
Iterative Type Inference with Attribute Grammars

Arie Middelkoop Atze Dijkstra S. Doaitse Swierstra
Universiteit Utrecht

{ariem,atze,doaitse}@cs.uu.nl

Abstract
Type inference is the process of constructing a typing derivation
while gradually discovering type information. During this process,
inference algorithms typically make subtle decisions based on the
derivation constructed so far.

Because a typing derivation is a decorated tree we aim to use
attribute grammars as the main implementation tool. Unfortunately,
we can neither express iteration, nor express decisions based on
intermediate derivations in such grammars.

We present the language ruler-front, a conservative extension
to ordered attribute grammars, that deals with the aforementioned
problems. We show why this extension is suitable for the descrip-
tion of constraint-based inference algorithms.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Languages

1. Introduction
Attribute grammars (AGs) are traditionally used to specify the
static semantics of programming languages [Knuth 1968]. More-
over, when semantic rules of an AG are written in a general pur-
pose programming language, the AG can be compiled into an (effi-
cient) multi-visit tree walk algorithms that implements the specifi-
cation [Kastens 1980; Kennedy and Warren 1976].

We implemented a large portion of the Utrecht Haskell Com-
piler (UHC) [Dijkstra and Swierstra 2004; Fokker and Swierstra
2009] with attribute grammars using the UUAG system [Univer-
siteit Utrecht 1998]. Haskell [Hudak et al. 1992] is a purely func-
tional programming language, with an elaborate and expressive
type system. We also compile our attribute grammars to Haskell.
The ideas presented in this paper, however, are not restricted to any
particular language.

Attribute grammars offer us two general benefits. Dijkstra et al.
[2009] give a detailed description why these advantages are impor-
tant for the UHC project. Firstly, the evaluation order of semantic
rules is determined automatically, unrelated to the order of appear-
ance. Rules may be written separately from each other, and grouped
by aspect [Saraiva 2002; Viera et al. 2009]. Secondly, semantic
rules for idiomatic tree traversals (such as: topdown, bottom-up,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

and in-order) can be inferred automatically, thus allowing for con-
cise specifications.

Two main components of UHC’s type inferencer, polymorphic
unification and context reduction, would benefit from an AG-
based implementation. However, we implemented them directly
in Haskell, because it is not straightforward to express them as an
attribute grammar.

These two components exhibit two challenges to attribute gram-
mars. Firstly, the grammar needs to produce typing derivations.
The structure of such a derivation depends on what is known about
types, and this information gradually becomes available during in-
ferencing, e.g. due to unifications. This requires a mixture of tree
construction and attribute evaluation, which are normally separate
tasks if one takes an AG view. Secondly, construction of a sub-
tree needs to be postponed when it depends on a type that is not
known yet. Later, after we constructed more of the tree, this type
may become known and the postponed construction can continue,
or it becomes never known and we need to default it to some type.

An evaluator for an attribute grammar starts from a given tree
(usually constructed by the parser), and has a fixed algorithm to
evaluate attributes. We present an AG extension to open up these
algorithms to deal with the above challenges, without loosing the
advantages that AGs offer. More precisely, our contributions are:

• We present the language ruler-front, a conservative extension
of ordered attribute grammars. It has three concepts to deal with
the above challenges.

We exploit the notion of visits to the tree. In each visit some
attributes are computed. Visits can be done iteratively. The
number of iterations can be specified based on the values of
attributes.

Productions are chosen based on the values of attributes. A
production can be chosen per visit.

(Attributed) Derivation trees are first class values. They can
be passed around in attributes, and inspected by visiting
them.

In Section 3, we define a denotational semantics via a transla-
tion to Haskell.
• We present ruler-front by example in Section 2. The example

illustrates the challenges and motivates the need for the above
concepts, but is necessarily dense. In related work [Middelkoop
et al. 2010a,b], we give more gentle introductions to variations
on this theme.
• An implementation of ruler-front including several examples

is available at: https://subversion.cs.uu.nl/repos/
project.ruler.systems/ruler-core/. The implementa-
tion supports both greedy and ondemand evaluation of at-
tributes.

• We compare our approach with other attribute grammar ap-
proaches (Section 4) as a further motivation for the need for
ruler-front’s extensions.

2. Motivation
In this section, we show how to implement a small compiler for an
example language we named schadow, written with attribute gram-
mars using ruler-front. The implementation of schadow poses ex-
actly those challenges mentioned in the previous section, while be-
ing small enough to fit in this paper.

We assume that the reader is familiar with attribute gram-
mars [Knuth 1968] and their terminology, as well as type sys-
tems and their implementation. For a more gentle introduction to
both subjects including ruler-front, consider [Middelkoop et al.
2010a,b].

2.1 Example to implement: the language schadow
We take for schadow the simply-typed lambda calculus, with two
small modifications: we annotate bindings with annotations (i.e.
λxu.), and an identifier may refer to a shadowed binding. For ex-
ample, in the term λxu1 .λxu2 .f x, the expression x normally refers
to the binding annotated with u2. However, if the expression can-
not be typed with that binding, we allow x to refer to the shadowed
binding annotated with u1 instead, if this interpretation would be
well-typed1. The interpretation of this expression is thus by default
λu1.λu2.f u2, but under some conditions (defined more precisely
later) it may be λu1.λu2.f u1.

We write a compiler (i.e. a function compile :: Env→ ExprS→
ExprT) that takes a schadow expression (of type ExprS), type
checks it with respect to the environment Env, and maps it to an
expression (of type ExprT) in the simply-typed lambda calculus.

-- concrete syntax and its abstract syntax in Haskell
eS ::= x | eS eS | data ExprS = VarS Ident | AppS ExprS ExprS

λxu.eS | LamS Ident Ident ExprS
eT ::= u | eT eT | data ExprT = VarT Ident | AppT ExprT ExprT

λu.eT | LamT Ident ExprT
τ ::= α | Int | τ→ τ data Ty = TyVar Var | TyInt | TyArr Ty Ty

Before delving into the actual implementation, we first give a spec-
ification of the type system, together with translation rules.

Γ ` eS : τ{ eT

innermost xu of all:
xu : τ ∈ Γ

Γ ` x : τ{ u
var

Γ ` f : τ1 → τ2 { f ′

Γ ` a : τ1 { a′

Γ ` f a : τ2 { f ′ a′
app

Γ, xu : τ1 ` e : τ2 { e′

Γ ` λxu.e : τ1 → τ2 { λu.e′
lam

Each lambda is assumed to be annotated with a unique u. Rule var
is rather informal2. Of all the bindings for x with the right type τ,
the innermost one is to be chosen. Its annotation u is used as name
in the translation. The rule app is standard. In rule lam, the type of
a binding is appended to the environment. The annotation of the
binding is used as the name of the binding in the translation.

Given an (empty) environment, a schadow expression, and op-
tionally a type, we can manually construct a derivation tree using

1 schadow is an example language that we take as a given. It can be used
to model typed disambiguation of duplicately imported identifiers from
modules. However, its design rationale is out of the scope of this section.
2 Actually, the specification itself is incomplete and informal. We stress that
our goal is not to rigorously discuss and prove properties about schadow.
Instead, we show ruler-front and its concepts. The translation for schadow
acts as illustration.

these translation rules. The lookup of a binding poses a challenge
due to context sensitivity. For example, for λxu1 .λxu2 .f x, the choice
between translations λu1.λu2.f u1 and λu1.λu2.f u2 depends on
what the program, where this expression occurs in, states about the
type of f and the type of the entire expression by itself. When the
context imposes insufficient restrictions to find a unique solution,
the var states that we should default to the innermost possibility3.

2.2 Relation to attribute grammars
We focus on writing an implementation for the above transla-
tion rules with attribute grammars using ruler-front. For each
relation in the above specification, we introduce a nonterminal in
the ruler-front code. The parameters of the relations become at-
tributes of these nonterminals, thus also the expression part which
is normally implicit in an AG based description. Derivation rules
become productions, and their contents we map to semantic rules.
The productions contain no terminals: only the values of attributes
determine the structure of the derivation tree. Thus, the attribute
grammar defines the language of derivation trees for the translation
rules. Note that this differs from the normal AG approach, where a
single specific parameter of the relations fully determines the shape
of the derivation tree.

Operationally, the algorithm which constructs derivation trees
picks a production, recursively builds the derivations for the chil-
dren of the production, computes attributes, and if there is a mis-
match between the value of an attribute and what is expected of it,
backtracks to the next production.

We necessarily treat productions a bit differently in order to cap-
ture the gradual process of type inference. Final decisions about
what productions are chosen to make up the derivation tree can-
not be made until sufficient information is available. Therefore, we
construct the derivation tree in one or more sequential passes called
visits. As key feature of ruler-front, a nonterminal has produc-
tions per visit. To make the distinction clearer, we call these clauses.
During the construction of the part of a derivation for a visit, we try
to apply the available clauses to build the portion of the derivation
tree for that visit. When successful, we finalize the choice for that
clause (similar to the cut in Prolog). The next visit can thus assume
that those parts of the derivation tree constructed in previous visits
is final. Moreover, we often wish to repeat a visit when type infor-
mation was discovered that sheds new light upon decisions taken
earlier during the visit. The upcoming example code shows this be-
havior several times.

In a normal AG, for each non-terminal in the tree, we have
exactly one production. In our new model we can at each next visit
choose again how to refine the production. So, we can regard our
approach as having our productions organized as the leafs of a tree
of clauses, and at each next visit we refine the choice a bit by going
down one of the paths in the tree. Once we have payed all visits and
made all choices we know the production precisely.

A ruler-front program is a Haskell program augmented with
attribute grammar code. We generate vanilla Haskell code from
such a program. For each nonterminal in a ruler-front program
we generate a Haskell coroutine, encoded using continuations. The
following is a sketch of ruler-front program (we explain the
various forms of syntax later):

module MyCompiler where
data ExprS = ... -- Haskell data declaration
itf TransExpr ... -- ruler-front nonterm and attr declaration
itf TransExpr ... -- additional attr declarations for nonterm

3 The reader may observe that this example has a strong connection to
context reduction in Haskell. The challenge is that we deal with type-
directed inference rules, which may be overlapping or whose selection may
remain ambiguous.

ones = 1 : ones -- Haskell binding
translate = sem transExpr :: TransExpr -- embedded nonterminal
... rules ... -- (ruler-front)

sem transExpr ... rules ... -- additional rules for nonterm
sem transExpr ... rules ... -- even more rules

The idea is that we define a nonterminal (introduce it, give clauses
and rules) inside a Haskell expression using a sem-block. Addi-
tional clauses and rules can be given in separate toplevel sem-
blocks.

The coroutines we generate from nonterminals are known as
visit functions [Swierstra and Alcocer 1998]. Instantiation of a
coroutine corresponds to the construction of the root node of a
derivation tree. An invocation of such a coroutine corresponds to
a visit in our attribute grammar description. Inputs to and outputs
from the visits of the coroutine represent inherited and synthesized
attributes respectively. Clauses are mapped to function alternatives
of the coroutine. The internal state of the coroutine represents the
derivation tree. This state contains instances of coroutines that rep-
resent the children. In Section 3 we precisely show the translation
to Haskell.

2.3 Typing expressions
Figure 1 gives a rudimentary sketch of a derivation tree and some of
the nonterminals we introduce. Nonterminal compile is the root. It
has a child of nonterminal transExpr, and clauses for the various
forms of syntax of schadow. In locating a variable definition in
the environment, three nonterminals play a role. lookup has a list
of children formed by lkMany nonterminals. These are lookupLam
children, representing a choice for a binding (the dotted line points
to that binding). At the end of inference, at most one of these
choices remains.

compile.wrapper

transExpr.exprLam

transExpr.exprLam

transExpr.exprVar

lookup.lookupTy

lkMany.lkCons

lkMany.lkCons

lkMany.lkNil

lookupLam.lookupLam

lookupLam.lookupLam

u2
u1

Figure 1: Sketch of derivation tree for λxu1 .λxu2 .x

We declare a type TransExpr for the nonterminal transExpr,
which describes the interface (itf) of a nonterminal. The interface
declares the visits and attributes of a nonterminal.

itf TransExpr -- type of a nonterminal
inh env :: Env -- inherited attr (belongs to some visit)
visit dispatch -- declares a visit

inh expr :: ExprS -- inherited attr (belongs to visit dispatch)

type Env = Map Ident [LookupOne] -- shown later

In this case, a nonterminal with the interface TransExpr has a single
visit named dispatch, and two inherited attributes. The attribute
expr contains the expression to translate. Later we will define more
attributes and visits on TransExpr.

The visits are automatically totally ordered if this can be done,
based on value-dependencies between attributes derived from all
clauses in the code. Attribute expr is declared explicitly for visit
dispatch (note the indenting). The env attribute is not: we automat-
ically determine the earliest visit is can be allocated to.

From the above interface, we generate a Haskell type for the
coroutines that we generate for nonterminals with this interface, as

well as functions to invoke the coroutines and access or provide
values for attributes from the Haskell code.

We introduce a nonterminal transExpr with interface TransExpr
using a sem-block, embedded in Haskell code. We translate this
sem-block to a vanilla Haskell coroutine expression.

-- embedded toplevel Haskell code:
translate = sem transExpr :: TransExpr

We bind it to the Haskell name translate, such that we can refer
to it from the Haskell code. The nonterminal name transExpr is
global to the entire program. The Haskell name translate follows
Haskell’s scoping rules.

If we visit a transExpr-node for the first time, we have to see
what kind of expression we have at hand. We do so by defining a
number of alternative ways to deal with the node by introducing a
couple of named clauses. For each of the clause we subsequently
introduce further sem-rules to detail what has to be done. Unlike
most of the other code that we give in this section, the order of
appearance does matter for clauses, because operationally they are
tried in that order.

sem transExpr -- nonterminal with clauses
clause exprVar of dispatch -- as the name of the first
clause exprApp of dispatch -- visit we typically
clause exprLam of dispatch -- use dispatch

sem exprVar -- clause with rules (or clause of next visit)
-- semantic rule (i.e. to match against attributes)
-- semantic rule (i.e. to define a child)
-- perhaps clause of next visit (in scope of this clause)

Clauses provide a means of scoping. For example, we typically
declare clauses of the next visit in the scope of the father clause (i.e.
clause taken at the previous visit). These inherit all the attributes
and children in scope of that clause. Otherwise, they only inherit
the common attributes and children. This enforces as well that the
embedded clause takes place after the enclosing clause.

With a clause we associate a couple of semantic rules, all of
which may fail and cause backtracking, may have an effect on the
derivation tree we are constructing, or lead to a runtime error.

• match pattern = code -- match-rule
match (VarS loc.nm) = lhs.expr -- example

The Haskell pattern must match the value of the right hand side.
Evaluation of the rule requires the full pattern match to take
place, or causes a backtrack to the next clause.
Variables in the pattern refer to attributes, and have the form
childname.attrname. The child name lhs is reserved to refer
to the attributes of the current node. Furthermore, child name
loc is a virtual child that conveniently stores local attributes,
analogous to local variables. In the example, lhs.expr thus refers
to the inherited attribute expr of the current node.

• pattern = code -- assert-rule (not prefixed with a keyword)

Similar to the above, except that the match is expected to suc-
ceed. If not, evaluation aborts with a runtime error.

• child name :: I = code -- child-rule
child fun :: TransExpr = translate -- example

In contrast to a conventional attribute grammar, we construct
the tree during attribute evaluation. The rule above creates a
child with the given name, described by a nonterminal with
interface I, and defined by the coroutine code. For example,
code could be the expression translate, or a more complex
expression. Later we show an example where the code for a
child is provided by an attribute. Evaluation of the child rule
creates a fresh instance of this coroutine. This child will thus
have its own set of attributes defined by I.

• default name [= f] -- default rule

Provides a default definition for all synthesized attributes
named name of the production and all inherited attributes of
the children that are in scope. This default definition applies
only to an attribute if no explicit definition is given. We come
back to this rule later.

Later, we introduce more forms of rules.
The evaluation order of rules is determined automatically based

on their dependencies on attributes. Rules may refer to attributes
defined by previous rules, including rules of clauses of previous
visits. Similarly, attributes are mapped automatically to visits based
on requirements by rules. Cyclic dependencies are considered to be
a static error. The rules may be scheduled to a later visit, except
for match-rules. These are scheduled in the visit of the clause they
appear in. Visits to children are determined automatically based on
dependencies of attributes of the children. If a visit to a child fails,
which is the case when none of the children’s clauses applies, the
complete clause backtracks as well.

The following is part of the clause for exprVar. It states that the
value of attribute lhs.expr must match the VarS constructor.

sem exprVar -- clause exprVar of nonterminal transExpr
match (VarS loc.nm) = lhs.expr -- if succesful, defines loc.nm

The names of inherited and synthesized attributes do not have
to be distinct. Attribute variables in patterns refer to synthesized
attributes of lhs, or inherited attributes of the children. Likewise,
attribute variables in the right-hand side of a match refer to inher-
ited attributes of lhs or synthesized attributes of the children. This
ensures that attribute occurrences are uniquely identifyable.

The following clause for exprApp demonstrates the use of child-
rules. It introduces two children f and a with interface TransExpr,
represented as instances of the translate coroutine.

sem exprApp -- clause exprApp of nonterminal transExpr
match (AppS loc.f loc.a) = lhs.expr -- is it an AppS?

child f :: TransExpr = translate -- recurse on f
child a :: TransExpr = translate -- recurse on a

f .expr = loc.f -- pass the
a.expr = loc.a -- expressions

f .env = lhs.env -- pass the
a.env = lhs.env -- environments

The last two lines express that the environment is passed down
unchanged. We may omit these rules, and write the rule default env
instead. When a child has an inherited attribute env, but no explicit
rule has been given, and the production has lhs.env, then that value
is automatically passed on.

sem transExpr -- for all clauses of transExpr
default env

There are several variations of default-rules. We see later e.g. a
default rule for synthesized attributes.

We skip the clause exprLam for now, and consider types and
type inference first. As usual with type inference, we introduce type
variables for yet unknown types, and compute a substitution that
binds types to these variables.

itf TransExpr -- extend interface of TransExpr
syn ty :: Ty -- synthesized attr of some visit
chn subst1 :: Subst -- chained attr auto of some visit

data Subst -- left implicit: a mapping from variables to types

The chained attribute subst1 stands for both an inherited and syn-
thesized attribute with the same name. We can see this as a substi-
tution that goes in, and comes out again updated with new type in-
formation that became available during the visit. We get automatic

threading of the attribute through all children that have a chained
attribute with this name, using the default-rule:

sem transExpr default subst1
To deal with types and substitutions, we define several helper

nonterminals.
itf Lookup -- finds a pair (nm, ty′) ∈ ty

inh nm :: Ident -- such that ty′ matches ty.
inh ty :: Ty
inh env :: Env

itf Unify -- computes a substitution s such
visit dispatch -- that s (ty1) equals s (ty2), if

inh ty1 :: Ty -- possible. Attributes for the
inh ty2 :: Ty -- substitution and errors added later.

itf Fresh -- produces a fresh type
syn ty :: Ty
chn subst :: Subst

lookup = sem lookupTy :: Lookup
unify = sem unifyTy :: Unify
fresh = sem freshTy :: Fresh

The implementation of fresh delegates to a library function
varFresh on substitutions.

sem freshTy
(lhs.subst, loc.var) = varFresh lhs.subst
lhs.ty = TyVar loc.var

We did not explicitly declare any visits for freshTy. In that case, it
consists of a single anonymous visit. Similarly, when a visit does
not have any declared clauses, it consists of a single anonymous
clause.

Interesting to note here is that we can wrap any Haskell function
(including a data constructors) as a nonterminal, and represent
an application of this function as child of the production. This
is convenient in case of fresh, because we use default rules to
automatically deal with the substitution attribute. Overdoing this,
however, obscures the code.

Both fresh and lookup are of use to refine the implementation
of exprVar. With fresh we get a fresh variable to use as the type of
the expression. Lookup then ensures that at some point this fresh
type is constrained in the substitution to the type of a binding for
the variable.

sem exprVar -- repeated sem-block: extends previous one
child fr :: Fresh = fresh
child lk :: Lookup = lookup
lk.nm = loc.nm -- pass loc.nm to lk (loc.nm matched earlier)
lk.ty = fr.ty -- pass the fresh type to lk
lhs.ty = fr.ty -- also pass it up

The substitution we pass to child fr. The substitution that comes
out, we pass up to the parent.

sem exprVar
sem exprVar rename subst := subst1 of fr

fr.subst = lhs.subst1 -- pass down
lhs.subst1 = fr.subst -- pass up

Recall that subst1 is a chained attribute, hence there is an inher-
ited lhs.subst1, and a synthesized lhs.subst1. These names are not
ambiguous: the right hand side of the rule refers to the inherited at-
tribute, the left hand side to the synthesized. With a rename-rule, we
rename attributes of children to choose a more convenient name, for
example to benefit from default-rules. The two explicit rules may
actually be omitted, because of default-rule mentioned earlier.

In the application clause, we use the unify nonterminal to ex-
press that various types should match.

sem exprApp
child fr :: Fresh = fresh

child u :: Unify = unify

u.ty1 = f .ty
u.ty2 = TyArr a.ty fr.ty
lhs.ty = fr.ty

rename subst := subst1 of fr -- for default-rule

Rules for the substitution may be omitted. The default-rule threads
it properly through the fr and u children, which (after renaming)
both have a subst1 chained attribute.

2.4 Unification
So far the example can be implemented with most attribute gram-
mar systems that operate on a fixed abstract syntax tree [Dijkstra
and Swierstra 2004, 2006]. In the above example, the choice of
productions solemnly depends on the expr inherited attribute. The
attribute grammar is directly based on the grammar of expressions.
In the remainder of this section, we move beyond such systems. For
unification, we allow a selection of production based on two inher-
ited attributes: the attributes ty1 and ty2 of interface Unify defined
above.

The idea behind unification is to recursively compare these
types. If one is a variable, then the other type is bound to that
variable in the substitution.

sem unifyTy
clause matchEqVars of dispatch -- the same variables
clause matchVarL of dispatch -- left a variable
clause matchVarR of dispatch -- right a variable
clause matchArr of dispatch -- both an arrow
clause matchBase of dispatch -- both the same constant
clause matchFail of dispatch -- failure

To implement these clauses, we need additional infrastructure
to obtain the free variables of a type, and bind a type in the substi-
tution. The actual implementations we omit, since these are similar
to other examples in this section.

itf Ftv inh ty :: Ty -- determines free vars of ty
inh subst :: Subst -- after applying the subst
syn vars :: [Var]

itf Bind inh var :: Var -- appends to subst:
inh ty :: Ty -- [var := ty]
chn subst :: Subst

ftv = sem ftv :: Ftv -- impl. with ruler-front
bind = sem bind :: Bind -- wrapper around library fun

We define several additional attributes on the Unify nonterminal.
For the synthesized attributes success and errs, we give a default
definition of the form default · .· = f . This function f gets as
first parameter a list of values of attributes ·.· of the children that
have this attribute. If the function is not given, we use the Haskell
function last for f .

itf Unify
visit dispatch

chn subst1 :: Subst
syn success :: Bool -- True iff unification succeeds
syn changes :: Bool -- True iff any variables were bound

visit outcome
inh subst2 :: Subst -- take subst2 more recent as
syn errs :: Errs -- subst1 for better error messages

sem unifyTy
default success = and -- and [] = True
default changes = or -- or [] = False
default errors = concat

loc.ty1 = tyExpand lhs.subst1 lhs.ty1 -- apply subst one level
loc.ty2 = tyExpand lhs.subst1 lhs.ty2 -- apply subst one level

The inherited types need to be compared with what is known in
the substitution to ensure that we do not bind to a variable twice.

Hence we introduce attributes loc.ty1 and loc.ty2 that are computed
by applying the substitution to the two inherited types that are
to be unified. Their values are shared among all clauses and are
computed only once. We match on these values to select a clause.

sem matchEqVars -- applies if we get two equal vars
match True = same lhs.ty1 lhs.ty2 ∨ same loc.ty1 loc.ty2

-- embedded Haskell code:
same (TyVar v1) (TyVar v2) | v1 ≡ v2 = True
same = False

sem matchVarL -- a yet unknown type left
match (TyVar loc.var) = loc.ty1
loc.ty = loc.ty2

sem matchVarR -- a yet unknown type right
match (TyVar loc.var) = loc.ty2
loc.ty = loc.ty1

sem matchVarL matchVarR -- common part of above
child fr :: Ftv = ftv -- determine free fr.vars
fr.ty = loc.ty -- of loc.ty

child b :: Bind = bind -- add substitution
b.var = loc.var -- [loc.var := loc.ty]
b.ty = loc.ty

rename subst := subst1 of fr b

loc.occurs = loc.var ∈ fr.vars -- occur check
lhs.subst1 = if loc.occurs then lhs.subst1 else b.subst1
lhs.success = ¬ loc.occurs
lhs.changes = ¬ loc.occurs

lhs.errs = if loc.occurs
then [CyclErr lhs.subst2 loc.var loc.ty]
else []

sem matchArr -- t1 → t2 left and t3 → t4 right
match (TyArr t1 t2) = loc.ty1
match (TyArr t3 t4) = loc.ty2

child l :: Unify = unify -- recurse with argument types
child r :: Unify = unify -- recurse with result types
l.ty1 = t1 ; l.ty2 = t3 ; r.ty1 = t2 ; r.ty2 = t4

sem matchBase -- applies when e.g. both are TyInt
match True = loc.ty1 ≡ loc.ty2

sem matchFail -- mismatch between types
lhs.success = False
lhs.errs = [UnifyErr lhs.subst2 lhs.ty1 lhs.ty2]

The clauses of unifyTy are total, thus there is always one that
applies, with matchFail as fallback. The visits to unification thus
always succeed. Potential problems that arose during unification
can be inspected through attributes success and errs.

We now have the mechanisms available to deal with the case
of a lambda expression. For the type of the binding, we introduce
a fresh type fr.ty, and add this type together with the name to the
environment.

sem exprLam
match (LamS loc.nm loc.u loc.b) = lhs.expr

child b :: TransExpr = translate -- recurse
child fr :: Fresh = fresh
rename subst := subst1 of fr

b.expr = loc.b
b.env = insertWith (++) loc.nm [loc.lk] env -- append
lhs.ty = TyArr fr.ty b.ty -- result type is fr.ty→ b.ty

loc.lk = sem lookupLam :: LookupOne -- see below

Environments are treated a bit differently. Instead of transporting
the information needed to construct the lookup-derivation tree in
exprVar, we transport a coroutine loc.lk defined in exprLam. We
define the nonterminal lookupLam belonging to loc.lk locally in
exprLam, such that we access to the attributes of exprLam.

itf LookupOne -- interface of nested lookupLam
visit dispatch inh ty :: Ty

The idea is that we instantiate this coroutine at the exprVar, then
pass it the expected type of the expression, and determine if the
expected type matches the inferred type of the binding. The rules
for this nested nonterminal (shown later) have access to the local
state (i.e. attributes) of the enclosing nonterminal. At the binding-
site, we have information such as the type and annotation of the
binding, which we need to construct the derivation.

2.5 Lookups in the environment
At exprVar, the goal is to prove that there is a binding in the en-
vironment with the right type. The overall idea is that we con-
struct all possible derivations of bindings for an identifier, using
the lookupLam nonterminal mentioned earlier.

When there is only one possibility, we incorporate it in the sub-
stitution, and repeat the visits. The extra type information may rule
out other derivations, and result in new type information, etc. Even-
tually a fixpoint is reached. Of all the remaining ambiguous deriva-
tions, we pick the deepest ones, and default to those, by incorpo-
rating their changes into the substitution. We then repeat the pro-
cess from the beginning, until no ambiguities remain. We run this
process on the expression as a whole. In more complex examples
that have a let-binding, this process could be repeated per bind-
ing group. In the purely functional ruler-front language, we en-
code this necessarily imperative process using repeated invocation
of visits combined with a chained substitution.

We show the implementation of the above algorithm in a step by
step fashion. Recall Figure 1. Three nonterminals play an essential
role: Lookup is invoked from the exprVar clause and delegates
to LookupMany to create all derivations possible. To create one
derivation, LookupMany creates LookupOne derivations, one for
each nested nonterminal lookupLam that was put for that identifier
into the environment at exprLam.

sem lookupTy -- invoked from exprVar
child forest :: LookupMany = lookupMany
forest.lks = find [] lhs.nm lhs.env -- all LookupOnes
forest.ty = lhs.ty -- inherited attr of Lookup

The lks attribute is a list of coroutines. The coroutine lookupMany
instantiates each of them, and passes on the ty attribute to each.

itf LookupMany
visit dispatch inh lks :: [LookupOne]

inh ty :: Ty

lookupMany = sem lkMany :: LookupMany
sem lkMany

clause lkNil of dispatch -- when lhs.lks is empty
clause lkCons of dispatch -- when it has an elem

sem lkNil
match [] = lhs.lks -- reached end of the list

sem lkCons
match (loc.hd : loc.tl) = lhs.lks
child hd :: LookupOne = loc.hd -- taken from list
child tl :: LookupMany = lookupMany -- recurse
tl.lks = loc.tl -- remainder of the lookups
default ty -- pass downwards to hd and tl

If all the matching lookupsOnes are reduced to one, we pick that
one and return its substitution. Otherwise, we return the substitution
belonging to the innermost binding (which has highest depth).

itf Lookup LookupOne LookupMany
visit resolve -- hunt for a derivation

chn subst :: Subst
syn status :: Status -- outcome of the visit
syn depth :: Int -- depth of the binding

visit resolved -- invoked afterward

data Status = Fails | Succeeds {amb :: Bool, change :: Bool}
isAmbiguous (Succeeds True) = True
isAmbiguous = False

Every visit is invoked at least once, unless it is declared to be
hidden. We intend to invoke the resolve visit multiple times. We
show later how this is done.

The depth information is easily determined at the binding-site
for lambda expressions, with an inherited attribute depth, starting
with 0 at the top, and incrementing it with each lambda.

itf TransExpr inh depth :: Int
sem transExpr default depth = 0
sem exprLam b.depth = 1 + lhs.depth

The default-rule for an inherited attribute optionally takes a Haskell
expression (0 in this case), which is only used when there is no
parent attribute with the same name.

The rules for lookupLam are relatively straightforward.

sem lookupLam -- defined inside exprLam above
child m :: Unify = unify -- try match of binding type
rename subst1 := subst of m -- to use-site type lhs.ty
hide outcome of m -- declare not to visit outcome

m.ty1 = outer.fr.ty -- of enclosing exprLam
m.ty2 = lhs.ty

lhs.status = if m.success then Succeeds False m.changes else Fails
lhs.depth = outer.lhs.depth -- of enclosing exprLam

With hide, we state not to invoke a visit and the visits that follow.
Referencing to attributes of such a visit is considered a static error.

The lkCons clause makes a choice. If one derivation remains, it
delivers that one’s substitution as result. Otherwise, it indicates that
an ambiguous choice remains. The lookup with the highest depth
is by construction at the beginning of the list.

sem lkNil
lhs.depth = 0 -- lowest depth
lhs.subst = lhs.subst -- no change to subst
lhs.status = Fails

sem lkCons
hd.subst = lhs.subst -- passed down to
tl.subst = lhs.subst -- both

(loc.pick, lhs.status, lhs.depth, lhs.subst)
= case hd.status of

Fails→ (False, tl.status, tl.depth, tl.subst)
Success hdc→

let status′ = case tl.status of
Fails → hd.status
Success tlc→ Success True (hdc ∨ tlc)

in (True, status′, hd.depth, hd.subst)

When a visit is invoked again, we typically want to access some
results of a previous invocation. To retain state between multiple
invocations of a visits, we allow visits to take visit-local chained
attributes. For example, an attribute decided for visit resolve.

sem lookupTy visit.resolve.decided = False -- initial value

From inside the visit, we can match on these attributes to select a
clause. Furthermore, there is an implicit default rule for them.

sem lookupTy
clause lkRunning of resolve -- no final choice yet,

match False = visit.decided -- try again
visit.decided = isAmbiguous lk.status
default status depth subst -- just pass on

clause lkFinished of resolve -- made final choice
match True = visit.decided
lhs.status = Success False False -- no change

lhs.depth = 0
default subst

Children created in a visit are discarded when the visit is
repeated. The state of children created by a previous visit is
properly maintained if their visits are also repeated. To prevent
a created child from being discarded, it is possible to save a
child in an attribute. Recall that children are derivations, which
are instances of a coroutine, and these are first class values,
The detach-rule can exactly be used for this purpose: 〈 at =
detach visitname of childname 〉 takes a child childname evaluated
up to but not including visit visitname, and stores it in an attribute
at. The attach-rule, 〈 attach visitname of childname = code 〉,
takes such a child-value (defined by code) and attaches it to a child
named childname. If childname already exists as child, the attach-
rule overrules the visits starting from visitname.

These resolve visits on lookupTy are invoked from resolve visits
of transExpr. In map deflMap, we maintain the substitutions of
ambiguous lookups per depth. These have not been incorporated
in subst2 yet. Applying the deepest of those, causes a defaulting to
the corresponding bindings.

itf TransExpr
visit! resolve

chn subst2 :: Subst
syn changes :: Bool -- True iff subst2 was affected
syn deflMap :: IntMap [Subst] -- defaulting subst/depth

The bang at the resolve visit indicates that all attributes must be
scheduled explicitly to this visit. No attribute is automatically as-
signed to this visit. This gives the visit a predictable interface,
which is convenient when invoking the visit explicitly, as we do
later.

sem transExpr
default changes = or
default deflMap = unionsWith (++)
default subst2

For ambiguous lookups in the exprVar, we add to deflMap.

sem exprVar
clause varLkAmb of resolve -- put lk.subst in deflMap

match (Success True) = f .status
lhs.deflMap = singleton lk.depth [lk.subst]
lhs.subst2 = lhs.subst2 -- bypass lk.subst

clause varLkOther of resolve -- default rules only

To drive the iterations, we introduce a nonterminal iterInner,
that invokes visit resolve one or more times. The iterate-rule
〈 iterate visitname of childname = e 〉 denotes repeated invo-
cation of visitname on childname. Code e defines the coroutine of
a special nonterminal (iterNext, explained later) that computes the
inherited attributes for the visit of the next iteration, out of the syn-
thesized attributes of the previous. The iteration stops when this
special nonterminal does not have an applicable clause.

iterInner = sem iterInner :: ExprTrans
sem iterInner

child e :: ExprTrans = translate -- iterInner is an extra node
e.expr = lhs.expr -- on top of the derivation tree
default ... -- omitted: same defaults as transExpr

iterate resolve of e = next -- until e.changed is False

lhs.subst2 = let pairs = toAscList e.deflMap ++ [(0, [e.subst2])]
substs = head pairs -- deepest substitutions

in foldl substMerge e.subst2 substs -- apply them
lhs.changes = ¬ (null e.deflMap)

This special nonterminal has as interface the contravariant inter-
face of the visit resolve of ExprTrans, i.e. the inherited attributes
turn to synthesized attributes, and vice versa. The triple instead of
dual colons indicate this difference.

next = sem iterNext ::: ExprTrans.resolve -- one anonymous clause
match True = lhs.changes -- stops when there are no changes
default subst2 -- pass prev subst2 into the next iter

Finally, we introduce a nonterminal wrapper, which forms the root
of the derivation tree and invokes the visits on the derivation for
expressions, including again an iteration of the inner loop.

itf Compile inh expr :: ExprS
inh env :: Env
syn subst :: Subst
syn ty :: Ty

compile = sem wrapper :: Compile
sem wrapper

child e :: TransExpr = iterInner
default env expr ty
iterate resolve of e = next -- repeat the inner loop
lhs.subst = e.subst2

2.6 Translation to target expression
The code so far computes the information needed to translate the
source expression. The shape of the derivation is determined, and
after iterations, subst2 contains the substitution for the types. We
wrap up with generating the target expression as attribute trans and
collecting the errors.

itf ExprTrans visit generate
inh subst3 :: Subst
syn trans :: ExprT
syn errs :: Errs

sem exprVar lhs.trans = VarT lk.nm′ -- lk delivers the name
sem exprApp lhs.trans = AppT f .trans a.trans
sem exprLam lhs.trans = LamT loc.u b.trans
sem exprDeriv default errs = concat

itf Compile syn trans :: ExprT
sem wrapper default trans

e.subst3 = e.subst2

The lookupTy nonterminal delivers the name for a variable. The
alternatives were constructed in iterations of the resolve visits, and
stored in the loc.mbDeriv attribute. We take it out and continue
from there. From the derivations of nonterminal lkMany, we pick
the name for the first one that has loc.pick equal to True.

itf Lookup visit resolved
syn nm′ :: Ident
syn errs :: Errs

sem lookupTy
lhs.errs = maybe [Err unresolved lhs.nm] (const []) lk.mbNm
lhs.nm′ = maybe lhs.nm id lk.mbNm

itf LookupMany
syn mbNm :: Maybe Ident

sem lkNil lhs.mbNm = Nothing
sem lkCons lhs.mbNm = if loc.pick then Just hd.nm′ else tl.mbNm

itf LookupOne syn nm′ :: Ident -- use u as name
sem lookupLam lhs.nm′ = outer.loc.u -- defined in exprLam

What remains is to invoke the coroutine generated from the
compile nonterminal, with a ExprS expressions, to get a type and
an ExprT back. We omit these details.

2.7 Discussion
Performance. Clauses introduce backtracking. In the worst case,
this leads to a number of traversals exponential in the size of the
(longest intermediate) tree. In practice, clause selection is often a
function of some inherited attributes (i.e. deterministic), which only
requires a constant number of traversals over the tree. For example,
this is the case for ruler-front programs expressible in UUAG. We

verified that programs generated from ruler-front are comparable
to those generated from UUAG, both in time and memory.

Expressiveness. With attributes, we conveniently compute infor-
mation in one part of the tree and transport it to another part, allow-
ing context-dependent decisions to be made. The notion of visits
gives us sufficient control to steer the inference process.

On the other hand, it is not possible to simply plug a type system
in ruler-front and automatically obtain an inference algorithm.
We provide the building blocks to write inference algorithms for
many type systems, but it is up to the programmer to ensure that
the result is sound and complete.

Soundness of a ruler-front program is typically easy to prove.
Completeness, however, is a different issue. That largely depends
on decisions made about unknown types. With ruler-front, we
make explicit when choices are made, and when visits are repeated.
We believe this helps reasoning about completeness.

Constraint-based inference. We establish the following relation
to constraint-based inference. A detached derivation can be seen as
a constraint, can be collected in an attribute and solved elsewhere.
Solving constraints corresponds invoking visits (such as resolve in
Section 2.5) on the derivation, potentially multiple times.

Solving a constraint may result in more constraints. We store
these either in a node’s state, or collect them in attributes.

A constraint is typically parametrized with information from
the context that created it. We provide access to this context via
nested nonterminals, which have access to the attributes of their
outer nonterminals.

3. Semantics
We define ruler-core, a small core language for Attribute Gram-
mars. We translate a ruler-front program in two steps to Haskell.
We first desugar ruler-front to ruler-core, then translate the lat-
ter to Haskell. The separately defined attributes of ruler-front are
grouped together in ruler-core, visits are ordered, attributes allo-
cated to visits, covariant interfaces translated to normal interfaces,
rules ordered based on their attribute dependencies, and rules aug-
mented with default rules. We omit description of this step, as it is
similar to the frontend of UUAG [Universiteit Utrecht 1998], and
of a variation on ruler-core [Middelkoop et al. 2010b]. Instead,
we focus on the translation to Haskell, which precisely defines the
semantics of ruler-core, and thus forms the underlying semantics
for ruler-front.

3.1 Syntax
The ruler-core language is Haskell extended with additional syn-
tax for toplevel interface declarations, semantic expressions, and at-
tribute occurrence expressions. The following grammar lists these
syntax extensions.

i ::= itf I v -- interface decl, with visits v
v ::= visit x inh a1 syn a2 -- visit decl, with atributes a1 and a2
a ::= x :: τ -- attribute decl, with Haskell type τ

s ::= sem x :: I t -- semantics expr, defines nonterm x
t ::= () | visit x1 chn x2 r c -- visit def, with common rules r
c ::= clause x r t -- clause definition, with next visit t

r ::= p← e -- assert-rule, evaluates monadic e
| match p← e -- match-rule, backtracking variant
| invoke x of c← e -- invoke-rule, invokes x on c, while e
| attach x of c :: I ← e -- attach-rule, attaches a part. eval. child
| p = detach x of c -- detach-rule, stores a child in an attr

o ::= x.x -- expression, attribute occurrence

x, I, p, e -- identifiers, patterns, expressions respectively

There are some differences in comparison with the examples of the
previous section. Invocations of visits to children are made explicit

through the invoke-rule, which also represents the iterate-rule. Sim-
ilarly, the attach rule also takes care of introducing children. A visit
definition declares number of visit-local chained attributes y, and
has a number of rules to be evaluated prior to the evaluation of
clauses. A clause defines the next visit, if any.

The order of appearance of rules determines the evaluation
order, which allows them to be monadic. Non-monadic expressions
are lifted with return. The monad may be any backtracking-monad,
such as Either String, Logic, and IO. We take IO as example.

3.2 Example
The following example demonstrates how to to compute sum of a
list of integers in two visits in ruler-core.

itf S visit v1 inh l :: [Int] syn ∅ -- decompose list l down
visit v2 inh ∅ syn s :: Int -- compute sum s up

sum′ = sem sum :: S
visit v1 chn ∅ ∅

clause sumNil -- when list is empty
match []← return lhs.l -- match [] = l

visit v2 chn ∅ ∅ -- no visit-local attrs
clause sumNil2

lhs.s← return 0 -- empty list, zero sum
() -- no next visit

clause sumCons -- when list non-empty
match (loc.x : loc.xs)← return lhs.l -- match (x : xs) = l
attach v1 of tl :: S← return sum -- recursive call
tl.l← return loc.xs -- l param of call
invoke v1 of tl← noIterationS -- visit it to pass l

visit v2 chn ∅ ∅
clause sumCons2

invoke v2 of tl← noIterationS -- visit it to get the sum
lhs.s← return (loc.x + tl.x) -- sum of hd and the tl
() -- no next visit

We translate a ruler-front nonterminal to a coroutine, in the
form of continuations. From the interface, we generate a type sig-
nature for these coroutines.

type S = S v1
newtype S v1 = S v1 ([Int]→ IO ((), (S v1, S v2)))
newtype S v2 = S v2 (IO (Int, (S v2, ())))

Inherited attributes become parameters, and synthesized attributes
are returned as a tuple of results. Each visit also returns two con-
tinuations. The first continuation represents the current visit itself
(which may be re-invoked with updated internal state), the second
continuation represents the next visit (if any).

The coroutine nt sum has S as type. Attributes are encoded
as a variable childIattr or childOattr, depending on whether the
attribute is an input or output of the clause. Clause selection relies
on backtracking in the monad. When a match-statement doesn’t
match, a failure is generated in the monad, which we catch to
switch to the next clause.

sum′ = S v1 vis v1 where
vis v1 lhsI l = (-- first clause of visit v1

do []← return lhsI l -- match on lhs.l
let r = S v1 vis v1 -- repetition cont.

k = S v2 vis v2 where -- next visit cont.
vis v2 = (-- clause of visit v2

do lhsOs← return 0 -- lhs.s computation
let r = S v2 vis v2 -- repetition

k = () -- no next visit
return (lhsOs, (r, k)) -- deliver result v2

) ‘catch‘ (\ → ⊥) -- no other clause for v2
return ((), (r, k)) -- deliver result of visit v1

) ‘catch‘ (\ → -- second clause (when first clause fails)
do (locLx : locLxs)← return lhsI l -- match on lhs.l

tlOl ← return locLxs -- inherited attr tl.l
(S v1 vis tl v1) ← return sum′ -- attach child tl
((), (, S v2 vis tl v2))← vis tl v1 tlOl -- first visit on tl
let r = S v1 vis v1 -- repetition cont.

k = S v2 vis v2 where -- next visit cont.
vis v2 = (-- clause of visit v2

do (tlIs, (,))← vis tl v2 -- second visit on tl
lhsOs← return (locLx + tlIs) -- lhs.s
let r = S v2 vis v2 -- repetition

k = () -- no next visit
return (lhsOs, (r, k)) -- deliver result v2

) ‘catch‘ (\ → ⊥) -- no other clause for v2
return ((), (r, k))) -- deliver result of visit v1

The above code is slightly simplified. Below, we show the general
translation.

3.3 Translation
We use the following naming conventions from ruler-front names
to Haskell names.

outp "loc" x = "locL" x inp "loc" x = "locI" x
outp "lhs" x = "lhsI" x inp "lhs" x = "lhsS" x
outp c x = c "S" x inp c x = c "I" x
outp y = "visitS" y inp y = "visitI" y
vis c x = "vis_" c "_" x nt x = "nt_" x
vis x = "vis_" x ity I x = I "_" x
s I x i I x -- respectively, inh and syn attrs of x of I

From an interface declaration, we generate the types for the
coroutines.

~itf I v� { type ~I� = ~ity I x′�; ~v�I -- x′ next visit,
~visit x inh a syn b�I { newtype ~ity I x� = -- otherwise ()
~ity I x� (~a�→ IO (~b�, (~ity I x�, ~ity I x′�)))

From these interfaces, we actually also generate wrappers to inter-
face with the coroutines from Haskell code. The translations for
them bear a close resemblance to the translation of the attach and
invoke rules below.

The clauses of a visit are translated to a function ~vis x� that
tries the clauses one by one. This function takes as parameters the
coroutines (~chlds�) of the children in scope prior to invoking the
visit, the visit-local attributes y, and the inherited attributes.

~sem x :: I t� { let ~nt x� = ~t�I in~nt x�

~()�I { ()
~visit x chn y r c�I {

let ~vis x� ~chlds� ~inp y� ~inp lhs (i I x)�
= catch (do {~r�; ~c�I,x,y }) ⊥ in~ity I x� ~vis x�

The clauses themselves translate to a sequence of statements, con-
sisting of the translated statements of the semantic rules, and the
construction of the two continuations. We partially parametrize
both continuations with the updated children.

~[]�I,v,y { error "no clause applies"
~clause x r t : cs�I,v,y {

catch (do {~r�; let {~inp x y = outp y�}
; let {r = ~ity I x� ~vis x� ~chlds� ~outp x y�

; k = ~t�I,chlds }

; return (~outp lhs (s I x)�, (r, k))})
(\ → ~cs�I,v,y)

~()�I,ks { ()
~visit x chn y r c�I,ks { ~visit x chn y r c�I ~ks� ~outp x y�

Semantic rules translate to monadic statements. For the assert-
rule, we match in a let-statement, to ensure that a pattern match
failure is considered a runtime error, instead of cause backtracking
in the monad.

~match p← e� { ~p�← ~e�
~p← e� { x← ~e�; let {~p� = x} -- x fresh

~attach x of c :: I ← e� { (~ity I x� ~vis c x�)← ~e�
~p = detach x of c� { let {~p� = ~ity I x� ~vis c x�}

Invoke invokes a visit x (named f in the translation) on child c
once, then repeats invoking it, as long as e (named g) succeeds in
feeding it new input.

~invoke x of c← e� {
(~inp c (s Ic x)�, (, k))
← let iter f ~outp c (i Ic x)� = do

{ (~coIty Ic x� g)← ~e�
; z@(~inp c (s Ic x)�, (~ity Ic x� f ′,))
← f ~outp c (i Ic x)�

; catch (do { (~outp c (i Ic x)�,)← g ~inp c (s Ic x)�
; iter f ′ ~outp c (i Ic x)�})

(\ → return z)}
in iter ~vis c x� (outp c (i Ic x))

; let (~ity Ic x′� ~vis c x′�) = k -- x′ is next visit, or line omitted

Finally, we add bangs around patterns to enforce evaluation, and
replace attribute occurrences with their Haskell names.

~C p� { !(C ~p�)
~(p, . . , q)� { !(~p�, ..., ~q�)
~c.x� { !~inp c x�

~e� { e [c.x := ~outp c x�]

The translation exhibits a number of properties. If the ruler-front
or ruler-core program is well typed, then so is the generated
Haskell program, and vice versa. Further investigation requires
a discussion of ruler-front’s type system, which we omit for rea-
sons of space. Furthermore, the translation is not limited to Haskell.
A translation similar to above can be given for any language that
supports closures.

4. Related Work
Attribute grammars as defined by Knuth [Knuth 1968] are exten-
sions of context free grammars. Typically, the tree is the parse tree
determined a priori by a parser. For typing relations that are not
syntax directed, the derivation tree is not known beforehand, which
conflicts with the attribute grammar model.

Tree manipulations. There are many extensions to attribute
grammars to facilitate changing the tree during attribute evalua-
tion. Silver [v. Wyk et al. 2008], JastAdd [Ekman and Hedin 2007]
and UUAG [Universiteit Utrecht 1998] support higher-order at-
tribute grammars [Vogt et al. 1989]. These grammars allow the tree
to be extended with subtrees computed from attributes, and subse-
quently decorated. The responsibility of selecting a production of a
higher-order child lies with the parent of that child, and the choice
is final. In ruler-front, a child itself selects a clause to make a
choice, and a choice can be made per visit.

JastAdd and Aster [Kats et al. 2009], support conditional rewrite
rules, which allows rigorous changes to be made to the tree. Coor-
dination between rewriting and attribute evaluation is tricky due to
mutual influence, especially if the transformations are not conflu-
ent. To limit interplay, JastAdd’s rewriting of a tree is limited to the
first access of that tree, and choices finalized.

Many type inference algorithms, especially for type and effect
systems, iteratively traverse the tree. Some algorithms construct
additional subtrees during this process. Circular Attribute Gram-
mars [Jones 1990], supported by JastAdd and Aster, iteratively
compute circular attributes until a fixpoint is reached. UUAG and
Silver can deal with circularity via lazy evaluation with streams.
CAGs, however, do not support changes to the tree during these
iterations. Stratego’s rewrite mechanism that underlies Aster, how-
ever, is more general and can change the tree. In ruler-front, a
visit may be iterated several times. Each node in the derivation tree

can maintain a per-visit state to keep track of newly constructed
parts of the tree.

Non-deterministic trees. The attribute grammar systems above
have in common that they massage a tree until it has the right form.
Alternatively, a tree can be constructed non-deterministically, using
e.g. logic programming languages. The grammar produces only
the empty string, and the semantic rules disambiguate the choice
of productions. Arbab [1986] showed how to translate attribute
grammars to Prolog. However, this approach does not allow the
inspection of partial LookupOne derivations of Section 2.5, nor the
defaulting, to be implemented easily. With ruler-front, we offer
non-deterministic construction of the tree per visit. The notion of a
visit provides an intuitive alternative for the cut operator.

Prolog-like approaches also offer unification mechanisms to
deal with non-determinism in attribute computations. In contrast,
we require the programmer to either program unifications and sub-
stitutions manually, or use a logic monad combined with a unifica-
tion in the translation of Section 3.

Engelfriet and Filé [1989] shows the expressiveness of classes
of attribute grammars. Unsurprisingly, deterministic AG evaluators
have lower computational complexity bounds compared to non-
deterministic ones. With ruler-front, we target heavy compilers
(i.e. UHC), that processes large abstract syntax trees, thus we need
the control on the non-determinism that visits offer.

Related attribute grammar techniques. Several attribute gram-
mar techniques are important to our work. Kastens [1980] intro-
duces ordered attribute grammars. In OAGs, the evaluation order
of attribute computations as well as attribute lifetime can be deter-
mined statically, allowing severe optimizations.

Boyland [1996] introduces conditional attribute grammars. In
such a grammar, semantic rules may be guarded. Our clauses-per-
visit model provides an easier yet less flexible alternative.

Saraiva and Swierstra [1999, chap. 3] describes multiple traver-
sal functions (or visit functions [Swierstra and Alcocer 1998]).
These visit functions are one-shot continuations, or coroutines
without looping. We improved upon this mechanism to support
iterative invocation of visits, thus encoding coroutines with loops.

5. Conclusion
We presented ruler-front, a conservative extension of ordered at-
tribute grammars, intended to describe algorithms for type infer-
encing, evaluators and code generators. We explained this language
by example in Section 2 and described its semantics in Section 3.
It has three distinct features.

Firstly, in contrast to most attribute grammar systems, construc-
tion of a derivation tree and the evaluation of its attributes is inter-
twined in ruler-front. This allows us to define a grammar for the
language of derivations of some typing relations, instead of being
limited to the grammar of expressions or types.

Secondly, we use the notion of explicit visits to capture the grad-
ual, side effectful nature of type inference. Each visit corresponds
to a state transition of the derivation tree under construction. These
visits may be repeated to form fixpoint iterations.

Thirdly, many inference algorithms reason about what part of
the derivation is known, or is still pending, e.g. by means of con-
straints. In ruler-front, derivation trees are first class and can
be inspected by visiting them, which facilitates such reasoning in
terms of attributed trees.

As future work, we started a project to describe UHC’s type
inference algorithm as attribute grammar with ruler-front. With
ruler-front, we can express unification and context reduction,
which paves the way for a full description of UHC’s inference
algorithm with attribute grammars.

Acknowledgments
This work was supported by Microsoft Research through its Euro-
pean PhD Scholarship Programme.

References
B. Arbab. Compiling Circular Attribute Grammars Into Prolog. IBM

Journal of Research and Development, 30(3):294–309, 1986.
J. T. Boyland. Conditional Attribute Grammars. ACM Transactions on

Programming Languages and Systems, 18(1):73–108, 1996.
A. Dijkstra and S. D. Swierstra. Typing Haskell with an Attribute Grammar.

In AFP, pages 1–72, 2004.
A. Dijkstra and S. D. Swierstra. Ruler: Programming Type Rules. In

FLOPS, pages 30–46, 2006.
A. Dijkstra, J. Fokker, and S. D. Swierstra. The Architecture of the Utrecht

Haskell Compiler. In Haskell, pages 93–104, 2009.
T. Ekman and G. Hedin. The JastAdd Extensible Java Compiler. In

OOPSLA, pages 1–18, 2007.
J. Engelfriet and G. Filé. Passes, sweeps, and visits in attribute grammars.

Journal of the ACM, 36(4):841–869, 1989.
J. Fokker and S. D. Swierstra. Abstract Interpretation of Functional Pro-

grams using an Attribute Grammar System. ENTCS, 238(5):117–133,
2009.

P. Hudak, S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H. Fasel,
M. M. Guzmán, K. Hammond, J. Hughes, T. Johnsson, R. B. Kieburtz,
R. S. Nikhil, W. Partain, and J. Peterson. Report on the Programming
Language Haskell, A Non-strict, Purely Functional Language. SIGPLAN
Notices, 27(5):1–, 1992.

L. G. Jones. Efficient Evaluation of Circular Attribute Grammars. ACM
Transactions on Programming Languages and Systems, 12(3):429–462,
1990.

U. Kastens. Ordered Attributed Grammars. Acta Informatica, 13:229–256,
1980.

L. C. L. Kats, A. M. Sloane, and E. Visser. Decorated Attribute Grammars:
Attribute Evaluation Meets Strategic Programming. In CC, pages 142–
157, 2009.

K. Kennedy and S. K. Warren. Automatic Generation of Efficient Evalua-
tors for Attribute Grammars. In POPL, pages 32–49, 1976.

D. E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2(2):127–145, 1968.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Towards Dependently
Typed Attribute Grammars. http://people.cs.uu.nl/ariem/
ifl10-depend.pdf, 2010a.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Iterative Type Infer-
ence with Attribute Grammars. http://people.cs.uu.nl/ariem/
wgt10-journal.pdf, 2010b.

J. Saraiva. Component-Based Programming for Higher-Order Attribute
Grammars. In GPCE, pages 268–282, 2002.

J. A. B. V. Saraiva and S. D. Swierstra. Purely Functional Implementation
of Attribute Grammars. Technical report, Universiteit Utrecht, 1999.

S. D. Swierstra and P. R. A. Alcocer. Attribute grammars in the functional
style. In Systems Implementation 2000, pages 180–193, 1998.

Universiteit Utrecht. Universiteit Utrecht Attribute Grammar System.
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem,
1998.

E. v. Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an Extensible
Attribute Grammar System. ENTCS, 203(2):103–116, 2008.

M. Viera, S. D. Swierstra, and W. Swierstra. Attribute Grammars Fly First-
class: how to do Aspect Oriented Programming in Haskell. In ICFP,
pages 245–256, 2009.

H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher-Order Attribute Gram-
mars. In PLDI, pages 131–145, 1989.

