
Controlling Non-Determinism in Type
Rules using First-Class Guessing

Arie Middelkoop Atze Dijkstra
S. Doaitse Swierstra

Universiteit Utrecht
{ariem, atze, doaitse}@cs.uu.nl

Lucı́lia Camarão de Figueiredo
Universidade Federal de Ouro Preto

lucilia@dcc.ufmg.br

Abstract
Given a type system written as a collection of type rules, we
investigate the automatic derivation of inference algorithms from
these rules. A minor challenge are the side effects of a rule, which
need to be expressed algorithmically. A major challenge are non-
deterministic aspects of rules that cannot be directly mapped to an
algorithm.

We present Ruler, a language for type inferencers, to meet these
challenges. An inferencer is written as a collection of rules with
side conditions explicitly expressed in Haskell, and with annota-
tions for the scheduling of the rules.

This paper includes an extensive case study of an inferencer for
the “First Class Polymorphism for Haskell” type system (Vytiniotis
et al. 2008).

1. Introduction
A type system is “a tractable syntactic method for proving the ab-
sence of certain program behaviors by classifying phrases accord-
ing to the kinds of value they compute” (Pierce 2002). Given a type
system, it is often not immediately clear whether there exists an al-
gorithm that can automatically infer a valid type for a (type correct)
program. More specifically, if the type system has principal types,
is there an algorithm that can infer the most general type of each
expression?

Most type systems have a declarative specification in the form
of a collection of type rules. How to effectively and efficiently use
these rules for building type correctness proofs is a separate issue,
and having a systematic way in building such type inferencers from
such a collection of rules is still an open issue. The benefits of
having such a method are:

Consistency. A strong coupling between formal description and
implementation makes it easier to show how certain properties
proved for the type system carry over to the inferencer.

Rapid prototyping. Experimenting with type systems leads to a
deeper understanding. However, language developers are cur-
rently discouraged to do so as it is cumbersome to write in-

[Copyright notice will appear here once ’preprint’ option is removed.]

ferencers from scratch. A framework will relieve programmers
from this burden and hence support rapid prototyping.

Abstraction. Interacting language features obscure and compli-
cate language semantics. In many inference algorithms, the
unification procedure makes the essential decisions about non-
deterministic aspects. This requires context-information to be
carried to and into the place where unification is performed, and
complicates the inferencer. Instead, we would like to be able to
deal with the decision making process at the places where the
non-deterministic aspects occur in the type rules.

Documentation. In comparison with the type rules, the type infer-
ence algorithms are often not completely documented and ex-
plained. Often they are specified by a concrete (and sometimes
obscure) implementation.

This paper shows that it is possible to semi-automatically obtain
inference algorithms from type rules. We do not get them entirely
for free. A major problem is that type rules generally contain non-
deterministic aspects. For example, more than a single rule may
be applicable at the same time. Even when the rules are syntax
directed, they may state demands in the form of side conditions
about a type (or other value), of which concrete information is not
easily available from the context.

A solution to this challenge are annotations which control the
scheduling of the resolution of non-deterministic aspects by manip-
ulating guesses. A guess is an opaque value representing a deriva-
tion that has not been constructed yet. It also serves as a place
holder for a concrete value. We can pass such a guesses around, ob-
serve them, impose requirements on them. When a sufficient num-
ber of requirements have been accumulated, the actual value of the
guess is revealed and we can attempt to construct the derivation.

Therefore, we contribute the following:

• We present a typed domain specific language for type infer-
encers called Ruler. One of its distinguishing features is the
possibility to provide annotation for type rules. Also, side ex-
pressions are expressed using conventional Haskell code.
• We give examples of increasing complexity of inferencers for

type systems with non-deterministic aspects, and show how
manipulating guesses leads to their resolution (Section 2). We
demonstrate the power of these annotations by providing an
inferencer for the type system of FPH (Vytiniotis et al. 2008)
that is directly based on FPH’s collection of declarative type
rules (Section 2.4).
• We formalize the notation (Section 4), the operational seman-

tics (Section 5) and the static semantics (Appendix A) of Ruler.
• We discuss the rationale of our design compared to prior work

on the construction of type inferencers (Section 3).

1 2009/5/11

• We have proof-of-concept Haskell-based implementation for
a meta-typed front-end in which inferencer rules with custom
syntax can be encoded. Furthermore we provide an executable
version of the operational semantics which interprets the infer-
ence rules and produces a derivation in terms of the original
type rules for all expressions it manages to type.

The reason that we have chosen Haskell as the target language
for our generated inferencers are:

• We can use the expressiveness of Haskell for writing the seman-
tics of side conditions in type rules.
• There are many libraries available for Haskell that provide

efficient data structures and external constraint solvers.
• We can integrate the inferencer with other Haskell projects, in

particular the Utrecht Haskell Compiler (Dijkstra et al. 2007).
We have compiler technology readily available (parsers, tree-
walk generators, pretty printers, etc.) to facilitate rapid proto-
typing.

2. Examples
In this section we show how to use Ruler in describing a series
of type inferencers of increasing complexity. We took the examples
such that each example builds on the previous one. We start from an
inferencer for the explicitly typed lambda calculus in Section 2.1.
Admittedly, the inferencer in this case does only type checking,
but we use it to informally introduce the Ruler inferencer language
(formally in Section 4) and informally describe its evaluation model
(formally in Section 5). Then, in Section 2.2, we move on to an
inferencer for implicitly typed System F, in which several cases of
non-determinism arise. Finally, we show the inferencer for FPH
in Section 2.4, which demonstrates the expressive power of the
annotations.

For each example we show the type rules and the actual infer-
encer code. As they have a tight resemblance, be warned not to
confuse the two!

Syntax:

e = x | f a | λ(x :: τ). e | let x = e in b | fix f
τ = α | τ1→ τ2

Rules:

(x, τ) ∈ Γ

Γ ` x : τ
var

Γ ` f : τ f Γ ` a : τa
τ f ≡ τa→ τr

Γ ` f a : τr
app

x :: τx,Γ ` e : τ
Γ ` λ(x :: τx).e : τx→ τ

lam.expl

Γ ` e : τx
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
let

Γ ` f : τ f τ f ≡ τ→ τ

Γ ` fix f : τ
fix

Figure 1: Type system for explicitly typed lambda calculus.

2.1 Explicitly Typed Lambda Calculus
Figure 1 gives the type system for the explicitly typed lambda
calculus (Church 1940; Pierce 2002). The rules define a relation
between an environment Γ, expression e, and type τ.

For the inferencer, this corresponds to a function (we call it a
scheme) that takes an environment Γ and expression e as inputs and

produces a valid type τ, if there exist such a type according to the
rules. The Ruler code of the inferencer of this type system is given
in Figure 2. We discuss each part further below.

Scheme declarations:
tc : (ΓCMap String Ty) ` (eCExpr) : (τBd Ty)
fr : ∀α. (vBd α) fresh
lk : ∀αβ. ((kCα) , (vBβ)) ∈ (ΓCMap α β)

Inferencer rules:
(x, τ) ∈ Γ

Γ ` x : τ
var

v← lookup x Γ

(x,v) ∈ Γ
lookup

Γ ` f : τ f Γ ` a : τa
τr fresh τ f ≡ τa→ τr

Γ ` f a : τr
app

deferv [∅]
v fresh

fresh

x :: τx,Γ ` e : τ
Γ ` λ(x :: τx).e : τx→ τ

lam.expl

Γ ` e : τx
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
let

τ fresh
Γ ` f : τ f τ f ≡ τ→ τ

Γ ` fix f : τ
fix

Syntax and semantics:

data Ty = TGuess GuessVar data Expr = EVar String
| TConst GuessVar | EApp Expr Expr
| TArr Ty Ty | ...

instance Container Ty where
appSubst rec (TArr f a) = rec f � rec a
deferVars (TConst) = empty
deferVars (TGuess v) = single v
deferVars (TArr a r) = deferVars a ‘union‘ deferVars r

instance Unifyable Ty where
unify rec (TArr f a) (TArr g b) = rec f g� rec a b
unify = fail "type error"

instance Deferrable Ty where
mkDeferValue = TGuess
mkFixedValue = TConst
matchDeferValue (TGuess v) = Just v
matchFixedValue (TConst v) = Just v

pattern Map String Ty where x ::τ,Γ input insert x τ Γ

pattern Expr where λx . e output ELam x e
-- other patterns omitted.

Figure 2: Inferencer for explicitly typed lambda calculus.

Scheme declarations. To obtain an inferencer in Haskell, we
actually want a Haskell function tc with the type: Map String Ty→
Expr→ I Ty where I is some monad encapsulating failure and state.
Thus, concerning the meta variables, we need to know whether
they serve as inputs or outputs, and what their meta type is. This
is information is given in the scheme declaration. It defines the
name of the function (i.e. tc), the syntax of the function call in the
inferencer rules (scheme instantiation), the names and types of the
meta variables, whether a meta variable is an input (C) or an output
(B), and a optional property d or u of a meta variable. In this case,
the d-property requires that we supply an instance of Deferrable
for the Haskell type Ty, and allows us to use the defer statement on
types (to be explained later).

2 2009/5/11

Inferencer rules. The inferencer rules provide the actual defini-
tion of the scheme. They consist of an ordered sequence of state-
ments, related to the premises of the type rules, and a concluding
statement. Such a statement can be:

• A scheme invocation, i.e. (x, τ) ∈ Γ, which executes the corre-
sponding function with the given parameters when evaluated.
• Haskell code in the I monad. This code is used to express side-

conditions of type rules as statements in the inferencer rules.
For example, the type system in Figure 2 implicitly mentions a
lookup-relation in the VAR rule. This is explicitly defined in our
inferencer code by means of some Haskell code in the LOOKUP
rule.
• An equality statement, i.e. τ f ≡ τa → τr, stating that its two

inputs will be the same after type inference has finished.
• Non-determinism annotations, such as defer (explained later).

The rules represent the actual definition of cases for functions tc,
lk, and fr. For example, the APP, LOOKUP, and FRESH inferencer
rules are projected to concrete Haskell code as follows:

tc app Γ e lk lookup x Γ

= do let (EApp f a) = e = do v← lookup x Γ

τ f ← tc Γ f return v
τa ← tc Γ a lk = lk lookup
τr ← fr fr fresh = do (v, ())← defer f
unif τ f (TArr τa τr) return v
return τr where f v′ = return ()

tc = tc var⊕ tc app⊕ ... fr = fr fresh

The equivalence statement gets translated to a monadic expres-
sion unif which is an API function provided by Ruler.

The statements are executed in the order of appearance. Each
statement may fail, causing the entire rule to fail. Rules that fail
due to pattern matches or equality statements at the very beginning
of the statement sequence allow other applicable rules to be applied
(offering a limited form of backtracking). Otherwise, the failure is
turned into an abort of the entire inference, with a type error as
result.

Non-determinism. A major recurring problem is that not all re-
lations are functions. Sometimes a meta variable is required to be
both an input and an output. For example, in the inferencer rule
APP, the value τr needs to be produced before it can be passed to
the equality statement. It is also an output of the rule, not an input.
This means that there is no indication how to obtain it. Therefore,
we conceptually guess the value of τr. This value is kept hidden be-
hind an opaque guess-value, and is only revealed when we actually
discover what the value must be. The fr-scheme gives a function
that produces these values.

Ruler accomplishes this as follows. The rule FRESH has a
defer-statement, which is a non-determinism annotation. It is
parametrized with a list of statement sequences, and produces an
guess v. The statement sequences are not executed immediately,
but a closure is created for them which is triggered once we dis-
cover concrete information about guess v. At that point, one of
the statement sequences is required to execute successfully with v
as an input and the current knowledge about guesses. The defer-
statement in FRESH has only one statement sequence, the empty
sequence, which always succeeds. In later examples we have non-
trivial sequences of statements that allow us to defer and control
decision making.

So, a guess needs to get produced for v. Ruler requires help
in the form of a Deferrable instance on the type of v to construct
this guess. Operationally, defer produces an opaque guess variable,
which is wrapped into the domain of v by means of mkDeferValue.

This guess is thus first class, and can be passed around and end up
in other data structures. Ruler maintains information about these
guess variables, such as the closures produced by defer. When
a concrete value is discovered about a guess, all occurrences of
this guess are replaced with this concrete value (thus revealing
the guess). Again, Ruler requires help by means of a Container
instance in order to deal with values holding guesses. Furthermore,
the inferencer rules may check if certain values are still opaque
variables and act on that. This is also something we exploit later.

Concrete values for a guess are discovered by executing equal-
ity statements. When comparing the two input values, if one value
contains a guess and the other a concrete value, then we commit that
concrete value to the guess. This leads to the execution of the de-
ferrable statements. We call this commit because it is an irreversible
action: a guess can be opaque for a while, a commit conceptually
only uncovers it. If both values are guesses, the guesses are merged.
In case both values are concrete values, Ruler requires help in the
form of a Unifyable instance, of which unify is required to traverse
one level through the values and check that their heads are the same.
Another requirement on guesses is that the value committed to a
guess may not contain the guess itself (the infamous occur check).
Therefore, the function deferVars needs to be defined to tell Ruler
which guesses are contained in a value.

Data semantics. The last part of the Ruler code consists of a
definition of the data structures involved. One may also define cus-
tom syntax to be used in the rules, for which translations to either
Haskell patterns (for inputs) or Haskell expressions (for outputs)
need to be given. This custom syntax may be ambiguous as long
as it can be resolved based on the meta types of the meta variables.
Finally, we remark that these instances for data types are likely to
be automatically generated from the structure of the data types, or
readily available in a library with support code.

Before we continue, consider the addition of an extra rule to the
inferencer:

τx fresh x :: τx,Γ ` e : τ
Γ ` λx.e : τx→ τ

lam.impl

With this addition, we obtain an inferencer for the simply typed
lambda calculus. However, with this rule, there can be unresolved
guesses remaining after we finish inferencing. For example, con-
sider inferring the type of the expression λx . x. We obtain τ→ τ,
where τ is a guess. However, at the end of the inference, Ruler
forces all remaining guesses to get evaluated. Those guesses that
remain are mapped to a fixed value. A fixed value is an opaque
value like a guess (created with mkFixedValue), except that it is
only equal to itself and cannot be committed on.

2.2 Implicitly Typed System F
We give a sound but incomplete inferencer for implicitly typed
System F (Reynolds 1974), using a relaxation of Milner’s algo-
rithm (Milner 1978) and exploiting type annotations to deal with
higher-ranked types. Compilers such as GHC and UHC utilize in-
ference algorithms based on this type system, which makes it an
interesting case study. The inferencer algorithm described here is
clearly inferior versus other algorithms in terms of completeness
and predictability, but is powerful and simple enough to serve as a
basis for the inference algorithm of the next section.

Implicitly typed System F (or polymorphic lambda calculus)
extends the simply typed lambda calculus with two rules, and a
more expressive type language (Figure 4). This change adds a lot
of expressive power. Consider the following expressions (assuming
for the moment that we have Ints in the type language):

3 2009/5/11

Extra syntax:
τ = . . . | ∀α. τ

Extra rules:
Γ ` e : ∀α. τ2

Γ ` e : [αB τ1]τ2
inst

Γ ` e : τ1 α < ftv Γ

Γ ` e : ∀α. τ1
gen

Figure 3: Type system of implicitly typed System F.

f = λ(k :: (Int→ Int)→ Int) . k (λx . x)
g = λ(k ::∀α . (α→ α)→ Int) . k (λx . x)

The definition of f can be typed within the simply typed lambda
calculus, but g cannot. In g’s case, the GEN rule is needed after
typing λx . x.

There is no simple way to translate these rules to the type
inferencer rules. The problem lies in the decision when to apply
these rules, because this is not specified by the syntax. They could
be applied any time, even an arbitrary number of times. However,
we choose to only apply instantiation once directly after the VAR
rule, and generalization once for each let-binding, and once for the
argument of each application. Figure 4 lists the inferencer rules. We
partitioned the rules such that they belong either to scheme `, `x, `g,
or `l, and adapted the recursive invocations accordingly. This solves
the problem of when to apply the rules. Also note that we have two
versions of the GEN rule, one for the let-binding (GEN.LET), and
one for the argument of an application (GEN.LAZY).

Inferencer rules:
(x, τ) ∈ Γ

Γ `x x : τ
var

Γ `x x : ∀α. τ2 τ1 fresh
Γ ` x : [αB τ1]τ2

inst.v

Γ ` e : τ1
deferτ2 [[let (∀α.τ′2) = τ2, τ1 ≡ τ

′
2, α < ftv Γ]]

Γ `g e : τ2
gen.lazy

τr fresh
Γ ` f : τ f Γ `g a : τa

τ f ≡ τa→ τr

Γ ` f a : τr
app

fixateτ [Γ ` e : τ]
letα = ftvτ− ftv Γ

Γ `l e : ∀α. τ
gen.let

Γ `l e : τx
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
let

Syntax and semantics:

data Ty = ... | TAll [GuessVar] Ty

ftv (TConst v) = single v ftv (TArr a r) = ftv a ‘union‘ ftv r
ftv (TGuess) = empty ftv (TAll vs t) = ftv t ‘difference‘ vs

Figure 4: Inferencer for implicitly typed System F.

However, this leads us back to the non-determinism problems
that we encountered before. The INST.V rule requires us to choose
which bound variables to instantiate, and what type to instantiate
them to. Similarly, for both GEN rules, a decision needs to be made
what variables to generalize over. These are all examples of non-
deterministic aspects. We use the following tricks to resolve them:

• Instantiation (rule INST.V) is greedy and instantiates all bound
variables that are know at the time when instantiation is applied.

We use the fr-relation to guess the types to which they are
instantiated.
• Generalization of the argument of an application (rule GEN.LAZY)

is done on-demand. The result type τ2 is guessed. At some point
the head (or more) of τ2 is discovered. In case of our example:
for f we discover at some point that τ2 is Int→ Int, and for g
that it is ∀α.α→ α. At that moment the deferred statements are
triggered.
When these statements trigger, the requirement is that enough
information about the outermost quantifiers of τ2 is known. Fur-
thermore, with the greedy assumption about instantiation, as-
sume that τ1 does not have any outermost quantifiers. With this
knowledge in mind, consider the GEN type rule again in Fig-
ure 3. The type rule tells us to take the portion of τ1 without
outermost quantifiers, this should then be equal to τ2. In that
case, the variables α are not allowed to be in the environment.
This is exactly what the deferred statements of GEN.LAZY es-
tablish.
• Generalization just before the let-binding is also greedy. It gen-

eralizes over all unbound variables in the type that are not in the
environment. However, since a guess can represent an arbitrary
type, we cannot generalize over them. Therefore, we introduce
the fixate-statement. It is parametrized with a sequence of state-
ments, and executes those. The guesses which are introduced
during the execution and remain are forced to be evaluated.
Those for which no concrete value is discovered are mapped
to fixed types (TConst values). The order of this forcing is un-
defined. These TConst values are real type variables and can be
generalized over (if free in the environment).

q, τx fresh

fixate
[

defer [τx ≡ pick q]
(x, τx,q),Γ ` e : τ

]
Γ ` λx.e : τx→ τ

(x, τ1,q) ∈ Γ
deferτ2 [q′ fresh,commit(last q) (τ2,q′)]

deferτ′1 [τ′1 6 τ2] τ1 ≡ τ
′
1

Γ ` x : τ2

We defer the instantiation 6 until we have more information about all the
types we want to instantiate the left-hand side to. Queue q is a nested
product, where each left component is a type, and each right component
is a queue. This queue is terminated with a guess. The queue stores all
encountered values for the type of the lambda parameter. Each time such
a value is encountered, it gets appended to the queue. When fixating the
lambda term, the deferred statement executes that traverses the queue and
picks out the most general type, and matches it with the type of the lambda
parameter. This causes all deferred instantiations 6 to execute. The 6
relation is not affected by this complex scheduling.

Figure 5: Complex example: queuing all expected types.

Many variations on the above rules are possible that result in
a more complete inference algorithm (although no complete infer-
ence algorithm exists). For example, making instantiation also hap-
pen on demand, or queuing up all guesses of the type of lambda
parameters (see Figure 5) before making a final choice, thus emu-
lating type propagation algorithms (Peyton Jones et al. 2007; Dijk-
stra and Swierstra 2006a). Such algorithms are normally very hard
to implement, because with conventional approaches the unifica-
tion algorithm has to deal with it all. However, with Ruler, such
algorithms can now be described easily, and locally at the places
in the rules where full context-information is available, with only
minimal effects on modularity.

2.3 Summary
We have seen several examples of non-determinism that are prob-
lematic when writing an inference algorithm. In the end, these

4 2009/5/11

problems boil down to deferring decisions and controlling the deci-
sion process. We have seen and will see the following annotations
to resolve them:

defer introduces a guess with the promise that a sequence of state-
ments will be executed when the guess is revealed.

fixate introduces a scope for guesses and forces all guesses intro-
duced in this scope to be resolved when leaving the scope.

commit unveils the guess, causing the deferred statements to run.

force is syntactic sugar for a commit with a fresh guess, followed
by a commit with a fixed value if the result was still a guess.

The driving force behind propagating the type information that
slowly comes available are the equality statements (≡).

2.4 Example: FPH
The FPH type system (Vytiniotis et al. 2008) is a restriction of
implicitly typed System F, such that there exist a principle type for
each binding, and a complete inference algorithm that finds these
types. In this section, we give an alternative inference algorithm.
Compare the FPH’s declarative rules (Figure 6) with the inference
algorithm (Figure 7) and be surprised how close the resemblance
is.

Consider the following example where choose is instantiated
predicatively and impredicatively:

f = choose id
f ::∀α . (α→ α)→ (α→ α) -- predicative inst
f :: (∀α . α→ α)→ (∀α . α→ α) -- impredicative inst

The observation underlying FPH is that impredicative instantiation
may result in more than one incomparable most general System
F type for a binding. This is undesired for reasons of modularity
and predictability. FPH dictates that impredicative instantiation is
forbidden if it has influence on the type of a binding.

To formalize this difference, FPH introduces the concept of a
box. When a bound variable is instantiated with a polymorphic
type in FPH, it is enclosed within a box. A box expresses that
the type it encloses may have been obtained through impredicative
instantiation. FPH forbids the type of a binding to have a box in
the type, thus ensuring that these possible undesired effects have
no influence on the type. This absence of boxes can arise due to
two reasons:

• The type with the box is simply not part of the type of the
binding.
• There is an unboxing relation (�v) that allows shrinking of

boxes over the monomorphic spine of a type. When we discover
that the type in the box cannot influence the type of the result,
we can remove the box.
• The programmer can give an explicit type signature, which does

not have boxes.

A particular invariant maintained by FPH is that there may not be
a box within a box (the “monomorphic substitution” operator B
takes care of this).

The type rules for FPH contain many non-deterministic aspects,
especially due to the interaction between types and boxes. Both the
structure of the types, and the demands on the boxes become only
gradually available. In some cases, we may discover that the type
is not allowed to have any boxes before the actual type becomes
known. Alternatively, in case of box-stripping (b·c), we may know
portions of the type structure, but nothing about the boxes yet.

Idea. We choose here to be able to guess the type independent of
the boxes. Each alternative of a type gets a box annotation. Types

Types with boxes:
τ = . . . | τ

Type rules:

Γ ` x : ∀α. τ2
τ1 unboxed iff mono
Γ ` x : [αB τ1]τ2

inst

Γ ` e : τ1
τ1 �v τ2

Γ ` e : τ2
subs

Γ ` f : τ f Γ ` a : τa
bτac ≡ bτ

′
ac τ f ≡ τ

′
a→ τr

Γ ` f a : τr
app

Γ ` e : τ1
bτ1c ≡ τ2

Γ ` (e :: τ2) : τ2
ann

monoτx
x :: τx,Γ ` e : τ

Γ ` λx.e : τx→ τ
lam.impl

x :: τx,Γ ` e : τ
Γ ` λ(x :: τx).e : τx→ τ

lam.expl

Γ ` e : τx noBoxesτx x :: τx,Γ ` b : τ
Γ ` let x = e in b : τ

let

Boxy instantiation rules:

∀α.τ1 � [αB τ2]τ1 bi τ � τ br

Protected unboxing rules:

monoτ

τ v τ
tbox

τ v τ refl

τ1 v τ2
unboxedατ1
unboxedατ2

∀α.τ1 v ∀α.τ2
poly

τ1 v τ3 τ2 v τ4

τ1 → τ2 v τ3→ τ4
conbox

τ1 v τ3 τ2 v τ4

τ1→ τ2 v τ3→ τ4
cong

Figure 6: The FPH type system.

τ are of the form τ̃ b, where τ̃ is a regular type with types τ as
components, and b a box annotation. A box annotation is either
concrete (BYes or BNo), or a guess. Types in the environment have
box-annotations BNo, and box-annotations BYes are introduced
by instantiation. The unboxing rules then relate boxes to types,
and eliminate boxes as soon as more type information becomes
available. This unboxing (see subscript s and Subs) is done for
each sub-expression. For an application, only the instantiation of
the function type can cause boxes to appear in the result type.
Possible boxes in the type of the argument are stripped away (these
would otherwise cause boxes inside boxes). Also, annotations are
considered safe and causes boxes to disappear. Finally, at a let-
binding, we first generalize and fixate the guesses in the types,
and only then fixate the boxes. This ensures that when fixating the
boxes, we know that choices of the boxes do not influence the types
in the local scope anymore.

Note the following notation. A ~v� represents a guess containing
variable v (produced or obtained by means of mkDeferValue or
matchDeferValue respectively). A type τ̃ (Ty′) at a place where a τ
(Ty) is expected represents a pair of τ̃with a box annotation of BNo.
A type τ̃ represents a pair of τ̃ with a box annotation of BYes.

The boxy-instantiation rules allows instantiation inside an out-
ermost box. The application of these rules is controlled by Boxy.Inst,
as follows. Decisions are delayed until more is known about the re-
sult type. Then we force the decisions to have been made about a
potential box surrounding it. We then know which one the two ac-
tual instantiation rules is applicable. Note that we are not afraid of
instantiation: the Gen.Lazy generalizes again if needed.

5 2009/5/11

Boxy types:

type Ty = (Ty′,Box)
data Box = BYes | BNo | BVar GuessVar
data Ty′ = TArr Ty′ Ty′ | TGuess GuessVar | ...

Scheme declarations:
(τ1 Cd Ty) v (τ2 Bd Ty) (τ1 Cd Ty) v′ (τ2 Cd Ty)
(τ1 Cd Ty) � (τ2 Bd Ty) (τ1 Cd Ty) �′ (τ2 Bd Ty)

Inferencer rules:

Γ `x x : ∀α. τ2 τ̃1 fresh

deferbi

[~v� = b, commitv BYes],
[b = BNo, mono τ̃],
[b = BYes]

Γ ` x : [αB τ̃1 b]τ2

inst.v

Γ ` e : τ1
τ1 �v τ2

Γ `s e : τ2
subs

Γ `s e : τ1
. . .

Γ `g e : τ2
gen.lazy

Γ `s f : τ f Γ `g a : τa
bτac ≡ bτ

′
ac τ f ≡ τ

′
a→ τr

Γ ` f a : τr
app

Γ `g e : τ1
bτ1c ≡ τ2

Γ ` (e :: τ2) : τ2
ann

fixateb [Γ `l e : τx, noBoxesτx]
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
let

Boxy instantiation rules:

b2 fresh
deferτ̃2 [b1 ≡ b2, force b1, τ̃1 b1

�′ τ, τ ≡ τ̃2 b2
]

τ̃1 b1
� τ̃2 b2

boxy.inst

τ2 fresh

∀α.τ1 �
′ [αB τ2]τ1

bi

τ̃ �′ τ̃ br

Protected unboxing rules:

τ̃2 fresh bτ̃1c ≡ bτ̃2c

deferb2

[let~ � = b2, b1 ≡ b2, force b2, τ̃1 b1
v′ τ̃2 b2

],
[let~v� = b1, commitv b2, τ̃1 b1

v′ τ̃2 b2
],

[τ̃1 b1
v′ τ̃2 b2

]

τ̃1 b1
v τ̃2 b2

let~v� = τ̃1
deferτ̃′1 [τ̃1 b v

′ τ2]
τ̃1 ≡ τ̃

′
1

τ̃1 b v
′ τ2

unbox.ty.defer
mono τ̃

τ̃ v′ τ̃
tbox

∀α.τ b v
′ ∀α.τ b refl

τ1 . τ2 τ1 v τ
′
2 τ′2 ≡ τ2

unboxedατ1 unboxedατ2

∀α.τ1 v
′ ∀α.τ2

poly

τ̃1 v τ3 τ3 ≡ τ
′
3

τ̃2 v τ4 τ4 ≡ τ
′
4

τ̃1 → τ̃2 v
′ τ′3→ τ′4

conbox

τ̃1 v τ3 τ3 ≡ τ
′
3

τ̃2 v τ4 τ4 ≡ τ
′
4

τ̃1→ τ̃2 v
′ τ′3→ τ′4

cong

Semantics:

instance Unifyable Box where ...
instance Deferrable Box where ...mkFixedValue = const BNo

Figure 7: Inferencer for FPH.

For protected unboxing, rule unbox controls how the rules are
applied. It ensures that the input and output type are matched to-
gether, disregarding boxes such that this information flow is inde-
pendent of the information flow about boxes. Then, applying the
actual rules is deferred until the two box-annotations have been re-
solved. In case b2 is still unknown, we default it. If b2 is known,
but b1 is not, we apparently have freedom in the choice and choose
b2 for b1. Finally, if we are in the situation that we know the anno-
tations but not the type, we delay resolving the unboxing until we
know the type by means of unbox.ty.defer.

Box operations:

noBoxes :: Ty→ I ()
noBoxes (t,b) = do unif b BNo

traverse noBoxes t

unboxed :: GuessVar→ Ty→ I ()
unboxed a (t,b) | a ∈ ftv t = do unif b BNo

traverse (unboxed a)
| otherwise = return ()

bτc = strip τ
strip :: Ty→ Ty
strip (t,) = do t′← dtraverse strip t;return (t′,BNo)

dtraverse f = dwrap (traverse f)
traverse f (TArr t1 t2) = do t3← f t1; t4← f t2

return (TArr t3 t4)
traverse f (TAll vs t1) = do t2← f t1;return (TAll vs t2)
traverse f t = return t

mono t = unif t (dcheck t)
dcheck = dwrap check
check (TArr t1 t2) = check′ t1 � check′ t2
check (TAll) = fail "not a mono type"
check = return ()
check′ (t,) = dcheck t

Figure 8: FPH monadic Haskell premises

The monadic Haskell expressions used in the premises of the
inferencer rules are given in Figure 8. noBoxes forces the absence
of boxes everywhere in the type, and unBoxed only on the spine
to each occurrence of type variable a. The most involving, how-
ever, is box-stripping. It produces a type with all boxes removed,
without affecting the original box annotations. The difficulty is that
the type may not be fully known yet. Fortunately, we can use defer,
equal and commit in monadic expressions too. In fact, we can write
higher-order functions to factor out some patterns. For example,
dwrap (Figure 9) factors out all the non-determinism of a recur-
sive function where the input is equal to the output modulo some
guesses.

Other type systems. The syntax of the defer-statement is actually
a bit more general than we presented in these examples. In the ex-
amples, the deferred statements did not have outputs, only inputs.
We allow the deferred statements to have outputs. For example,
another type system for first class polymorphism, HML (Leijen
2009), requires deferred statements that produce a prefix Q (de-
noted with deferQ

τ [. . .]).
Although our examples were about inferencers for type systems

dealing with polymorphism, we stress that these were chosen in

6 2009/5/11

dwrap ::∀α . Deferrable α⇒ (α→ I α)→ α→ I α
dwrap f t = do (tout, ())← defer (λtin →

do unifOne t tin
t′← f t
unif tout t′

return tout

Figure 9: Example of evaluation control abstraction.

order to pave the way to a complex example, and that we are not
limited to such type systems.

3. Related Work
We present an extension of our previous work on the Ruler sys-
tem (Dijkstra and Swierstra 2006b). In this system, type rules are
required to be written as deterministic functions, and both a type-
setted LATEX document and an efficient Attribute-Grammar based
inferencer are derived from them. One of the goals of this system
is to close the gap between formal description and implementation.
However, non-deterministic aspects cannot be directly described in
this system, and are omitted (to be solved externally). Thus, this
leaves the gap wide open, and we close it with this work.

Functional Logic Programming. The essential problem with
non-deterministic aspects is that the function to resolve it needs
to make decisions, but is unable to do so based on what is known
about the inputs at that point. Therefore, the idea is to delay the
execution until we know more about the output, and let expected
output play a role in the decision process. Therefore, at specific
places, we turn functions into relations, which has a close resem-
blance to Functional Logic Programming (Hanus 1994).

With FLP, non-deterministic functions can be written as normal
functions. The possible alternatives that these functions can take
depends not only on the inputs, but also on the scrutinizing of the
result. With evaluation strategies such as narrowing (Antoy 1997),
the search space is explored in a demand-driven way. Knowledge
of context is pushed inwards, reducing possible alternatives, and
causing evaluation to occur that refines the context even more.

With the defer and commit, we offer a poor man’s mechanism
to FLP. The delaying of choice and the scrutinizing of the choice
is explicit. A commit is required to reduce the choice to at most
one possibility. Yet, we have good reasons not to support the full
generality of FLP. We want to integrate the inferencers specified
in our language into mainstream compilers. Our approach makes
only little demands on infrastructure. If it can cope with Algorithm
W (Milner 1978), then the proposed mechanisms of this paper fit.
Furthermore, we want to be able to use constraint solvers in some
foreign language, or arbitrary Haskell libraries in our inference
rules. This gives rise to problems with narrowing.

A difference with respect to FLP is our fixation and inspection
of guesses. Consider an expression like const x y. For such an
expression, the type of y is irrelevant and will not be scrutinized.
However, we have several reasons to do so. We produce derivations,
so we need a derivation of y. Decisions about the inference of y
need to be made, even when the context does not make strong
demands about which one. To make such a decision, we need to
inspect which values are still guesses. As a consequence, more
type information may be discovered, or even type errors that would
otherwise go unnoticed, or which only arise much later (say, when
generating code). Also, to deal with rules such as generalization
properly, we need to know the difference between an unresolved
guess and some fixed but unconstrained information. Furthermore,
unresolved guesses retain memory which causes severe memory

problems when growing unchecked in mainstream compilers, and
when integrating with foreign code, we need invariants about which
parts of values are resolved. Finally, examples such as in Figure 5
really require the guessing to be explicit and first class.

Logic Programming In a similar way as with FLP, our approach
has strong ties with Logic Programming. One particular difference
is that we disallow backtracking and of all possible rules demands
that only one rule can succeed. Again, the reasons are related to ef-
ficiency and integration. However, there is an even more important
reason: to be able to produce sensible type errors, and to prevent
infinite searches in the presence of type errors.

Inferencer Frameworks. There are inferencer frameworks such
as HM (X) (Sulzmann and Stuckey 2008), which is based on a fixed
set of type rules parametrized over some relation X, for which an
inference algorithm needs to be given to obtain an inferencer for
the full language. Such a framework is in fact orthogonal to Ruler,
and Ruler can be used to construct the algorithm for X. In fact,
the precise relation of Ruler to other constraint-based inference
frameworks is that a Ruler specification can be seen as both a
specification of constraints, annotated with the algorithm to solve
them.

Type rule tools. OTT (Sewell et al. 2007) produces code for
proof assistants. SASyLF (Aldrich et al. 2008) is such a proof
assistant tailored to proving properties about type systems, as is
Twelf (Harper and Licata 2007).

Tinkertype (Levin and Pierce 2003) is a system that can also
produce inferencers from type rules. However, the inference algo-
rithms are not derived from the type rules. Instead, it depends on a
repository with code for each relation to compose the inferencer.

4. Type Inferencer Syntax
4.1 Core Syntax
The syntax of the type inferencer language (named RulerCore)
is given in Figure 10. A type inferencer is a triple (Σ∗,r∗,Hλ)
of schemes Σ∗, rules r∗, and a some Haskell support code in the
form of data-type declarations, some instances for them, and utility
functions. A scheme Σ represents a function named s with inputs
declared by environment Γin, and outputs by environment Γout. A
scheme can be parametrized over some types α, which provides
for a limited form of polymorphism for the inferencer rules. The
inferencer rules in r∗ with scheme name s define the function s.
Each rule r consists of a (possibly empty) sequence of premises
(c), and a conclusion (cs).

It is important to realize that we are not defining type rules
here. Schemes are not arbitrary relations, but are functions. The
premises are statements, not predicates. Also, the order of the
premises matter. Values for all inputs need to be available before
a scheme can be instantiated. The rules and statements have a
certain operational behavior. A rule evaluates successfully if and
only evaluation of all its premises succeeds, and for each statement
we give a brief description below. We make this more precise later.

The conclusion rs of an inferencer rule defines to what names
the actual parameters of the scheme s are bound in the context of
the rule, and which local results are the outputs of the scheme.
Expressed with bindings ∆in and ∆out respectively, where bindings
are a mapping from formal name to actual name.

Statements for premises come in different forms. There are a
couple of statements that allow algorithms to be described:

• Evaluation of statement cs instantiates a scheme, which means
applying the scheme function to the inputs, and obtaining the
outputs if this application is successful. For the input values,
the values bound to the actual names are taken for the formal

7 2009/5/11

Σ∗ = Σ1, . . . ,Σk (schemes)
Σ = ∀α. Γin `s Γout (scheme)
r∗ = rs1 , . . . ,rsk (rules)
rs = c∗ ; cs (rule)
c∗ = c1, . . . ,ck (statements)
c = cs (instantiate)

| n1 ≡ n2 (unification)
| exec e :: n∗→ m∗ (execution)
| fixpointn

∗

∆
cs (fixpoint)

| deferm∗
n c∗1, . . . ,c

∗
k (defer)

| commitvτ n (commit)
| fixateτ c∗ (fixate)

cs = ∆in `s ∆out (scheme instance)
Γ = n1 ::ρ τ1, . . . ,nk ::ρ τk (environment)
∆ = n1 7→ m1, . . . ,nk 7→ mk (bindings)
ρ = d (deferrable)

| u (unifyable)
| ∅ (none)

With scheme names s, identifiers n, m, and v, collection of identi-
fiers n∗ and m∗, Haskell types τ, and expressions e.

Figure 10: Syntax of RulerCore.

names (specified by bindings ∆in). Similarly, the values bound
to the formal name of the scheme are made available under the
actual name (specified by bindings ∆out).
• The unification statement attempts to unify the values bound to

the names n1 and n2. A unification algorithm based on structural
equality needs to be available for the values to which these two
types are bound. Successful unification results in a substitution
that makes the two values equal. This substitution is implicit
and can be assumed to be applied everywhere.
• The execution statement allows monadic Haskell code to be

executed. This code is a function taking the values bound to
names n∗ as parameter and returns a monadic value containing
values for outputs m∗. We consider this expression language
in more detail later. The purpose of these execution statements
is to perform the actual computations needed to produce the
values for the inputs of a scheme instantiation, and to inspects
the outputs of it by means of pattern matching.
• The fixpoint statement repeatedly instantiates s, as long as the

values bound to identifiers n∗ change. The bindings ∆ specify
how the outputs are mapped back to the inputs after each itera-
tion.

And the statements that allow us to algorithmically deal with non-
deterministic aspects:

• The defer statement represents one of the sequence of state-
ments c∗i , except that evaluation of it takes place at a later time.
In the mean time, a guess (encoded as a fresh variable) for the
output n is produced, and bottom-values for outputs n∗. For each
guessable data type, we require that we can encode a variable
as a value of this data type (denoted as ~v�). These guesses can
be passed around as normal values.
• A commit statement refines a guess bound to v with the value

bound to identifier n, and runs deferred statements, which may
lead to other refinements of guesses.
• The fixate statement executes statements c∗. All guesses of type
τ that were not committed during this execution are resolved by
executing the deferred statements. Any remaining guesses are
marked as fixed. These now represent opaque values that cannot
be refined anymore.

Expressions in an exec-statement are Haskell functions in
monad I that get the inputs passed as arguments and are obliged
to return a product with the results. Hence the type of an expres-
sion e:

e :: τn1 → . . . τnk → I(τm1 , . . . , τml)

The I monad contains a hidden state, and support failure. In
particular, the following operations are available:

commit :: Deferrable α⇒ α→ α→ I ()
defer :: (Deferrable α,Prod β)⇒ (α→ I β)→ I (α,β)
unif :: Unifyable α⇒ α→ α→ I ()
unifOne :: Unifyable α⇒ α→ α→ I ()
update :: Container α⇒ α→ I α
fail :: String→ I ()

We create a deferrable computation with Defer. It takes a monadic
function that is only executed when a commit is performed on
alpha. This monadic function produces the values for the product β.
Until this actually happened, the contents of the product may not be
touched. The unif operation enforces structural equality between
values α. In case of unifOne, only structural equality on the heads
of the values. Finally, update brings all guesses in α up to date, and
fail causes the inference to fail with a type error.

4.2 Syntactic Sugar
The previous section gave the core syntax for the type inferencer.
For practical and didactic purposes, the examples in the previous
section where given in a somewhat more convenient syntax that
can be translated to the core syntax.

First of all, we assume a series of notational conventions involv-
ing sequences (lists), environments (maps), or sets:

• A sequence of, for example, statements is denoted by c∗ = ci =
c1 . . .ck, where i (1 6 i 6 k) is some index, and k is left implicit
as it is clear from the context, i.e. when i ranges also over some
list.
• A list of identifiers is denoted by n∗ = ni = n1, . . . ,nk.
• The empty map, empty list, or empty set is written as ∅.

The syntactic sugar is given in Figure 11. A scheme declaration
Σ for a scheme named s, now consists of a sequence of either an
input or output declaration, or a keyword. For example, the scheme
declaration for a scheme tp expr:

tp expr : (ΓCEnv) ` (eCExpr) : (τBd Type)

defines two inputs Γ and e with types Env and Expr respec-
tively, and an output named τ with type Type (and the deferrable-
property). To instantiate this scheme, the statement has the form:
tp expr : . . . ` . . . : . . ., where at the places of the dots there is a
Haskell pattern for an output, and a pure Haskell expression for an
input (the reverse for the conclusion statement). The identifiers of a
pattern can be referenced by expressions of subsequent statements
of a rule. In the examples of Section 2, we left out the scheme
names, because it is clear from the context.

The essential differences between Figure 10 and Figure 11 are:

• The syntactic sugar allows for Haskell expressions and patterns
at places where originally only identifiers were expected. This
syntactic sugar is translated to execution-statements with the
appropriate inputs and outputs. Pattern match failures are trans-
lated to fail-expressions. We will also assume that pure Haskell
expressions are automatically lifted into a monadic expression
when needed. Also, an identifier occurring at multiple input-
locations is replaced with unique identifiers with the necessary
equiv-statements added to the front of the statement sequence.

8 2009/5/11

Σ∗ = Σ1, . . . ,Σk (schemes)
Σ = ∀α. s : d1, . . . ,dk (scheme signature)
d = kw (keyword decl)

| nCρ τ (input decl)
| nBρ τ (output decl)

r∗ = rs1 , . . . ,rsk (rules)

rs =
c1 . . .ck

cs
(rule)

c = cs (instantiate)
| mHλ,1 ≡ mHλ,2 (unification)
| let pHλ

= eHλ
(pure)

| pHλ
← mHλ

(monadic bind)
| mHλ

(monadic exec)
| fixpointn

∗

∆
cs (fixpoint)

| deferm∗
n c∗1, . . . ,c

∗
k (defer)

| commitvτ eHλ
(commit)

| fixateτ c∗ (fixate)
| force mHλ

(force)
cs = s : i1, . . . , ik (scheme instance)
i = kw (keyword)

| pHλ
(value deconstruction)

| eHλ
(value construction)

With keywords kw, Haskell patterns pHλ
, Haskell expressions eHλ

,
and monadic Haskell expressions mHλ

.

Figure 11: Syntax of RulerBase.

• No special rules about the structure of monadic functions.
These are normal Haskell monadic expressions in some monad
I, and the commit, unify, and update-operations are functions
that act in this monad.
• For the core language, only one deferred statement-sequence is

allowed to succeed when triggered to evaluate. Here, we assume
that more than one is allowed to succeed, but the first one from
the left is taken.
• force is syntactic sugar for executing f mHλ

. If the result is a
guess, then a commit is done with a fresh value as parameter. If
the result is still this fresh value, a commit is done with a fixed
value. Otherwise, the result is ignored.

Identifiers occurring in expressions are brought up-to-date with
respect to guesses just before evaluating the expressions.

pattern Map String Ty where
x ::τ,Γ input insert x τ Γ

pattern Expr where
x output EVar x
f a output EApp f a
λx . e output ELam x e

pattern Ty where
[α :=τ1] τ2 output singleSubst α τ1 �⇒ ty

pattern Ty where
t b input (t,b)
t input (t,BYes)
t input (t,BNo)

Figure 12: Examples of pattern declarations.

Finally, we assume a number of pattern declarations, of which
an example is given in Figure 12. These define special syntax

for Haskell expressions (indicated with input) and patterns (indi-
cated with output) for certain specific types, and the translation to
Haskell. To disambiguate, the types of identifiers play a role. The
pattern x can stand for the identifier x (say, if the type is String), or
for the expression EVar x if type is Expr.

5. Operational Semantics
In this section we give a big-step operational semantics of the infer-
encer language introduced in Section 4. We first discuss some nota-
tion, then explain the evaluation rules. Evaluation of the inferencer
rules involves data manipulation. Some demands are made about
the data in question. In particular, we require structural equality to
be defined for data types. We finish this section with a discussion
of these demands.

5.1 Notation
For the operational semantics, heapsH , substitutions θ and deriva-
tions π are used for bookkeeping. Their syntax is given in Fig-
ure 13. Heaps are a mapping of locations (in our case, plain iden-
tifiers) to Haskell values. Substitutions keep track of information
about guesses (identified by a variable v). Either, a guess is re-
solved and represents some concrete value w of type τ, or will be re-
solved through a commit on another variable and is for the moment
mapped to ⊥, or represents a closure of the deferred statements.
In the latter case, we store in a heap H entries for each identifier
referenced by the deferred statements, store a scope identifier ζ rep-
resenting the deepest scope in which the deferred statement is intro-
duced (encoded as a number equal to the nesting-depth), and a rule
identifier r. Each defer-statement introduces a unique rule identi-
fier, which is a placeholder for a derivation. Derivations represents
a partial derivation in an abstract way. The conclusions of each rule
make up the nodes of the derivation-tree (with the values of their
instantiation in heap H). Statements that cannot be represented by
this are represented with an opaque-leaf �. These derivations may
be partial and refer to sub-derivations named ι with !ι.

H = n1 B w1,τ1 , . . . ,nk B wk,τk (heap)
θ = v1 7→ q1, . . . ,vk 7→ qk (substitution)
q = wτ (subst value)

| ⊥ (subst bot)
| deferredζ,ι

H
c∗1, . . . ,c

∗
k (deferred)

π =
π

H ` cs
(node)

| !ι (reference)
| � (opaque)
| π1 π2 (and-cons)

Π = ι1 7→ π1, . . . , ιk 7→ πk (named derivations)

With Haskell value w, rule identifier ι, and scope identifier ζ.
Figure 13: Syntax of heaps, substitutions, and derivations.

Substitutions satisfy the usual substitution properties. Juxtapo-
sition of substitutions θ1θ2 represents the left-biased union of the
two substitutions, with θ1 applied to all entries q of θ2. Applying a
substitution θ1 to a value w, denoted with θw, replaces each guess
~v� with either w if v 7→ wτ ∈ θ or itself otherwise. Application to a
⊥-entry is the identity, and to a deferred-entry means applying it to
the heap. Substitution application is lifted to environments, heaps,
and derivations as well.

We also use some notation concerning heaps and bindings. The
lookup of a value for an identifier is written asH(n). With bindings
we can take and rename entries in a heap:H(∆) is a heap which for
each binding n 7→ n′ has the value wτ for n taken from H as n′,

9 2009/5/11

i.e. H(∆)(n) =H(n′). We also use the reverse: ∆(H)(n′) =H(n).
Juxtaposition of heaps stands for the left-biased union of the two.

5.2 Evaluation Rules
Overview. We can now give the evaluation rules of our big-step
operational semantics. Figure 14 lists the structure of the evaluation
rules. Given a statement c, the reduction relation gives a transition
from a substitution θ0 and heapH0 with values for the inputs of c,
to an heapH1 containing values for the outputs of c and an updated
substitution θ1. The transition is labeled with a derivation π which
can be considered a trace of the steps that were taken in order to
make the transition. Similarly, Π contains (at least) a binding for
each reference in derivation π and any reference of any derivation
in Π itself. There are some variations of this reduction relation on
the level of statements and rules. An important invariant is that the
resulting heap is up to date with respect to the resulting substitution.

The semantics of substitution refinement by defaulting the
guesses of a certain scope, starts with an initial substitution θ0,
and the current scope identifier ζ, and ends in a state θ1. The pur-
pose of this relation is to force the evaluation of deferred statements
created in ζ of type τ, such that none of these remain in θ1.

For the evaluation of (monadic) Haskell expressions, we con-
struct an expression e and evaluate it in an execution environment
Hλ, containing data type definitions, Haskell support code, aug-
mented with bindings for inputs to the expression, including the
substitution.

θ0 ;H0 ; ζ ; c →Π
π H1 ; θ1 (statement reduction)

θ0 ;H0 ; ζ ; c1, . . . ,ck →
Π
π H1 ; θ1 (statements reduction)

θ0 ;H0 ; ζ ; rs →
Π
π H1 ; θ1 (rule reduction)

τ ; θ0 ; ζ→Π
∗ θ1 (scope defaulting)

Hλ ` eHλ
→ w (Haskell evaluation)

Figure 14: Structure of the evaluation rules.

Given a type inferencer, a triple (Σ∗,r∗,Hλ), and an instantiation
of scheme Σ by means of statement cs with a heap H0, evaluation
of this statement with the inferencer rules is the transition

∅ ;H0 ; 0 ; fixate∗ cs →
Π
π H1 ; θ1

according to the smallest reduction relations satisfying the evalu-
ation rules of Figure 15, Figure 16, Figure 17, and Figure 18. We
explain these rules in more detail. Furthermore, we assume that the
components of the inferencer-triple are available in the rules as a
constant.

Conventional statements. In Figure 16 are the rule for what we
call the conventional statements. These are the statements in which
type checking algorithms can be expressed. Type inference is not
possible with these rules yet since this requires guessing.

The Scheme-rule represents instantiation of a scheme named s.
An inferencer rule rs is chosen and evaluated. The bindings dictate
which values to take from the heap to use as inputs to the rule.
Similarly, the bindings dictate under which name the outputs after
evaluation are to be stored. These inferencer rules must be syntax
directed. There should be only one rs that can be applied.

For the unify-rule, the values bound to n1 and n2 are checked for
equality with the unify function defined on the type of these values.
When the types involve guesses, this may lead to discovery of more
type information about guesses and an updated substitution.

In the exec-rule, the monadic code is executed with the values
of n1, . . . ,nk as parameter. The monadic code may update the sub-
stitution, or cause the statement to fail. If the execution succeeds,
the returned product of the monadic code contains the values for in
the output-heap.

rs ∈ r∗ Hin′ =Hin(∆in) Hout = ∆out(Hout′)
θ ;Hin′ ; ζ ; rs →

Π
π Hout′ ; θ′

θ1 ;Hin ; ζ ; ∆in `s ∆out →
Π
π Hout ; θ′

Scheme

θ′ = fst (run (unif H(n1)H(n2)) θ ζ)

θ ;H ; ζ ; n1 ≡ n2 →
∅
� ∅ ; θ′

Unify

Hλ ` run (eH(n1) . . .H(nk)) θ ζ→ (θ′, (w1, . . . ,wl))
H ′ = m1 7→ w1, . . .mk 7→ wk

θ ;H ; ζ ; exece :: n1, . . . ,nk → m1, . . . ,ml →
∅
� H

′ ; θ′
Exec

rs ∈ r∗

θ1 ;H1 ; ζ ; rs →
Π
π H2 ; θ2 H1(n∗) ,H2(n∗)

θ2 ;H2(∆)H2 ; ζ ; fixpointn
∗

∆ cs →
Π
π′ H3 ; θ3

θ1 ;H1 ; ζ ; fixpointn
∗

∆ cs →
Π
π π′ H3 ; θ3

Fixstep

θ ;H ; ζ ; fixpointn
∗

∆ cs →
Π
π H(∆)H ; θ Fixskip

Figure 15: Evaluation rules for conventional statements.

Finally, with the fixpoint-rule a scheme-statement can be repeat-
edly executed as long as it causes one of the values of n∗ to change.
For each repetition, the bindings ∆ dictate which outputs are the
inputs of the next iteration. In this case there may be more than
one applicable rule rs. However, to make a step, evaluation of the
inferencer rule must cause a change of value n.

θin ; ∆in(Hin) ; ζ ; c1, . . . ,ck →
Π
π1,...,πk

H ′ ; θout

π =
π1 . . .πk

H ′ ` (∆in `s ∆out)
Hout =H ′(∆out)

θin ;Hin ; ζ ; c1, . . . ,ck;∆in `s ∆out →
Π
π Hout ; θout

Rule

θi ; (θiHi . . .H1) ; ζ ; ci →
Π
πi
Hi+1 ; θi+1, 1 6 i 6 k

θ1 ;H1 ; ζ ; c1, . . . ,ck →
Π
π1...πk

θk+1Hk+1 . . .H1 ; θk+1
Statements

Figure 16: The apply rules.

In Figure 16 are evaluation rules for a chosen inferencer rule rs.
The bindings of the conclusion specifies under what names the in-
puts to the rule need to be presented to the statements. Likewise, the
bindings also specify under what names the values of the outputs of
the rule are available. Successful evaluation of a rule means that a
derivation π has been produced, of which the current rule forms the
root, and the derivations of the premises are its immediate children.

Evaluation of a sequence of statements causes the heap to ac-
cumulate the outputs of the statements already executed so far.
The outputs of predecessors of a statement in this sequence are
also available as input to the statement. Since each evaluation of
a statement potentially causes more information to be known about
guesses in such outputs, the most recent substitution is applied to
these predecessor-outputs first.

Non-deterministic statements To deal with guesses, there are the
statements that deal with non-determinism, which we will call the
non-deterministic statements. Their semantics is made precise in
Figure 17.

For a Defer-statement, guesses are produced as outputs for
n,m1, . . . ,ml. A closure for the statements c1, . . . ,ck is stored as

10 2009/5/11

v,v1, . . . ,vl, ι fresh
H = n 7→ ~v�,m1 7→ ~v1�, . . . ,ml 7→ ~vl�
Hout =HHin θ1 = v1 7→ ⊥, . . . ,vl 7→ ⊥

θ2 = v 7→ deferredζ,ι
Hout

c∗1, . . . ,c
∗
k

θ ;Hin ; ζ ; deferm1,...,ml
n c∗1, . . . ,c

∗
k →

∅
!ι Hout ; θ1θ2θ

Defer

v 7→ deferredζ,ι
H

c∗∗ ∈ θ
c1, . . . ,ck ∈ c∗∗ θ1 = v 7→ Hin(n), θin
θ1 ; θ1H ; ζ ; c1, . . . ,ck →

Π
π H

′ ; θ2
θout =

{
v 7→ w | n 7→ ~v� ∈ H ,n 7→ w ∈ H ′

}
, θ2

ι 7→ π ∈ Π

θin ;Hin ; ζ ; commitvτ n →Π
^ ∅ ; θout

CommitVar

v 7→ w ∈ θ n′ fresh H = n′ 7→ w,n 7→ Hin(n)
θin ;H ; ζ ; n′ ≡ n →Π

^ H
′ ; θout

θin ;Hin ; ζ ; commitvτ n →Π
^ ∅ ; θout

CommitVal

θin ;Hin ; ζ ; c∗ →Π
π Hout ; θ1

τ ; θ1 ; ζ→Π
∗ θout deferred(ζ,θout) = ∅

θin ;Hin ; ζ −1 ; fixateτ c∗ →Π
π θoutHout ; θout

Fixate

Figure 17: Evaluation rules for non-determinism annotations.

substitution for the guess of n as closure. A commit on this guess
leads to the execution of these statements, and to the production
of values for the guesses m1, . . . ,ml. Committing on these latter
guesses is not possible, since the substitution for these guesses is
mapped to ⊥. This closure is introduced in scope ζ and contains
a unique identifier ι which is the name of the derivation that is
produced later. A reference to this derivation is returned as the
derivation of the Defer-statement.

Evaluation of the Commit-statement leads to the evaluation of
the deferred statements. The heap stored in the closure is updated
to the current substitution, and the substitution reflects the newly
found information about the guess. Then, one of the sequences
of statements is chosen and evaluated. The evaluation has caused
outputs to be produced for values that were before represented as a
guess to a ⊥-substitution. Subsequently, the substitution is updated
such that these substitutions do not map to ⊥ anymore, but to their
newly produced value.

Finally, there is the Fixate-statement. Its statement is evaluated
in a subscope ζ. After evaluation, the remaining guesses are de-
faulted such that no deferred statement is left for scope ζ. The rules
for defaulting are specified in Figure 18.

A deferred guess is committed to with either a flexible guess as
value, or with a fixed unknown value. In both cases, of the deferred
statement-sequences must be able to evaluate with this newly found
information. In the first case, such deferred statement observes a
guess as value for its input, and is allowed to refine it. In the later
case, the value may not be touched.

Since committing to a flexible guess results in the introduction
of a guess in the scope, in order to end up with no guesses in the
scope in the end, each commit to a flexible guess must lead to re-
finements of guesses. All guesses that are essentially unconstrained
will then end up with fixed unknowns.

Haskell semantics. The semantics of the monadic functions are
defined in terms of Haskell. The type of the monad is given in Fig-
ure 19. It is a conventional combination between the error monad
and the state monad. The run function is the interface between the

n,v′ fresh vτ ∈ dom(θin)
H = n 7→ ~v′� θ = v′ 7→ deferredζ,ι

∅
{∅}

θθin ;H ; ζ ; commitvτ n →Π
^ H

′ ; θout
τ ; θin ; ζ→Π

∗ θout
Flex

n fresh vτ ∈ dom(θin) H = n 7→ ~v�F
θθin ;H ; ζ ; commitvτ n →Π

^ H
′ ; θout

τ ; θin ; ζ→Π
∗ θout

Rigid

τ ; θin ; ζ→Π
∗ θ τ ; θ ; ζ→Π

∗ θout
τ ; θin ; ζ→Π

∗ θout
Trans

τ ; θ ; ζ→Π
∗ θ Finish

Figure 18: Defaulting rules.

type I α = ErrorT Err (State (θ,ζ)) α
run :: I α→ θ→ ζ→ (θ,α)

Figure 19: The run function.

semantic world and the monad world. If the monadic evaluation is
successful, the premise with run succeeds and there has been a state
transition into the monad and back. If the evaluation results in an
Err, the premise with run does not hold.

5.3 Data-type Semantics
The semantics of the previous section makes some assumptions
about the types of identifiers occurring in de inferencer rules. This
functionality needs to be available in terms of instances for the type
classes listed in Figure 20. This functionality does not have to be
available for all types. Most of this functionality can be generically
derived from the structure of the types.

class Container α where
appSubst :: (∀β . Container β⇒ β→ β)→ α→ α

class Unifyable α where
unify :: (∀β . Unifyable β⇒ β→ β→ I ())

→ α→ α→ I ()

class Deferrable α where
deferVars ::α→ {GuessVar }
mkDeferValue :: GuessVar→ α

mkFixedValue :: GuessVar→ α

matchDeferValue ::α→Maybe GuessVar
matchFixedValue ::α→Maybe GuessVar

Figure 20: Semantics on data.

A Container instance is required to be defined for all types
containing guesses. Substitution application θ �⇒ w replaces all
occurrences of guess ~v� with w′, given v 7→ w′τ ∈ θ. It generically
handles the substitution of guesses, and uses appSubst to traverse
the type.

For the type of the identifiers of the unification rule a Unifyable
instance needs to be defined, which asks for a definitely of the unify

11 2009/5/11

unif w1 w2 = unif ′ unif w1 w2
unifOne w1 w2 = unif ′ (\ → return ()) w1 w2

unif ′ r w1 w2 = do w3← update w1;w4← update w2
unif ′′ r w1 w2

unif ′′ w1 w2 | w1 ≡ w2 = return ()
unif ′′ ~v1� ~v2� = compose v1 v2
unif ′′ ~v� w | v < deferVars w = commit v w

| otherwise = fail "occur check"
unif ′′ w ~v� | v < deferVars w = commit v w

| otherwise = fail "occur check"
unif ′′ r w1 w2 = unify r w1 w2

Figure 21: Unification and guess specialization.

function. Its sole purpose is to succeed if and only if the heads of
the two inputs are structurally equal. For the rest, it should delegate
to its recursion parameter. This function does not have to deal with
guesses, since those are handled generically by the unif function
(Figure 21).

The unif function deals with guesses by committing concrete
type information to the guess, unless both values are guesses. In
that case, it takes the composition of the two. This means that the
two guesses are substituted with a single guess, such that when in-
formation is committed to this single guess (in the minimal scope
of the two), the deferred statements of the original guesses are se-
quenced after each other. Since we require confluence with respect
to the order information about guesses is found, the execution or-
der of these guesses is allowed to be arbitrary. Also note that not all
Unifyable types have to be Deferrable, depending on the properties
of the type. We omitted this detail here, as it is only a minor detail,
and the code for unif would be considerably more complicated.

6. Conclusion
Type rules of declarative type systems contain non-deterministic
aspects. These aspects are problematic when writing an inference
algorithm. We presented a domain specific language for inferencers
that has special syntax to formulate algorithms to resolve these non-
deterministic aspects. The main concept is a first-class guess, which
acts as a remote control to a deferred derivation. By manipulating
guesses, the deferred derivations can be scheduled such that deci-
sions are made at the moment sufficient information has become
available. The result is that we can write inference algorithms by
means of annotating the declarative rules of a type system, describ-
ing the global scheduling locally, without breaking the relative iso-
lation of the type rules, and without breaking soundness with re-
spect to the original rules.

Future Work We intend to formalize the type system of UHC (Di-
jkstra et al. 2007), and generate portions of the inference algorithm
from this description. We made design decisions that the generated
algorithm to be reasonably efficient. Although we conceptually ex-
plained semantics of the language in monadic terms, we actually
generate code for multi-pass higher-order attribute grammars. An
open question is still if we can keep the complexity of some of
UHC’s efficient data structures hidden from the type rules.

Acknowledgments
This work was supported by Microsoft Research through its Euro-
pean PhD Scholarship Programme. Thanks to the LerNet Alpha-

project to have made it possible to carry out the research for this
paper at the Universidade Federal de Minas Gerais in Brazil. Fi-
nally, Arie wants to thank Annette Bieniusa for her extensive proof
reading, and the Universit at Freiburg for providing a friendly and
hospitable environment to work on the actual writing of the paper.

References
Jonathan Aldrich, Robert J. Simmons, and Key Shin. Sasylf: an

educational proof assistant for language theory. In FDPE ’08:
Proceedings of the 2008 international workshop on Functional
and declarative programming in education, pages 31–40, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-068-5. doi:
http://doi.acm.org/10.1145/1411260.1411266.

Sergio Antoy. Optimal non-deterministic functional logic computations. In
Michael Hanus, Jan Heering, and Karl Meinke, editors, ALP/HOA, vol-
ume 1298 of Lecture Notes in Computer Science, pages 16–30. Springer,
1997. ISBN 3-540-63459-2.

Alonzo Church. A formulation of the simple theory of types. J. Symb. Log.,
5(2):56–68, 1940.

Atze Dijkstra and Doaitse S. Swierstra. Exploiting type annotations. Tech-
nical Report UU-CS-2006-051, Department of Information and Com-
puting Sciences, Utrecht University, 2006a.

Atze Dijkstra and S. Doaitse Swierstra. Ruler: Programming type rules.
In Masami Hagiya and Philip Wadler, editors, FLOPS, volume 3945
of Lecture Notes in Computer Science, pages 30–46. Springer, 2006b.
ISBN 3-540-33438-6.

Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The structure of the
essential haskell compiler, or coping with compiler complexity. In Olaf
Chitil, Zoltán Horváth, and Viktória Zsók, editors, IFL, volume 5083 of
Lecture Notes in Computer Science, pages 57–74. Springer, 2007. ISBN
978-3-540-85372-5.

Michael Hanus. The integration of functions into logic programming: From
theory to practice. J. Log. Program., 19/20:583–628, 1994.

Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical
framework. J. Funct. Program., 17(4-5):613–673, 2007.

Daan Leijen. Flexible types: robust type inference for first-class polymor-
phism. In Zhong Shao and Benjamin C. Pierce, editors, POPL, pages
66–77. ACM, 2009. ISBN 978-1-60558-379-2.

Michael Y. Levin and Benjamin C. Pierce. Tinkertype: a language for
playing with formal systems. J. Funct. Program., 13(2):295–316, 2003.

Robin Milner. A theory of type polymorphism in programming. J. Comput.
Syst. Sci., 17(3):348–375, 1978.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark
Shields. Practical type inference for arbitrary-rank types. J. Funct.
Program., 17(1):1–82, 2007.

Benjamin C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002. ISBN 0-262-16209-1.

John C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque sur la Programmation, pages 408–
423, London, UK, 1974. Springer-Verlag. ISBN 3-540-06859-7.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom
Ridge, Susmit Sarkar, and Rok Strnisa. Ott: effective tool support for the
working semanticist. In Ralf Hinze and Norman Ramsey, editors, ICFP,
pages 1–12. ACM, 2007. ISBN 978-1-59593-815-2.

Martin Sulzmann and Peter J. Stuckey. HM(X) type inference is CLP(X)
solving. J. Funct. Program., 18(2):251–283, 2008.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones. FPH:
first-class polymorphism for haskell. In James Hook and Peter Thie-
mann, editors, ICFP, pages 295–306. ACM, 2008. ISBN 978-1-59593-
919-7.

12 2009/5/11

Appendices to be moved to a technical report.

A. Static Semantics
In this section we define the static semantics of the type infer-
ence language. This semantics expresses when a type inferencer
(Σ∗,r∗,Hλ) is correctly typed. Concretely, this means that all iden-
tifiers are defined before used, all used schemes are defined, iden-
tifiers participating in equality, defer and commit statements have
the required properties defined for their types, and Haskell frag-
ments have a type corresponding to the type of its inputs and out-
puts. When this is the case, then compiling the inferencer rules to
an algorithm in Haskell gives a type correct Haskell program, and
during the evaluation of the inferencer rules according to the oper-
ational semantics of Section 5, the values in the heap have the type
of the identifiers if this was the case for the initial heap.

` rs (rule judgment)
α ; Γin ` c : Γout (statement judgment)
Hλ ` e : τ (Haskell judgment)

Figure 22: Structure of static semantics judgments.

The structure of the typing judgments is given in Figure 22. The
rules may refer to the set of schemes Σ∗, which is assumed as a
constant. All schemes are explicitly typed. Local identifiers of an
inferencer rule have implicit types which are directly related to the
explicit types of schemes due to bindings, or to a type of a Haskell
fragment due to inputs and outputs.

We give type rules for two typing judgments, one for a rule and
one for a statement. The other judgments are rather trivial and left
out. For the validity of schemes we want to remark that the names
of identifiers in the input environment must be disjoined to those
of the output environment, and that all types in the schemes must
have a correct kind with respect to the types in Hλ. About the typ-
ing judgment for statements, we remark that it mentions types α.
These are the types over which the scheme, rule, and statements
are polymorphic. Technically, the types of identifiers in the envi-
ronments may have free variables, but only if their explicitly occur
in α. Also, the output environment contains exactly the types for
the outputs of the premise, whereas the input environment contains
at least the types for the identifiers that are input to the premise.

∀α. Γin `s Γout ∈ Σ∗(s)
dom(Γin) = dom(∆in) dom(Γout) = dom(∆out)

α ; Γin(∆in) Γ′j<i ` ci : Γ′i , 1 6 i 6 k
Γout(∆out) ⊆ Γin(∆in) Γ′j6k

` c1, . . . ,ck; (∆in `s ∆out)
Rule

Figure 23: Rule typing rule.

To type check an inferencer rule, we check that a scheme has
been defined for it, and verify the define-before-use requirement
on the premises. Outputs of these premises are accumulated, and
the next premise in the sequence may use any of these outputs. The
local identifiers that are connected to the types of the scheme due to
bindings, must have types that agree with the types of the scheme.

The typing rules for statements are listed in Figure 24. The typ-
ing judgement states that given some types α, and an environment
Γin stating which identifiers are in scope and what type and prop-
erties these have, that the statement produces outputs with types
Γout. We now focus at some aspects of these rules.

∀β. Γ′in `s Γ′out ∈ Σ∗(s) [βB τ] Γ′in ⊆ Γin(∆in)

α ; Γin ` (∆in ` ∆out) : ∆out([βB τ] Γ′out)
Scheme

n1 ::ρ1 τ ∈ Γ n2 ::ρ2 τ ∈ Γ ρ1 , ∅ ρ2 , ∅

α ; Γ ` n1 ≡ n2 : ∅
Unify

τin = Γin(n1)→ . . .→ Γin(nk)
τout = (τ1,ρ1 , . . . , τl,ρl) Hλ ` e : ∀α. τin→ I τout

Γout = m1 ::ρ1 τ1, . . . ,ml ::ρl τl

α ; Γin ` exece :: (n1 . . .nk)→ (m1 . . .ml) : Γout
Execution

α ; Γin ` cs : Γout Γin(mi) = Γout(m
′
i), 1 6 i 6 k

n∗ ⊆ dom(Γin) n∗ ⊆ dom(Γout)

α ; Γin ` fixpointn
∗

m1 7→m′1,...,mk 7→m′k
cs : Γout

Fixpoint

Γin Γ′j<i ` ci : Γ′i , 1 6 i 6 k
Γout = Γ′j6k {n,m

∗} n ::d τ ∈ Γout

α ; Γin ` deferm∗
n c∗1, . . . ,c

∗
k : Γout

Defer

n ::d τ ∈ Γin
α ; Γin ` commitvτ n : ∅

Commit

α ; Env′j<i,Γin ` ci : Γ′i , 1 6 i 6 k

α ; Γin ` fixateτ c1, . . . ,ck : Env′j6k
Fixate

Figure 24: Statement typing rule.

Polymorphism. A limited form of polymorphism is allowed for
the types of the inferencer rules, by allowing the types to be
parametrized over type variables α. This is useful when in order
to be able to reuse some of the inferencer rules, or when the syntax
of the language we are writing an inferencer for is itself polymor-
phic (for example, parametrized over the types of variables). In
fact, we will silently also allow ad-hoc polymorphism by having
a set of type class constraints over these variables α, for example
to be able to show values of such a polymorphic type, to test for
equality, or to use such values in maps.

This polymorphism is visible at two places. In the scheme-rule,
when instantiating a scheme polymorphic in β, we can choose the
types for these variables. And in the execution-rule, the type of
the monadic function must be polymorphic over the variables the
scheme itself is polymorphic.

Haskell. To type monadic functions, we use Haskell’s typing
relation with an initial environment Hλ (containing several utility
functions, data types, etc.). The monadic function is a function of
taking some of the inputs of the execution-statement, and returning
the outputs in monad I.

Properties. Some statements can require additional semantics de-
fines on the values they operate on. For example, in order to test two
values for equality in the unify-rule, we require a Unify-instance to
be defined on the type. This is encoded in the language as a property
ρ of an identifier. There are three properties: none, unifyable, and
deferrable. When an identifier has the deferrable property, there are
instances of both Unifyable as Deferrable for its type. The commit
and defer statements require this deferrable property to be defined
for the identifiers they act on.

13 2009/5/11

B. Soundness Almost For Free
In general, it is hard to prove that a concrete type inference algo-
rithm is sound with respect to the type system it is based on. For-
mally this means that if the inferencer manages to infer a type for
some program value, that this is indeed a correct type for the pro-
gram value according to the type system. However, when the infer-
ence algorithm is described with the inferencer rules, we almost get
the soundness almost for free.

Almost free. The almost-part is due to some assumptions that we
need to make:

• The inferencer rules contains concrete algorithms in the form
of Haskell fragments at the places where type rules has (non-
judgement) premises. For example, when a type rule has a
premise α # Γ, the the type inferencer rule has a premise

let α = ftv ty− ftv Γ

. In the first case, we only state a demand on α, in the later
case we precisely define what α is. For soundness, we need the
guarantee that the code fragment ensures that the constraint on
α is satisfied.
• The inferencer rules may be more fine-grained than the type

rules in order to deal with syntax-directness and explicit schedul-
ing or pipelining of certain rules. For example, for the HML
type system, we have a master rule for instantiation with the
sole purpose to orchestrate the specific rules for instantiation.
Therefore, we require an erasure function b· c :: π→ π that elim-
inates the extra structure from the derivation, such that a deriva-
tion is left that matches the structure of the type rules.

Notation. Let DT (s,H) stand for the set of all derivations π that
are valid according to type system T for an instantiation of scheme
s of T , with the bindings for the identifiers of the scheme inH .

Let Π(π) stand for the substitution and merging of a derivations
reference !ι in π with the derivations named ι in Π. Let Π∗(π) stand
for the fixpoint. If Π is complete, then there is no reference left in
the result.

Soundness.

Theorem B.1. Suppose that (Σ∗,r∗,Hλ) is an inferencer for some
type system T, H0 and H1 are some heap, and cs is an instanti-
ation of one of the schemes of T . Now suppose that there is some
substitution θ such that:

∅ ;Hin ; 0 ; fixate cs →
Π
π Hout ; θ

Then:
bΠ∗(π)c ∈ DT (s,HoutHin)

Proof. We give a sketch. First note that only fixate-statements in-
troduce a scope, and also guarantee that there are no deferred state-
ments remaining in this scope. More concretely, θ does not have
any deferred statements. Derivations references are only introduced
by a deferred-statement, which also brings equally named deferred
statements in scope. Since these have all been resolved, it means
that Π is complete, and thus Π∗(π) is a full derivation without any
references.

By taking the erasure of this derivation, we obtain a derivation
π′. In order to show that π′ ∈ DT (s,HoutHin), we need to prove
for each node in π′, the bindings in its heapH , satisfy the premises
of the rule in T corresponding with the node.

If there is no guessing involved, then we know that Haskell
fragments have successfully run and ensured that these premises
did hold. Now, when guessing was involved, this means that a
certain order of evaluation was taken in order to produce the values.
Some values where inspected before the full values where known.

We now need to show that the same values would be observed when
this evaluation would have occurred at the very end of the inference
process.

We use an important property: all values are constant up to the
guesses. Once a commit has been done on a guess, it is never rolled
back. This has as consequence that once we observe that a value
has a certain structure, this value can be considered to always keep
having this structure. Therefore, a Haskell fragment executing too
late does not matter, but what if it executed too early, and thus saw
only a partial value?

There are two cases to consider. The first case is that enough of
the value was known to complete evaluation. These portions of the
value cannot have changed until the end of the inference process,
and thus that evaluation would still be valid at a later time. In the
second case, not enough of the value was known, and some of the
evaluation was deferred. In that case, since all deferred statements
have executed, this means that the evaluation was done successfully
at a later time. �

Remarks. This section talked about soundness only. Dual to
soundness is completeness. Unfortunately, completeness cannot be
proved in general, because we can encode type systems for which
no inference algorithm exists (for example, implicitly typed System
F). However, we can ask ourselves the question what constraints
we need on the type system and the Haskell fragments in the infer-
encer rules, in order to be able to prove completeness. As for now,
we do not have an answer to this, otherwise, interesting question.
Also, we note that one wants to experiment with inference algo-
rithms. Soundness with respect to the type system is immediately
wanted, but completeness is something we expect only to achieve
after playing around sufficiently and making the right implementa-
tion decisions.

14 2009/5/11

