
Chapter 5

A Leaner Specification for
Generalized Algebraic Data
Types
Arie Middelkoop1, Atze Dijkstra1, S. Doaitse Swierstra1

Category: Research

Abstract: The type systems of current approaches for dealing with Generalized
Algebraic Data Types (GADTs) tend to be more algorithmic than declarative in
nature, and are incomplete in the sense that they deal with specific issues only.
When implementing GADTs, this raises the question whether complex type sys-
tem infrastructure is needed, and secondly, if all requirements were taken into
account during implementation. We answer these questions by giving a declara-
tive specification with less demands on infrastructure, and which deals with the
key issues related to a GADT implementation.

5.1 INTRODUCTION

Generalized Algebraic Data Types (GADTs for short) allow for additional equal-
ities to hold between type variables, witnessed by pattern matching on GADT
constructors. These equalities are then used to coerce the type of an expression
to an equivalent type. We give a more extensive introduction to GADTs in Sec-
tion 5.3.

There are many applications that show that GADTs are a useful addition to
languages. For example when dealing with transformations on typed abstract
syntax for the implementation of domain-specific languages [2]. Therefore, we
added support for GADTs in EHC, the Haskell compiler that we are developing
at Utrecht University. We describe our implementation in terms of some specifi-
cation. However, we were unable to find a specification that is sufficiently simple

1Universiteit Utrecht, The Netherlands; {ariem,atze,doaitse}@cs.uu.nl

V–65

V–66 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

to match our implementation, because of two reasons. We sketch these reasons
here, and defer a more thorough discussion to Section 5.2.

The first reason is that the type systems given by most approaches are com-
plex. A reason for this is that algorithmic type systems are given, which rely
on advanced type system infrastructures for the implementation. This makes it
harder to incorporate ideas when the infrastructures differ.

Secondly, the GADT-aspect of an approach is often not discussed in isolation,
but alongside with other language features. This makes it difficult to determine if
one requirement of an approach relates to the GADT-aspect, or is a requirement
related to another language feature.

Therefore, we conclude that a specification is needed that is less complex and
only takes the key issues of GADTs into account. The techniques we use are not
novel: we take the constraint-based approach of Sulzmann et al. [11] and combine
this with the unification-based approach of Peyton Jones et al. [6]. However, the
resulting type system is easier and less tied to a particular implementation.

More concretely, we give:

• A declarative type system (Section 5.4) for an explicitly typed System F -
like language extended with GADTs, using qualified types with equalities as
qualifiers. Type conversions are restricted without having to resort to rigid
types [6] or type shapes [8].

• A denotational semantics (Section 5.5) by giving a translation to a subset of
System FC , which is a System F -like language with explicit type coercions,
defined by Sulzmann et al. [10].

5.2 RELATED WORK

An approach for GADTs consists of two components: a type information propa-
gation component and a type conversion component. A type information propaga-
tion strategy determines what is known type information based on user-supplied
type signatures, and what is inferred type information. A type conversion strategy
deals with the construction of coercion terms.

5.2.1 Type information propagation strategies

Pottier et al. [8] use shape inference, where a shape represents known type in-
formation based on user-supplied signatures. These shapes are spread throughout
the syntax tree in order to locate possible coercions. Their approach uses com-
plex algorithms to spread the shapes as far as possible (depending on some quality
versus performance tradeoff parameter). The essential part concerning GADTs is
that incompatible shapes are normalized with respect to some equation system,
which is not made explicit in their work. From an implementer’s point of view,
this description is a concrete description of the equation system, and it requires
infrastructure for spreading shapes.

5.2. RELATED WORK V–67

Similarly, Peyton Jones et al. [6, 7] define a notion of wobbly types to com-
bine type checking and type inference, which is based on earlier work on boxy
types [12]. A rigid type represents known type information based on user-supplied
type information, whereas a wobbly type is based on inferred information. The
idea is then that type conversions are only applied on rigid types, for reasons of
predictability and most-general typing. Aside from wobbly types, the authors use
concepts such as “fresh most general unifiers” and lexically scoped type variables
in their presentation. It is hard to distinguish which of these concepts are really re-
quired, and which of these concepts are actually related to other language features
that are covered by their approach (such as type families).

We incorporated an equivalent notion of wobbly and rigid types in our speci-
fication: in an explicitly typed System F -variant, the skolemnized type constants
are rigid types, and we only allow type conversions on those.

The exact choice of propagation strategy is an orthogonal issue. By allowing
type conversions only on known type information, a better propagation strategy
just means that less explicit types have to be given by the programmer. This is the
reason why we have chosen an explicitly typed source language in the first place.
In fact, for our own implementation of this specification, we piggy backed on the
infrastructure of the implementation of a higher-ranked impredicate type system.
It has two propagation strategies, of which the advanced one has a concept of hard
and soft type context, which can be compared to rigid and boxy types [4].

5.2.2 Type conversion strategies

Peyton Jones et al. [6, 7] use a unification-based strategy, where type conversion
is called type refinement. A fixpoint substitution is constructed that, for each
type equation introduced by pattern matching, contains a mapping for each (non-
wobbly) type component of the left hand side of an equation, to the corresponding
type component on the right hand side of an equation. The substitution is then
used to normalize the types under consideration. The presentation is intertwined
with the type propagation strategy, which makes it hard to separate these concepts.
More recent continuation of this work by Sulzmann et al. [10] puts the GADT
aspect in relative isolation.

Wazny [13] uses a constraint-based strategy. The GADT aspect of this strategy
is covered separately by Sulzmann et al. [11, 9]. They also formulate the typing
problems in terms of solving constraints with CHRs. The difference is that we
restrict ourselves to equality constraints, and do not need the machinery required
to solve implication constraints. Furthermore, their typing/translation rules do
not mention how to deal with existential data types, which may be transparent
to the given approach, but is of interest to a reader because GADT examples [2]
often use them. Finally, in contrast to Peyton Jones et al., restrictions on type
conversions are not mentioned.

We rely on their encoding for GADTs as qualified types in our approach (i.e.
data constructors take a list of equality constraints). This encoding makes explicit
which type variables are equated to what types, which gives slightly more infor-

V–68 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

mation than an encoding with type signature notation (although these encodings
can be mapped to each other).

As an overall observation concerning the related work, we use a constraint-
based strategy similar to that of Wazny, but use the unification-based strategy of
Peyton Jones et al. for the specific part of the implementation that deals with the
decomposition of equality constraints.

5.3 MOTIVATION AND EXAMPLES

A typical implementation of an embedded domain specific language consists of
some combinators to construct an abstract syntax tree, and some functionality
in the host language to manipulate this abstract syntax tree. After analysis and
transformation, the abstract syntax tree is translated to some denotation in the
host language in order to use it.

For example, assume that we use Haskell as a host language and embed an
expression language containing only tuples and numbers, using the following ab-
stract syntax:

data Expr
= Num Int
| Tup Expr Expr

However, the following straightforward translation of the expression to a tuple
in the host language does not type check, because the inferred types for the case
alternatives are not the same:

eval e = case e of
Num i → i
Tup p q→ (eval p,eval q)

We can bypass this restriction imposed by the Haskell type system by using a
typed abstract syntax and encode a proof that the generated tuples are type correct.
For that, we add a type parameter t to the abstract syntax, which represents the
type of the expression, and embed in the constructors a proof (with type Equal t t′)
that states that this t is equal to the real type t′ of this specific expression (an Int
for a Num and some tuple type for a Tup):

data Expr t
= Num (Equal t Int) Int
| ∀a b . Tup (Equal t (a,b)) (Expr a) (Expr b)

Baars et al. [1] give a definition of this Equal data type and some operations,
including a function coerce that converts the type to a proved equivalent type, and
some combinators to construct equality proofs:

coerce :: Equal a b→ a→ b
sym :: Equal a b→ Equal b a
refl :: Equal a a

5.3. MOTIVATION AND EXAMPLES V–69

Now, we can modify the eval function in such a way that the case alternatives
have the same type (namely the t in Expr t):

eval :: Expr t→ t
eval e = case e of

Num ass i → coerce (sym ass) i
Tup ass p q→ coerce (sym ass) (eval p,eval q)

The assumptions used by eval need to be proved when constructing values of
type Expr t, which we achieve by using refl:

Tup refl (Num refl 4) (Num refl 2) :: Expr (Int, Int)

The important observation to make at this point is that the proofs are a static
property of the program. Hence, the goal is to construct these proofs automati-
cally, at those places explicitly indicated by the programmer using type signatures.
In case of the example, at those places where the type t shows up.

In order not to tie ourselves to Haskell or to a specific implementation of a type
system, we use as source language an explicitly typed lambda calculus, called
System FA [10], where the equalities are not encoded as values, but with qualified
type notation similar to Stuckey et al. [9]:

data Expr t =
| (t .= Int) ⇒ Val Int
| ∃a b . (t .= (a,b))⇒ Tuple (Expr a) (Expr b)

; let (eval ::∀ t . Expr t→ t)
= Λ t→ λ (e :: Expr t)→

(case e of
Num (x :: Int)→ x
(Tup p q) a b → (,) (eval a p) (eval b q)

) :: t
in eval (Tup (Num 4) (Num 2))

Similarly, instead of translating to Haskell, we translate to an explicitly typed
lambda calculus with native support for equality proofs, called System FC [10]:

data Expr t =
| Num (t∼Int) Int
| ∃a b . Tup (t∼(a,b)) (Expr a) (Expr b)

; let (eval ::∀ t . Expr t→ t)
= Λ t→ λ (e :: Expr t)→

(case e of
Num eqInt (x :: Int) → x .sym eqInt
(Tup eqTup p q) a b→ (,) (eval a p) (eval b q).sym eqTup

) :: t
in eval (Tup (Int, Int) (Num Int 4) (Num Int 2))

V–70 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

Each constructor contains equality proofs of type t1∼t2 (a proof that t1 and t2
are equal), called coercions, which can be used after pattern matching on them.
The . operator corresponds with the coerce function given above. Note that sym
in this case is not a function, but a construction in the target language that operates
on coercions, and that a type t as coercion represents the reflexivity t∼t.

A specification for GADTs consists of two parts: a type system for the source
language (Section 5.4), and a translation that constructs the equality proofs and
inserts the coercions (Section 5.5).

5.4 TYPE SYSTEM

Source language We use an explicitly typed source language extended with
GADTs . This source language is a minor variation on System FA [10], which we
call System F ′A . The key difference is support for existential quantification and a
slightly more uniform representation of pattern matches. The syntax of System
F ′A is given in Figure 5.1.

A v is an identifier of which the denotation is a unique type constant. Although
these identifiers can appear where a type or type variable is expected, they play
an important role later. They are introduced at two places: when opening an
existential using a pattern match (P.APP.EXIST) and with a universal abstraction
(E.UNIV.ABS).

Each equality is encoded as a qualified type. The LHS is – without loss of
generality – syntactically restricted to be a (bound) type variable. Existentials
for a data constructor are introduced with an ∃ instead of the ∀ that is written in
Haskell there.

The pattern language is similar to the expression language. Identifiers are
bound to fields of a constructor using applications of variables. Likewise, univer-
sally quantified variables are instantiated by applying a type, and existentials are
opened by applying a unique type constant.

Notation First some notation before we give a type system for the source lan-
guage. The semicolon in the rules for patterns acts as a separator to indicate that
Γ and ∆ are separate environments. Juxtaposition of environments (i.e. ∆ Γ)
represents environment concatenation. Γ (x) = t states that x is bound to t in Γ .
Furthermore, we use an overbar to indicate a list. A single value at the position
where a list is expected is implicitly assumed to be a singleton list. Juxtaposition
of lists represents list concatenation. The components of the list are accessible
with a subscript i. A type τ [τ] is obtained by replacing some components of τ in
some fixed way with types τ . With τa = τ [τa] and τb = τ [τb], we express that
τa and τb have a common structure τ , with corresponding differences in τa

i and
τb

i respectively.

Type System The type rules for expressions are given in Figure 5.3, with the
meaning that in environment Γ , the expression e has type τ . The type rules for a

5.4. TYPE SYSTEM V–71

e ∈ Expr p ∈ Pattern
→ C (E.CON) → C (P.CON)

| x (E.VAR) | x :: τ (P.VAR)

| e e (E.APP.EXPR) | p p (P.APP.PAT)

| e τ (E.APP.UNIV) | p τ (P.APP.UNIV)

| λp . e (E.LAM.ABS) | p v (P.APP.EXIST)

| Λv . e (E.UNIV.ABS)

| let p = e in e (E.LET) τ ∈ Type
| case e of p→ e :: τ (E.CASE) → C (T.CON)

| x (T.VAR)

d ∈ Decl | τ τ (T.APP)

→ data D α = | ∃β . x .= τ ⇒ C τ | ∀x . τ (T.FORALL)

| ∃x . τ (T.EXISTS)

t ∈ Program | τ
.= τ ⇒ τ (T.EQS)

→ d; e (TOPLEVEL)

Γ ,∆ ∈ Env
x,α,β ∈ Var D ∈ TyCon → x :: τ, Γ

v ∈ TyConst C ∈ ValCon | x, Γ

TyConst ⊆ Var | τ
.= τ, Γ

Figure 5.1. Syntax of System F ′A

V–72 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

pattern given in Figure 5.4 denote that in environment Γ , the pattern p has type τ ,
with bindings for variables in ∆ .

When we ignore the special rules E.APP.EQS, E.COERCE, and P.APP.EQS
for the moment, the rules are a minor variation on a type system for System F .
The differences are:

• Scoping is made explicit by collecting bindings for a pattern in a local envi-
ronment ∆ .

• An existential is opened with a pattern match using P.APP.EXIST by instanti-
ation to a fresh fixed type variable v (a type constant). Such a v may not escape
the scope of the pattern match, which is enforced by demanding that the only
variables that may escape are those that are bound in the global environment
Γ in rules E.LAM.ABS, E.LET, and E.CASE.

• There are two type signatures in the environment for a constructor: a construc-
tor signature Γ (C) and a deconstructor signature Γ (C�). The constructor
signature defines which which equalities need to be proved and which values
have to be supplied. The deconstructor signature gives the dual definition:
which values can be extracted when pattern matching against this constructor
and which equalities can be assumed to be proved. Finally, Figure 5.2 defines
how these signatures are derived from a data type declaration.

Γ `d d

Γ (C�i) = ∀α ∃β i . (xl .= τr)⇒ τi,0→ . . .→ τi,ni → D α i

Γ (Ci) = ∀α∀β i . (xl .= τr)⇒ τi,0→ . . .→ τi,ni → D α i
D ∈ Γ

Γ `d data D α = | ∃β . (xl .= τr)⇒ C τ

ADTG

Figure 5.2. Data definition type rules (G)

Type Conversions Without the three special rules, typing the example of Sec-
tion 5.3 fails. We demand that the right-hand sides of the case alternatives are
of type t, but the first case alternative is of type Int. The pattern match against
the Num constructor gives us the proof that the Int is actually equal to the t. We
exploit this knowledge using rule E.COERCE, by substituting the t for Int when
typing the case alternative. Only those type constants (like t) may be substituted;
we discuss this later. This rule uses the entailment relation
, which states that in
environment Γ , the two types are proved to be equal.

5.4. TYPE SYSTEM V–73

Γ `e e : τ

Γ `e e : [v := τ]τ ′

Γ
 τi
.= vi

Γ `e e : τ ′
E.COERCEG

Γ
 τ l
i

.= τr
i Γ `e e : (τ l .= τr)⇒ τ

Γ `e e : τ
E.APP.EQSG

Γ (C) = τ

Γ `e C : τ
E.CONG

Γ (x) = τ

Γ `e x : τ
E.VARG

Γ `e a : τa

Γ `e f : τa→ τ

Γ `e f a : τ
E.APP.EXPRG

Γ `e f :∀α. τ

Γ `e f τa : [α := τa] τ
E.APP.UNIVG

Γ ;∆ `p p : τa

∆ Γ `e e : τ

ftv (τ)∩ftv (∆)⊆ ftv (Γ)
Γ `e λp . e : τa→ τ

E.LAM.ABSG

v,Γ `e e : τ

v 6∈ ftv (Γ)
Γ `e Λv . e :∀v. τ

E.UNIV.ABSG

Γ ;∆ `p pi : τi
∆ Γ `e e : τ

∆ Γ `e ei : τi
ftv (τ)∩ftv (∆)⊆ ftv (Γ)

Γ `e let p = e in e : τ
E.LETG

Γ ;∆i `p pi : τp

∆iΓ `e ei : τ

Γ `e es : τp

ftv (τp)∩ftv (∆i)⊆ ftv (Γ)
Γ `e (case es of p→ e) :: τ : τ

E.CASEG

Figure 5.3. Expression type rules (G)

V–74 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

Γ ;∆ `p p : τ

Γ (C�) = τ

Γ ;∆ `p C : τ
P.CONG

∆ (x) = τ

Γ ;∆ `p x :: τ : τ
P.VARG

Γ ;∆ `p a : τa

Γ ;∆ `p f : τa→ τ

Γ ;∆ `p f a : τ
P.APP.PATG

Γ ;∆ `p f :∀α. τ

Γ ;∆ `p f τa : [α := τa] τ
P.APP.UNIVG

Γ ;∆ `p f :∃α . τ

v ∈ ∆ v 6∈ ftv (Γ)
Γ ;∆ `p f v : [α := v] τ

P.APP.EXISTG

Γ ;∆ `p f : (τ l .= τr)⇒ τ τ l
i

.= τr
i ∈ ∆

Γ ;∆ `p f : τ
P.APP.EQSG

Figure 5.4. Pattern type rules (G)

The rule E.APP.EQS is used to actually prove that t is equal to Int when
we construct a value with the constructor Num, and rule P.APP.EQS allow us to
extract this proof from the Num constructor and introduce it as an assumption in
the environment.

Entailment Figure 5.5 gives the entailment rules. A derivation of these rules is
a proof of equality between two types. The first two rules represent symmetry
and transitivity of an equality relation. Rule E.ASSUME uses an assumption
from the environment. The subsumption rule decomposes an equality proof in
proofs for components of type types. The congruence rules allows for proving an
equality with sub components converted if there is an equality proof for it. Again,
only type constants v need to be converted. The decomposition and subsumption
rules are often needed when a type conversion has to be applied deep inside a type.
Transitivity is not used often, but there are examples [2] with matches on more
than one constructor where transitivity is needed to combine equality proofs.

Discussion The explicitly typed source language allows us to abstract from a
particular choice of type checking and type inference strategy, which (although
important) is a separate issue. There is, however, a concept we have to take into
account. A successful GADT pattern match results in additional assumptions be-
tween the equality of types, allowing types to be converted. Not all types are al-
lowed to be converted for reasons of predictability and most general typing (when

5.4. TYPE SYSTEM V–75

Γ
 τ l .= τr

Γ
 τr .= τ l

Γ
 τ l .= τr E.SYMG

Γ
 τ l .= τa

Γ
 τa .= τr

Γ
 τ l .= τr E.TRANSG

τ l .= τr ∈ Γ

Γ
 τ l .= τr E.ASSUMEG

Γ
 vi
.= τi

Γ
 [v := τ] τa .= τb

Γ
 τa .= τb E.CONGRG

Γ
 τ [τa] .= τ [τb]
Γ
 τa

i
.= τb

i
E.SUBSUMEG

Figure 5.5. Entailment rules (G)

dealing with type inference). This is the reason why Peyton Jones et al. distinguish
rigid types [6]. In our explicitly typed system, the concept of rigid types relates to
type constants v introduced by universal abstraction and existential pattern match-
ing. By allowing conversions only to such a constant, we obtain a specification
that takes into account which types are allowed to be converted, while leaving the
choice of type inference or propagation strategy up to the implementation.

So, the type constants v determine the positions where types can be converted.
In the example of Section 5.3, the requirement that the case alternatives all need
to be of type t (coming from Expr t), dictates that there needs to be a conversion
from the actual type of the case alternative to this type t.

Furthermore, note that the three special rules are not syntax directed. An
implementation decides where to apply these rules. For example, assuming that
the target language is extended with some additional syntax, and that the example
of Section 5.3 is lifted to some evaluation monad m:

data Expr t
= Val (t∼Int) t
| ∀a b . Tuple (t∼(a,b)) (Expr a) (Expr b)

; let (eval ::∀ t m . Monad m⇒ Expr t→ m t)
= Λ t m→ λ (e :: Expr t)→

(case e of
Val eqInt (x :: t) → return m (x.sym eqInt)
(Tuple eqTup p q) a b→

do ep← eval m a p
eq← eval m b q
return m ((,) ep eq.sym eqTup)) :: m t

V–76 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

In the above code, the type conversion is applied as deep as possible. Another
possibility is to convert as shallow as possible. For example, by changing the
first case alternative to return m x . (m (sym eqInt)), where the coercion m (of
type m∼m) represents reflexivity, and the application of the coercions represent
a coercion of type m Int∼m t. Other possibilities are a mixture between shallow
and deep. This choice should not have an effect on the outcome of the program,
but since it affects the structure of the target expression, a particular choice may
be more beneficial depending on a particular implementation.

5.5 TRANSLATION

We give a translation to System FC in order to give a semantics to the GADTs in
our source language.

Target Language We limit our explanation to the fragment of System FC that
we need. This fragment is given in Figure 5.6. See Sulzmann et al. [10] for a
full explanation. There are some essential differences with respect to the source
language:

• A proof of equality is made explicit as a coercion value γ with the type τ1∼τ2,
meaning that γ is a witness that the type τ1 is equal to type τ2. Constructors
store coercions as additional fields, and require them to be passed (E.APP.COE)
when constructing values with such a constructor. Pattern matching against
such a constructor bind an identifier to the coercion, allowing referencing to
this coercion (C.VAR).

• The cast operator . takes an expression ê of type τ1, and a coercion of type
τ1∼τ2, and converts the type of ê to τ2.

• There are several language constructs to operate on coercions. Transitivity
(γ1 ◦ γ2) and symmetry (sym) have the usual interpretation. The left con-
struct decomposes a coercion on type applications to a coercion of only the
function part. Similarly, the right construct decomposes a coercion to the
argument part. Coercion application γ1 γ2 creates a coercion that applies γ1 to
the function part of a type application and γ2 to the argument part. Reflexivity
of type τ∼τ is encoded as the coercion (not type!) τ . The other two constructs
deal with quantors in types.

See Sulzmann et al. [10] for a type system of the target language.

Coercion construction In environment Γ , the source expression e with type τ

is translated to the same expression ê in the target language, with two exceptions
(Figure 5.7). The key idea here is that a derivation of entailment is an equality
proof out of which a coercion is constructed. The entailment relation expresses
here that in environment Γ , τ l is equal to τr, witnessed by the coercion γ (of type
τ l∼τr).

5.5. TRANSLATION V–77

ê → e γ ∈ Coercion
| ê . γ (E.CAST) → x (C.VAR)

| ê γ (E.APP.COE) | γ γ (C.APP)

| τ̂ (C.REFL)

d̂→ data D α = | ∃β . C γ τ̂ | sym γ (C.SYM)

| γ ◦ γ (C.TRANS)

τ̂ → τ \{ .=⇒} | left γ (C.LEFT)

| γ → τ̂ | right γ (C.RIGHT)

| ∀α . γ (C.UNIV)

p̂→ p | γ@τ̂ (C.INST)

| p̂ γ (P.APP.COE)

Γ | x 7→ τ
.= τ,Γ

Figure 5.6. Syntax of the target language

Γ `e e : τ ê

Γ
 τ l
i

.= τr
i γ

Γ `e e : (τ l .= τr)⇒ τ ê
Γ `e e : τ ê γ

E.APP.EQST

Γ `e e : [v := τ]τ ′ ê
Γ
 τi

.= vi γi
γ = lift γ

Γ `e e : τ ′ ê. γ
E.COERCET

Figure 5.7. Expression type rules (T)

V–78 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

Rule E.APP.EQS states that if an proof of equality is expected for the source
language, that this proof as coercion γ is passed explicitly as parameter in the
target language.

With Rule E.COERCE, a type constants v deep inside τ ′ are converted. The
small coercions γ for these type constants need to be combined into one coercion
that operates on the entire τ ′, by adding the appropriate amount of coercion ap-
plications, universal abstractions and instantiations, and reflexive-coercions. For
reasons of space, we hide this triviality behind the function lift.

Γ
 τ l .= τr γ

Γ
 τr .= τ l γ

Γ
 τ l .= τr sym γ
E.SYMT

Γ
 τ l .= τa γ1

Γ
 τa .= τr γ2

Γ
 τ l .= τr γ2◦ γ1 E.TRANST

Γ (x) = (τ l .= τr)
Γ
 τ l .= τr x

E.ASSUMET

Γ
 vi
.= τi γi

γ = lift γ

Γ
 [v := τ] τa .= τb γ tl

Γ
 τa .= τb γ tl◦ γ
E.CONGRT

Γ
 τ [τa] .= τ [τb] γ

γ = decompose γ

Γ
 τa
i

.= τb
i γi

E.SUBSUMET

Figure 5.8. Entailment rules (T)

The actual construction of the coercion is a side effect of using the entailment
rules of Figure 5.8 to proof an equality.

• The translation for pattern matches translates each assumption τ l .= τr of a
constructor to an explicit match on a coercion of type τ l∼τr, binding this co-
ercion to some unique identifier x and adding this binding to the environment.
Then, entailment rule E.ASSUME lookups this binding in the environment
and refers to it as the coercion x.

• The coercion for the congruence rule may only replace some type constants
somewhere deep inside the type structure. Again, lift is used for the construc-
tion of the full coercion.

• The subsumption rule decomposes a coercion in small coercions, by adding
the appropriate amount of left and right coercions in front of them. We

5.6. CONCLUSION V–79

omit rules for this decomposition and hide this triviality behind the decompose
function.

5.6 CONCLUSION

We described a translation of GADTs to an explicitly typed system with qualified
types (Section 5.5) with equality constraints as qualifiers. The type system comes
basically for free, since dealing with assumptions and insertion of evidence is
already done by the system for qualified types. Adding GADTs to such a language
boils down to implementing an entailment relation on equality constraints. To
prevent having entailment rules for each construct in the type language, we used
an auxiliary relation to construct coercions based on the structure of types.

To validate our work, we added support for GADTs to the Essential Haskell
compiler [3], using Constraint Handling Rules [5] to implement the entailment
rules. The EH language has a rich type system (higher ranked types, impredica-
tive types, existential types, many type class extensions, scoped instances, poly-
morphic kinds, extensible records). The implementation is orthogonal to all these
extensions.

5.6.1 Future work

The obvious future work is to describe our implementation in terms of this spec-
ification. Second to that, we can now describe implementation issues separately,
such as the propagation of type information, and the implementation of entail-
ment. For example, the following issues can now be described without having to
give an implementation for other aspects of a GADT implementation:

The construction of equality proofs can be expensive, especially when big
types with many variables are involved. There are two potential directions for
optimization. The solver uses a trie-structure to select candidate CHRs and is op-
timized to deal with a great number of very specific CHR rules. By generating
many but specialized versions of the CHR rules based on the GADT declarations,
we hope to reduce the time it takes to select the next applicable rule. Furthermore,
there can be several applicable rules to choose from during a solve step. At the
moment, the choice is non-deterministic, but more advanced heuristics are defin-
able in the CHR framework (for example, to make the symmetry rule the least
attractive choice). These optimizations can speed up the time it takes to construct
an equality proof considerably.

A succeeding pattern match witnesses that the type equalities hold. However,
in the presence of irrefutable patterns, the pattern match may not have taken place.
One way to deal with this is to only assume the additional type equalities when
the pattern match is not inside an irrefutable pattern. This approach is taken by
the Haskell compiler GHC for example. However, since we formulated GADTs
in terms of qualified types and have the facilities for evidence generation at our
disposal, we can do better: generate coercion functions that force evaluation of
the irrefutable pattern when a coerced value is evaluated which needed the corre-

V–80 CHAPTER 5. A LEANER SPECIFICATION FOR GADTS

sponding assumption. Proper heuristics need to be defined to minimize the forcing
of evaluations.

Acknowledgements We thank the anonymous referees for their comments; the
student paper feedback report in particular. Special thanks to Lucı́lia Camarao
from Universidade Federal de Ouro Preto, Brazil, for her support just before the
first submission deadline.

This work was supported in part by Microsoft Research through its European
PhD Scholarship Programme.

REFERENCES

[1] A. I. Baars and S. D. Swierstra. Typing dynamic typing. In ICFP ’02: Proceedings
of the seventh ACM SIGPLAN international conference on Functional programming,
volume 37, pages 157–166. ACM Press, September 2002.

[2] A. I. Baars and S. D. Swierstra. Typed transformations of typed abstract syntax.
http://www.cs.uu.nl/wiki/Center/TTTAS, 4 2008.

[3] A. Dijkstra. EHC Web. http://www.cs.uu.nl/wiki/Ehc/WebHome, 2004.

[4] A. Dijkstra. Stepping through Haskell. PhD thesis, Utrecht University, Department
of Information and Computing Sciences, 2005.

[5] T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic Pro-
gramming, Special Issue on Constraint Logic Programming, 37(1-3):95–138, Octo-
ber 1998.

[6] S. L. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-
based type inference for gadts. In ICFP, pages 50–61, 2006.

[7] S. L. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type inference
for generalised algebraic data types. Technical Report MS-CIS-05-26, University
of Pennsylvania, Computer and Information Science Department, Levine Hall, 3330
Walnut Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[8] F. Pottier and Y. Régis-Gianas. Stratified type inference for generalized algebraic data
types. In POPL, pages 232–244, 2006.

[9] P. J. Stuckey and M. Sulzmann. Type inference for guarded recursive data types.
CoRR, abs/cs/0507037, 2005.

[10] M. Sulzmann, M. M. T. Chakravarty, S. L. Peyton Jones, and K. Donnelly. System F
with type equality coercions. In TLDI, pages 53–66, 2007.

[11] M. Sulzmann, J. Wazny, and P. J. Stuckey. A framework for extended algebraic data
types. In FLOPS, pages 47–64, 2006.

[12] D. Vytiniotis, S. Weirich, and S. L. Peyton Jones. Boxy types: inference for higher-
rank types and impredicativity. In J. H. Reppy and J. L. Lawall, editors, ICFP, pages
251–262. ACM, 2006.

[13] J. R. Wazny. Type inference and type error diagnosis for Hindley/Milner with exten-
sions. PhD thesis, The university of Melbourne, January 2006.

