
I Kennedy-Warren ’76
I Kastens ’80



[Faculty of Science
Information and Computing Sciences]

6

What is an Attribute Grammar? (model)

I Rules: (Pure) functions between attributes

I Declarative! Evaluation algorithm?

Freedom: several algorithms with different properties.

I On-demand evaluation
I Evaluator performs the least evaluation for an attribute
I As supported by UUAG, JastAdd, Silver, ...

I But also: eager evaluation
I Evaluator dictates evaluation order
I Kennedy-Warren ’76
I Kastens ’80



[Faculty of Science
Information and Computing Sciences]

7

While Working on my Ph.D...

Type inference seems a typical task for AGs. Nice example:
UHC.

However, what about:

I Proof structure deviates from AST structure

I Multiple candidate solutions

I Sharing in proofs - graphs?

I Information about type variables discovered during
evaluation. How to distribute this information? Is a single
pass sufficient?

Are these issues only related to type inference?



[Faculty of Science
Information and Computing Sciences]

7

While Working on my Ph.D...

Type inference seems a typical task for AGs. Nice example:
UHC.

However, what about:

I Proof structure deviates from AST structure

I Multiple candidate solutions

I Sharing in proofs - graphs?

I Information about type variables discovered during
evaluation. How to distribute this information? Is a single
pass sufficient?

Are these issues only related to type inference?



[Faculty of Science
Information and Computing Sciences]

8

My Everyday Problems...

I Layout algorithms for hierarchical HTML menus

I Side Effect!

I Compute back edges of control flow graph

I Graph node has multiple parents
I However, depth-first traversal can be represented as a tree

I In an AG for aspect-oriented programming, independent
computations for each joint point.

I Parallelism!

I Operational semantics for a language with a
nondeterministic choice

I Breadth-first evaluation!

Remarkable similarities



[Faculty of Science
Information and Computing Sciences]

8

My Everyday Problems...

I Layout algorithms for hierarchical HTML menus
I Side Effect!

I Compute back edges of control flow graph
I Graph node has multiple parents
I However, depth-first traversal can be represented as a tree

I In an AG for aspect-oriented programming, independent
computations for each joint point.

I Parallelism!

I Operational semantics for a language with a
nondeterministic choice

I Breadth-first evaluation!

Remarkable similarities



[Faculty of Science
Information and Computing Sciences]

9

Reflection

I A nice and essential aspect of AGs is that the evaluation
order of rules is implicit.

I Consequently, there are algorithms that we would like to
express as AGs, but cannot do so straightforwardly.

I Can we control the evaluation order while keeping the
advantages of AGs? (unordered rules, compositionality)



[Faculty of Science
Information and Computing Sciences]

9

Reflection

I A nice and essential aspect of AGs is that the evaluation
order of rules is implicit.

I Consequently, there are algorithms that we would like to
express as AGs, but cannot do so straightforwardly.

I Can we control the evaluation order while keeping the
advantages of AGs? (unordered rules, compositionality)



[Faculty of Science
Information and Computing Sciences]

10

Visits to Children Explicit



[Faculty of Science
Information and Computing Sciences]

11

Mix AGs with Visitors

I Be able to describe visits to children

I Be able to restrict their relative order

I GPCE’10 paper

attr Pred visit eval
inh env :: Map String Bool
syn val :: Bool

sem Pred | Or visit eval
invoke eval of q
invoke eval of p

I Define external functions (possibly with side effect) as
virtual children



[Faculty of Science
Information and Computing Sciences]

11

Mix AGs with Visitors

I Be able to describe visits to children

I Be able to restrict their relative order

I GPCE’10 paper

attr Pred visit eval
inh env :: Map String Bool
syn val :: Bool

sem Pred | Or visit eval
invoke eval of q
invoke eval of p

I Define external functions (possibly with side effect) as
virtual children



[Faculty of Science
Information and Computing Sciences]

12

Evaluation Algorithms Revisited



[Faculty of Science
Information and Computing Sciences]

13

Typical Evaluation

Or

And

Var x Var y

Var z



[Faculty of Science
Information and Computing Sciences]

14

Kastens Style Evaluation

plan Or p.env = lhs.env
q .env = lhs.env
invoke p
invoke q
lhs.val = p.val ∨ q .val
yield Done

plan And p.env = lhs.env
invoke p
q .env = lhs.env
invoke q
lhs.val = p.val ∧ q .val
yield Done

plan Var lhs.val = find nm lhs.env
yield Done



[Faculty of Science
Information and Computing Sciences]

15

Stepwise Evaluation



[Faculty of Science
Information and Computing Sciences]

16

Example Instrumented with Events

Or

And

Var x Var y

Var z

p q

Work Work

Work

Work Work



[Faculty of Science
Information and Computing Sciences]

16

Example Instrumented with Events

Or

And

Var x Var y

Var z

p q

Work

Work

Work

Work Work



[Faculty of Science
Information and Computing Sciences]

16

Example Instrumented with Events

Or

And

Var x Var y

Var z

p q

Work Work

Work

Work Work



[Faculty of Science
Information and Computing Sciences]

16

Example Instrumented with Events

Or

And

Var x Var y

Var z

p q

Work Work

Work

Work Work



[Faculty of Science
Information and Computing Sciences]

16

Example Instrumented with Events

Or

And

Var x Var y

Var z

p q

Work Work

Work

Work

Work



[Faculty of Science
Information and Computing Sciences]

16

Example Instrumented with Events

Or

And

Var x Var y

Var z

p q

Work Work

Work

Work Work



[Faculty of Science
Information and Computing Sciences]

17

Modified Evaluation Algorithm

I Eager algorithm - Kastens

I Coroutines

Modifications:

I Do not simply yield attribute values, but an execution trace

I Execution trace is composed from the traces of the children

I Man-in-the-middle mergers consume traces of children, and
present themselves as replacement for these children with a
transformed trace.

I At the root: repeatedly evaluate up to the next event

I Simplification: assume single-visit for each child



[Faculty of Science
Information and Computing Sciences]

18

Execution trace and Inversion of Control

An execution trace of a child of (a single-visit) nonterminal N
is a sequence of events:

E1, ...,En ,DoneN

An event Ei = X O
I is user-defined and has:

I A name X

I Values O provided by the child that yields the event,
usable to the parent

I Values I usable by the continuation of the child, provided
by the parent

The terminator DoneN carries N ’s synthesized attributes.



[Faculty of Science
Information and Computing Sciences]

19

With Merging

Or

And

Var x Var y

Var z

p q

Work

Work

Work

? ?

?

?



[Faculty of Science
Information and Computing Sciences]

19

With Merging

Or

And

Var x Var y

Var z

p q

Work

Work

Work

? ?

?

?



[Faculty of Science
Information and Computing Sciences]

19

With Merging

Or

And

Var x Var y

Var z

p q

Work

Work

Work

? ?

?

?



[Faculty of Science
Information and Computing Sciences]

20

Yielding Events

gram Yield | Yield
attr Yield inh ∅ syn ∅
sem Pred | Var

lhs.val = find nm lhs.env
invoke z

merge as z : Yield = do

raise Work∅

commit z $ wrap $ Syn Yield { }



[Faculty of Science
Information and Computing Sciences]

21

Controlling Events

sem Pred | Or
p.env = lhs.env
q .env = lhs.env
lhs.val = z .val

merge p, q as z : Pred = catch
p raised Done | p.val → commit z p
q raised Done | q .val → commit z q
p raised Work∅ q raised Work∅ → do

r ← raise Work∅

return (r , r)



[Faculty of Science
Information and Computing Sciences]

22

Static Semantics of Merge

merge c1, ..., cn as k1 : N1, ..., km : Nm = e

I n > 0,m > 1

I c1, ..., cn : must be provided values for inhs, but may not
refer to their syns

I k1, ..., km : may refer to their syns, but not their inhs

I Monadic expression e that must ultimately commit
semantics for each of the created children



[Faculty of Science
Information and Computing Sciences]

23

Other Possibilities



[Faculty of Science
Information and Computing Sciences]

24

Other Possibilities

Allow IO in monadic merge functions...

I Merge based on side-effect: encode graph traversal.
Choose child depending on whether we visited the intended
target already before.

I Run left and right child up till a couple of steps in parallel

I Create a nonterminal ApplySubst which takes a type
variable as inherited attribute and its currently known
expansion as synthesized attribute.

I Fixed-point computations: repeat evaluation of child, but
with each iteration tweaked inherited attributes

Etc...



[Faculty of Science
Information and Computing Sciences]

25

Conclusion

I The rules remained purely functional, and can still be
automatically composed

I We pay a price:
I Evaluation of children explicit
I Explicit allocation of attributes to visits (to a certain

degree)

I We gain: control over evaluation, traversals of more
complex structures

I Overkill?

More information: www.cs.uu.nl/~ariem/thesis.pdf

www.cs.uu.nl/~ariem/thesis.pdf

