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Preface

Abstraction is a programmer’s best friend. From TEX, one of Knuth’s inventions, I learned
that abstraction is important. I am glad that I do not need to know implementation details
of most of the type setting packages that I used for this thesis. TEX also taught me that
it is sometimes necessary to get your hands dirty in order to obtain new abstractions. From
attribute grammars, another invention of Knuth, I learned how beneficial abstraction facilities
of programming languages can be to the development of software.

Attribute Grammars (AGs) offer attributes as a powerful abstraction mechanism for the
description of computations that traverse trees. Since many programming tasks can be ex-
pressed as a computation over a tree, I often reason in terms of trees with attributes and
relations between these attributes. This thesis offers an exploration of this mental model, and
gives the reader the opportunity to embrace this model too.

Programs may conceptually be formulated as an attribute grammar, yet it may be hard
to formalize such programs as an AG. During my master studies, I implemented an experi-
mental type inferencer for uniqueness types in the Utrecht Haskell Compiler [Dijkstra et al.,
2009] with attribute grammars using UUAG [Löh et al., 1998]. However, several aspects of
the inference algorithm are not straightforward to describe with an attribute grammar because
these aspects required fixpoint iteration and dynamic tree construction in their implementa-
tion. This is unfortunate, because UUAG provides many notational conveniences that would
have saved me from writing tons of boilerplate code.

I worked on many language extensions to attribute grammars that make it easier to describe
type inference algorithms by an attribute grammar. During my thesis project, it occurred to
me that in order to express such algorithms, details of the actual evaluation of the grammar
need to be exposed. But how to expose such details, without destroying the attractive ab-
straction mechanisms offered by the AG programming model? This thesis presents various
solutions to this challenge.

Thesis process. The standard way to describe type systems is by giving a collection of
inference rules. In the initial years of the project, I had lengthy discussions with my super-
visors about patterns in these descriptions, and how to abstract from such patterns. During
these discussions, it became clear that we needed an execution model for the symbols that we
were scribbling on whiteboards.

It is not at all obvious how to formalize inference algorithms. Algorithms can typically
be expressed nicely in a functional programming language. However, there are many imple-
mentation techniques that offer even higher levels of abstraction. Monads, constraint han-
dling rules, and attribute grammars are implementation techniques with attractive properties.
Combining these techniques, however, is not at all trivial.

In the later years of the project, I therefore narrowed my focus on exactly this challenge.
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The original purpose of the Ruler project is to annotate type rules with sufficient information
to derive the type inference algorithm mechanically. This requires a way to identify chunks
of AG evaluation, which is what visits represent in ordered attribute grammars. The language
RulerCore and this thesis emerged from being able to programmatically manipulate these
visits.

Intended audience. This thesis is written with two types of audience in mind: an audience
with a background in type systems, and an audience with a background in grammars. All in
all, this thesis needs and explains more of attribute grammars than of type systems.

Acknowledgements. I would like to thank my promotor Doaitse Swierstra. Despite his
busy life, Doaitse takes the time to spread his brilliant ideas and interesting anecdotes. I
see Doaitse as a great advocate of functional programming, although our discussions usually
started with an account of the low-level details of the tools that he fiddled with the day before.
Nevertheless, Doaitse sets a great example, and it was an honor to work under his supervision.

My copromotor Atze Dijkstra is another inspiring example. It is amazing how Atze ap-
proaches problems with clear and concrete solutions, yet reasons at a high level of abstrac-
tion. Atze took a customer role in my research project, which motivated me a lot to make
changes to the UUAG system. Atze has a calm appearance, yet I also experienced some of
his adventurous and active traits. In particular, I recall early-morning training runs during
conferences, at times that others are still deep asleep.

Valuable feedback was given by the reading committee (fill in later), and by the anonymous
reviewers of the papers from which this thesis is composed.

The Software Technology group at Utrecht is a pleasant group to be part of, and I thank
all my colleagues and former colleagues for the enjoyable time. I especially recall the crazy
group effort for the ICFP contest in 2007, and the many Thursday-evening drinks.

During many discussions related to the UHC project, Jeroen Fokker took heroic efforts to
keep our discussions concrete and focussed. Jeroen was very helpful in many organizational
matters, and in fact, I learned programming with a copy of his lecture notes when I was still
in secondary school.

I thank my former room mates Eelco Dolstra, José Pedro Magalhães, and Stefan Holder-
mans. I hope that Stefan does not tear his eyes out if he spots errors in the Dutch summary at
the back of this thesis. I also had pleasant discussions with my room mates Jeroen Bransen
and Alexander Elyasov. I hope that you will enjoy attribute grammars as much as I do.

Halfway in my thesis project, I worked for half a year in Brazil. I want to heartily thank
Lucı́lia Camarão de Figueiredo for her effort in making my stay in Brazil pleasant. It is a pity
that we did not have more opportunities to work together. My greetings to your family and
friends, because of the time they spend with me, and also to Elton and the others that were
with me in the lab.

The last year, I worked together with Wishnu Prasetya and Jurriaan Hage to statically
instrument ActionScript bytecode. It was certainly not easy to combine writing a thesis with
developing a framework for bytecode manipulation. However, the use of Haskell and attribute
grammars turns out to be a good choice so far. I know Jurriaan already since when I still was
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a second year student. He creates a warm atmosphere in the group. When it is time for a
break, Jurriaan is around for a chat about all sorts of subjects.

The Universität Freiburg, and the ProgLang group in particular, generously providing me
with a place to work each time I visited Freiburg. I actually performed large chunks of the
programming and paper writing for this thesis during my many short visits. Herzlichen Dank!
Peter Thiemann invited me several times for some sports after work. Peter is very disciplined,
which meant that the training sessions were nice, but hard.

With the Broken Dagger group, we had very nice geeky dinners after work, and necessary
distraction in the form of the Ars Magica games that we are still playing remotely. It is sur-
prising what hidden personalities colleagues expose when exploring a fantasy setting. Thank
you Andres Löh for taking this initiative. By the way, the characters will next session stumble
by accident on a magic book about attribute grammars that drives them insane...

The rather secretive IRC channel #klaplopers, formed by former occupants of the ST-
Lab, provided welcoming distractions, both online and in real life. The channel is becoming
somewhat silent as more participants have a reduced online presence. Unfortunately, I was
also too occupied with my thesis to participate actively. I want to thank Arthur van Dam
and others for several nice mountainbike trips, although I’m not insane enough on a bike to
be a real challenge. Together with Martin Bravenboer, we still have an Ironman Triathlon
to finish. Eelco Dolstra, a living index of Wikipedia [citation needed], Rob Vermaas, Dick
Eimers, my greetings to you. Last but not least, Armijn Hemel went to great efforts to save
the IRC channel from my incorrect spelling.

Words fail to describe the wonderful role that Annette Bieniusa plays in my life. I tried
once, but did not come close. Not even with 91 pages of emails. She may appear cute,
small and innocent, but in the mean time she stole my heart. She is my greatest source of
happiness and support. Although she cleverly managed to keep attribute grammars out of our
discussions, she bravely read through my thesis and gave me valuable comments.

Tot slot wil ik mijn ouders en zusjes bedanken. Ik heb dankbaar geprofiteerd van het gemak
dat het spreekwoordelijke hotel Middelkoop bood. Ik hoop jullie de komende tijd wat meer
aandacht terug te kunnen geven.

Sponsors. To allow me to work on this thesis, I am grateful to Microsoft Research in Cam-
bridge for granting me a Ph. D. Scholarship, which made my employment at the Universiteit
Utrecht possible. I was fortunate that the department was willing to finance my fourth year,
despite the harsh financial constraints that universities face nowadays. Also, the European
project LerNet and the Universidade Federal de Minas Gerais partially financed me so that I
could work for half a year in Brazil. Many ideas in this thesis arose during my daily walks to
and from the university in Bello Horizonte. Finally, the European project FITTEST allowed
me to stay a year longer in Utrecht, so that I could apply attribute grammars to implement
bytecode transformations in a fancy way.
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1 Introduction

This thesis investigates the application of attribute grammars to the description of inference
algorithms (as implemented in a compiler) that are specified by a collection of inference rules.
Such collections are a means to specify the semantics of programming languages. Since
there exists no universal inference algorithm for inference rules, it makes the description of
inference algorithms a nontrivial exercise. Our goal is to use attribute grammars to make it
easier to write such descriptions.

1.1 Overview

Language specifications. A formal programming language specification describes the
language’s notation and the notation’s meaning, and forms a set of requirements for tools
that process programs written in this language. A denotational semantics of a programming
language is often expressed as a relation between properties of programs written in this lan-
guage, where the relation is described by a set of inference rules. The structure of such a
program is the Abstract Syntax Tree (AST) obtained by parsing the source code of the pro-
gram, and is one of the properties. For example, in case of code generation, a denotational
semantics expresses a relation between the AST and machine code, whereas in case of type
checking, the semantics typically relates the AST to a type for each program fragment and an
environment with a type for each identifier.

Implementations. A compiler analyzes a program and computes properties of that pro-
gram. This analysis is specified by a static semantics, which describes a relation between
programs and properties. For example, the specification of a compiler that translates source
code to machine code describes a relation between a program and machine instructions. The
properties computed by a compiler can be seen as the evidence that there exists a proof that
the properties are related to the program. Assuming that the relations are specified with infer-
ence rules, such a proof has the form of an attributed tree. Each node represents an application
of an inference rule of the semantics, and attributes describe how the rules are instantiated.

A semantics is syntax directed if the shapes of the proofs are isomorphic to the AST.
A semantics is algorithmic if additionally the constraints between attributes in the tree are
expressible as computable functions. As a compiler’s implementation is usually based on
traversals of the AST, an algorithmic semantics is a convenient specification of a compiler.
Since the implementation boils down to traversing the tree and applying the computable func-
tions as mentioned in the specification in the right order, there exists a clear correspondence
between the specification and the implementation. An example is a semantics for an assem-
bly language where the relation between the AST and machine code is actually a bijection.
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1 Introduction

However, most language’s semantics are not entirely algorithmic. We come back to this point
further below.

Attribute Grammars (AGs) [Knuth, 1968] are an attractive domain specific programming
language for the implementation of an algorithmic semantics. Attributes represent inductive
properties of the AST. A context-free grammar describes when an AST is correctly structured
by relating productions to nodes in the AST. An AG describes when an AST is correctly deco-
rated with attributes by imposing constraints on the attributes per node of the AST, formalized
by rules per production. These rules are computable functions between attributes denoted in
some host language. AGs abstract from the traversal over the AST and from the order of
evaluation of the rules. Therefore, AGs are composable, which makes it possible to describe
the implementation of a large language as various separate aspects. Moreover, an AG is com-
pilable to an efficient algorithm that computes the attributes. Thus, an AG serves both as a
specification and an implementation of an algorithmic semantics.

Declarative specifications. As argued above, to implement a denotational semantics, it
is preferable that the semantics is algorithmic because of the close correspondence with an
implementation. A declarative semantics is a semantics suitable for formal reasoning and
documentation purposes, and is usually more abstract and concise than an algorithmic se-
mantics.

For example, consider a denotational semantics that describes a relation between the AST
and a sequence of machine instructions. When the relation is not functional, there may be
many related sequences of machine instructions for a given AST. In particular, there may be
a difference between a shortest sequence of instructions, or a sequence of instructions with
the lowest expected execution time. The choice of which sequence is computed is left up to
the implementation or specified separately.

Moreover, declarative features of a programming language can usually be more concisely
described relationally instead of being based on a computable function. An example is oper-
ator overloading, where the choice of the implementation of an operator depends on the types
of the operands. Effectively, the compiler takes care of some of the work of the programmer,
and models the inference of the proof in some way.

From ASTs to proofs. A transformation from a non-algorithmic semantics to an algo-
rithmic semantics is non-trivial. An implementation using traversals of the AST is based on
an algorithmic semantics. Consequently, it is difficult to keep the implementation consistent
with the declarative language specification.

In this thesis, we approach the implementation of a denotational semantics from another
direction. We consider AGs based on the grammar that underlies the inference rules of the
relation instead of the language’s grammar. As a particular advantage, the AG is closely
related to the declarative specification. However, the AG specifies when an attributed proof
is valid, but does not specify how to obtain the proof. Since there exists no general procedure
that maps such an AG to an algorithm that infers the proof, we need to augment the AG with
additional information to obtain such an algorithm.
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Thesis. In this thesis, we focus on the description of type inference algorithms with at-
tribute grammars. Most type inference algorithms are a complex combination of a small set
of inference techniques, such as type variables and unification to calculate with values that
are not fully known yet, fixpoint iteration to approximate solutions, constraints to defer the
inference of a subtree, and search tree construction to encode alternative solutions. Such
techniques are based on gradually building a proof and exploring intermediate candidate so-
lutions.

In our approach, we conservatively extend AGs to support these techniques and balance
between assumptions about the evaluation algorithm, and the preservation of the declarative
nature of the description. The central concept that underlies our extensions are higher-order,
ordered attribute grammars. In such higher-order AGs, the domain of an attribute can be an
attributed tree, which allows us to dynamically grow the tree. The state of a tree is described
by a configuration, which specifies the decorations that have been computed. In an ordered
AG, the configurations are linearly ordered. A visit, a unit of evaluation for a node, transitions
the state of the node to a state described by the next configuration. This concept offers control
over the simultaneous evaluation of attributes and exploration of the tree.

Chapter organization. This chapter presents background information and a short out-
line. We assume that the reader has a strong background in the programming language
Haskell [O’Sullivan et al., 2008], is familiar with type systems [Pierce, 2002], and knows
the basics of attribute grammars [Knuth, 1968]. This chapter gives (rather) informal defini-
tions of relevant concepts and provides pointers to literature.

The actual contents of the thesis start with the next chapter, Chapter 2. Chapter 2 gives a
detailed summary of our extensions and shows how these fit together. Each following chapter
covers an extension in detail.

We address concepts of type systems and attribute grammars in combination with nota-
tion in Section 1.2 and Section 1.3. In particular, we recast the notion of ordered attribute
grammars. Section 1.4 addresses previous work, Section 1.5 gives an overview of each of the
extensions, and Section 1.6 sketches the overall goal. Finally, Section 1.7 addresses related
work.

1.2 Background on Type Systems

In later chapters, we use type systems based on variants of the lambda calculus as example. In
this section, we give a short summary on the lambda calculus, show the evaluation of lambda
terms, and give a type system. Furthermore, the discussion of variants of the lambda calculus
and their type systems serves as a vehicle to discuss design and implementation challenges of
type systems, which we use in the motivation of this thesis in Section 1.5. Another purpose
of this section is to introduce vocabulary and notation for subsequent chapters.

We assume that the reader is already familiar with the lambda calculus and type systems.
Introductory books on type systems [Pierce, 2002, Harper, 2010] provide a more extensive
and formal explanation.
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1 Introduction

1.2.1 Specification of Programming Languages

Programming languages are described by a grammar since a grammar specifies the set of
programs that belong to the language. A semantics relates a program to some properties in a
given domain. When these properties represent the correctness of the program, or represent a
program in (another) programming language, we talk about a static or denotational semantics.
When the properties describe the runtime behavior of the program (typically in the form of
state transitions), we talk about a dynamic or operational semantics.

We assume that the specification of a programming language consists of a context-free
grammar (Section 1.3.1) and static semantics. The specified programming language is called
the object language, and a program an object term. In case of compilation and transformation,
the object language is often referred to as the source language and object terms as source
terms. The language that describes the specification and the language in which the compiler
is implemented are called meta languages. Finally, in case of a translation to a different
language, the language where we translate to is called the target language and the translated
program a target term.

1.2.2 The Lambda Calculus

The lambda calculus is a language that is often used in programming language research, and
in research on type systems in particular. Many concepts of programming languages have
their roots in variants of the lambda calculus, or have been well-studied in such a context.
We discuss the lambda calculus, because we use its concepts in object languages, source
languages and target languages in the following chapters.

Figure 1.1 shows the abstract syntax e of expressions in an explicitly-typed variant of the
simply-typed lambda calculus, which may contain types τ . In passing, we also give syntax
for environments and evaluation contexts. The structure of e is called the Abstract Syntax
Tree when represented as a tree (Section 1.3.1).

In the lambda calculus, a function may be passed as a value v in the form of a lambda
expression, and thus is first class. Such a function is anonymous, although the function
can be given an explicit name by binding the function to an identifier. For example, the
following expression denotes the application of a function that applies the identity function
that it receives as an argument to the value 3:

(λy : I→ I . y 3) (λx : I . x) -- evaluates to 3 of type I

To specify to what value an expression evaluates, we provide below an operational seman-
tics. In this semantics, the simultaneous substitution of all free x in e1 by e2 is denoted by
[x := e2 ] e1. The semantics1 consists of the reduction relation e1 e2, which is the smallest
relation that satisfies the following inference rules2 of Figure 1.2, which we explain below.

1 Such a semantics is called a small-step operational semantics because the inference rules describe a transformation
step from an intermediate term to another intermediate term, and the actual transformation is the exhaustive
application of these transformation steps.

2 In Section 1.2.3 we will actually consider a notation for inference rules and their interpretation.
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e ::= e1 e2 -- application, with expression e1 and e2
| x -- variables, e.g. x,y,z
| v -- values (head-normal form)

v ::= i -- integer constant, e.g. 3 and 42
| λx : τ.e -- abstraction, with param x of type τ and body e

τ ::= I -- integer type
| τ1→ τ2 -- function type

Γ ::= /0 -- empty environment
| Γ,x : τ -- environment Γ, with on top a mapping of x to type τ

x,y,z -- variables
f ,g,h,a,e -- expressions

Figure 1.1: Syntax of the explicitly-typed lambda calculus variant.

e1 e2

(λx : τ . e1) e2 [x := e2 ] e1 BETA

e1 e2

e1 e e2 e
LEFT

Figure 1.2: Operational semantics as a reduction relation on expressions e.

A beta-redex is an expression of the form (λx.e) a which can be reduced. The above rules
describe normal-order reduction. Through the rule LEFT the beta-redex in the head position
is identified. Indeed, if we consider the reduction of the above example, we end up first
substituting f with the identity function, such that we obtain (λx : I . x) 3, and then substitute
3 for x, such that we end up with the value 3. When no reductions are possible anymore, the
expression is in head normal form.

1.2.3 Type Rules

The purpose of a static semantics is to exclude programs that incorrectly use their data. A type
system classifies expressions as well-typed if it can associate a type with it. A type system is
sound if it has the subject reduction property, which means that after each reduction step, the
resulting term has the same type as the original expression. Type systems typically ensure
the absence of certain programming errors, such as passing an integer where a function is
expected.

As an example, we give a type system specification for the lambda calculus as defined
above in Figure 1.4 and explain it below. We allow liberal syntactic sugar in our specifica-
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r ::=∀x . d -- quantified rule over meta variables x
d ::= j1 ... jn ; j -- rule with premisses j, conclusion j, n> 0
j ::=Rn m -- judgment with |m|= n
Rn -- n-place relation R (n often omitted)
m -- argument (meta expression)
x,y -- meta variables for values in the object language

The notation j1 ... jn
j (with optional rule label) is sugar for j1 ... jn ; j. The explicit equality

x1 ≈ x2 denotes a judgment Eq2
τ x1 x2, with relation Eqτ representing structural equality of

object terms of meta-type τ . The quantification of meta variables is usually left implicit.
Figure 1.3: Notation for inference rules.

Γ ` e : τ

Γ ` i : I CON

(x : τ) ∈ Γ

Γ ` x : τ
VAR

Γ ` f : τ1→ τ2
Γ ` a : τ1

Γ ` f a : τ2
APP

Γ,x : τ1 ` e : τ2

Γ ` λ (x : τ1).e : τ1→ τ2
LAM

Figure 1.4: Type rules of the explicitly typed lambda calculus variant.

tions. Depending on the context, the notation x represents a sequence or set x1, ...,xn.
We define a typing relation Γ ` e : τ , which is notation for a three-place relation over Γ, e,

and τ . A judgment of this relation states that in environment Γ, the expression e has type τ .
We typically describe such relations with inference rules (type rules). Figure 1.3 gives the
syntax of inference rules. A type rule r consists of zero or more premisses (judgements j)
above the line, and a conclusion j below the line. We come back to meta expressions m later,
but it contains at least the meta variables x.

Figure 1.4 shows the rules of the lambda calculus as introduced above. The rule CON

associates the type I to any integer constant. The VAR rule associates the type to the identifier
as it is bound to that identifier in the environment. The APP rule requires expression f to be a
function that takes an argument of the same type as its formal parameter. The type associated
with the application itself is the result type of the function. In LAM, the body of the lambda
may assume a type τ1 associated with identifier x in the environment.

The typing relation is the smallest relation that satisfies a set of rules r, which serve as
axioms of the relation. In a judgment, meta expressions m are arguments to some relation
R. The language of meta expressions is a formal language, which is usually left implicit, but
facilitates the construction of symbolic and concrete object terms.

A Relation R can be a built-in relation (an atomic relation) or relation described by infer-
ence rules. Instead of using expressions m to construct symbolic terms, atomic relations for
each production in the object language can equivalently be used to constrain symbolic object

16



1.2 Background on Type Systems

terms. For example, for the arrow-production in the syntax of types, we assume the existence
of an atomic relation C→ τ1 τ2 τ3 that expresses τ1 ≡ τ2→ τ3. Then, instead of a judgement
R (τ2→ τ3), we may write R τ1 with a fresh τ1 and C→ τ1 τ2 τ3.

The rules are in canonical form when the arguments of relations in the judgments consist
only of meta variables, with the single exception of the judgment denoted m ∗ x which
represents a reduction relation on object terms where m is a meta expression. Additionally,
each meta variable occurs at most once, not counting its occurrences in (additional) explicit
equalities. We assume in this thesis that meta expressions are written in Haskell. For reasons
of simplification we assume below that meta expressions in this chapter are written in the
above lambda calculus so that the definitions of m and e coincide. To rewrite rules into
canonical form we use the operational semantics of (meta) expressions. For example, we
replace a judgment R e to R x and introduce the additional premise that e ∗ x, where x is
fresh and ∗ is the exhaustive application of the reduction relation on (meta) expressions.

To deal with the occurrences of meta variables, we introduce additional explicit equali-
ties and quantified fresh variables. Rules in canonical form are more verbose, but easier to
formally reason with.

Given arguments a for the typing relation R described by inference rules, we can prove
that these are a member of the typing relation, denoted by R a or a ∈ R, by constructing a
derivation tree using the rules of the relation. A derivation tree is a proof for R a when there
is a rule of R with a conclusion that matches against R a (with substitution θ ), and for each
premise of the rule (with θ applied), there is subtree that is a proof for that premise. Proofs
of atomic relations are leafs of a derivation. A derivation tree for the earlier example is:

LAM

VAR
(y : I→ I) ∈ Γ1

Γ1 ` y : I→ I Γ1 ` 3 : I CON

Γ1 ` y 3 : I
APP

Γ0 ` λy : I→ I . f 3 : (I→ I)→ I

(x : I) ∈ Γ2

Γ2 ` x : I
VAR

Γ0 ` λ (x : I).x : I→ I
LAM

Γ0 ` (λy : I→ I . f 3) (λx : I .x) : I
APP

Γ0 = /0 -- initial environment
Γ1 = Γ0,y : I→ I -- extension of Γ0 in the application of LAM (left branch)
Γ2 = Γ0,x : I -- extension of Γ0 in the application of LAM (right branch)

Each node v in the derivation tree is associated with a judgment jv = Rv a, and the subtree
rooted by v is a proof that a ∈ Rv, where Rv is the associated relation. Furthermore, node v
is associated with some rule rv, which determines the structure of v. The node is furthermore
decorated with values for the meta variables that are bound by rv.

Type rules are syntax-directed when in derivation trees, for each node v, the associated
rule rv is uniquely determined by an argument a (which represent the expression for which
we try to construct the proof) of the associated judgment jv. Thus, for syntax directed rules,
the choice of what rule to apply in the construction of the proof is determined uniquely by
productions of the object language, and there is a one-to-one mapping between nodes in the
abstract syntax tree and nodes of the derivation tree. This is a desirable property because it
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means that the shape of the derivation tree depends only on the structure of the object term,
and is thus given at the start of the proof construction: we know what rules to apply where,
and are only left with the problem of how to make their instances match.

However, when the correspondence between rv and the a priori known arguments i⊆ a of
jv is not functional, we call the rules declarative3. Additionally, when rv also depends on the
inferred type τ , with τ ∈ a, the rules are declarative and also type directed.

A rule rv imposes two forms of constraints on node v in the derivation tree. Constraints
on the structure (as discussed above), and constraints on the values for the node’s meta vari-
ables that decorate v (as discussed below). When constructing a proof, we choose rules and
values that satisfy these constraints. We call the description of such choices aspects of the
rules. These aspects are declarative when the decisions are not functionally determined by
i. Declarative aspects complicate the construction of a proof, because there may be many
choices that seem suitable to complement a partial proof, but turn out later to be inappropri-
ate. In Section 1.2.4, we discuss strategies to resolve such declarative aspects.

We determine which meta variables are declaratively defined with a transformation of the
relations into functions: those meta variables that make the function non-deterministic are
declaratively defined. For that, each parameter of a relation must have a specification that
declares it (conditionally) as either an input or output. In a judgement j = R x of a rule in
canonical form, a meta variable x ∈ x is at an input position when j is a premise and x is
passed as output argument, or when j is a conclusion and x is passed as an input argument.
Otherwise, a meta variable is at an output position. In case of explicit equalities x1 ≈ x2, x1
and x2 are both at an input position. In case of the reduction relation m x, the occurrences
of meta variables of m are at an input position and x is at an output position.

In case of the construction/destruction relation CP related to the production P of the object
language, in the judgment CP x0 x1 ... xn, x1, ...,xn are at an input position if and only if x0 is
at an input position.

A variable is declarative if none of its occurrences are on an output position and the vari-
able does not occur in an explicit equality with a non-declarative variable.

As an example, we add a type rule for an implicitly typed lambda abstraction, and discuss
which meta variables are declarative. As preparation we show the canonical forms LAM-IMPL’
and APP’ in Figure 1.5. When we assume that types are an output of the relation, the meta
variable τ1 of LAM-IMPL is declarative. When we assume that types are an input of the rela-
tion, the meta variable τ1 of APP is declarative.

The above sketch of an analysis assumes that the atomic relations are computable func-
tions. We call type rules declarative if they exhibit declarative aspects, and algorithmic other-
wise. In the latter case, when the rules are described in Ruler (Section 1.4), a type inference
algorithm can be generated.

1.2.4 Type Inference

A type checking or type inferencing algorithm concerns itself with constructing derivation
trees when given the main judgment. In case of type checking the type is part of these a

3 Some authors call declarative rules nondeterministic because an inference algorithm may need to choose nonde-
terministically what rule to apply.
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Γ,x : τ1 ` e : τ2

Γ ` λx.e : τ1→ τ2
LAM-IMPL

Γ ` f : τ1→ τ2 Γ ` a : τ1

Γ ` f a : τ2
APP

Γ,x : τ1 ` e : τ2
C→ m2 τ1 τ2 CApp m1 x e

Γ ` m1 : m2
LAM-IMPL’

Γ ` f : m2 Γ ` a : τ1
C→ m2 τ1 τ2 CApp m1 f a

Γ ` m1 : τ2
APP’

Figure 1.5: Rules LAM-IMPL and APP, and their respective canonical form.

priori known arguments. In case of type inference the type is not, and actually inferred. This
distinction between type checking and type inference is rather vague, because a type system
may exhibit other declarative aspects than the definition of types, and thus implies some
form of inference. Moreover, for a compiler typically the inferred arguments matter but the
derivation tree is not of direct interest.

Inference as a forest of derivation trees. Some authors consider type inference as a
two-step process: a traversal of the AST to generate a set of constraints, and solving this set
of constraints. We shall, however, consider type inference as the incremental construction
of a forest of derivation trees, which has a closer connection to declarative specifications.
Its intermediate state is a forest of partial derivation trees. It starts with a singleton forest
containing an empty derivation tree with the main judgment as pending aspect. A derivation
tree in the forest has an associated status, which is that it is partial, complete, or unsatisfiable.

A reduction step in this forest consists of cloning an existing partial derivation and adding
the cloned derivation to the forest after resolving one pending aspect of the clone such that
the number of unique derivation trees in the forest increases.

An aspect is either a meta variable or a judgment. To resolve the former, the meta variable
is bound to a value in its domain. To resolve the latter, it depends on whether the relation
of the judgment is described by rules or an atomic relation. If the relation is described by
rules, either a rule can be applied which leads to a larger or a complete derivation tree, or the
derivation tree is unsatisfiable. If the relation is atomic, then the aspect is solved by running
an algorithm that is associated to the relation which either succeeds or fails.

The existence of a complete derivation means that the source program is type correct.
When all reductions have been applied exhaustively and there exists no complete derivation
the program is type incorrect. However, there may be infinitely many partial derivations.
Also, there may be infinitely many partial derivations of a certain height, for example, when
the domain of a meta variable is infinite. We come back to this issue later: in practice, an
inference algorithm uses a less general approach.

Naive algorithm. The algorithm in Figure 1.6 represents a typical Prolog-style strategy
for the construction of derivation trees. We explain some aspects of the example below.
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prove :: j→ Inf Tree -- Inf offers unification and backtracking
prove (x≈ y) = do -- case for explicit equality

unify x y -- equality mapped to unification
return (x∼ y) -- builds equality node

prove (R x) -- case for judgments
| atomic R = extern R x -- proven externally
| otherwise = do -- relation specified by rules

r ← rules R -- picks a rule (backtrack point)
(ps ; c)← instantiate r -- instantiate rule
zipWithM unify (args c) x -- bind args
ts← mapM prove ps -- recursion on premises
return (ts .name r c) -- build derivation node

Figure 1.6: Sketch of a general inference algorithm.

In this example, we refer to an inference monad Inf which takes care of backtracking and
unification. Rules are tried in a predefined order. If a rule cannot be applied, backtracking
occurs to the next rule.

Meta variables are initially represented as symbolic values, and unified with other meta
variables or object terms during inference. Unification is derived from an equivalence rela-
tion, which can in turn be derived generically from algebraic data type declarations.

The operation rules introduces a backtrack-point. It tries the rules in a given order by
feeding the rules one by one to the continuation. A later unification may fail and cause a
backtracking to that point. The operation instantiate substitutes the quantified meta variables
with fresh meta variables. The instruction extern proves a judgment externally and returns
evidence for it if it succeeds. With combinators . (internal nodes) and ∼ (equality leafs) we
construct evidence in the form of a derivation tree.

Undesirable properties of the algorithm. The above algorithm is incomplete and does
not terminate for all but the simplest type systems. This is necessarily the case because there
exist type systems for which inference is undecidable. Via backtracking, only finite and
inductively defined object terms can be inferred, and unifications only produce compositions
of object terms. The algorithm is also inefficient. The order in which rules are tried may
cause poor performance or nontermination. Moreover, the order in which rules are tried is
not specified, which gives unpredictable results. Although the results are sound, these may
not be optimal.

In practice, typical algorithms refrain from backtracking or constructing many candidate
derivations, because the search space is too large when dealing with ASTs with thousands of
nodes. Therefore, actual inference algorithms resemble this overall approach, but select rules
and instantiations of meta variables in a more sophisticated way.
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Actual inference algorithms. Actual inference algorithms apply various strategies (de-
pending on the form of the declaratie aspect) to get around the above undesirable properties.

Unification can be used to deal with equivalence judgments in type rules. Alternatively, an
algorithm may collect several candidate constraints on a meta variable, then pick an object
term that is the least solution to all these constraints. When constraints are monotonic, a value
can gradually be approximated via fixpoint iteration with an initial bottom value. Type and
effect systems often require such algorithms.

When rule selection is declarative, we typically want the choice to be a function of the
syntax of the language (syntax directed rules) or other object terms (e.g. type directed rules).
Alternatively, some rules can be restricted to only be applied in a proof after other rules have
been applied so that the choices between the remaining rules becomes functional in the above
sense. This is not always possible: the applicability of a rule may depend on unresolved meta
variables and may require the rule selection to be deferred which is called residuation Hanus
[1994].

Challenge: orchestration of strategies. The orchestration of such strategies is a com-
plex undertaking. The order in which strategies are applied may influence the result, and it
may not always be clear when to start or stop applying strategies. These are all challenges an
implementation must deal with.

Challenge: annotations. The holy grail of type system research is to define expressive
type systems (for a class of programs) that have sound and complete (decidable) inference al-
gorithms. Given two type systems (that satisfy type-soundness with respect to the operational
semantics of the language), one type system is more expressive than another type system if
accepts a superset of the programs that the other accepts.

To bypass the strict undecidability boundaries, many languages allow programmers to as-
sist the inference progress by providing additional information (e.g. type annotations) in the
object program that translates to concrete bindings for otherwise declarative meta variables.
There are delicate balances between expressiveness of the type system, the amount of anno-
tation to be provided by the programmer, and the predictability of inference.

For example, the Damas-Hindley-Milner type system and accompanying inference algo-
rithm (Section 1.2.6) does not require any annotations to help the inference process, but dis-
allows functions with parameters of a polymorphic type. System F, the polymorphic lambda
calculus, in comparison allows funtions with a polymorphic type, but requires an abundance
of type annotations. As a middle way, HML [Leijen, 2009] expresses all of System F, but
requires only type annotations for polymorphic lambda parameters. FPH [Vytiniotis et al.,
2008] positions itself in between DHM and HML. It requires a type annotation when ap-
plying a function to an argument with a polymorhic type. Dijkstra and Swierstra [2006a]
proposed a global flow analysis that propagates type annotations to locations where (a part
of) the annotation is also applicable.

Challenge: type errors. As stated before, type inference concerns itself with the construc-
tion of derivation trees. If no such derivation exists, it is considered a type error. Type rules
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only specify under what condition a type is acceptable. Thus, an implementation may require
additional information to produce understandable error messages [Heeren et al., 2003a].

Challenge: multiple derivation trees. A partial order on types specifies when one type
is more general than another type. A type is principal when it is the most general type of an
expression. For reasons of predictability and modularity it is desirable that a principal type
exists for an expression and that an algorithm infers a derivation for this type. This notion of
principality can be extended to derivations [Jim, 1996].

For the above type rules, there are infinitely many derivation trees for (λx.x), but none of
the accompanying types (e.g. τ → τ for any type τ) are comparable, thus this expression has
no principal type (thus also not a principal derivation) for the given type system.

There are several remedies. The type system can be changed such that more type annota-
tions need to be given, or that choices can be deferred by encoding pending choices in the
type language as constraints. Polymorphism and qualified types are an example of the latter:
type schemes are introduced to represent a delayed choice of types, as we show in the next
section.

1.2.5 Parametric Polymorphism

For the identity-function λx.x, there are no constraints on the type of x. During inference, no
binding arises for the meta variable associated to x. We can thus bind a fresh type constant
α to the meta variable, which leads to the type α → α for λx.x. To specify that α can be
any type, we universally quantify over α , and obtain the type ∀α.α → α . This process is
called abstraction or generalization. A polymorphic type represents many types which can
be obtained by instantiating the quantified type constants (type variables). Moreover, we
obtain a proof for the instantiated type by instantiating the proof for the generalized type in
an analogous way.

Polymorphic types enable parametric polymorphism, which allows functions to be called
with parameters of different but acceptable types. Parametric polymorphism is important for
the use of Haskell’s many convenient higher-order functions, such as id, flip and $.

Quantified types. The Damas-Hindley-Milner (DHM) type system serves as the classical
example of a type system with polymorphic types. It forms the basis of the type systems
of ML and Haskell, and underlies the type systems of many other languages. DHM’s type
language is an extension to that of the simply typed language calculus. It additionally contains
type variables α and poly types (type schemes) σ :

τ ::=α -- type variable
| τ1→ τ2 -- function type

σ ::=∀α.σ -- poly type: may have a qualifier
| τ -- mono type: has no quantifiers

α,β -- type variables
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Γ ` e : σ

(x : σ) ∈ Γ

Γ ` x : σ
VAR

Γ ` f : τ1→ τ2
Γ ` a : τ1

Γ ` f a : τ2
APP

Γ,x : τ1 ` e : τ2

Γ ` λx.e : τ1→ τ2
LAM

Γ ` e : σ

Γ,x : σ ` b : τ

Γ ` let x = e in b : τ
LET

Γ ` e : σ

α 6∈ ftv Γ

Γ ` e :∀α.σ
GEN

Γ ` e :∀α.σ

Γ ` e : σ [α := τ ]
INST

Figure 1.7: The DHM type system.

A mono type τ does not contain universal quantifiers. A poly type can be interpreted as the
infinite set of mono types, where each quantified type is substituted by some mono type. The
identity function λx.x has the type τ → τ for any type τ . It can thus be given the poly type
∀α.α → α . The type variable α in such a type is an object term that is not to be confused
with a meta variable.

The distinction between mono and poly types is important in the declarative type rules of
DHM. Lambda abstractions take mono types as parameter4, and have a mono type as result.
Polymorphic types are introduced in the environment by (non-recursive) let-expressions:

e ::= ...
| let x = e1 in e2 -- generalized type of e1 is visible as x in e2

Although a let-expression can be interpreted as (λx.e2) e1, the typing derivation may differ
depending on the presence and application of a generalization rule.

The DHM type system in Figure 1.7 consists of the following rules of which we mention
some details below. Via one or more applications of the INST rule, poly types may be instan-
tiated to mono types by replacing a bound type variable with a mono type. Conversely, via
rule GEN a poly type can be constructed using quantification over a type variable, provided
that the substitution does not capture the free type variables in the environment.

Qualified types. In general, meta variables may be constrained by judgments that by them-
selves are insufficient to bind a concrete type to a meta variable. As an example, the following
type rules encode overloading of the addition operator on both integers and floats.

Γ ` + : I→ I→ I ADD.INT Γ ` + : F→ F→ F ADD.FLOAT

4 It has been shown that the inference of a polymorphic type for a parameter of a recursive function is undecidable
in general [Wells, 1999]. Many type systems thus impose restrictions on the types of function parameters to
make inference feasible.
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In the expression λx.x+x, the type rules for addition constrain x to be a numeric type, but do
not dictate whether this type is an integer or a float. At other locations in the derivation tree
there may be constraints imposed on the type that make it clear which of the rules applies.

During type inference, the type may be insufficiently constrained to resolve the judgment.
A typical strategy is to defer the judgment until the end of the inference of the scope in
which the judgment arose, which is usually at generalization points. If the type is still not
constrained sufficiently, a strategy is to default to one of the applicable rules. Another strategy
is to encode the judgment as part of the type (if potentially satisfiable) and delay the judgment
to all locations where the generalized type is instantiated. Such an encoded judgment is called
a qualifier.

A qualified type of the expression λx.x+ x given the above rules is:

(λx.x+ x) ::∀α β .∃γ.(γ ` + : α → α → β )⇒ α → β

With additional information this type can be refined. An equivalence between β and α is
deducable from the rules ADD.INT and ADD.FLOAT. Also, suppose that we know further that a
qualifier γ ` + : α → α → α is simplifyable to a qualifier Num α , the type is refineable
to:

(λx.x+ x) ::∀a.Num a⇒ a→ a

Haskell’s overloading with type classes actually brings such reasoning under the control of
the programmer.

Such extensions to a type system do not come for free. When the code generation depends
on the proof of a deferred judgment, the generated code needs to be parametrized by infor-
mation that is derived from the deferred proof. Moreover, a function may be given a type
with qualifiers that can never be satisfied, which we may only find out when we try to use an
identifier with such a type. Some type systems define a coherence relation on qualifiers to
formalize the potential satisfaction of constraints.

1.2.6 Damas-Hindley-Milner Inference

In this section we consider type inference for the DHM type system. The naive backtracking
approach as presented earlier may easily lead to nontermination, because the INST and GEN

rule can be alternated as each others inverse indefinitely. However, the syntactical restrictions
on types permits a more appropriate inference strategy.

With some effort, we can deduce that generalization has only an effect for the toplevel
expression, or for the expression e in a let-expression. It is also sufficient to perform in-
stantiation only after taking the type of an identifier from the environment in the rule VAR.
According to the interpretation of poly types, a type quantified over a variable that does not
occur free in the type describes actually the same set of mono types as the type without the
quantification, thus we only need to consider types that occur free in the type as generalization
candidates. Moreover, the order of the type variables over which is quantified is irrelevant.

Inference algorithm W exploits these properties. It is a sound and complete implementation
of the rules, produces most general types, and needs to examine each node of the AST only
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In the description of algorithm W we assume monadic versions of the above functions to form
an inference monad Inf for the implementation of the DHM type system. Essentially, these
monadic functions are wrappers around the above functions:

type Inf = RWST Env Subst Errs -- reader, writer, and state monad
freshI :: Inf Ty -- returns a fresh type
unifyI :: Ty→ Ty→ Inf () -- unifies two types
genI :: Ty → Inf Scheme -- generalizes a type to a scheme
instI :: Scheme → Inf Ty -- instantiates a scheme to a type

The threading of the substitution and collection of error messages is hidden in the monad,
as well as the top-down distribution of the environment, so that we define algorithm W as a
functionW :: Expr→ Inf Ty:

W 〈x〉 = asks (lookup x)>>= instI

W 〈f a〉= do
r← freshI
t ←W f
s←W a
unifyI t〈s→ r〉
return r

W 〈λx.e〉= do
t ← freshI
r← local (insert x t) (W e)
return〈t→ r〉
W 〈let x = e in b〉= do

t ←W e>>=genI
local (insert x t) (W b)

The notation 〈e〉 represents the abstract syntax of an object term e. We use this notation to
conveniently pattern match and construct object terms in the host language. Note that 〈x〉 is
an AST of the type Expr and x is an AST of the type Identifier, but that 〈f a〉, f and a represent
ASTs of the type Expr.

Figure 1.8: Algorithm W.

once. Many actual inference algorithms are based on algorithm W. We describe algorithm W
as a monadic functionW :: Expr→ Inf Ty in Figure 1.8.

Unification plays an important role in algorithm W. In this thesis, we assume the following
functions have an efficient implementation [Dijkstra et al., 2008]:

fresh :: Subst→ (Ty,Subst) -- returns a fresh type var
unify :: Ty → Ty→ Subst→ (Errs,Subst) -- unify two types (improves subst)
generalize :: Env→ Ty→ Subst→ Scheme -- generalize a type in a certain env
instantiate :: Scheme → Subst→ (Ty,Subst) -- instantiate a scheme freshly

The type Subst represents a substitution and a fresh variable supply, which is a mapping from
meta variable to a concrete type. The types Ty and Scheme coincide with τ and σ respectively.
An environment of type Env contains bindings from identifiers to types, and Errs is the type
of a collection of error messages. Similarly, we assume that there is a type Expr and Identifier
that coincide with the nonterminals e and x respectively.

Figure 1.8 shows Algorithm W, which is a recursive traversal of the Expr AST. The combi-
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W 〈let x = e in b〉= do
t ← freshI -- start with fresh type for binding
local (insert x t) (W e>>=unifyI t) -- infer type and match against binding
s← genI t -- generalize over unbound variables
local (insert x s) (W b) -- infer with generalized scheme in env

Figure 1.9: Algorithm W with a recursive let-binding.

nator local applies changes to the environment that are only visible in the monadic computa-
tion it encapsulates. The function insert adds a binding into the environment, which possibly
shadows an already existing binding. The asks operator exposes the hidden environment, so
that we can use lookup to recover the type to which an identifier is bound.

The above code assumes a non-recursive let binding. Figure 1.9 shows the algorithm for a
recursive let binding. The unification at the end of inference for e binds t to its actual type.
All occurrences of x in its own right-hand side must agree with t. To prevent having to deal
with polymorphic recursion, x has a mono-type inside its own binding. The generalized type
is only available in the body of the let-expression.

The positioning of local and genI is tricky. Since generalization is performed with respect
to free type variables in the environment, the generalization needs to be positioned outside
the local environments of the e and b subexpressions, because the type to generalize occurs
in these environments.

The monadic formulation of algorithm W is concise because cumbersome flows of envi-
ronments and substitutions are encapsulated by the monad. However, the abstraction offered
by the monad is not always obvious when the object language is more complex. When the
object language has pattern-bindings, new bindings arise when visiting the pattern, which
means that behavior for the environment is more complex than simply top-down. If multi-
ple derivations are possible, then substitutions may need to be duplicated and merged. The
sequencing of operations on the encapsulated state is therefore important.

1.2.7 Polymorphic Lambda Calculus

When we eliminate the distinction between mono and poly types, and thus allow poly types
everywhere, we obtain an implicitly typed version of the System F type system. It allows
expressions such as λ f .g (f (λx.x)) (f 3), where a lambda parameter is applied to values of
different types, which is not expressible in the DHM type system. Unfortunately, inference
for this system is undecidable [Wells, 1999], and it does not have most general types.

For System F itself, type checking is decidable. However, the syntax is verbose, as type
abstraction and type instantiation are explicitly encoded, and types need to be given explicitly
for lambda parameters. Figure 1.10 shows the inference rules of System F, and we discuss
some aspects of the rules below.

A type application f σ requires f to have a universally quantified type, and provides the
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Γ ` e : σ

(x : σ) ∈ Γ

Γ ` x : σ
VAR

Γ ` f : σ1→ σ2
Γ ` a : σ1

Γ ` f a : σ2
APP.E

Γ ` f :∀α.σ2

Γ ` f σ1 : σ2 [α :=σ1 ]
APP.TY

Γ,x : σ1 ` e : σ2

Γ ` λx.e : σ1→ σ2
ABS.E

Γ ` e : σ α 6∈ ftv Γ

Γ ` Λα.e :∀α.σ
ABS.TY

Figure 1.10: System F.

type σ to instantiate this type with. A type abstraction Λα.e quantifies the type of e over α .
The syntax of f thus dictates when to apply rule APP.TY and rule ABS.TY.

Variants of System F are typically used for typed backends of compilers, because of its
expressiveness. For example, evidence translation of Haskell type classes may need System
F types [Faxén, 2002]. As frontend, type systems are proposed that are more restrictive than
System F, but more liberal than the DHM type system. It is desirable that such systems
do not require type annotations for programs that are acceptable by DHM, and allow for a
predictable inference. An inference algorithm then infers a type for such programs, and maps
these to System F terms.

1.2.8 Discussion

The DHM inference algorithm in Section 1.2.6 shows that the mapping between a declarative
type system specification and its accompanying inference algorithm is not straightforward.
The gap between a complex type system and a sophisticated inference algorithm is even
larger. As mentioned above, one of reasons is that an inference algorithm requires informa-
tion that is not present in type rules. Also, type derivations are typically only treated as a
model. Inference algorithms compute types from abstract syntax trees, with the underlying
assumption that the combination of type and AST can be turned into a derivation tree.

Generalization and instantiation, for example, are often dealt with as part of the unification
algorithm in order to support on-demand impredicative instantiation, which is the instanti-
ation of a type variable with a poly type. In the type rules these are encoded as separate
expression rules.

A declarative specification is typically a minimalistic lambda calculus to explain particular
language features, whereas programming languages are much richer in syntax and language
features. Algebraic data types are typically not present in declarative specifications, and
neither are mutually recursive let bindings, because these are often regarded as syntactic
sugar. Actual programming languages, however, require the presence of such features.

We can improve the resemblance between the inference algorithm and declarative spec-
ification when the structure of the inference algorithm can be derived from the declarative

27



1 Introduction

specification. In this thesis, we propose the use of attribute grammars as the basis for such
algorithms. Section 1.3 gives a short introduction.

1.3 Background on Attribute Grammars

In Section 1.2, we followed the common practice of specifying the semantics of programming
languages via relations between properties, where the relations are defined by inference rules
and the properties include a source term. Attribute Grammars (AGs) [Knuth, 1968] are an al-
ternative approach. An AG specifies the semantics of a language as attributes on nonterminal
symbols in the grammar of the language.

An AG is a context-free grammar extended with attributes and rules. We give a definition
in Section 1.3.1, in which we describe that attributes are associated with nonterminals, and
rules with productions. Given a value for each attribute associated with the nonterminal
symbols of a production, the rules specify whether these values are correct. On the other
hand, the rules can also be used to compute such attributions for a given AST, which we
address in Section 1.3.4.

In the other subsections we describe common extensions, features and uses of attribute
grammars for the purpose of showing why AGs are an attractive language for describing the
implementation of compilers, but also to give some background information to which we
refer from later chapters of this thesis. A shallow scan through these subsections may be
beneficial to the understanding of the other chapters of this thesis.

Section 1.7.5 gives an overview of various systems that provide AGs in various flavors.

1.3.1 Syntax of Context-Free Grammars and Attribute Grammars

We introduce a notation for attribute grammars. In this section, we use the term host language
to refer to the language in which the algorithm or compiler is written which we generate from
the attribute grammar description. As we see later, functions of the host language may appear
in grammar descriptions.

We are slightly more formal in this section in comparison to the other sections because in
later chapters we introduce various notations for attribute grammars and extensions. Since
concepts such as nonterminals, productions, attributes and abstract syntax trees are common
to those notations, we introduce these here — although we actually expect that the reader is
already familiar with these definitions.

Context-free grammars. Formally, grammars specify languages, but we also use gram-
mars to describe the structure of tree-like data structures. Chomsky [1956] described several
classes of grammars with increasing expressiveness and implementation complexity. The
class of context-free grammars is particularly convenient for the description of the structure
of terms, but is usually not expressive enough to describe the desired correctness properties
of programs such as well-typedness. With attribute grammars, context-free grammars are
combined with a different formalism to permit the description of such properties.

28



1.3 Background on Attribute Grammars

Definition (Context-free grammar). A context-free grammar is a tuple (V,N,S,P) where V
is a set of terminal symbols (the alphabet), N is a set of nonterminal symbols, S is the start
symbol with S ∈ N, and P is a set of productions (defined below). The set V and N must be
disjoint.

Definition (Production). A (context-free) production p= n→m is a rewrite rule with nonter-
minal symbol n ∈ N, and a sequence of symbols m ∈ V ∪N. The sequence m may be empty.
The application of p to a sequence of symbols s ∈ V ∪N constitutes to the rewriting of one
occurrence of n in s to m. In production p, n forms the left-hand side of the production and m
the right-hand side.

To summarize, a grammar is a rewriting system where productions specify a rewrite step
from a sequence of symbols to sequence of symbols. In a context-free grammar, a produc-
tion specifies how to rewrite a single nonterminal symbol to a sequence of symbols. The
rewriting terminates when only terminal symbols are left: when successive applications of
productions to some singleton sequence n (with n ∈N) results in a sequence of symbols, then
this sequence is derived from n.

Definition (Sentence). A string is a sequence of symbols. A sentential form is a string
derivable from the start symbol of the grammar. A sentence is a sentential form consisting
only of terminal symbols.

Definition (Derivation tree). A derivation tree is a tree t that represents how a sentence s is
derived from a symbol m, and is inductively defined as follows:

• A leaf t represents either the derivation of the empty string from a nonterminal symbol
n if there exists a production p = n→ ε , or the trivial derivation of the singleton string
s = v from a terminal symbol v. (Only) in the former case, we say that the leaf is
associated with the nonterminal n and the production p. In the latter case, the leaf is
only associated with the terminal v.

• If trees t1, ..., tk represent the respective derivations of sentences s1, ...,sk from symbols
m1, ...,mk then the tree t, formed by taking t1, ..., tk as the respective children of the root,
represents the derivation of the sentence s1 ... sk from symbol n if there exists a produc-
tion p = n→ m1 ...mk. We say that the root of t is associated with the nonterminal n
and the production p.

Definition (Syntax tree). A syntax tree (or parse tree) is a derivation tree that is associated
with the nonterminal n. This definition purposefully excludes singleton trees denoting a
terminal symbol.

Definition (Abstract syntax tree). An abstract syntax tree is the result of applying a projection
to some syntax tree. Usually, the resulting tree has less branches (e.g. due to omission of
layout) or branches replaced with a more general representation (e.g. desugared).

In this thesis, we do not concern ourselves with parsing, which is the process of construct-
ing a syntax tree that represents the derivation of a given sentence. Instead, we assume the
syntax tree as a given. In fact, we adopt the common convention to abstract over details in
the syntax tree (e.g. whitespace) and work with abstract syntax trees instead.
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g ::=grammar N p -- the grammar for nonterminal N
p ::=prod P s -- production P, with as RHS the sequence of symbols s
s ::= term x :: τ -- a terminal symbol with name x and type τ

| nonterm x : N -- a nonterminal symbol with name x and nonterminal N
N,P,x -- names of nonterminals, productions, and symbols

Figure 1.11: Language to describe context-free grammars.

Definition (Language). The language LG specified by a grammar G is the set of sentences
that can be derived from the start symbol of G.

If LG is a programming language, then the source code of a program written in LG is
a sentence in L. Moreover, if LG is a language of algebraic data types, then nonterminals
describe type constructors, terminals describe primitive types, and productions describe data
constructors. An AST represents a data structure, and the bit sequence in memory can be
regarded as the sentence.

Context-free grammar notation. In Figure 1.11 we introduce a language for the descrip-
tion of context-free grammars: i.e. terms in this language can be interpreted as a grammer
as defined above. We later extend the language to describe attribute grammars and some AG
extensions. Figure 1.12 shows an example. We explain some aspects of the notation below.

Definition (Meta grammar). When we talk about a grammar for a grammar, we call the
former a meta grammar.

In the notation, a grammar is the composition of grammars for individual nonterminals.
The set of terminals V and nonterminals N are left implicit, and productions P are grouped
per nonterminal. We reuse these letters for other purposes, such as N as an identifier for a
nonterminal, and P as an identifier for a production.

The grammar is abstract: instead of terminal symbols, only the type of a terminal symbol
is given. To stress the difference between terminals and nonterminals, we use a double colon
to specify the type of a terminal and a single colon to specify the name of a nonterminal.

Definition (Children). Each symbol in the right-hand side of a production has an explicit
name, which will be useful later. We call such named symbols the children of the production,
which stresses the correspondence to children in the AST of nodes to which the production
is associated.

In the notation, the nonterminal symbol of the left-hand side of a production is implicit,
since we only describe the right-hand sides of productions. We give the symbol on the left-
hand side of a production the fixed name lhs.
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grammar String -- a cons-list of characters
prod Nil -- empty list
prod Cons term hd :: Char -- head of the list (hd is a terminal)

nonterm tl : String -- remainder (tl is a nonterminal)

Figure 1.12: Example of a context-free grammar.

Attribute grammars. We now extend the above formalism to denote context-free gram-
mars with notation for attributes and their associated functions.

Definition (Attribute grammar). An attribute grammar is a tuple (T,N,S,A, I,O,P,F), where
the set of terminals T , set of nonterminals N, and start symbol S are defined as for a context-
free grammar. The set A consists of attribute names. The map I associates a set of names In ⊆
A with each nonterminal n in N, which make up the inherited attributes of n. Similarly, the
map O associates a set On ⊆ A with each nonterminal n in N, which makes up the synthesized
attributes of n. For each n, the sets In and On must be disjoined. The productions p ∈ P
are redefined below. The set F consists of computable functions f which we call semantic
functions.

Definition (Production). An (attribute-grammar) production p = u→ w · r ·X consists of an
annotated nonterminal symbol u and annotated symbols w, rules r, and a set of symbol names
X.

Definition (Annotated symbol). An annotated symbol is either an annotated terminal or non-
terminal symbol. An annotated nonterminal symbol u = x : n.a is a combination of a distinct
symbol name x ∈ X, a nonterminal symbol n ∈ N, and a collection of attribute names a ∈ A
so that a is either in In or On. We say that n is associated to x. An annotated terminal symbol
x : v is a combination of a distinct symbol name x ∈ X and a symbol v ∈ V .

Definition (Attribute occurrence). A reference to an attribute x.a is a combination of a sym-
bol name x ∈ X (associated to some nonterminal n) with an attribute name a∈ A so that either
a ∈ In or a ∈ On. A reference to a terminal x is a symbol name x ∈ X which is associated to
some terminal v. An attribute occurrence o is either a reference to an attribute or a reference
to a terminal.

We call an occurrence x.a also an attribute a of x. Attribute occurrences can be found in
rules, which are defined below.

Definition (Rule). A rule o1 = f o2 of some production u→ w · r ·X consists of a semantic
function f ∈ F and attribute occurrences o1 and o2.

The occurrences o1 represent the attributes defined by the rule, which are synthesized at-
tributes of u or inherited attributes of the children w. The occurrences o2 represent the at-
tributes used by the rule, which are the inherited attributes of u or synthesized attributes of
the children w. In addition, occurrences in o2 may also refer to terminals.
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Due to the restrictions on occurrences it is always clear whether an occurrence references
an inherited or a synthesized attribute. In our notation for attribute grammars (further below)
we allow the same name to be used for an inherited and a synthesized attribute.

Decorated trees. To give a semantics to rules, we consider syntax trees annotated with
attributes, and define how attributes of the tree are related to attribute occurrences, which are
mentioned in the rules of productions.

Definition (Attributes of syntax trees). An annotated syntax tree or semantic tree is a syntax
tree T where in addition subtrees are associated with the smallest set Q defined as follows.
Let t be a subtree and n be the nonterminal that is associated to t. For each attribute a in
In∪On, let there be a distinct attribute symbol qt ∈ Q. The set Q represents the attributes of
T .

The symbols q can be seen as instances of the attributes, or as occurrences of the attributes
in the tree. This definition states that many trees may be associated with the same nonterminal
yet have different instances of the attributes. Moreover, if t is an annotated syntax tree, then
the attributes of each annotated direct subtree of t are a distinct subset of the attributes of t.

Definition (Attribute association). Given some annotated syntax tree t with associated pro-
duction p, an attribute association α is a mapping so that for each attribute occurrence o of
p, either α o = q for some q ∈Q when o is a reference to an attribute (either of t or of a direct
subtree of t), or α o = v when o is a reference to a terminal child v of t.

For each (node of an) annotated syntax tree, there exists such an attribute association. We
leave open how this straightforward connection between attribute occurrences and attributes
of the syntax tree is constructed.

Definition (Valuation). A valuation M is a mapping that associates with each q∈Q and each
v ∈ V a value in the host language, which is denoted as M q or M v. Furthermore, M v = J v K
for v ∈ V where J v K is some encoding of v as a value in the host language. These values are
called decorations.

Definition (Attributed syntax tree). An attributed (or decorated) syntax tree is an annotated
syntax tree combined with a valuation M.

A rule o1 = f o2 encodes the condition M (α o1) = f M (α o2) for each node the rule is
associated with. Alternatively, we may say that f functionally defines occurrences o1 in terms
of occurrences o2, and thus that inherited attributes of children are defined by the parent,
whereas synthesized attributes of the children are defined by the children and may be used by
the parent.

Definition (Correctly attributed syntax tree). A syntax tree is correctly attributed when the
conditions imposed by the rules are satisfied.
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I ::=attr N i s -- attribute declaration for nonterminal N
i ::= inh y :: τ -- declares inherited attribute y of type τ

s ::= syn y :: τ -- declares synthesized attribute y of type τ

S ::= sem N c -- semantics definition for N
c ::=prod P r -- semantics in the form of rules for prod P
r ::=g [o1 ] = f [o2 ] -- a rule with pattern g and function f
o ::= t.x.y -- attribute occurrence of child x and attribute y, and kind t
t ::= inh | syn | loc -- explicit attribute kind (usually left implicit)
x,y -- names of symbols and attributes
f ,g -- expressions

Figure 1.13: Minimalistic language for AGs.

attr String -- declares atributes of String
inh down :: Char -- an inherited attribute down
syn sh :: String -- a synthesized attribute sh

sem String -- rules for each production
prod Nil lhs.sh = Nil -- rule 1: def. of syn attr of LHS
prod Cons tl.down = loc.hd -- rule 2: def. of inh tl with term hd

lhs.sh = Cons lhs.down tl.sh -- rule 3: of syn attr of LHS

Figure 1.14: Example of an AG that shifts a character in a string.

Notation for attribute grammars. The above definitions introduce concepts that underly
attribute grammar languages and implementations. Figure 1.13 gives a minimalistic language
for the description of AGs, which is an extension of the language for context-free grammars
in Figure 1.11. We explain some of its aspects below.

The notation5 in Figure 1.13 consists of a collection of nonterminal declarations g, attribute
declarations I, and semantics blocks S. Attributes are declared separately for each nontermi-
nal and have a type associated with them. The right-hand side of a rule is an expression f [o]
in some formal language H with embedded references to attributes at identifier positions of
H via attribute occurrences o. The left-hand side of a rule is also an expression, but limited
to patterns such as tuples. The use of expressions is slightly more flexible than just a function
symbol.

For attribute occurrences t.x.y, we take the following notational conventions. The attribute
kind t distinguishes inherited and synthesized attributes. This kind is always clear from the

5 Note that we reused some letters here which we used before in a different context as the map I and the start
symbols S.

33



1 Introduction

context thus we usually leave it unspecified in examples, unless we want to stress the differ-
ence. To refer to an inherited attribute y of a symbol named x, we use inh.x.y or simply x.y.
To refer to a synthesized attribute y of a symbol named x, we use syn.x.y or simply x.y. To
refer to a terminal named x we use the attribute occurrence loc.x.self or simply x.self (see
also Section 1.3.6).

Informally, an AG in this notation is well-formed when the description can be translated to
an AG, and that the types of various identifiers and expressions are correct.

Figure 1.14 shows an example where we define a transformation on strings where each
character is shifted one position to the right. We use an inherited attribute down to represent
the preceding character. Given a value ’d’ as initial down value, the result for "Ag" is "dA".
We show a more complex example in Section 1.3.11.

Local attributes. We also use the notation loc.loc.x to refer to a local attribute with the
name x, which is an attribute defined by a rule of a production and is only in scope of that
production. The name must be distinct from the name of a terminal symbol. Local attributes
are typically used to represent common subexpressions.

Syntactic sugar. A terminal v can be encoded as a fresh nonterminal (Section 1.3.7) with a
single synthesized attribute and a single ε-production that defines the attribute with the value
J v K. A local attribute can be encoded as a fresh nonterminal with a single inherited attribute
and single synthesized attribute and a single ε-production that contains a rule that copies the
value of the inherited attribute to the synthesized attribute. As convenient simplification, we
therefore assume in the remainder of this chapter that terminal-leafs and local attributes are
not present in AGs and ASTs, although we use terminals and local attributes in examples. In
later chapters we take local attributes and terminals into account explicitly.

Interfacing with the AG. The evaluation of a tree described by the AG (which we discuss
in Section 1.3.4) takes as input a record of values for the inherited attributes and results in a
record with values of synthesized attributes.

1.3.2 Dependency Graphs

To describe how the values of attributes are actually computed, we consider the data de-
pendencies induced by rules. The trees that we consider in this section are derivation trees
generated by some AG (T,N,S,A, I,O,P,F).

Graphs of a production. A rule o1 = f o2 represents a data dependency of occurrences o1
on occurrences o2, or equivalently, a flow of data from o2 via f into o1. These dependencies
form a graph.

Definition (Production dependency graph). A Production Dependency Graph (PDG) is a
directed graph (V,E) associated with some production p. There is a one-on-one mapping
between vertices d ∈ V (Figure 1.15), and the nonterminal children of p, the rules of p and
attribute occurrences in rules of p. The edges E consists of:
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1.3 Background on Attribute Grammars

d ::=o -- attribute occurrence vertex
| rule x -- rule vertex with some distinct identifier x
| child x -- child vertex with x the name of the child

x -- identifiers

Figure 1.15: Syntax of vertices in a PDG.

loc.loc.hd rule r2

inh.lhs.down

inh.tl.down syn.tl.sh rule r3 syn.lhs.sh

child tl

Figure 1.16: Exemplary PDG of production Cons.

• For each vertex syn.x.y an edge to a vertex child x.

• For each rule [o1 ] = f [o2 ] (represented as vertex rule r) an edge from rule r to vertex
o for each o ∈ o2, and an edge from vertex o to rule r for each o ∈ o1.

Similarly, a production data-flow graph is a production dependency graph with the edges
reversed.

Figure 1.16 shows the PDG of the production Cons of Figure 1.14. For simplicity, we
modelled the terminal hd as a local attribute loc.loc.hd.

Graph of a tree. These graphs can be projected on each node of a tree and then combined
to form a dependency graph for a tree, or a data-flow graph for a tree. The general idea is
that we take the PDG of the root of the tree and then add the graph for each child of the root,
which describe the dependencies of synthesized attributes of the child on inherited attributes
of the child.

Definition (Tree dependency graph). For some annotated syntax tree t with associated pro-
duction p, attribute association α , and annotated subtrees t1, ..., tk with corresponding nonter-
minal children c1, ...,ck of p, the tree dependency graph is inductively defined as the union of
the PDGs of t1, ..., tk and the instantiation of the PDG of p by transforming (with preservation
of edges) rule and child vertices to fresh vertices and each occurrence vertex o to vertex α o.
Similarly, a tree data-flow graph is a tree dependency graph with the edges reversed.

Given a tree, evaluation algorithms of AGs (Section 1.3.4) are traversals over the tree
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dependency graph expressible as tree traversals6 over the tree that are described by a non-
deterministic tree-walking automaton (Section 1.3.3). Traditionally, such traversals may be
demand-driven (traversing the dependency graph based on which attributes are needed) or
may be described by a deterministic tree-walking automaton.

We come back to evaluation algorithms in Section 1.3.4. We first consider static approxi-
mations of the dependency graphs which can be used to prove that none of the attributes have
a cyclic definition, and are an essential ingredient for a description of the evaluation with a
deterministic tree-walking automaton.

Approximations. Below, we consider abstract interpretations of AGs that construct depen-
dency graphs that are a static approximation of the tree dependency graphs of collections of
trees in certain contexts:

Definition (Context). A context is a symbol C of some fixed set of symbols Ω given per
application and grammar. A context represents an additional set of invariants imposed on a
tree.

Concretely, the invariants represented by a context may include that:

• The tree is associated with a certain nonterminal or production;

• The tree occurs as a subtree at certain position of a parent;

• The tree has attributes that are used according to some protocol [Farrow, 1984].

A collection of trees in a context share a common structure. By distinguishing contexts,
we may consider projections of the tree dependency graphs of a collection of trees on the
common attributes (of the root) that each tree in the collection has, so that the edges are
superset of the projected edges of each individual tree. The projection-operation distributes
over graph union, which ensures that we can work with approximations of projections of
graphs of subtrees.

Definition (I/O graph). An I/O graph of some nonterminal n ∈N is directed graph where the
vertices consist of the attributes a ∈ In ∪On and the edges represent either (indirect) depen-
dencies or data flow between attributes of some trees that have n as root. An I/O dependency
graph is an I/O graph where the edges represent data dependencies, and in an I/O flow graph
the edges represent data flow.

Note that the above definition does not specify which edges are included in an I/O graph,
but only specifies what the edges represent. We later give a consistency condition that speci-
fies which edges must minimally be present.

Definition (Nonterminal dependency graph). The Nonterminal Dependency Graph (NDG) of
nonterminal n is the I/O dependency graph of n that approximates the dependencies between
attributes of any tree associated with n.

6 The shape of a tree dependency graph ensures that a description with a tree traversal is possible. The dependencies
are properly nested: on a path from a synthesized attribute of a child to some (indirect) dependency, an inherited
attribute of the child occurs before any attribute of a sibling or parent.
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inh.down syn.sh

Figure 1.17: An I/O graph of nonterminal String.

An I/O graph of some nonterminal n serves as an approximation of the dependencies be-
tween attributes of some trees (context dependent) that are associated with n. In contrast, an
NDG is a single, context-independent approximation of dependencies between attributes of
some nonterminal.

Definition (Augmented PDG). The augmented PDG of a PDG G of some production p and
I/O graphs of the nonterminal children of the production, is G with edges added between
attributes of children so that if there exists an edge between attributes of the given I/O graph
of some child, then this edge also exists between the attributes of the child in the augmented
PDG, and vice versa7.

An augmented PDG of some production p serves as an approximation of the dependences
between attributes of some trees that are associated with p. It is a PDG parameterized with
the dependencies induced by the subtrees.

Collections of graphs. To specify which edges are part of the I/O graphs and augmented
PDGs we consider some properties of collections of these graphs.

Definition (Consistent approximations). A collection of I/O graphs and augmented PDGs is
consistent when each I/O graph of some nonterminal n in some context C is a projection of
the union of the augmented PDGs in context C of the productions associated with n.

Definition (Complete approximations). A collection of I/O graphs and augmented PDGs is
complete when for each production p the collection includes an augmented PDG and corre-
sponding I/O graphs for each combination of contexts that the children of p can occur in.

Definition (Smaller approximations). Graph A is smaller than graph B if A∗ is a subgraph of
B∗, where A∗ and B∗ are the respective transitively closed graphs of A and B.

Figure 1.17 gives an example of an I/O graph that is part of some collection that satisfies
the above properties based on the AG in Figure 1.14. It is an I/O graph of the nonterminal
String in the context of being the child tl of production Cons. The dependency from syn.sh
on inh.down is induced by the production Cons. If Figure 1.16 would include an edge from
syn.tl.sh to inh.tl.down, it would be an augmented PDG parameterized with the I/O graph.

7We specify here that the dependencies between attributes of a child in an augmented PDG match exactly to the
dependencies between the attributes of the corresponding I/O graph that the augmented PDG is parameterized
with, thus that edges of the PDG may impose constraints on the I/O graphs of the children.
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Cycle analysis. Cycle analysis of AGs is an abstract interpretation [Nielson et al., 1999]
that approximates the tree dependency graph of any tree by constructing a complete and
consistent collection of I/O graphs and augmented PDGs. The consistency and completeness
requirements lead to a set of mutually recursive equations for which we want to compute a
least solution. Such a solution is obtained with fixpoint iteration. In Chapter 4 we consider a
concrete cycle analysis; here we look only at the general structure of such analyses.

Various approaches distinguish different contexts which influence the accuracy and com-
plexity of the approximations:

Uniform AG. Knuth [1968] distinguishes as contexts the nonterminals to which trees are
associated, and the different positions in the right-hand sides of productions where
nonterminals can occur in. This approach8 leads to one I/O graph per nonterminal and
one augmented PDG per production. The AG is uniform or absolutely non-circular if
the augmented PDGs in this flavor are acyclic.

Well-defined AG. Knuth [1971] additionally distinguishes the production to which the tree
is associated. This approach leads to one I/O graph per nonterminal and production,
and an exponential number of augmented PDG, one for each combination of children
with productions. An AG is well-defined if for any tree the tree dependency graph is
cycle-free, which is the case when the augmented PDGs in this flavor are acyclic.

Ordered AG. Kastens [1980] distinguishes as contexts only the nonterminals to which trees
are associated, but does not differentiate the occurrences of nonterminals in the right-
hand sides of productions.

In our experience with UUAG and in agreement with observations by Räihä and Saarinen
[1982], an AG is in practice also ordered when it is well-defined.

1.3.3 Tree-Walking Automata

Tree-walking automata arose from tree language theory and were introduced by Aho and
Ullman [1969]. A tree-walking automaton (TWA) is device that walks over a tree in a con-
tiguous manner and is accompanied by a state machine that describes how the nodes of the
tree change their state upon each visit and whether the device goes up to the parent or goes
down to one of the children as the next step. Section 1.3.4 uses TWAs to describe evaluation
algorithms of AGs. We keep here a simplistic presentation; there exist many extensions that
increase the expressiveness of these automata, such as pebbles [Engelfriet and Hoogeboom,
1999].

Definition (Tree-walking automaton). A TWA for some AST is a tuple (V,Q, I,F,δ ), with
an alphabet V of node labels, a finite set of states Q, an initial state I ∈ Q, a set of final states
F, and a transition relation δ ⊆ (V×Q×Q×C×Q), where C = {up,down0, ...,downk} is a
set of commands and k is the maximum branching factor of nodes in the AST. There exists a

8 The actual approach does not distinguish different positions but instead instantiates augmented PDGs with I/O
graphs (thus copies them).
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p ::=plans P : N v -- execution plan for production P of nonterminal N
v ::=visit C i s b -- a visit in context C that may need i and can produce s
b ::= r -- evaluation rule
| invoke x C i s -- a down x in context C, which can provide i to x and expects s

x -- child name
C -- context identifier
i,s,r -- as defined in Figure 1.13

Figure 1.18: The execution plan language.

one-to-one relation between productions and symbols in V so that each node is labelled with
a v ∈ V depending on the production associated with the node.

A tuple (v,q,q0,c,q′) ∈ δ represents a transition from a node labelled v in state q to a state
q′, and moving to the node according to c. The automaton keeps track of a bit of history: q0
is the state of the node that caused the transition to the current node.

Definition (Deterministic tree-walking automaton). A deterministic TWA is a TWA where
the transition relation is a function δ :: V → Q→ Q→ (C,Q). Otherwise the TWA is nonde-
terministic.

Acceptance. Initially each node in the AST is associated with the initial state I. The
automaton starts at the root of the tree and stops if no step can be taken anymore. The tree is
accepted if the automaton ends with the root having an associated state in F. With each step,
the automaton visits a node. If the automaton is at a node with label v and associated state q,
and previously visited a node in state q0, then the automaton chooses a step c and new state
q′ so that (v,q,q0,c,q′) ∈ δ , or the automaton stops if no such step exists. In the former case,
the automaton updates the state of the node to q′ and visits the parent if c = up or visits child
i if c = downi.

Evaluation of rules. An actual AG evaluation algorithm does not only traverse the tree
but also needs to apply rules to compute attributes. Thus, in an actual implementation, the
automaton also applies a subset γ (v,q) of the production’s rules upon making a transition to
state q at a node with label v.

Definition. Visit The TWA visits a node n if it arrives at n and executes γ (v,q) where v is
the label of n and q is the state of n.

Implementation with the Zipper. Various forms of deterministic TWAs can be imple-
mented in a purely functional programming language using the zippers [Huet, 1997]. Such
an approach models the imperative updates of the automaton to the state.
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plans Nil : String
visit AnyCtx inh down :: Char syn sh :: String

lhs.sh = Nil
plans Cons : String

visit AnyCtx inh down :: Char syn sh :: String
tl.down = loc.hd
invoke tl AnyCtx inh down :: Char syn sh :: String
lhs.sh = Cons lhs.down tl.sh

Figure 1.19: Exemplary execution plans of nonterminal String.

Execution plans. Figure 1.18 introduces a language of execution plans p for the descrip-
tion of the transition relation of TWAs, of which we explain some aspects below. Figure 1.19
shows an example. The language is not expressive enough to describe all transition relations,
but it suffices for a description of an AGs evaluation.

A collection of plans-blocks represents the transition relation δ . Since a context is an
agreement between parent and child, a context models the q0 parameter of δ . A plans-block
is associated to a unique production P and consists of a number of visit-blocks. A visit-block
v describes visits to the node in context C, and thus represents a subset δ v

PC
of δPC . Let r

be the rules that can be evaluated as a consequence of the tree walk taking transitions from
δ v

P. Then the inherited attributes i of the current node may be needed in the evaluation of r
and the synthesized attributes s can be computed by r. An invoke-rule represents possible
transitions to some child x of P in some context C so that values of inherited attributes i of
x can be provided, and values of synthesized attributes s of x may be needed by the current
node.

Given an acyclic PDG of P, the relation δP and the accompanying subset of γ can be
generated. This procedure is left as an exercise to the reader; we note that the number of
states is possibly exponential in the size of the productions and their children, and the order
of appearance of rules is irrelevant for the translation.

A collection of plain-blocks may represent also a transition function δ . In this case, each
visit-block v represents a distinct δ v

PC
⊆ δPC with precisely 1+n elements (of which element

i + 1 can be thought of as the continuation after visiting child number i), where n is the
number of invoke-rules in a visit-block. The rules must occur in define-before-use order. The
example in Figure 1.19 satisfies these constraints.

Implementations of execution plans. In comparison to the Zipper, there are less ‘imper-
ative’ and more efficient encodings of TWAs in functional languages. If we consider TWAs
with transition relations that do not make use of the q0 parameter, and thus do not distinguish
contexts, Swierstra and Alcocer [1998] presented an approach by exploiting lazyness (for
nondeterministic TWAs) which we sketch in Section 1.3.4, and Saraiva and Swierstra [1999]
presented visit functions, which are coroutines encoded as continuations (for deterministic
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TWAs with a total order imposed on visits which we sketch in Section 1.3.5).

Implementations described in this thesis. In Chapter 3 we build upon visit functions.
In Chapter 4 we show that we can represent transition relations that use contexts. In later
chapters we look at extensions to AGs that have accompanying evaluation algorithms that
cannot be described with a deterministic TWA. For example, in Chapter 5 we allow tree
walks directed by values of attributes, and in Chapter 7 we allow tree walks to jump back and
forth saved positions.

1.3.4 Demand-driven Attribute Evaluation

We can express demand-driven attribute evaluation by mapping an AG onto an execution plan
that describes a nondeterministic TWA (Section 1.3.3). This translation is straightforward:

• From each production an execution plan is derived with a single visit that lists all
attributes of the productions left-hand side.

• The visit-block contains the rules of the production, and an invoke-rule per child which
lists all the attributes of the child.

The attributes are then computed by running the described TWA.
An execution plan in the above form has a straightforward translation to algebras Haskell.

We sketch this translation. It is optional background material, but is not required for the
understanding of later chapters.

Catamorphisms. Let F be an endofunctor so that data constructors describing the AST A
form the initial F-algebra. The execution plans can be mapped straightforwardly to an F-
algebra φ so that cata φ A is a function g (which we call the semantic result or semantic tree)
that takes an argument for each inherited attribute of the root of A, and provides a result for
each synthesized attribute of the root. Function g encodes the tree dependency graph of ast
(Section 1.3.2), and lazy evaluation acts as nondeterministic TWA, with the additional feature
that each rule in the execution plan is at most executed once. Effectively, the functional
program is a term-graph representation of the dependency graph, and evaluation, rewriting
this term-graph [van Eekelen et al., 1996], results in the values of synthesized attributes.

Haskell translation. Swierstra and Alcocer [1998] showed how to express the algebra in
Haskell as a function (called a semantic function9). We demonstrate this approach based on
the example in Figure 1.14.

Figure 1.20 gives a sketch of the translation to Haskell code. We explain some aspects of
this example below.

For each nonterminal N a type T 〈N〉 for the semantic result of a tree associated with N is
generated, which is T String in the example. Nonterminal String has an inherited attribute of

9 Depending on the context, a semantic function may be the function in a productions rule or a function corre-
sponding to some data structure in an algebra.
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type T String = Char→ String -- type of the node’s semantics
cata String :: String→ T String -- maps AST to semantic AST
cata String Nil = sem Nil
cata String (Cons hd tl) = sem Cons hd (cata String tl)
sem Nil :: T String -- production without children
sem Nil lhs down = (lhs sh) where ... -- note that the T-type is a function
sem Cons :: Char→ T String→ T String -- production with two children
sem Cons loc hd loc tl lhs down = (lhs sh) where ...

Figure 1.20: Sketch of the algebra.

sem Cons loc hd loc tl = λ lhs down→
let lhs down = (lhs sh) where

tl down = loc hd -- transcription of the first rule
(tl sh) = loc tl tl down -- recursive call to child tl
lhs sh = Cons lhs down tl sh -- transcription of the second rule

in (lhs down)

Figure 1.21: The body of sem Cons.

type Char and a synthesized attribute of type String, hence the type of T String is Char→
String.

The cata-function associates a semantics with each constructor of the AST. It replaces a
constructor P with its semantic variant sem 〈P〉.

Semantic functions. Figure 1.21 sketches the generated semantic function sem Cons.
The body of a semantic function encodes the productions rules and the invoke-rules as given
in the execution plan. The encoding of the rules is straightforward. An invoke-rule with some
child tl is translated to a recursive call to the parameter that represents the semantic tree of
tl. The call is parameterized with values of the inherited attributes of tl, and a pattern match
against the results extracts the values of the synthesized attribute of tl.

Remarks. Demand-driven evaluation of AGs is popular in current AG systems. An ad-
vantage of on-demand evaluation is that it does not require an abstract interpretation as part
of its implementation, and works in combination with extensions such as remote reference
attributes [Magnusson and Hedin, 2007].

Another advantage is that attributes are not computed when their values are not needed at
runtime. Demand-driven evaluation may produce values of attributes even in the presence of
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cyclic attribute dependencies.
A disadvantage of demand-driven evaluation is the potential high space requirements also

known as space leaks.
The approach based on lazy evaluation goes further than demand-driven attribute evalu-

ation because the set of required attributes depends on how the values of attributes are in-
spected. In fact, using lazy lists it is possible to associate countable infinite attributes with a
nonterminal.

1.3.5 Statically Ordered Attribute Evaluation

We can express a statically ordered evaluation of AGs by mapping the AG onto a determin-
istic TWA (Section 1.3.3). Depending on what contexts are distinguished and the strictness
properties of the rules, there may be values computed for attributes that are not needed for
the result, or which are only needed later. Therefore, we will call this also eager, greedy or
strict evaluation of AGs.

Definition (Multi-visit AG). A multi-visit AG is an AG for which a statically ordered evalu-
ation strategy is possible.

Multi-visit AGs play an important role in this thesis because they make the notion of phas-
ing explicit, which is useful for reasoning about what parts of the tree have been investigated
and constructed so far.

Attribute scheduling. To map an AG to an execution plan of a deterministic TWA, we
need to determine for each production P how trees are visited that are associated to P. For
each visit, we need to determine which rules to apply and how the children of P are visited.
This process requires acyclic augmented PDGs.

Scheduling algorithms. Kastens [1980] presented an approach that attempts to derive a
smallest single sequence DeltaN of visits per nonterminal N so that the attributes of a child
with some nonterminal N can be computed by visiting the child according to some prefix of
DeltaN . Effectively, this approach does not distinguish any contexts. The approach entails
adding edges to the I/O graphs of N so they are equal and form a total order on the attributes,
which is possible for most AGs in practice, but the approach of Kastens sometimes needs
help in the form of additional attribute dependencies to accomplish this.

Kennedy and Warren [1976] presented an approach that works for any absolutely non-
circular AG. Their approach distinguishes protocols as contexts, which are the possible or-
ders in which the parent provides inherited attributes and demands synthesized attributes. In
Chapter 4 we investigate this approach in-depth and present a translation to Haskell.

Coroutines. A deterministic TWA can be implemented with coroutines [Warren, 1976].

Definition (Coroutine). A coroutine [Marlin, 1980] is a function that can pause during its
execution and return results to the caller. It may be parameterized with additional arguments
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when resumed by the caller. A generator is a coroutine that does not take additional argu-
ments.

When no contexts are distinguished, such coroutines can be encoded in a purely functional
language as visit functions [Saraiva and Swierstra, 1999]. The body of such a function builds
a continuation that is used for a subsequent call and returns it as part of the result. From the
caller’s perspective:

...
f visit1 = s f -- assuming s f is the coroutine of a child f
(f syn1, f syn2, f visit2) = f visit1 f inh1 f inh2
(f syn3, f syn4, f visit3) = f visit2 f inh2 f inh2
...

The callee has the following structure where the dots represent the usual encoding of the rules
that are scheduled to a particular visit:

sem 〈P〉 1 s child1 s child2 = lhs visit1 where
lhs visit1 inh1 ... inh2 = (syn1, ...,syn2, lhs visit2) where

...
lhs visit2 inh3 ... inh4 = (syn3, ...,syn4, lhs visit3) where

...

We explain this encoding in great detail throughout this thesis. Many chapters of this thesis
present variants of this encoding.

Remarks. Historically, statically ordered attribute evaluation results in faster code and less
memory usage. Also, recent developments on multi-core computing may give renewed inter-
est in visit sequences with respect to parallel evaluation [Wang and Ye, 1991].

1.3.6 Incremental Descriptions

Our formalism allows us to write various declarations that together form an AG in any order.
This is a consequence of the purely functional relation between attributes. It is an important
property of AGs, because it allows us to incrementally and separately describe AGs. In this
thesis, we make repeatedly use of this feature to eliminate common patterns from examples.
The separate descriptions are simply be merged by string concatenation.

Incremental notation. An AG description is incremental: nonterminals, productions,
children, attributes and rules may be declared separately. At the same time, we may de-
clare productions and attributes for multiple nonterminals, and children and rules for multiple
productions.

Figure 1.22 gives a number of examples. A declaration of a nonterminal and production
may appear multiple times and provide additional declarations. Nonterminal Expr has only
one production App but its contents are determined by several declarations.
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grammar Expr -- productions for Expr
prod App term impred :: Bool -- with terminal for App
prod Var term nm :: Name -- with terminal for App
prod App Var term uid :: Int -- extra terminal for App and Var

grammar Expr Type -- productions for multiple nonterminals
prod App nonterm f ,a : self -- multiple nonterminals of the same type

attr Expr inh x,y :: Int -- multiple attributes of the same type
attr Expr Type syn output :: self -- attributes for multiple nonterminals
sem Expr Type -- rules for multiple nonterminals

prod App lhs.output = f .output ‘mkApp‘ a.output
sem Expr

prod App Var lhs.x = 1 -- rule for multiple productions

Figure 1.22: Examples of incremental notation.

The type self is special and represents the type of the actual nonterminal of the description
the self appears in. The function mkApp must thus be an overloaded function that works both
on Exprs and on Types.

The merging process is straightforward10. A duplicate declaration of an attribute of the
same nonterminal is not allowed and considered a static error. Similarly, after merging, at-
tributes may not be defined by more than one rule, and each child of a production must be
defined once.

Nonterminal sets. To aid the definition of attributes on many nonterminals, we may use
nonterminal sets. We use nonterminal sets often in actual code but only sporadically in this
thesis.

Definition (Nonterminal set). A nonterminal set is a nonterminal name that represents one
or more other nonterminals or sets.

For example, we define a nonterminal name AllExpr, which actually stands for Expr and
Decl. When we declare attributes on AllExpr, these are actually declared for Expr and Decl:

set AllExpr : Expr Decl -- AllExpr includes Expr∪Decl.

Nonterminal sets are extensible: a set declaration of some set N may appear multiple times
in an AG description. Additionally, notation for set union and set difference may be used to
define sets. Determining sets is a straightforward fixpoint computation.

10 The interested reader may take a look at Transform.ag in the uuagc project for a merge algorithm. This
algorithm also allows some declarations to overwrite previous declarations.
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Nonterminal inheritance. A nonterminal may masquerade as a set. If due to a set declara-
tion, such a set includes other sets and nonterminals, the nonterminal inherits their attributes,
productions, and rules.

1.3.7 Higher-Order Children and Attributes

Definition (Semantics of a child). The semantics of a child with a nonterminal N is a seman-
tic tree associated to nonterminal N. The decorations still have to be given.

Definition (Higher-order child). A higher-order child is a child with a semantics determined
by the value of an attribute.

A conventional child is determined by syntax, whereas a higher-order child is determined
by an attribute. Higher-order children are also known as higher-order attributes or nontermi-
nal attributes. The notion ‘higher order’ originates from being able to pass the semantics of
children around as first class values.

Higher-Order AGs (HOAGs) [Vogt et al., 1989] support higher-order children. As part of
this thesis, we implemented this feature in UUAG [Löh et al., 1998]11. Higher-order children
play an essential role in this thesis: with such children we can dynamically grow the tree (e.g.
a proof tree) instead of being limited to a fixed tree (e.g. the parse tree).

Children defined by rules. In a conventional AG, the semantics of a child of a production
is determined prior to attribute evaluation. In a Higher-Order AG (HOAG), additional higher-
order children may be declared for a production. Their semantics is the value of an attribute,
or alternatively, the outcome of evaluating a rule:

child x : N = f [a] -- rule that introduces a child x

The expression f [a ] evaluates to the semantics for x as the following example demonstrates:

child x : String = sem Nil -- declares a child x that is defined by sem Nil
x.down = ’z’ -- inherited attr of x

Implementation. We see in later chapters how child-rules can be implemented. In the
translation to Haskell as sketched in Section 1.3.4, the semantics of a child is a function from
inherited to synthesized attributes, and each child is translated to a function call. A child-rule
in this section is a conventional evaluation rule that defines some local attribute, where the
local attribute is used as the function to call:

loc x = sem Nil -- local attr determines the semantics of x
x down = ’z’ -- defines inherited attr of x
x sh = loc x x down -- call to child x

11 The syntax that we use here deviates slightly from the actual syntax of higher-order children in UUAG. A type
signature inst.x : N declares a child x, and a conventional rule must define the attribute inst.x with the semantics
for x. In addition, when x already exists, its definition is a function that transforms the original semantics of x.
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Desugaring. HOAGs can be used to desugar an AST. As example of an HOAG, suppose
that String has a special production Single for single-character strings. Instead of defining the
semantics directly for Single, we add a child repl that represents the string in terms of Cons
and Nil:

grammar String prod Single term x :: Char -- the Single production
sem String prod Single -- and its semantics

child repl : String = sem Cons loc.x sem Nil -- higher-order child
repl.down = lhs.down -- inh attr of child repl
lhs.sh = repl.sh -- syn attr of child repl

Multi-visit AGs as HOAGs. In a multi-visit AG, a child may be visited multiple times
to compute some of the attributes. Such an AG can be encoded as a HOAG, which we show
below. As we see in later chapters, we worked on a core language that can represent such
AGs, and the question arose whether to use HOAGs as a target language. We did not do this
because of other requirements, but we present the translation anyway since it may give some
insight in how we organized the visit functions earlier.

We may encode multiple visits to some child c as a single visit to child c that only requires
the inherited attributes of the first visit and only provides the synthesized attributes of the first
visit. Additionally, it produces an attribute c.cont that represents the semantics of c after the
visit. For the second visit, we use a higher-order child c2 with c.cont as semantics. We then
visit c2 to provide/obtain the attributes of the second visit. For the next visit we use c2.cont,
etc. This approach requires the introduction of a potential large number of new nonterminals.

For a nonterminal N with m visits, we introduce the nonterminals N1, ...,Nm, such that
each nonterminal Ni has the inherited and synthesized attributes as associated to visit i of
nonterminal N. In addition, Ni (for i<m), has an extra synthesized continuation attribute
cont that contains the semantics of Ni+1.

For a production P we introduce the productions P1, ...,Pm. The terminals of production
Pi represent the decorations as available prior to visit i. Thus, P1 consists of the original
terminals and nonterminals of P, and Pi (for i > 1) consists of the terminals of Pi−1 and
additionally has terminals which encode the attributes computed in visit i. As optimization
the terminals that are not needed in later visits can be omitted from Pi.

The semantics for Pi consists of the rules in P’s plan for visit i (modulo renaming of
attribute references). Additionally, a rule is added which computes the semantics of Pi+1 and
stores it in attribute lhs.cont.

In this translation, a visit to a child (for i> 1) is thus represented as a higher-order child
that is instantiated by the continuation attribute produced by the previous visit.

1.3.8 Circular Reference Attributes

Reference Attributed AGs (RAGs) are an extension of attribute grammars with (remote) ref-
erence attributes [Magnusson and Hedin, 2007]. This is a common extension of AGs that
utilize a demand-driven evaluation algorithm. The extension allows subtrees to be passed
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around in attributes. Normally, the attributes of such a subtree T can be used and defined
only by the direct parent of T . However, with the extension, the attributes of T may be used
and defined by any rule holding a reference to T . Such an attribute is said to be accessed
remotely.

Graph structure. With this extension, the nodes are organized in a graph structure instead
of a tree. Calculations over graphs often require some form of repetition, which can be
encoded with cyclic attributes. Values of cyclic attributes can be computed if the demand-
driven evaluation is extended with fixpoint iteration, and the attributes are given an initial
value. The computation terminates if the rules are monotonic and each ascending chain of
attribute values stabilizes.

Advantages and disadvantages. Reference attributes provide a convenient way of trans-
porting information from one location in a tree to another location. Also, the extension al-
lows more analyses to be modelled with AGs, such as abstract interpretations, which are
typically fixpoint iterations over graphs. This expressive power comes with a price: the well-
definedness of an AG cannot be statically verified in general (Section 1.3.2). Moreover, if
values of inherited attributes can be defined remotely, well-formedness of the AG cannot
be checked statically, which has as consequence that a straightforward mapping (such as in
Section 1.3.4) to a purely functional language is not possible12.

1.3.9 Correspondences between AGs, HOAGs, Monads, and Arrows

In later chapters, we translate AGs to a monadic target language [Meijer and Jeuring, 1995]
and also consider AGs translated to Arrows [Hughes, 2004]. Being able to structure a com-
putation as a monad or arrow allows reflection on the structure of the computation. We use
such introspection in Chapter 7 to implement a step-wise evaluation strategy.

For example, consider the code of production Cons of the example in Section 1.3.1. In its
present formulation, it can be evaluated in a strict fashion:

sem Cons loc hd loc tl lhs down = (lhs sh) where
tl down = loc hd
(tl sh) = loc tl tl down
lhs sh = Cons lhs down tl sh

We rewrite this code using arrow notation [Paterson, 2001] and call the result an execution
plan:

sem Cons field hd loc tl = proc lhs down→ do
tl down← fcopy ≺ field hd -- transcription of the first rule
tl sh ← loc tl≺ tl down -- invoke arrow of child tl
lhs sh ← fcons ≺ (lhs down, tl sh) -- transcription of the second rule
returnA≺ lhs sh -- output

12 We implemented synthesized reference attributes in UUAG for lazily evaluated grammars.
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where fcopy = id
fcons = uncurry Cons

The translation into arrow notation essentially desugars the above code into point-free style,
thus in a linear composition of the rule functions that is interspersed with combinators to
rearrange the intermediate attribute values.

Can we represent any AG in this way? When we limit the expressiveness of the language
of the rules to tree constructions only, conventional AGs can express primitive recursive func-
tions whereas HOAGs can express all computable functions. This difference can be observed
when translating to arrows. In this setting, the semantics of a tree is an arrow that takes a
tuple of inherited attributes as input and produces a tuple of synthesized attributes as output.
A conventional AG is expressible as a plain arrow, but a HOAG requires the generalization
to a monad, and AGs that are not statically ordered may require a feedback-loop.

Introspection of the arrow is possible using defunctionalization [Reynolds, 1998]. Such an
arrow actually encodes the tree dependency graph (Section 1.3.2), thus introspection on this
structure allows a runtime optimization (e.g. elimination of identity functions) of this graph
which may be useful when traversing parts of the graph several times (Chapter 5).

1.3.10 Specification of Typing Relations

An AG can serve as a specification of a type system. We can straightforwardly map an AG to
a set of type rules (inference rules). The other way around (Section 1.4), which is the concern
of this thesis, is not as straightforward, because there may not exist an inference algorithm,
and the type rules may be under-specified (Section 1.2).

We associate nonterminals with typing relations. In the mapping of an AG to type rules,
we introduce a relation IN ` N :On for each nonterminal N, where IN and On are the inherited
and synthesized attributes of N respectively. The N represents the abstract syntax.

We associate productions with type rules. For each production prod P s we introduce a
type rule. The judgments of the rules are derived from the children and the rules of P.

For each child nonterm c : N in s, we add the judgment cI : c : cS to the type rule. As con-
clusion, we introduce the judgment lhsI : lhs : lhsS. This introduces all attributes and children,
but requires the attributes to be constraint according to the rules, which we accomplish by
mapping each rule straightforwardly to an equivalence judgment.

Finally, we need to specify how each child c is obtained from the AST lhs. The judgment
ConP (lhs,c) caters for that.

1.3.11 Damas-Hindley-Milner Inference

As an example of a type inference algorithm written with attribute grammars, we give an
AG implementation of the DHM algorithm (Section 1.2.6) by using the same approach as
presented by Dijkstra and Swierstra [2004].

Definition (Chained attribute). A threaded attribute or chained attribute stands for both an
inherited and a synthesized attribute with the same name.
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grammar Expr -- abstract grammar for expressions
prod Var term x :: Name -- the identifier x
prod App nonterm f : Expr -- left-hand side of application

nonterm a : Expr -- right-hand side of application
prod Lam term x :: Name -- the identifier x bound by the lambda

nonterm b : Expr -- the body of the lambda
prod Let term x : Expr -- the name of the binding

nonterm e,b : Expr -- the binding and body
attr Expr inh env :: Env -- inherited environment

chn subst :: Subst -- chained attr: both inh and syn
syn ty :: Ty -- synthesized type
syn errs :: Errs -- collection of type errors

Figure 1.23: DHM grammar and attributes.

The environment is modeled as an inherited attribute, errors as a synthesized attribute, and
the substitution as a chained attribute.

For the type we have two options. Either the parent passes an expected type to the child
that is further constrained by the child, or the child passes up an inferred type that is further
constrained by the parent. When type annotations are part of the language, the former ap-
proach detects type errors faster. The information from these type annotations can then be
given to a child, instead of verifying the resulting type after the fact. However, for this exam-
ple it does not matter, thus we take the latter approach, which we also used for the monadic
implementation of DHM in Section 1.2.6.

Figure 1.23 shows the grammar and attributes of the example. The chained attribute subst
is shorthand for an inherited and synthesized with both subst as name. To make it clear which
of the two attributes we intend, we explicitly prepend syn and inh to the name in the rules.

The rules in Figure 1.24 describe how the environment is passed top-down through the
tree, how the substitution is threaded in-order through the tree, and how errors are collected
bottom-up. Since functions such as instantiate and unify produce an updated substitution, it is
the threading of the substitution that determines in what order the effects of these operations
are visible in the substitution. The substitution needs to be threaded carefully in order not to
loose any constraints on type variables.

In contrast to the monadic approach in Section 1.2.6, the rules are compositional. The
distribution of the environment, the threading of the substitution, and the collection of error
messages can be described separately and relatively independently. On the other hand, the
rules are also more verbose because the environment, substitution and error messages are not
hidden. Furthermore, rules that employ generalize are crosscutting as they deal with types,
substitutions and environments. This has a negative effect on the degree of separation in the
descriptions of these individual attributes. We address both issues in Section 1.3.12.
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sem Expr
prod Var loc.scheme = lookup loc.x lhs.env

(lhs.ty,syn.lhs.subst) = instantiate loc.scheme inh.lhs.subst
lhs.errs = /0

prod App a.env = lhs.env
f .env = lhs.env
(loc.res, inh.a.subst) = fresh inh.lhs.subst
inh.f .subst = syn.a.subst
(loc.errs,syn.lhs.subst) = unify f .ty (a.ty→ loc.res) syn.f .subst
lhs.errs = f .errs++a.errs++ loc.errs

prod Lam b.env = insert loc.x loc.argty lhs.env
(loc.argty, inh.b.subst) = fresh inh.lhs.subst
lhs.ty = loc.argty→ b.ty
syn.lhs.subst = syn.b.subst
lhs.errs = b.errs

prod Let e.env = lhs.env
b.env = insert loc.x loc.scheme lhs.env
loc.scheme = generalize lhs.env e.ty syn.e.subst
inh.e.subst = inh.lhs.subst
inh.b.subst = syn.e.subst
syn.lhs.subst = syn.b.subst
lhs.errs = e.errs++b.errs

Figure 1.24: DHM with AG rules.
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1.3.12 Copy Rules and Collection Attributes

We often pass values in standard top-down, bottom-up, and in-order patterns between at-
tributes of the tree. The rules that encode these patterns are trivial: essentially identity-
functions between attributes. For example, to pass an environment topdown to the children
of an application we use the following rules:

sem Expr prod App
inh.left.env = id inh.lhs.env -- copy down left
inh.right.env = id inh.lhs.env -- copy down right

To thread13 a counter uid (unique identifier) through the tree, we use the following rules:

sem Expr prod App
inh.left.uid = id inh.lhs.uid -- copy down to left
inh.right.uid = id syn.left.uid -- from left to right
syn.lhs.uid = id syn.right.uid -- copy up from right

Similarly, if a production has one child, we may pass the value of an attribute of that child
bottom-up as value for the same attribute of the parent:

sem Expr prod Lam syn.lhs.errs = syn.b.errs -- copy error messages up

Such copy rules [Magnusson et al., 2007] are so common14 that we allow these rules to be
omitted.

To make such an AG well-formed, the following algorithm augments an AG with copy
rules. If a rule is missing for an inherited attribute a of a child c, we insert a rule that takes
an attribute with the same name a from the local attributes, or synthesized attributes of the
children to the left c, or the inherited attributes of the parent. The last attribute occurrence
is taken in the ordering: inh from parent, syn of children, local attributes, inherited attrs of
parent. In a similar way, we treat omitted copy rules for synthesized attributes. These copy
rules can be considered to provide generic behavior for AGs that is not unlike the abstraction
offered by reader and state monads.

Furthermore, we often collect attribute values in a bottom-up fashion:

sem Expr prod App syn.lhs.errs = syn.left.errs++ syn.right.errs
sem Expr prod Const syn.lhs.errs = [ ]

Such collection rules [Magnusson et al., 2007] can also be inferred automatically when we
specify a combination operator and an initial value:

attr Expr syn errs use (++) [ ]

This approach captures the abstraction provided by writer monads.
13 When we write that we thread an attribute x through the tree, then we actually mean that we thread a value through

the tree via a sequence of attributes that are all named x, and that are chained together by (mostly) copy rules. In
a similar way, we talk about passing attributes topdown and bottom up.

14 The AGs of UHC have more than twice as many copy rules than explicitly written rules. Thus the inference of
copy rules saves a lot of manual labor.
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Intermediate nodes and copy rules. It is often convenient to have to have intermedi-
ate nodes in the AST structure. An important benefit of copy rules is that it allows us to
transparently add intermediate nodes to the AST.

As an example, consider function application in the lambda calculus. It is usually ex-
pressed as a binary expression in the abstract syntax:

grammar Expr prod App nonterm f ,a : Expr

A function call with multiple arguments (e.g. f a1 a2) is thus encoded as a sequence of
applications ((f a1) a2) using App. Suppose that we want to add an inherited attribute that
describes at which argument position an expression occurs:

attr Expr inh index :: Int
sem Expr prod App inh.f .index = inh.lhs.index

inh.a.index = 1+ inh.lhs.index

This definition is incorrect for nested function calls (eg. f a1 (g a2)), because the first ar-
gument a2 of the nested call receives 2 as value for its index attribute. We get the expected
behavior by distinguishing whether an expression occurs to the left or right of an applica-
tion with an inherited attribute. This, however, requires us to specify this attribute for each
occurrence of an expression nonterminal.

We obtain a more concise solution if we assume there is always a special top node above a
sequence of applications:

grammar Expr prod AppTop nonterm e : Expr
sem Expr prod AppTop inh.e.index = 0

The copy rules transparently connect the remaining attributes of e with attributes of lhs. For
these attributes, the existence of the intermediate node is not visible. A typical place to add
these intermediate nodes is in the parser or with a tree transformation.

If we furthermore ensure that a special root node occurs above expression trees, then we
also easily define an initial value for the index attribute:

grammar ExprTop prod Top nonterm e : Expr
sem ExprTop prod Top inh.e.index = 0

With nonterminal sets (Section 1.3.6) we can define attributes that are common to Expr and
ExprTop without code duplication.

Higher-order children and copy rules. To improve the effectiveness of copy rules fur-
ther, and in general to improve the separation of concerns, we can encode crosscutting rules
as higher-order children (Section 1.3.7). By encoding a rule r as a child, we abstract r from
how it is combined with other rules.

This idea is the spirit of this thesis. A higher-order child can be used to declaratively spec-
ify tasks (for instance, to ensure that two terms are equal), and the underlying implementation
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grammar Unify prod Unify -- nonterminal that represents unification
attr Unify inh ty1, ty2 :: Ty -- the two input types

inh env :: Env -- the input environment
chn subst :: Subst -- the input/output substitution
syn errs :: Errs -- the output error messages

sem Unify prod Unify -- essentially a wrapper around unify
(lhs.errs,syn.lhs.subst) = unify lhs.env lhs.ty1 lhs.ty2 inh.lhs.subst

Figure 1.25: Encoding of unify as a higher-order child.

sem Expr prod App
child u : Unify = sem Unify -- higher-order child
u.ty1 = f .ty -- input type
u.ty2 = (a.ty→ loc.res) -- input type
inh.u.subst = syn.a.subst -- copy rule
syn.lhs.subst = syn.u.subst -- copy rule
u.env = lhs.env -- copy rule
lhs.errs = f .errs++a.errs++u.errs -- copy rule

Figure 1.26: The DHM rules for App with copy rules.

(the unification function) reflects the effects of performing the task in terms of attribute val-
ues. The orchestration of these tasks is determined by how the rules weave the attributes
together.

In general, we can represent any function as a higher-order child. In Figure 1.25 we intro-
duce a nonterminal for unification that has inherited attributes for each input of unification
and synthesized attributes for each output of unification. The nonterminal has only one pro-
duction, which contains only one rule, which is the rule we abstract over.

In a similar way we can encode the fresh and instantiate functions as higher-order children
(Section 5.2.3). In Figure 1.26 we show how this is done for production App, where we
added the unify-nonterminal as higher-order child u to the production, and added rules for
the attributes of u. The latter rules are all implied by the copy rule mechanism and can be
omitted.

Remarks. The automatic completion of an AG with copy rules is a double-edged sword.
The mechanism saves a lot of boilerplate code, but the automatic behavior may not always be
intended. If we accidentally forget to define an attribute explicitly, and that attribute can be
given a default definition via a copy rule, then we are not warned that a rule is omitted. We
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provide a way to specify copy rules per production in Chapter 5, which gives more control
over where and what copy rules are applied.

The copy rule mechanism uses the order of appearance of children for threading and
bottom-up collections. This is sometimes not the appropriate order for a given application.
For example, higher-order children follow conventional children in the order of appearance,
thus are always at the end of copy rule chains. In such situations we can override the copy
rule behavior by giving explicit rules for attributes. However, this reduces the convenience of
copy rules, and the underlying idea that we rather specify patterns than individual rules.

As a solution, in Chapter 3 we allow the visit order to children to be explicitly specified
for eagerly evaluated AGs, and can then use copy rules that use the visit-order instead of the
order of appearance. Moreover, in Chapter 4 we define commutable (copy) rules, which are
rules that can be ordered independently of their value dependencies.

1.3.13 Advantages and Disadvantages

The greatest advantage offered by AGs is that specifications are composable. Productions,
attributes and rules can all be specified separately and automatically combined into a mono-
lithic specification (Section 1.3.6). This easily allows new attributes and behavior to be added
and shared with already existing rules. In particular, extra attributes can be used to specify
additional administration for type inference strategies, and for the specification of what a
compiler does with the inferred types.

In general, AGs offer modularity [Farrow et al., 1992] and extensibility [Viera et al., 2009],
which can be realized via generic programming and meta programming approaches. In this
thesis, we make use of such facilities, although these facilities themselves are not the focus
of this thesis. Instead, we focus on combining AGs with algorithms that implement the
functionality specified by declarative aspects of type rules.

1.4 Background on Ruler

This thesis complements previous work by Dijkstra and Swierstra [2006b] on the Ruler lan-
guage and tool suite. Ruler gives a semantics to type rule descriptions in the form of an
implementation with conventional attribute grammars and Haskell. Consequently, Ruler in
its current state provides only an implementation for syntax-directed type rules.

The purpose of this thesis is to provide a core language RulerCore for Ruler which allows
more complex inference strategies to be described. RulerCore extends on attribute grammars
in various ways. Therefore, we focus more on attribute grammars than on type rule descrip-
tions, although type systems play a prominent role in our work. The work on Ruler provides
a notation for type rules and show how this notation translates to attribute grammars. From
this work a notation that maps to RulerCore can be designed, hence we describe Ruler in this
section.
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relation expr view D -- declares the typing relation expr for D
holes g :: Gam e :: Expr t :: Ty -- specifies parameters of expr
judgespec g ` e : t -- notation for judgments of expr

relation member view D -- declares the relation member
holes g :: Gam x :: String t :: Ty -- specifies parameters of member
judgespec (x, t) ∈ g -- notation for judgments of member

Figure 1.27: Examples of declaring relations in Ruler.

1.4.1 Ruler Features

Ruler aims to generate both a type system specification and a type inference implementation
from a single description of the type system with type rules. The generated specification
consists of type rules formatted to LATEX figures, and can be used as documentation and for
formal reasoning. The generated implementation consists of attribute grammars that can be
included verbatim in the source code of a compiler. This approach guarantees consistency
between the specification and the implementation.

Ruler provides notation for the incremental description of type rules. It features the addi-
tion of parameters to judgements, type rules to relations, and judgements to type rules in a
similar way as we can add attributes, productions, and rules to an AG description.

When type rules are declarative, only well-formedness checks and generation of the spec-
ification is possible. However, Ruler provides also notation to describe algorithmic rules.
Using the facilities for incremental descriptions, a direction can be given to the parameters
of typing relations, and type rules can be associated with productions of an accompanying
attribute grammar, which turns the typing relation in a deterministic function for which AG
code can be generated.

1.4.2 Ruler Concepts

We take the explicitly typed lambda calculus as described in Section 1.2.3 as basis to show
the main concepts and syntax15 of Ruler. In Ruler, a type system description is a composition
of views on relations and their rules.

Definition (View). In Ruler, a view is a named subset of the declared relations, holes, judg-
ments, rules, etc. Each view describes a type system.

We start with a declarative view, which we give the name D. Later, we provide also an
algorithmic view with the name A.

Definition (Hole). In Ruler, the parameters of a relation are called holes. The parameters are
explicitly named and are explicitly typed.
15 We took the freedom to deviate slightly from Ruler’s actual syntax in order to have closer correspondence with

the notation that we use in this thesis.
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ruleset theRules relation expr -- a set of rules for expr
rule e.var view D -- rule for the var-case

judge L : member (x, t) ∈ g -- premise with the name L

judge R : expr g ` x : t -- conclusion with the name R
rule e.app view D -- rule for the app-case

judge F : expr g ` f : t1→ t2 -- premise with the name F
judge A : expr g ` a : t1 -- premise with the name A

judge R : expr -- alternative syntax for judgment
| g = g -- binds expression g to hole g
| e = f a -- binds f a to hole e
| t = t2 -- binds t2 to hole t

Figure 1.28: Example of Ruler rules.

Figure 1.27 shows how to declare a 3-place relation expr. The line with judgespec spec-
ifies a custom notation (meta-grammar) for the expr relation in terms of a meta grammar
production. Each hole must be uniquely present as meta nonterminal in this meta production.

Definition (Ruleset). A ruleset is a group of rules in combination with a collection of meta-
information, such as a name for the group.

A relation is either a foreign relation, or it is specified by the rules of some ruleset. Fig-
ure 1.28 shows the ruleset theRules. A rule is given an explicit name, and zero or more
judgments as premises above the line, and one premise under the line. A judgment has an
explicit name and corresponds to a relation. The arguments are either bound to the corre-
sponding holes via the custom syntax in a nameless way, or via a generic syntax where each
binding is explicitly given.

The language of Ruler expressions consists of meta variables (such as f and a), and ex-
ternal constants and operators (such as the function arrow). The interpretation of such terms
depends on the target language. Denotations can be given for individual symbols and con-
stants, as well as for (saturated) applications:

rewrite ag ((t1 :: Ty)→ (t2 :: Ty)) = (TyArr t1 t2) :: Ty -- denotation of application
external TyArr -- identity denotation
rewrite tex ((t1 :: Ty)→ (t2 :: Ty)) = (t1→ t2) :: Ty -- fully saturated appl only
format tex → = "\rightarrow" -- denotation of a symbol

Rewrite rules are applied in a bottom-up fashion. The LHS of a rewrite rule specifies a typed
pattern to match against a Ruler expression. The RHS must again be a Ruler expression,
which then is assumed to have the given explicit type. These types allow the notation to be

57



1 Introduction

overloaded. A rewrite rule applies if both the syntax and the types of the LHS matches the
actual Ruler expression.

An explicit denotation must be given for foreign relations. The distinction between con-
ventional relations and foreign relations is that the latter is not defined by rules. An explicit
denotation to the host language needs to be given for a foreign relation:

relation member view D -- member is not specified by rules
judgeuse tex (x, t) ∈ g -- denotation for LATEX
judgeuse ag (Just t) = lookup x g -- denotation for AGs with Haskell

format tex ∈ = "\in" -- denotation of a symbol
external Just lookup -- identity denotation

The above declarative specification can be typeset to LATEX. To describe an algorithmic
version, additional information needs to be added to the relations and rules. We can describe
these additions separately by defining a view A that extends from D:

viewhierarchy D<A -- partial order on views

In particular, we need to define how the relations are mapped onto nonterminals of an AG,
and turn the relations into deterministic functions such that the parameters can be mapped to
attributes.

Ruler code does not stand on its own. The generated code for type inferencing is supposed
to be used in conjunction with other AG code. An association is specified between relations
(schemes) in Ruler and nonterminals in the AG. For example, the relation expr is associated
with the nonterminal Expr. Its type rules are associated with productions of Expr. This
correspondence is made explicit by annotating the nonterminal declaration with the name of
the relation, and the productions with the name of the corresponding rule16:

grammar Expr [expr ] view A -- relation expr mapped to nonterminal Expr
prod Var [e.var ] -- rule e.var mapped to production Var

term nm :: String
prod App [e.app] -- rule e.app mapped to production App

nonterm f : Expr
nonterm a : Expr

Moreover, the holes are mapped attributes. Judgments represent the semantics of a pro-
duction. Judgments of a foreign relation are translated to AG rules. The other judgements
correspond to children of the production and are mapped to rules that define the inherited
attributes of the children, or pattern match against the synthesized attributes.

In view A, we refine the declaration of expr to include additional information. In this ex-
ample, we only provide additional information about the attributes. In general also additional
attributes and syntax can be added. We map the holes of the expr relation to inherited or syn-
thesized attributes. The hole that corresponds to the AST gets the special node designation:
16 Ruler allows productions to be defined by combining rules. Within the square brackets may not only be a name

of a rule, but also an expression that denotes a composition of rules. An example is the left-biased union of two
rules.
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ruleset theRules relation expr -- extensions to rules for expr
rule e.var view A -- rule for the var-case

judge R : expr g ` (node nm = x) : t -- association between term nm and x
rule e.app view A -- rule for the app-case

judge R : expr -- convenient for extensions
| e = (node f = f ) (node a = a) -- assoc child f to f and child a to a

Figure 1.29: Rules demonstrating node-holes.

relation expr view A -- algorithmic view on expr
holes node e :: Expr -- AST node

inh g :: Gam -- input param is inherited attribute
syn t :: Ty -- output param is synthesized attribute

A Ruler expression is at a defining position if it is bound to an inherited hole of a premise,
or bound to a synthesized hole of a conclusion judgment. Otherwise, it is at a using position.
The generated algorithm constructs a value at defining positions, and matches against values
at usage positions.

A node-hole takes the AST as value. In judgments of rules, node holes are treated differ-
ently with respect to normal holes in order to define the correspondence between judgments
of the type rule and children of the production. The node hole of a premise judgment may
only be an identifier and corresponds uniquely to child of the associated production. In the
expression bound to the node hole of the conclusion, these identifiers must occur and we
annotate them with the name of the child of the production. Figure 1.29 shows an example.
The syntax for explicitly named bindings of holes is convenient for extensions, as only the
bindings that are redefined need to be mentioned.

When a Ruler description is well-formed, an AG can be generated from the above descrip-
tion. This AG contains attributes and semantics for type inference, and can be combined with
other attributes and Haskell infrastructure into a compiler.

1.4.3 Damas-Hindley-Milner Inference

Similar to Section 1.2.6 and Section 1.3.11 we show in this section a DHM inference al-
gorithm in Ruler. In the DHM view, we add lambda abstractions without an explicit type
annotation and a let expression. However, we only show the code for the app-rule, since we
already explained Ruler’s concepts in the previous section.

In Figure 1.30 we add a DHM view on top of the algorithmic view, and define external
relations to obtain fresh types and to unify two types. The retain-keyword declares that the
left component of the output tuple of unify is mapped to a local AG attribute loc.errs, which
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viewhierarchy D<A<H -- DHM view H
relation expr view H -- DHM view on expr

holes chn s :: Subst -- substitution as threaded attribute
relation tyFresh view H -- wrapper for fresh

holes chn s :: Subst -- threaded subst
syn t :: Ty -- fresh type

judgespec t ‘fresh‘ -- syntax for the judgement
judgeuse ag (t,syn.s) = fresh inh.s -- denotation for AGs with Haskell

relation tyUnify view H -- wrapper for unify
holes chn s :: Subst -- threaded subst

inh t1 :: Ty1 -- left type
inh t2 :: Ty2 -- right type

judgespec t1 ≡ t2 -- syntax for the judgment
judgeuse ag (retain errs,syn.s) = unify g t1 t2 inh.s

Figure 1.30: DHM relations in Ruler.

can then be collected by conventional AG rules. This mechanism allows values to be exposed
as attributes to the encapsulating AG.

Figure 1.31 shows the rules for e.app in view H. The hole-bindings for judgments essen-
tially specify the threading of the substitution. The notation for hole-binding can be used to
supply bindings for holes that are not present in the judgement’s special syntax. To connect
two nodes, we introduce an intermediate meta variables s1, s2, etc. This threading has to be
done manually as Ruler does not have a concept of copy rules.

1.4.4 Discussion

Ruler provides notation and composition mechanisms for the description of type rules. Rules
may inherit from other rules, and rules inherited from the same rule from preceding views.
These mechanisms enhance modularity and reuse. Effectively, a ruler fragment is a partial
specification. The meaning of a ruler specification is only defined for a complete composition
in combination with the associated attribute grammar. It would aid formal reasoning if a
meaning can be attached to individual fragments.

The Ruler compiler generates only an inference algorithm for algorithmic specifications.
As a consequence, the code generation is limited to syntax-directed type rules. Syntax-
directedness does not hold for many declarative type systems that have relations with over-
lapping rules, or rules that dispatch on more than one argument of the conclusion judgment.
Also, the premisses must be functional. The transformation of a relation to a function by
itself is non-trivial, and common techniques such as fixpoint iteration or search strategies are
not directly supported by Ruler. We address these complications in this thesis (Section 1.5).

Moreover, Ruler’s features are actually not specific to the domain of type systems. Ruler
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ruleset theRules relation expr
rule e.app view H

judge T : tyFresh r ‘fresh‘
| inh.s = s1 | syn.s = s2

judge F : expr
| t = t1 | inh.s = s2 | syn.s = s3

judge A : expr
| t = t2 | inh.s = s3 | syn.s = s4

judge U : tyUnify t1 (t2→ r)
| inh.s = s4 | syn.s = s5

judge R : expr | inh.s = s1 | syn.s = s5

Figure 1.31: Ruler rules for e.app

provides a rudimentary composition mechanism, syntactic sugar, and type setting support
for a formalism that is not unlike AGs. These features would equally well benefit AGs in
general17.

1.5 Thesis Overview

Our ultimate goal is to semi-automatically generate a type inference algorithm from a declar-
ative type system specification. In particular, we focus on type systems described as a collec-
tion of type rules, and an implementation based on attribute grammars.

In this thesis, we present RulerCore, a language that extends attribute grammars. It facili-
tates the composable description of inference algorithms that are typically used to implement
declarative aspects of type rules. RulerCore can thus be used to give an executable semantics
to a set of type rules.

In this section, we give an overview of RulerCore’s extensions on attribute grammars. In
Section 1.6 we position this thesis with respect to the larger goal.

1.5.1 Inference Algorithms as an Attribute Grammar

We give an abstract description of how we structure inference algorithms as an AG. Chapter 5
shows a concrete example.

We give AGs over typing derivations, instead of AGs over the abstract syntax of a language.
In the following chapters of this thesis, we refer with abstract syntax tree either to typing

17 An example of a feature that benefits AGs is Ruler’s automatic unique numbering mechanism. We generalized
and implemented a similar mechanism for AGs.
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derivations or to the result of parsing18. Nonterminals thus correspond loosely to typing
relations, and productions to type rules (Section 1.3.10). The grammar for typing derivations
may have more structure than is present in the type rules. For example, we may add nodes
that each represents a choice between alternatives, so that we effectively describe a forest of
typing derivations.

We map each declarative aspect of a type rule to a higher-order child (Section 1.3.7) as
shown by Section 1.3.12. Extra attributes, such as a substitution, provide contextual informa-
tion for these children. For example, an equality premise between two types in the type rules
corresponds to a unification-child in the AG. The structure of the unification child servers as
proof that the two types can be made equal, and the resulting substitution attribute reflects
the effect of unifying the two types. We treat meta variables in type rules as conventional
attribute values (Section 1.3.11).

Type inference amounts to determining the structure of these children. To choose a par-
ticular tree for a child may require an exploration of candidate trees. Instead of constructing
a single derivation tree, we actually construct and choose from a forest of derivation trees.
Through value dependencies between attributes, we effectively define in which order the
structure of these children is determined, and in which order the effects of determining this
structure is visible in the substitution attribute.

This approach allows us to encode Algorithm W (Section 1.2.6). For more complex infer-
ence algorithms, such as constrained-based algorithms and algorithms that require fixpoint
iteration, the shape of the derivation tree and the values of attributes are mutually dependent.
Inference algorithms therefore analyze, explore, and extend (intermediate) partial derivation
trees. This process does not have a straightforward mapping to an AG, since an AG specifies
when the resulting derivation tree is correct, but not how the intermediate trees are obtained.
We introduce extensions to AGs to make such intermediate trees visible in the AG descrip-
tion.

1.5.2 Attribute Grammar Extensions

Chapter 2 gives a detailed outline of each extension. The following chapters work out each
extension individually.

Visits. RulerCore is a language for the description of higher-order, ordered attribute gram-
mars. We extend this basis with explicit specifications of visits. In comparison, visits are
implicit in ordered attribute grammars. Chapter 3 introduces the language and the notation.

For ordered attribute grammars, there exists an evaluation algorithm that starts with an
initially undecorated tree and ends in a correctly decorated tree. The state of a tree is the
collection of decorations present in the tree. During the evaluation, the state of the tree thus
changes. A configuration is a set of attribute names. A configuration describes the state of a
tree when the set of decorations of the root contain exactly the attributes as mentioned in the
configuration. In an ordered attribute grammar a linear order exists between configurations.

18 The typing derivation is typically an extension of the AST, thus the difference is usually irrelevant and can be
determined from the context. Similarly, we refer to AST and the AST decorated with attributes interchangeably.
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A visit, a unit of evaluation for a node, transitions the state of a tree to a state described
by the next configuration. We treat a node with a state described by a certain configuration
as a first class value, which we can store in attributes, obtain from attributes, inspect, and
programmatically apply state transitions on. This approach offers us sufficient control over
the AG evaluation to combine AGs with monadic operations, such as the unification monad
as shown in this chapter.

We provide notation to declare a totally ordered sequence of visits per nonterminal. Each
attribute declaration must be associated with one visit declaration, which has consequences
for the scheduling of rules. During attribute evaluation, attributes that are associated with
an earlier visits are defined before attributes of a later visit are computed/defined. In this
context defined means that a reference to the attribute value is available. Similarly, rules
of productions of a nonterminal may be associated with a visit of that nonterminal, which
restricts the scheduling of such rules to either that visit or to a later visit. Furthermore, we
may restrict a rule to a particular visit, which ensures that the rule is scheduled before any
rules of subsequent visits.

With this approach, rules may make assumptions about the configuration of tree tree prior
to the rule’s evaluation. Moreover, the notation allows us to define customizations of evalua-
tion strategies for rules of a particular visit or for visits to particular subtrees.

A disadvantage of our approach with respect to attribute grammars is that we need to spec-
ify a visit for each attribute. This requires additional effort and makes attribute declarations
less composable. We typically declare an attribute for a set of nonterminals instead of a single
nonterminal. In our approach, this is only possible if all the nonterminals in the set have a
common visit to which the attribute can be scheduled. We show in Chapter 4 how to solve
this issue.

Fixpoint iteration, clauses and constraints. In Chapter 5 we exploit the notion of
visits. We show how we to conditionally repeat the evaluation of a visit to a child, which
allows the encoding of fixpoint iteration. Using visit-local attributes, a state can be kept
between iterations. Moreover, we allow one or more clauses to be defined for a visit. Each
clause provides an alternative set of rules for the visit. With special match-rules we specify
constraints on clauses. With clauses in combination with higher-order children we can define
the structure of the derivation tree in terms of attributes, and thus deal with type-directed
inference algorithms.

We treat intermediate derivation trees as first class values. With the specification of visits,
we can reason about the configuration a tree is in. A tree that is in a certain configuration
can be detached, transfered via attributes to another location, and attached there. With this
mechanism we can represent constraints or deferred judgments as trees with access to their
context via attributes.

Exploration of alternatives. The above extensions describe algorithms that conserva-
tively approximate the derivation tree. For some type systems it is necessary to explore a
forest of candidate derivation trees. Such a forest can be represented with a decision tree,
which contains choice nodes that branch to various alternatives.
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In Chapter 7 we show how to describe explorations of such alternatives with AGs. We
present a technique that allows a spectrum of depth-first and breadth-first search strategies
to be described. In a statically scheduled AG, we can evaluate the AG in a step-by-step
fashion. By intertwining the evaluation of alternatives, we obtain a breadth-first search. After
each step, some intermediate values may be available, which can be used to direct the search
process.

Phases and Commuting Rules. In Chapter 4 we generalize visits to phases. A phase
may consist of one or more implicitly defined visits, which are determined by the static
scheduling of the AG. As a consequence, an attribute does not need to be explicitly assigned
to a visit, and its scheduling may optionally be constrained by a phase. Using this approach,
our extensions extend AGs conservatively.

For some chained attributes, the order induced by value dependencies of their rules may be
too strict when these rules encode commuting operations. We present commuting rules, which
are rules that are connected via a chained attribute, but which do not depend on previous rules
in the chain, Such rules thus give us more freedom in the scheduling of these rules. Typical
examples are the threading of a unique number supply, and the threading of substitutions. To
preserve referential transparency, the commuting rules must satisfy a liberal commutativity
law. With such rules we can functionally encode the behavior of a rule with side effect that is
scheduled to different implicit visits.

Dependent AGs. In Chapter 9 we apply dependent types to AGs. In a dependently typed
AG, the type of an attribute may refer to values of attributes. The type of an attribute is an
invariant, the value of an attribute a proof for that invariant. Thus, with dependent AGs we
can proof properties of our compiler. Additionally, this chapter serves as a showcase for visits
and clauses.

1.5.3 Contextual Chapters

In the extended edition of this thesis19, we place the above extensions in a wider context.

Graph Traversals. Many computations in a compiler take control-flow or data-flow graphs
into account. We show that the mechanism to attach and detach children can be used to
interface AGs with graph traversals [Middelkoop, 2011b].

GADTs. In the extended edition [Middelkoop, 2011a], we show an example of a type
system for Generalized Algebraic Data Types (GADTs). An inference algorithm for this
system requires an exploration of alternatives (Chapter 7). We formulate our specification so
that it is orthogonal to specifications of ADTs:

• We present our specification as System F augmented with first-class equality proofs.

19 Extended edition: https://svn.science.uu.nl/repos/project.ruler.papers/archive/

thesis-extended.pdf
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• We exploit the Church encoding of data types to describe GADT matches in terms of
conventional lambda abstractions.

Such orthogonal designs are important in order to compose type systems, and ultimately thus
also to compose type inference algorithms.

1.6 The Context of this Thesis

Types play an increasingly more important role in the design of programming languages.
Type systems specify a relation between programs and types, which facilitates (formal) rea-
soning with typed programs. Moreover, type systems form a partial specification for type
checking and type inference algorithms. As we discussed in Section 1.1, our ultimate goal
is to semi-automatically derive type inference algorithms from declarative type system spec-
ifications. We mentioned in Section 1.2 that a set of type rules alone is not a complete
description, hence we develop Ruler (Section 1.4), which is a domain-specific programming
language in which we write an inference algorithm as an extension of the declarative type
rules.

1.6.1 Challenges

There are several challenges that need to be overcome to reach this goal. We identify two
main challenges. This thesis is situated in the second challenge.

The first challenge is related to type system compositions. Language features and their
declarative type systems are typically defined as extensions of a bare lambda calculus. Some
language features are mutually conflicting (e.g. invalidate type soundness). However, many
language features compose in standard ways. For example, features described for a lambda
calculus that support fix-expressions can be translated to a description for a language with
recursive let bindings.

To meet this challenge, we wish to describe language features in isolation, and describe
a composition of these features for the actual source language. As illustration, the type rule
formalism lacks the expressiveness that higher-order functions offer to functional programs,
such as the ability to abstract over common patterns, and to instantiate these abstractions
with minimal syntax. For small type system descriptions that appear in type system theory,
such expressiveness is not needed. However, type system descriptions of actual languages
are large and hard to maintain.

The second challenge is related to declarative type rules. Declarative type rules abstract
from evaluation strategies. However, a general inference algorithm does not exist, and a naive
algorithm such as mentioned in Section 1.2.4 is either incomplete or inefficient.

Ultimately, inference boils down to resolving declarative aspects: to determine the struc-
ture of the derivation tree, and computing with values that may not be fully determined yet.
In practice, inference algorithms are intricate compositions of common algorithms that treat
such declarative aspects in a predictable and deterministic way. These algorithms are hard
to combine. If one declarative aspect requires a constraint-based algorithm for its resolution,
and another requires some form of search, then the order in which the aspects are resolved
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is likely to be relevant. Also, it is hard to describe the flow of information between different
solving techniques. To allow these techniques to mutually cooperate, we need a language for
the description of a composition of such techniques. Hence, this thesis.

1.6.2 Additional Challenges

Aside from the general motivation of our research, another source of motivation is that we
intend the results of our research to benefit the implementation of our Haskell compiler
UHC [Dijkstra et al., 2009]. Therefore, we impose additional demands on solutions to the
above challenges.

Firstly, since UHC’s implementation is based on Haskell itself, we require that solutions
integrate seamlessly with Haskell. This restriction effectively rules out the direct use of (func-
tional) logic languages, due to differences in the evaluation model and the representation of
data structures20. In addition, we desire that our research can also be exploited in compiler
suites that are implemented with languages without lazy evaluation or strict typing disci-
plines.

Secondly, along similar lines, we refrain from the use of dependently-typed languages,
since an extraction to Haskell is a one-way process that also affects data-type representations.
Our goal is to be able to generate an implementation. Advances in dependently-typed lan-
guages seem promising, but a formally certified implementation of a compiler such as UHC
is currently infeasible.

Finally, the resulting implementation should be reasonably efficient in order to process
ASTs of large programs. In our experiences with UHC, we noticed that memory usage is
an issue when using demand-driven evaluation of AGs. We experimentally verified that the
time spend on traversing abstract syntax trees in UHC is negligible in comparison to the
computations that are performed on each node of the AST. Thus, while traversal overhead is
rarely a problem, memory usage is an item of concern, which we address by using statically
ordered evaluation of AGs.

1.6.3 Solutions

A partial solution to the first challenge is given by Dijkstra [2005], as demonstrated by the
UHC project, and the initial development of Ruler (Section 1.4) in particular.

Ruler’s composition mechanisms and syntax extensions that are provided by Ruler would
be beneficial to AGs. For example, many dense translation schemes in this thesis are manually
derived from actual AG descriptions. These AG descriptions focus on attributes in isolation
and are easier to understand, but too verbose for inclusion in this thesis. Solutions for AGs
would also work for type rule descriptions, and vice versa. Indeed, composition facilities for
AGs receive ongoing attention [Viera et al., 2009, Saraiva, 2002].

20 Braßel et al. [2010] show that an embedding of functional logic programs is possible in Haskell, but affects all
data representations and forces all computations to monadic style. However, we use techniques techniques and
ideas from logic programming that integrate seamlessly, such as backtracking in a monad [Hinze, 2000, Kiselyov
et al., 2005].
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There is still a long way to go with respect to the first challenge. Since declarative rules
abstract from an evaluation algorithm, the data structures and administration that are involved
in the algorithm are chosen for convenience and notational conciseness. In an actual imple-
mentation, we may be able to represent certain administration in a more efficient way using
specialized data structures. However, we do not address these issues in this thesis, and only
mention some in passing in Middelkoop [2011a]. We assume that the declarative rules are
specially crafted to make them more suitable for an actual implementation.

There is thus some open work for the first challenge. However we focus on the second
challenge. This challenge is more pressing, because we need basic building blocks before we
can compose them in clever ways.

We propose to tackle the second challenge with attribute grammars. Inference algorithms
that are specified by declarative type rules are sensitive to context—non-inductive properties
of the AST—and attribute grammars excel in providing such contextual information with
attributes, as is proven by UHC’s implementation. Also, from a practical perspective, since
UHC’s implementation is based on AGs, an inference algorithm based on AGs interfaces
conveniently with attributes of other components in the compiler, as shown by previous work
on Ruler.

However, attribute grammars in current form at not well suited for the description for
inference algorithms of complex type systems. Inference algorithms therefore make explicit
assumptions about the intermediate states of the derivation trees during its construction. In a
conventional AG, we cannot do so, because AG descriptions are defined in terms of the final
state of the derivation tree. In order to make assumptions about the intermediate state, we
extend AG evaluation and hence arrive at Section 1.5.

Our approach applies to the description of algorithms that are recursive functions over
tree-like data structures. In particular, our approach applies to catamorphisms, which is not
surprising because attribute grammars can be considered a domain specific language for the
description of catamorphisms. On the other hand, for example, algorithms based on graph
rewriting are not straightforwardly expressed in our approach. An inherent difference is that
we traverse a structure whereas rewrite rules as used by graph rewriting access the structure
in irregular ways. Also, algorithms that involve matrix operations to efficiently solve linear
constraints cannot be described straightforwardly. However, Middelkoop [2011b] shows how
to mix attribute evaluation with external solvers.

1.7 Related Work

Each chapter has its own related work section. In this section we consider work that is related
to the thesis as a whole.

1.7.1 Circular AGs and Exposure of Intermediate States

Evaluation algorithms for circular AGs [Jones, 1990, Magnusson and Hedin, 2007] provide
an alternative way to extend the AG evaluation algorithm. For circular AGs, the algorithm
is parametrized with an initial value for cyclic attributes. The algorithm describes a repeated
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attribute evaluation to compute a fixpoint for the cyclic attributes. When used in the context
of this thesis, such attributes thus expose intermediate states of the derivation tree during
evaluation.

Fixpoint iteration is one of many evaluation strategies (Section 1.2.4). For example, several
type systems use an algorithm that describes the exploration of multiple candidate derivation
trees (Chapter 7). Moreover, to expose the intermediate states of the derivation tree as an
attribute, attributes at various locations of the tree have to be explicitly stored into and ob-
tained from this attribute21, which is cumbersome and destroys modularity. Our extensions
generalize over fixpoint iteration and many other common techniques employed by inference
algorithms.

1.7.2 Proof Assistants

Proof assistants such as Isabelle/HOL [Wenzel et al., 2008], Twelf [Schürmann, 2009], and
Sparkle [Mol et al., 2002] and Coq [Bertot, 2006] can be used to formalize a type system
and inference algorithm, and prove various consistency properties between specification and
implementation. Typically, the formalized inference algorithm can be extracted to code in
some target language. Such an approach is possible for small type systems as encountered in
theory, but does not scale up when dealing with practical, full-blown type systems of large
languages22.

In Coq, but also in other dependently typed languages such as Agda [Norell, 2009], Epi-
gram [McBride, 2004], and IDRIS [Brady, 2011], properties of type system can be expressed
as types of the inference algorithm. To do so, the inference algorithm needs to be imple-
mented, and structured so that it can be complemented with proofs of properties, such as type
soundness. In this thesis, we consider type systems for which the first task is already difficult,
and the second task infeasible in practice. Thus, such approaches are out of the scope of this
thesis. However, we consider dependently typed languages in Chapter 9.

Closer to the goals expressed in this thesis are the languages Ott (Section 1.7.3) and Tin-
kerType (Section 1.7.4).

1.7.3 Ott

Ott [Sewell et al., 2007] and SASyLF [Aldrich et al., 2008b] are meta languages in which
formal semantics such as type systems can be formalized. Similar to Ruler [Dijkstra and
Swierstra, 2006b], these languages provide special syntax for inference rules, and require the
rules to be well-formed. In contrast to Ruler, the purpose of these languages is to aid the
construction of proofs. From an Ott-description, boilerplate code for several proof assistants
(e.g., Coq) can be generated. This boilerplate code consists of parsers for concrete syntax,
abstract syntax, and substitution lemmas.

21Such an attribute models a heap in a similar way as a substitution models memory.
22 As demonstrated by Faxén [2002], a type system for Haskell’98 is already large and complex.
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Concrete and Abstract Syntax. The following is specification of a grammar for a variant
of the lambda calculus with tuples in Ott23. Such a grammar consists of three types of sym-
bols: meta variables, nonterminals and terminals. Meta variables are nonterminals that can be
substituted and alpha-renamed. Nonterminals are introduced by the grammar. The remaining
symbols that occur in the grammar are considered terminals. Occurrences of a nonterminal
may take a subscript to distinguish multiple occurrences of the same nonterminal from each
other.

metavar x

grammar e ::= :: Expr

| x :: Var

| \ p . e :: Lam :: bind b(p) in e

| e1 e2 :: App

| ( e ) :: _

p ::= :: Pat

| x :: Var :: b = {x}

| (p1, ..., p.n) :: Tup :: b = b(p1) ... b(p.n)

The grammar specifies a concrete syntax to the left of the double colon, and the constructor
for the abstract syntax to the right. The production for parentheses is considered a meta-
production and is not reflected in the abstract syntax.

An important concept of Ott is binding. After the second double colon, binders for meta
variables can be specified, as well as their scope. The expression b(p) represents the set
of meta variables defined by the synthesized attribute b of p. Zero or more synthesized
attributes may be specified for a nonterminal. The binder bind b(p) in e for the lambda
production denotes that the meta variables b(p) are bound at this lambda, and are in scope
of e. Lemmas for substitution and alpha equivalence, as well as a definition of free variables
are derived from the binder annotations. The underlying mechanism ensures through alpha
renaming that meta variables are not accidentally captured by substitutions.

Ott has a notion of list forms, which is convenient syntax to represent the common over-
bar notation that is used grammars and type rules. Triple dots can be used to construct list
patterns, list expressions, and lists of judgments. For example b(p1) ... b(p.n) is a list
expression, where n is an index variable. Also, list comprehensions and projections of list
items can be used.

Inference Rules. Judgements can refer to relations defined in Ott via type rules, or to
externally defined functions and relations in the target language. For example, to model a
call-by-value operational semantics, the following code fragment represents beta reduction.

defn e1 --> e2 :: reduce

isValue e2

23 For presentation purposes, the examples use a slightly different notation than provided by Ott.
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---------------------------------------- :: call-by-value beta

(\x.e1) e2 --> {e2/x} e1

The defn line specifies the syntax of the reduce judgments, and is followed by the inference
rules for that relation. The premise judgments occur above the horizontal line and conclusion
judgments below. The infrastructure for the substitution e2/x is derived from the binder
specification of e1. The inference rules are translated to axioms in the target language for the
reduction relation.

Discussion. Approaches such as Ott aid formal reasoning about type systems, and thus
pursuit a different goal than the derivation of type-inference implementations from specifica-
tions. On the other hand, Ott and Ruler share the common goal of formalizing type systems
and specifying properties. Certain concepts are also beneficial to AGs. Binding and scoping
is very common, so the concept of binding may be very useful for AGs as an abstraction
for name analysis. Similarly, list forms would benefit AGs when using higher-order children
(Section 1.3.7).

1.7.4 TinkerType

TinkerType [Levin and Pierce, 2003] is a language for the modular description of whole
families of formal systems, with a focus on type systems and operational semantics. A type
system is described in two ways. A system is described intensionally as a set of features.
These features are names for abstract properties of a type system. A system is described
intentionally as a set of clauses. In TinkerType, a clause is a denotation of a type rule in the
form of LATEX text or ML code.

Overview. A TinkerType description consists of a number of elements: features, depen-
dencies between features, clauses, a clause refinement relation, and feature constraint formu-
las. With the latter two elements, clause refinement and feature constraints, a partial consis-
tency between type systems can be expressed.

Distinct type systems have different clauses. However, type systems with similar features
tend to have similar clauses. The relation between clauses is exploited by TinkerType. A
TinkerType description therefore contains a whole repository of named clauses that are tagged
with a number of feature names. Clauses with different feature sets can have the same name.
Given a number of features, a type system is then assembled by the TinkerType Assembler
by selecting the clauses that support these features best, which are the clauses where the
provided feature set is a subset of the requested feature set. Duplicately tagged clauses are
filtered out. The clause with the largest feature set is retained.

A dependency relation must be specified between features. A type system is fully defined
by the transitive closure of the dependency relation on the set of features of the type system.
Some combinations of features give an unsound type system, or the inference algorithm is
incomplete. Certain combinations of features can be declared as deficient using feature con-
straint formulas. These are propositional formulas over features that must be satisfied with
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the features mapped to truth-values based on their presence in the type system. The depen-
dency relation between features is one form of such a feature constraint formula, in the form
of an implication.

Code Assembly. The code repository consists of components, which represents several
clauses and support code. For example, the following fragment [Levin and Pierce, 2003]
contains ML code that deals with the type checking of conditional and boolean expressions.

component bool, typing {

parsing { ... }

ast { ... }

core {

typeof {

header {# let rec typeof gam t = match t with #}

separator {#| #}

T-If

{#TmIf(e1,e2,e3) ->

if equiv gam (typeof gam e1} TyBool

then let res = typeof gam e2 in

if equiv res (typeof gam e3)

then res

else error "branches differ in type"

else error "guard is not a boolean"#}

} } }

The level of granularity of features is actually per component instead of per clause. A com-
ponent consists of several sections related to parsing, abstract syntax tree representation, and
the actual typing relations with their clauses.

The assembling process is essentially based on concatenating and substituting strings. The
components that match the requested features are merged, and the produced code consists of
the header followed by the clauses in verbatim, which are separated by the separator.

Consider a component with subtyping sub as additional feature:

component bool, typing, sub {

core {

typeof {

T-If

{#TmIf(e1,e2,e3) ->

if [[subtype]] gam (typeof gam e1} TyBool

then [[join (typeof gam e2) (typeof gam e3)]]

else error "guard is not a boolean"#}

} } }

In another component with feature sub, the functions subtype and join are defined, which
can thus be used in the above component.
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The refinement relation between clauses is expressed by means of double bracket annota-
tions in the source code. The fragments inside the double brackets are considered new, the
fragments outside the double brackets must occur verbatim in the refined clause.

Discussion. TinkerType is modular in the sense that all clauses can be written separately,
and the system enforces that clauses are designed with reuse of concepts in mind. A clause
can only be reused verbatim. In practice, additional material needs to be added to a clause, for
example, due to extra judgments or due to extra parameters to the judgments when support-
ing extra features. This leads to code duplication in the clauses with the usual engineering
problems as a consequence. The static checks on clause refinement, however, are likely to
catch errors resulting from incomplete code modifications, and encourage writing clauses as
increments of each other.

As discussed above, some forms of consistency are expressed between clauses of different
type systems, which is enforced by means of consistency checks that point to errors in the
code. To make these checks effective, there must be a lot of overlap between clauses, and
thus an extensive set of features with a fine granularity. Consistency is not expressed between
clauses of the same type system. There is no guarantee that the collection of clauses results
in compilable ML code or LATEX text, nor that the ML code is in any way related to the LATEX
text.

1.7.5 Overview of Recent Attribute Grammar Systems

An in-depth exploration of AG systems is out of the scope of this thesis. We give some
of the distinguishing features of current AG systems. Most current AG systems support a
wide range of features including higher-order attributes [Vogt et al., 1989] and collection
attributes [Magnusson et al., 2007].

The Lrc [Kuiper and Saraiva, 1998] is one of the few current AG systems that is based on
ordered attribute evaluation. Its distinguishing feature is incremental evaluation. It has been
used as vehicle for research in parallel evaluation and the generation of interactive program-
ming environments. Lrc generates Haskell and C code, although it is not actively maintained
anymore.

UUAG [Löh et al., 1998] can be regarded as a simplified reimplementation of Lrc, start-
ing originally by piggybacking heavily Haskells lazy evaluation. Currently, UUAG supports
ordered and demand-driven evaluation. Features such as incremental and parallel evaluation
are being investigated, as well as first-class attribute grammars [Viera et al., 2009].

The AG systems that we consider below are based on demand-driven attribute evaluation.
These systems support reference attributes [Magnusson and Hedin, 2007] which allow at-
tributes to be defined and accessed from non-local nodes. Data-flow analyses with circular
attributes are an application of reference attributes [Farrow, 1986].

Silver [Wyk et al., 2008] supports forwarding [Wyk et al., 2002] as distinguishing feature.
Forwarding is a convenient notation for desugaring with higher-order children (Section 1.3.7)
in combination with specialized copy rules (Section 1.3.12). With first-class AGs, Viera et al.
[2009] implement a more advanced form of forwarding.
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Silver also supports the specification of a (control-flow) graph structure on top of the
AST [Wyk and Krishnan, 2007]. A production may specify CTL formula which are checked
against the graph structure. This way, control-flow analyses can be implemented conveniently
in attribute grammars (see also Middelkoop [2011b]).

JastAdd [Ekman and Hedin, 2007] has rewrite rules as distinguishing feature. Rewrite
rules are applied to a tree upon the first access through demand-driven evaluation and can
conditionally depend on attribute values.

1.8 Conclusion

In the following chapters, we present several extensions to attribute grammars that facilitate
the description of complex type inference algorithms. The central concept in these chapters is
that we exploit the explicit notion of visits to control and manipulate chunks of AG evaluation.
It allows us to transform the tree during attribute evaluation—precisely what we need to
express type inference algorithms. Many classic AG approaches use a notion of visits in
their intermediate languages (Section 1.3.4). In this thesis, we instead propose to use visits
as programming model. With this programming model, we express resolution strategies for
declarative aspects of type rules.

Our extensions offer flexible ways to tune conventional attribute grammar evaluation, and
are conservative extensions of (ordered) attribute grammars. We offer a delicate balance
between on the one hand the implicit evaluation strategy of attribute grammars, and on the
other hand the need to make this explicit for more complex evaluation strategies.

Underlying our extensions are well-defined concepts from higher-order AGs (first-class
children), and ordered AGs (visits). Underlying these concepts are well-defined concepts
from functional programming languages (first-class functions, coroutines, and referential
transparency). These concepts form a solid theoretical basis to build upon.

The extensions that we present are not limited to type inference. In fact, type inference
is a use case that sets challenges whose solutions improve the abstraction facilities that are
available to structure compilers.

Thesis organization. Chapter 2 gives a detailed summary of the thesis. Subsequent chap-
ters focus on individual extensions, and reintroduce relevant terminology. For background
information related to type systems and attribute grammars, Section 1.2 and Section 1.3 can
be used as reference.

Publications. The chapters of thesis are based on the following publications:

• We presented an earlier version of Chapter 3 at the Workshop on Generative Technolo-
gies (WGT ’10) at ETAPS in 2010 [Middelkoop et al., 2010d]. An extended version
appeared in the journal of Higher-Order Symbolic Computation [Middelkoop et al.,
2011a].
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• Chapter 5 is an extended version of the paper that we presented at the conference on
Generative Programming and Component Engineering (GPCE ’10) in 2010 [Middel-
koop et al., 2010a].

• An earlier version of the chapter about GADTs (in the extended edition of this the-
sis) appeared in the post proceedings of Trends in Functional Programming (TFP
’08) [Middelkoop et al., 2008], and a later version appeared in the journal of Higher-
Order Symbolic Computation [Middelkoop et al., 2011b].

• Chapter 9 is to appear in the post proceedings of the symposium on Implementation
and Application of Functional Languages.

• We presented Chapter 7 at the workshop on Language Descriptions Tools and Appli-
cations (LDTA ’11) in 2011.

As a formal detail, the Association for Computing Machinery (ACM) has copyright on the
paper version of Chapter 5 and Chapter 7. Elsevier has copyright on the paper version of
Chapter 3.
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Section 1.5 argued the necessity of extensions to attribute grammars. In the following chap-
ters of this thesis we describe individual extensions to attribute grammars. In this chapter, we
present the language RulerCore and give a detailed summary of the extensions. Each section
summarizes a chapter in this thesis.

This chapter can be read before or after the other chapters. It shows how the individ-
ual chapters are connected together. This chapter uses a uniform notation, whereas in the
individual chapters, we use minor differences in notation when that is more suited for that
chapter. Consult the actual chapters for a more extensive explanation and technical material.

Outline. Chapter 3 and Chapter 5 give a detailed description of RulerCore’s syntax. In this
chapter, we use the syntax as described in Section 1.3.1. Prerequisite to this chapter are or-
dered attribute grammars (Section 1.3.4) and higher-order attribute grammars (Section 1.3.7).

The following dependency graph shows the dependencies between sections of this chapter
(and the corresponding chapters). The solid arrows represent dependencies implied by the
contents of the chapter, and the dashed arrows represent additional dependencies due to the
presentation in this chapter. The dotted arrows represent a very weak dependency and lighter
nodes are only present in the extended edition of this thesis:

2.1: effects

2.2: phases

2.3: iter

2.4: GADTs
2.5: stepwise

2.6: dependent types

Middelkoop [2011b]: graphs
req-chapt

adviced

req-outline

2.1 Attribute Grammars with Side Effects

Ordered attribute grammars [Kastens, 1980] underly the extensions that we introduce in this
chapter, and work out in the subsequent chapters of this thesis. In an OAG, attributes are
evaluated in a fixed number of visits per node of the AST. Visits are a concept that play
their role only in the evaluation algorithm of OAGs. In RulerCore, however, visits are a
programming model: RulerCore has notation to specify visits so that the visits can be used to
specify evaluation strategies.
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In Chapter 3 we introduce the concept of a visit and their notation. This concept plays a
central role, because it provides a model of the evaluation of ordered attribute grammars. We
show that this model is powerful enough to get the effect of a visitor-pattern based traversals
as known from the OO-world in terms of an attribute grammar based description, and we
show how to deal with monadic or side-effectful operations. In this section we explain what
a visit is, and introduce the notation for specifying these visits.

Visits and configurations. We first explain what a visit is. For that, we consider the
evaluation of attribute grammars. An attribute grammar describes correctly decorated trees,
but not how such a decoration is to be constructed. For OAGs, there exists an evaluation
algorithm that starts with an initially undecorated tree and finishes with a correctly decorated
tree. In this process, we pass though a sequence of intermediate states, with each intermediate
state corresponding to a partially decorated tree.

Definition (State). The state (or decorations) of a (partially) decorated tree consists of the
local state of the root node of the tree and the states of its children. A local state of a node is
a partial map from the attributes of the node to their values1.

Definition (Defined attributes). An attribute is defined when it is mentioned in the partial
map.

Note that defined in this definition means that the attribute is part of the computed decora-
tions of the tree. This definition is unrelated to rules defining attributes.

Definition (Configuration). A configuration is a set of inherited and synthesized attributes
of the root of a (partially) decorated tree, and describes which attributes of the root have
associated values in the (intermediate) state of the tree. There exists some total order ≺
among configurations (we come back to this later). The total order ≺ must be stronger than
the subset relation among configurations.

Thus, a configuration is an abstract description of an intermediate state.

Definition (Minimally defined state). Given (static) dependencies between attributes, a tree is
in a minimally defined state for a given configuration when precisely the attributes mentioned
in the configuration have a value in the local state of the root and their (indirectly) dependent
attributes have an associated value in the state of the tree.

Definition (Visit). A visit is a state and configuration transition, which takes a tree2 in a state
as described by a configuration A to a tree in a state as described by a different configuration
B with A≺ B.

1 How the value of an attribute is represented depends on the implementation or the host language. Such a value
can be an element in the domain of the attribute, but may also be a thunk. We usually assume that the values of
attributes are at least in weak-head normal form (Section 1.2.2).

2 A tree does not have to be the full tree, but may also be a subtree. The definition is not limited to the full tree.
Indeed, a visit may require visits to subtrees: we usually describe visits per node of the tree, and specify what
visits are performed to children of the node.
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Thus, during a visit, computations are performed which determine the values of attributes.
Usually, B contains at least one synthesized attribute that is not yet present in A, since that is
a motivation to perform a visit3. Values for the inherited attributes in the set difference B−A
are provided by the parent4 prior to the visit. The notation that we present below facilitates
a statically finite and explicit description of state and configuration transitions induced by
visits.

If we take a partial order among configurations instead of a total order, the order represents
a Direct Acyclic Graph (DAG) where the vertices of the graph represent configurations and
the edges represent visits. The evaluation of attributes for a tree associated to this DAG
entails walking a path in the DAG where the parent chooses which visits to invoke on the
tree. However, since we base our work on OAGs, we impose a total order that corresponds
to a DAG with only a single path, which simplifies the implementation and the notation. In
Section 2.6 we generalize our work so that the DAG is actually a tree.

Rationale. In this thesis, we distinguish two important notions of evaluation: a visit and
a step. Visits (this section) provide a static model of evaluation, whereas steps (Section 2.5)
provide a runtime model of evaluation. We argued in Section 1.5 that we wish to describe
evaluation strategies, thus we do so in terms of the models as mentioned above. In this
Section, we focus on the static model.

Every node in the tree is related to a production, and each production has an associated col-
lection of rules. Attributes are computed by evaluating rules (Section 1.3.4). OAG evaluation
is compositional in that it separates the evaluation of collections of rules of the parent from
the evaluation of the children. In the case of evaluation of the parent, we make internal visits
explicit, which statically describes the evaluation of a collections of rules of a node in the
tree. In the case of the evaluation of children, we note that a visit to a child is the statically
smallest unit of evaluation for a child that can be specified as part of the evaluation of the
parent, and thus provides a model with a fine granularity.

Description of visits. RulerCore provides notation to describe visits. In a conventional
AG, we declare attributes per nonterminal, and specify rules per production. In RulerCore, we
additionally declare a linearly ordered sequence of visits and specify which attribute belongs
to which visit. Also, we specify for each rule in which visit it is evaluated. Below, we describe
the notation that forms an essential prerequisites for the remaining sections of this chapter.
Chapter 3 provides extensive examples and technical background.

Definition (Interface declaration). An interface declaration of a nonterminal specifies a linear
sequence of visits to the nodes with which the nonterminal is associated.

Definition (Visit declaration). Each visit declaration specifies which attributes must be de-
fined prior to that visit, and which synthesized attributes become defined as a result of the

3 In a conventional OAG, the only motivation for performing a visit is to get synthesized attributes computed, and
this motivation is formalized as dependencies between attributes. Below, we show other motivations (e.g. to
perform side effects) and show how these are formalized.

4 We assume that each node has a parent. In case of the root node, the parent is represented by the interface with
the host language (Section 1.3.1).
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visit.

Configurations are not explicitly declared. The configuration of a node before a given visit
is the union of the attributes declared for preceding visits, starting with the empty set. Visit
declarations thus form a partitioning of the attributes of a nonterminal.

In the following example, for some Expr nonterminal, we declare a linear sequence of
visits analyze and compile. We specify that in the first visit analyze a synthesized attribute
errors is defined given the inherited attribute env. In the second visit compile, the synthesized
attribute output gets defined, given the inherited attribute optimize, and the attributes defined
earlier:

itf Expr visit analyze inh env :: Env
syn errors :: Errs

visit compile inh optimize :: Bool
syn code :: Code

The order of appearance of visits matters, whereas the order of appearance of attribute decla-
rations in a visit-block does not.

As we have seen, configurations are an abstract representation of the state of a node. A
configuration records which attributes have been evaluated. Configurations are not explicitly
named in the interface declaration. Instead, we associate with a visit the configuration that
corresponds to the state at the beginning of the visit. So, during evaluation, the decoration of
an Expr node is initially in the analyze state, then in the compile state, and finally in some
final state.

The above example declares two visits for nodes associated with the Expr nonterminal.
During evaluation, these visits correspond to a state transition. Such a state transition is
described by a collection of rules which are specified per production using a semantics-block
in conventional AG notation (Section 1.3.1):

sem Expr prod Var -- rules for production Var
loc.defined = loc.x ‘member‘ lhs.env -- tests whether ident loc.x is in the env
lhs.code = Code Var loc.x -- some translation to a target language
lhs.errors = if loc.defined then [ ] else [Undefined loc.x ]

The above semantics-block introduces three rules for the production Var. Each rule is implic-
itly associated with a visit to Expr. Later we introduce notation to declare such a correspon-
dence explicitly.

Default-notation. Before we continue with explicit notation for visits, we take a slight
detour to introduce some notational conveniences. When programming with AGs, we often
use copy rules (Section 1.3.12). Note that RulerCore is a core language, thus we prioritize
implementation convenience over concise syntax. Copy rules are a typical front-end concept.
However, copy rules may interact with RulerCore’s evaluation algorithm, hence we model
them explicitly.

RulerCore provides default-notation to improve on copy rules. For example, we can define
the rules of production App with default-rules:
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sem Expr prod App -- rules of production App
default env optimize -- declares copy rules
default errors = concat -- declares collection rule for errors

In the example, the default-rules introduce generic rules for he inherited attributes env and
optimize, and a collection rule for the synthesized attribute errors.

A default-rule specifies that the value of an attribute can be inferred from equally named
attributes of the production. We provide several flavors of default rules for different generic
situations, which each differ in how attributes are combined. The above rules are syntactic
sugar5 for rules of the following form:

r ::= ... -- conventional rules (Section 1.3.1)
| m o x h -- default rules for the attrs with name x

m ::=default0 -- applies even if no attrs matched
| default1 -- at least one attr must match (default)

o ::= lexical -- uses the lexical order of children (default)
| lexicalrev -- uses the lexical order in reverse
| scheduled -- determines order after scheduling

h ::= ε -- threaded behavior
| = e -- use expr e to combine a list of values of matching attrs
| use e1 e2 -- applies the list algebra (e1,e2)

x -- attribute name

The order annotation o determines the order in which children are considered in the resolu-
tion process. In case of the scheduled-order annotation, the actual definition is determined
after scheduling. As a notational convenience, a default-rule may be specified as part of the
interface of a nonterminal, which then applies to all semantics-blocks of that nonterminal.

Explicit association to visits. In RulerCore, rules are associated with a visit. The asso-
ciation is by default implicit, but notation is available to specify the association explicitly by
organizing the rules inside a visit-block:

sem Expr prod Var -- semantics-block for production Var
... -- rules without an explicit association
visit analyze -- note the indentation (important in a later section)

... -- rules associated with analyze (or later)
visit compile -- note the indentation (important in a later section)

... -- rules associated with compile (or later)

With this notation, we specify constraints on the scheduling of rules, in addition to the con-
ventional constraints imposed by value dependencies between attributes and rules. Via a
cycle analysis, the constraints can be verified to be satisfiable using standard algorithms (Sec-
tion 1.3.4). We come back to the rationale for the additional constraints later.

5 We give the abstract syntax of the desugared rules, but use the sugared version in the code figures.
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sem Expr prod Var -- rules of production Var
visit analyze -- rules of the analyze visit or later

loc.defined = loc.x ‘member‘ lhs.env
lhs.errors = if loc.defined then [ ] else [Err Undefined loc.x ]
visit generate -- rules of the generate visit

lhs.code = Code Var loc.x -- actually independent of any visit
sem Expr prod App -- rules of production App

default env optimize -- declares copy rules
f .env = lhs.env -- explicitly written rule
visit generate -- rules of the generate visit

a.optimize = lhs.optimize -- explicitly written rule
lhs.errors = concat [f .errors,a.errors ] -- explicitly written rule

Figure 2.1: Examples of organizing rules in a visit-block.

Definition (Visit semantics). A visit-block t is explicitly associated to some visit x and may
contain rules and a nested visit-block. The rules may be evaluated during visit x or a later
visit.

The following is the grammar of a semantics and visit-block:

s ::= sem N prod P r t -- common rules r and visit blocks t
t ::=visit x r t -- common rules r and subsequent visit t
| ε -- terminator of sequence of visit blocks (implicit)

A visit-block is associated with a similarly named visit declared on the interface of the nonter-
minal. However, not every visit is necessarily associated with a visit-block. The same name
may not occur twice, and the total order must be preserved: If x is the name of a visit-block
and x′ the name of a nested visit-block then x≺ x′.

Figure 2.1 gives an alternative way to organize the rules of the earlier example. The rules
inside a visit-block may appear in any order without affecting the semantics of the grammar.

A visit-block introduces a scope for local attributes such as loc.defined. When defined in
a visit, such an attribute is only visible inside the visit-block it is defined in, and its enclosed
visit-block. The scoping plays a role in Chapter 5 where rules may additionally be organized
in clauses. The inherited and synthesized attributes of the children and lhs are globally scoped
per production.

Exploiting visits: invoke rules. The additional refinements on the scheduling of rules
can be used to allow side-effects in our specification (motivated later). For this purpose, we
introduce two additional forms of rules.

Definition (Invoke rule). An invoke rule specifies properties of a visit to a child. These
properties usually specify some evaluation strategy.
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The following is the grammar of invoke-rules of which we explain some properties below:

r ::= ...
| invoke x of c z -- specifies visit x of children c with strategy z

z ::= implicit -- determined only by attribute dependencies
| explicit -- invoke-rule restricted to the visit it appears in
| parent -- invoke-rule restricted to visit with the same name

The strategies are explained later. Invoke-rules are optional. When a visit x to a child c is not
explicitly specified, it is implicitly specified as the rule:

invoke x of c implicit

The invoke-rule is annotated with a strategy, which provide a means to specify properties
of the evaluation of a child. The above strategies constrain when visits to children can be
performed. We will later see more strategies.

The implicit-strategy (above) specifies no additional constraints. The explicit-strategy
(above) requires the invoke-rule to be nested in a visit-block, and constrains the visit to the
child to the evaluation of that visit-block. The parent-strategy requires that the parent has an
equally named visit and constrains the visit to the child to that visit of the parent. An empty
list of children in the invoke-rule applies the strategy to all children which have a visit defined
with the same name.

Exploiting visits: rules with side effects. We allow rules with side effects, but restrict
these to the introduction of children only.

Definition (Side-effectful child-rule). A side-effectful child-rule is a child defined by some
impure expression.

A child-rule must appear in a visit-block, and its application is restricted to that visit. The
syntax of child-rules is (similar to Section 1.3.7):

r ::= ...
| child c : N← f [a ] -- definition of child with side effects

The scheduling guarantee is that the impure expression f is applied before the end of the visit.
The relative order of the side effects within a visit is however not specified6. This coarse-
grained way of specifying the evaluation order allows us to safely integrate side-effectful
operations in the attribute grammar, while not having to micro-manage the order of the side
effects.

In case of Haskell as target language, f is a monadic expression that yields the structure
of child c given values of attributes a. For example, along the lines of Section 1.3.12, we
can define such children to encode operations that provide fresh type variables and perform
unification. Instead of threading a substitution, we pass these children an inherited IORef to

6 We actually provide a notion of internal visits to specify the relative order of side effect within a visit.
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sem App s f s a = lhs analyze where -- body of the function
lhs analyze lhs env = do -- body of the first visit

f analyze← return s f -- monadic child rule
a analyze← return s a -- monadic child rule
let f env = lhs env

a env = lhs env
(f errs, f compile) ← f analyze f env -- invoke rule
(a errs,a compile)← a analyze a env -- invoke rule
let lhs errs = concat [f errs,a errs]

lhs compile lhs optimize = do ... -- body of the second visit
return (lhs errs, lhs compile) -- results of first visit

Figure 2.2: A sketch of the coroutine lhs analyze.

a substitution. This allows us to schedule the effects of unification in a less strict way than
the explicit threading of substitutions would entail7.

Scheduling and coroutines. In the context of this chapter, we shall refer to augmented
production dependency graphs as PDGs. Section 1.3.2 explains how dependency graphs are
obtained from AG descriptions. In this section, I/O graphs are Nonterminal Dependency
Graphs (NDGs) because of the explicitly declared single visit sequence per nonterminal.
From the PDGs, an execution plan with an as-late-as-possible scheduling of the rules can
be obtained if the PDGs are cycle-free. Since we introduced new rules, the question arises
how these rules affect the evaluation of the grammar. Also, RulerCore’s NDGs leave less
freedom for scheduling the rules in the PDGs, since we need to adhere to the explicitly defined
interfaces.

We introduce the language RulerBack as a desugared variant of RulerCore which repre-
sents execution plans8. In comparison to RulerCore, in a RulerBack all implicit syntax is
made explicit and rules in a RulerBack description are totally ordered. In this thesis, we
define mappings of RulerBack to algorithms in various host languages.

Section 1.3.5 shows that ordered AGs can be implemented with coroutines. The example
below serves as a sketch of a mapping from RulerBack to monadic coroutines. For each pro-
duction P, we introduce a semantic function sem P, which takes the coroutines s f and s a
as parameter that serve as children f and a and produces a coroutine lhs analyze for the first
visit analyze. The coroutine for some visit x is a function lhs x that takes the values of the
inherited attributes of visit x, and produces a monadic tuple with values of the synthesized
attributes of visit x and a coroutine for the successor of x. The coroutine lhs optimize (Fig-

7 In Chapter 5 we show how to treat nodes as first class value, and show in Middelkoop [2011b] some complex
traversal patterns that do not follow the tree structure. In such situations, we need more flexibility in the schedul-
ing of side-effectful operations.

8 RulerCore can be considered a programming language for execution plans of AGs.
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ure 2.2) is thus constructed as part of the body of lhs analyze. An attribute k.x is transcoded
as the Haskell identifier k x. The monad serves as an abstraction for evaluation algorithms.
We exploit the monadic structure in later chapters.

Foundation. The fragment of RulerCore that we introduced so far does not add to the
expressive power of attribute grammars: it can be expressed as a conventional attribute gram-
mar, which we do so below to be more precise about the semantics of the notation. We assume
that the RulerCore description is desugared to RulerBack, which we mentioned earlier. Be-
low, we describe how to map the RulerBack description to a conventional attribute grammar.
In general, interface declarations are be mapped to attribute declarations by erasing visits.
Semantics-blocks in RulerCore are translated to semantics-blocks by erasing visit-blocks and
invoke-rules.

To represent the erased information in a conventional attribute grammar, we thread an
additional attribute through the tree for each visit. These attributes serve as synchronization
points for the beginning and end of the visit. Per visit v of a nonterminal N, we introduce two
additional attributes beginv and endv:

attr N inh beginv :: S T
syn beginv :: S T

The attributes model the side effects by encapsulating a state as some type S T , which we
come back to later.

Also, we thread these attributes through the rules to enforce their evaluation order. Per
production, we associate a unique consecutive number (starting from 0) with each rule in a
production. This is possible because there exists a total order among the rules. For each rule,
we introduce a local attributes loc.begini and loc.endi where i is the number associated with
the rule. The purpose of the attributes is to mark respectively the beginning and end of the
evaluation of the rule. We show later how to make a rule dependent on its begin attribute
(in addition to its normal dependencies), and how to make the end attribute dependent on the
evaluation of the rule.

For a visit v and production P of nonterminal N there exists a collection R of rules that are
associated with v after scheduling. If this collection is not empty, let k be the lowest number
associated with the rules, and l the highest number. We then connect the begin and end of the
visit with the beginning and end of the rules associated with the visit:

sem N prod P
lhs.beginv = lhs.endj -- if R is empty
loc.begink = lhs.beginv -- otherwise R not empty
lhs.endv = loc.endl -- otherwise R not empty

When a rule with associated number i and a rule with number i+1 are in R, then we add also:

sem N prod P
loc.begini+1 = loc.endi
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class ThrEff t where
type M t ::∗→ ∗ -- type of a monadic computation
type S t ::∗ -- type of the state
impure :: M t α → S t→ (S t,α)

pure :: α → S t→ (S t,α)
pure (x,s) = s ‘seq‘ x ‘seq‘ (s,x)

Figure 2.3: API of threaded effects.

data IsPure -- do not thread a state
instance ThrEff IsPure where

type M IsPure t = t
type S IsPure = ()
impure = pure

data IsIO -- thread state of the world
instance ThrEff IsIO where

type M IsIO = IO
type S IsIO = State# RealWorld
impure (IO m) w = case m w of (# w′,a #)→ a ‘seq‘ (w′,a)

Figure 2.4: Example instances for threaded effects.

At this point, we chained the attributes together, except that still attributes loc.begini needs to
be connected to loc.endi, and the begin and end of visits to the children need to be incorpo-
rated.

To thread the attribute through a rule, we introduce in Figure 2.3 the functions pure and
impure which depend on the type T . The function impure takes an effectful computation
M t α and an initial state S t, then produces an updated state paired with the result of the com-
putation. The function pure passes the state on unchanged. Figure 2.4 gives some exemplary
instances. An instance of ThrEff can be given for any monad that threads a state.

To complete the chain, we show the mapping of rules of RulerCore. The above functions
are used in the translation of a rule r with associated number i to J r Ki:

J invoke v of c Ki  c.beginv = loc.begini
loc.endi = loc.endv

J child c : N← f [a ] Ki  (loc.endi, loc.c) = impure (f [a]) loc.begini
child c : N = loc.c

J p [a2 ] = f [a1 ] Ki  (loc.endi,p [a2 ]) = pure (f [a1 ]) loc.begini

The concept of visits thus provides a means to reason about attribute grammars with side-
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effectful computations in their rules. Note that although the AG description may be thought
of as having side effects, the underlying model is still purely functional.

Remarks. We purposefully allow side effects only in the creation of children. Conventional
rules must be purely functional. This ensures that the attributes have a referentially transpar-
ent definition, even though the tree structure itself not9. Chapter 7 shows how to implement
search algorithms, and introduces syntax to define children without inherited attributes. For
advanced search algorithms, which make use of sharing and memoization, limited use of side
effects plays an important role.

More generally, by making visits explicit, we can integrate our approach with compilers
that are built on top of monads, and to use tree traversals in impure environments. Also, we
can use the side effects to efficiently access results from nodes visited earlier in a traversal.
This can be used to implement memoization strategies.

The visitor pattern [Gamma et al., 1993] is often employed to implement recursive traver-
sals over tree structures in imperative languages. Concretely, Chapter 3 presents how our
approach generalizes over the visitor design pattern. For this purpose, we use JavaScript as
a host language, which in passing shows that our extensions are applicable to domains other
than the implementation of type inference algorithms or functional programming languages.
In this context, a visitor is an object that contains an algorithm that describes which children
to visit, and what changes to apply to the state of the node, or the visitor itself. Attributes
provide a convenient way to access the state of nodes through attributes, and with our ap-
proach the changes to the state of the visitor can be encoded with side effects. With respect
to these attributes, our approach offers the benefits of AGs, including the static enforcement
that attributes are defined before they are used.

2.2 Attribute Grammars with Commuting Rules

In Chapter 4, we generalize visits to a phases. A visit is a technical more internal concept
which precisely controls the evaluation of the grammar. A phase is a more abstract concept
which the programmer can use to specify properties of the evaluation of the grammar. To
reason with side effects in this setting, we present commuting rules, which are rules with
relaxed dependencies.

Phases. We start with the notion of a phase:

Definition (Phase). A phase represents a sequence of state transitions, controlled and observ-
able by the parent, which take the node’s state to a state described by its next configuration.

Such a state transition consists of a sequence of smaller state transitions, which correspond
to the visits as described in Chapter 3. A nonterminal may be associated with a set of pos-
sible visit sequences for its phases, and a production specifies for each of its children which
sequence to take.

9 We can encode any rule as an attribute-defined child (Section 1.3.7), thus the restriction does not limit expres-
siveness. The purpose of the restriction is to ensure that side effects are sufficiently contained.
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itf Block -- phase interface (visit-interfaces are not given anymore)
phase analyze -- analyze phase

inh pred :: Lab -- label to be used as predecessor from the predecessor
inh succ :: Lab -- label to be used as successor from the successor
syn pred :: Lab -- label to be used as predecessor for the successor
syn succ :: Lab -- label to be used as successor for the predecessor

phase transform -- transformation phase
inh debug :: Bool
syn trans :: SELF -- self attribute (Section 1.3.6)
default debug -- default rule on interface for inh attr

Figure 2.5: Phase interface of a Block.

We illustrate the above with an example. Suppose that we describe an analysis and trans-
formation of a tree of labeled instruction blocks. The abstract syntax of blocks is described
by the following grammar:

grammar Block prod Seq nonterm l,r : Block
prod Leaf term lab :: Lab

term instr :: Instr

The actual transformation of the instructions is out of the scope of this example. Let transform
be a function that requires the label of the predecessor and sucessor to transform the instruc-
tions in the leafs.

To apply the transform function, we associate the label of a preceding and succeeding
block with each instruction. The chained attribute pred represents the label of the left-nearest
instruction, and attribute succ the label of the right-nearest instruction. Effectively, we pass
pred from left to right, and succ from right to left. The phase interface for a nonterminal de-
clares these attributes is given in Figure 2.5. Attributes may be declared outside phases. The
ordering of phases is deduced from semantics blocks, thus not from the order of appearance
in the phase-interface specification: phases represent non-overlapping units of evaluation.

As part of the semantics for productions of Block, we describe the flow of the pred and
succ attributes in Figure 2.6. Seq-productions act as crossbar switches, and Leaf-productions
inject their labels in the attribute flows. Since we have inherited and synthesized attributes
with the same name, we use the prefixes inh and syn to explicitly distinguish these attributes.
Assume that Block is also the root symbol, for which we at the root provide initial values for
the inherited attributes, and request values for all synthesized attributes.

Implementation of phases. Since a phase effectively represents a unit of evaluation, we
can choose an algorithm for the evaluation of a phase. We assume here that we choose a
statically ordered evaluation algorithm, which reduces the choice to either a Kastens style or
a Kennedy-Warren style algorithm (Section 1.3.5).
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sem Block prod Seq -- rules related to pred and succ
inh.l.pred = inh.lhs.pred -- left to right
inh.r.pred = syn.l.pred
syn.lhs.pred = syn.r.pred
inh.r.succ = inh.lhs.succ -- right to left
inh.l.succ = syn.r.succ
syn.lhs.succ = syn.l.succ

sem Block prod Leaf
syn.lhs.pred = loc.lab -- is predecessor of next
syn.lhs.succ = loc.lab -- is successor of prev
loc.newInstr = transform loc.instr inh.lhs.pred inh.lhs.succ lhs.debug
syn.lhs.trans = Leaf loc.lab loc.newInstr

Figure 2.6: The semantics of productions of Block.

A Kastens-style algorithm does not suite the example. In the example, the rules for pred
and succ are independent. However, the attributes of the analyze-phase need to be computed
in at least two visits. The rules for production Seq require either succ or pred to be computed
first. This is a typical example where a Kastens-style scheduling [Kastens, 1980] fails to find
an ordering, because that scheduling induces extra edges in the PDG, which for this example
causes a cycle.

Kennedy and Warren [1976] describe an algoritm that does not induce extra edges in the
PDG. A set of visit sequences is determined for each nonterminal, such that there is one visit
sequence per context of an occurrence of the nonterminal symbol. We present a variation
on this algorithm that schedules rules as late as possible, and only those that needed in a
given context. Moreover, we show how to represent such visit sequences in a strongly-typed
functional language.

Visits-DAG. We associate a graph structure with each nonterminal which represents the
visits of that nonterminal:

Definition (Visits-DAG). A visit-interface DAG describes the set of visit interfaces that are
associated with a nonterminal. The graph has exactly one source vertex, and at least one
sink vertex. Each vertex represents a configuration, each arrow a visit, and each path from
the source to some vertex a visit-interface. To disambiguate, we may call a vertex in the
visits-DAG a visits-vertex.

For the above example, Figure 2.7 shows the visits-DAG. There are at least three paths in
the visits-DAG. The middle path represents the root where all inherited attributes are avail-
able, and two other paths represent the respective first knowledge of one of the inherited
attributes.
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itf Block

visit v1

inh pred,succ :: Lab
inh debug :: Bool
syn pred,succ :: Lab
syn trans :: Block
phase analyze

prod Leaf /0
prod Seq child l v2 v4

child r v3 v5

visit v2

inh pred :: Lab
syn pred :: Lab

prod Leaf /0
prod Seq child l v2

child r v2

visit v3

inh succ :: Lab
syn succ :: Lab

prod Leaf /0
prod Seq child l v3

child r v3

visit v4

inh succ :: Lab
syn succ :: Lab
phase analyze

prod Leaf /0
prod Seq child l v4

child r v4

visit v5

inh pred :: Lab
syn pred :: Lab
phase analyze

prod Leaf /0
prod Seq child l v5

child r v5

visit v6

inh debug :: Bool
syn trans :: Block
phase transform

prod Leaf /0
prod Seq child l v5

child r v5

Figure 2.7: Visits-DAG of the example.

Each edge has at least one output, which is either a synthesized attribute or phase ending.
Along each path, the number of attributes increases. Each edge corresponds with a visit; we
gave each a unique label vi. Also, we associated with each edge some meta-data regarding
productions: the visits performed on the children of the productions during the execution of
visit that is associated with the edge.

Paths may be of different length, and end in different configurations. In the above example,
all paths end in the same configuration because in each context all attributes are eventually
needed.

Section 4.5 describes the visits graph and its properties in more detail and shows how to
incrementally compute it. Given this graph, for each edge and each production, a collection
of RulerBack rules can be determined. The branching-factor of each node determines code
duplication. In practice, this code duplication is not a reason for concern. The visits graph
of the largest AG of UHC has about 10,000 edges and already leads to a tractable imple-
mentation. With some optimizations (Section 4.6), we reduced this number to about 3,000
edges.

Commuting rules. Section 2.1 shows a translation of visits to conventional attribute gram-
mars using a functional encoding of the state. The translation involved adding an additional
chained attribute (the state attribute) per visit which represents the state and a transformation
of the rules to thread the attribute through the rules scheduled for the visit. A property of this
approach is that the side effects that arise from visit a child of a parent can only be observed
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by the parent or its other children by inspecting the state attribute of the child after the visit.
A similar translation is possible for phases. Analogously, a parent only observes the side

effects arising from a child after completing the phase. However, during the evaluation of
a phase of a child of a parent, side-effectful rules of the parent or the other children of the
parent may be evaluated, since a phase consists possibly of multiple visits to a child. In this
situation, with a single chained attribute per phase, side effects arising from a child may not
be timely observed in the parent or in siblings, and such a translation does not fully capture
the semantics of side-effectful rules.

A possible approach is to translate the phases to an explicit visit sequence, and then use
the translation of Section 2.1. However, visits are implicit in the phases model and addition-
ally there may be a visit sequence per context. Instead, we take the opportunity to present
commuting rules.

Definition (Commutative compositions and commutable rules). Given an explicit ordering
of rules, the composition of two rules is commutative when the two rules are commutable,
which means that the rules may be swapped in the composition without affecting the intended
result.

Rule composition is a conditionally commutative operator. Commutable rules can be con-
sidered as commutable operations. The swapping of rules models side effects, and commu-
tativity permits reasoning about the safe use of side effects.

A semantic tree is a composition of the rules of the tree (Section 1.3 and Section 1.3.4).
Section 1.3.9 shows that a composition of rules can be expressed with arrow notation, which
is a convenient notation to define when two rules are commutable. Further, we wish to refer
describe a composition of rules (e.g. the composition of rules of a node) in a larger context
(e.g. the composition of rules in a tree). We define a rule context h as a composition of rules
with a hole in it so that h c represents the composition of rules with c the composition of rules
at the location of the hole.

Definition (Commuting rule). A commuting rule is a rule of the form (x′,y′) = f x y, x � x′

where the letters x, y, etc. are (sets of) attribute occurrences and f is a semantic function.

A commuting rule thus only differs in the notation x � x′, which denotes that the rule may
be swapped with rules that define x or use x′ (with renaming of the attribute occurrences).
Such a rule is said to commute over x and x′.

Consider a rule r1 of the form (x1,y1)= f (x0,y0), x0�x1 and a rule r2 of the form (x2,y2)=
g (x1,y1), x1 � x2. In a composition of rules containing r1 and r2, the additional notation
specifies that r1 may appear ordered before r2 and vice versa. Without the additional notation
the rule r1 must appear before r2 because r2 refers to an attribute defined by r1.

With commuting rules as AG feature, side effects can be encoded as a single chained
attribute per nonterminal threaded through each rule and having each rule commute over this
attribute. Such a translation is more straightforward than the translation in Section 2.1 and
also works for phases.

Referential transparency. At the level of specification, the use of commutable rules may
break referential transparency and thus complicate equality reasoning. A question that arises
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is how to reason with a safe use of commutable rules. We define below a law for this purpose.
Suppose that r1 6≺ r2 denotes that r1 is independent of r2 with respect to the dependencies

between attributes and rules except for the dependencies between attributes where the rules
commute over. There are two compositions in arrow notation (c1 and c2) to consider:

c1 = proc (x0,y0,z0)→ do -- composition of r1 and r2
(x1,y1)← f ≺ (x0,y0) -- rule r1 in arrow notation
(x2,z1)← g≺ (x1,z0) -- rule r2 in arrow notation
returnA (x2,y1,z1)

c2 = proc (x0,y0,z0)→ do -- composition of r2 and r1
(x1,z1)← g≺ (x0,z0) -- rule r2 in arrow notation
(x2,y1)← f ≺ (x1,y0) -- rule r1 in arrow notation
returnA (x2,y1,z1)

The identifiers y0 and z0 represent the independent input attributes of respectively r1 and r2,
and identifiers y1 and z1 their respective independent output attributes. Identifiers x0, x1 and
x2 represent the attributes over which the rules may commute.

Definition. Rule context A rule context h is a function that serves as an abstraction of a rule
composition with a hole. It takes as parameter the composition to fill to hole with.

Definition (Commutable over attributes). We now say that r1 and r2 are commutable over
attributes of x0,x1 and x1,x2 if r1 6≺ r2 if their compositions c1 and c2 give an equivalent
results h c1 = h c2 in some given rule context h.

When the rules are commutable, the outcome of swapping the rules in rule context h is
equivalent, thus the slide of the grammar that contains the rules r1, r2 and those in h is
referentially transparent. Rule context h should be chosen in such a way that it expresses how
the context of the rules interprets the attributes computed by the rules.

We finish this discussion of commutable rules below with an exemplary definition of h
which states that for an attribute that provides fresh numbers only uniqueness is relevant.

For some exemplary grammar of expressions, the following two rules thread a counter k,
and extract two unique numbers in loc.u1 and loc.u2:

sem Expr prod Var
(loc.k, loc.u1) = f (inh.lhs.k, inh.lhs.k), inh.lhs.k � loc.k -- rule one
(syn.lhs.k, loc.u2) = g (loc.k+1, loc.k), loc.k � syn.lhs.k -- rule two

With the following definitions for f and g:

f (a, ) = (a+1,a)
g (b, ) = (b+1,b)

For the following definition of h, the above two rules are commutable. In both compositions
of the rules, the two resulting numbers are different from each other:

h r n = a 6≡ b where -- abstraction: the unique numbers should be distinct
( ,a,b) = r (n,(),()) -- for any number n that represents the inh.lhs.g

90



2.3 AGs with Tree Construction

We may choose functions h that state stronger invariants and take more context into account.
For example, when we consider the collection of a list of error messages, we may take the
slice of the rules that depend on the error messages, and require that the lists are equal when
ordered according to the source location of each message.

Commutable rules can be applied when expressing collection attributes as a chained at-
tribute. A collection attribute is a synthesized attribute with a commutative monoid or trace
monoid as value. Often, such attributes can be encoded more efficiently as a chained attribute.
However, threading a chained attribute through some children may induce tighter dependen-
cies than combining synthesized attributes of these children, and thus reduces freedom in
attribute scheduling and may even lead to cycles. With commutable rules a chained attribute
can be used without the tighter dependencies.

Remarks. In Chapter 4 we work out phases in more detail. In this chapter, we describe
how to compute the dependency graphs and how to perform scheduling of phases. This work
shows how to generalize visits to phases, and allows us to describe the extensions that we
present in the next sections (and their corresponding chapters) using visits, so that we factor
out the dependency graphs and scheduling in the next sections and chapters.

2.3 AGs with Tree Construction

In Chapter 5, we show several AG extensions based on the model of explicit visits that al-
low us to conditionally and iteratively define attributes and children. Additionally, we use
annotations on visits and invocations of visits to fine-tune evaluation strategies.

In this section, we give an overview of the extensions. In a conventional attribute grammar
the rules to evaluate for a node are the rules associated to the production that is associated to
that node. As extension, we wish to have more fine-grained control over which sequence of
rules is evaluated. Therefore, we split up visit-blocks in a sequence of clause blocks. Each
clause-block may contain rules, and per visit some strategy choses which clause-block to
use to compute the attributes. In this section, we take a fixed strategy based on the order
of appearance of clause-blocks and backtracking. We show that with this approach we can
implement a dispatch of rules based on values of inherited attributes. In Section 2.5 we
present a mechanism based on a stepwise evaluation to actually define custom strategies.

Further, we show how to express iteration by annotating invoke-rules with a strategy that
repeats the evaluation of the visit until a condition is met. Moreover, first-class children
are an extension that allow children to be detached as value, or attached from a value. The
techniques combined provide a powerful mechanism to encode fixpoint computations.

In the remainder of this section, we explain these extensions one-by-one. In Chapter 5 we
show how these extensions are implemented.

Clauses. Instead of associating a collection of rules per production, we organize the rules
in a different way. We associate a DAG with a production. Each vertex is associated with a
configuration and each edge is associated with a visit and with a collection of rules. There
may be multiple vertices associated to the same configuration, although there may only be
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itf Expr visit check inh env :: Env -- environment containing declared types
inh tp :: Ty -- expected type of the expr
syn errors :: Errs -- result of type checking

sem Expr prod Var visit check -- cases for the check-visit of the var-prod
clause defIdent -- case for when the variable is in the env

match (Just loc.declTp) = lookup loc.nm lhs.env
internal matchTp -- internal case distinction

clause typeOk -- case for when the type matches
lhs.errors = [ ]
match True = lhs.tp ‘isInstance‘ loc.declTp

clause typeFail -- case in case of a type mismatch
lhs.errors = [Mismatch lhs.tp loc.declTp]

clause undefIdent -- case for when the variable is undefined
lhs.errors = [UndefVar loc.nm ] -- assumes a match of defIdent failed

Figure 2.8: Example of clauses.

one source vertex, wich must be associated with the empty configuration. During evaluation,
a path is traversed through the DAG: one edge per visit and a strategy associated with vertices
dictate which edge to traverse.

Definition (Clause). A clause is an edge in the DAG as specified above.

As notational simplification, we impose the restriction that the DAG10 must be a tree, and
present notation below on how to describe this tree. Essentially, the rules are organized in
clause-blocks per visit-block.

We start with an example in Figure 2.8 before explaining the notation. The example con-
sists of a type checker for some var-production of a lambda calculus. In the example, we use
clauses to encode case distinction. We distinguish a clause defIdent for when the identifier
is in the environment, and a clause undefIdent when this is not the case. Moreover, we split
the defIdent clause in two more clauses depending on whether the expected type matches the
declared type using an internal visit.

The nesting of clauses forms a decision tree. A path in this tree is the sequence of clauses
that are selected to compute the outputs of the visit. For now, we assume that clauses are
selected with a fixed strategy based on the order of appearance (to which we come back
later). Internal visits can be considered as ε-edges in the DAG as mentioned above.

The following changes to notation allow visits to consist of a non-empty ordered sequence
of clauses:

10 We thus identify two important DAGs: a DAG per nonterminal which describes visits and attributes, and a DAG
per production which describes different sets of rules for visits to compute the attributes. The restrictions that we
impose on the DAGs simplify the implementation or the notation.
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t ::=visit x r k -- conventional visit block, common rules r, and alternatives k
| internal x r k -- internal visit block, common rules r, and alternatives k
| ε -- terminator of visit/clause branch (optional)

k ::= clause x r t -- clause-block with rules r and visit t
x -- identifier of a visit or clause

Each clause contains a set of rules. This set of rules defines the synthesized attributes of the
visit, and potentially subsequent visits. Thus, each clause provides a number of alternative
definitions of the synthesized attributes of a visit.

We distinguish conventional visits and internal visits. A conventional visit is invoked by
the parent and declared as part of the interface of the nonterminal. Internal visits and clauses
are evaluated as part of the evaluation of their encapsulating visit or clause.

To describe the clause selection strategy, we distinguish three types of outcome for rules,
visits, and clauses. Evaluation either succeeds with resulting attribute bindings, terminates
exceptionally, or fails with a recoverable failure:

• Clauses are evaluated in the order of their appearance. The first clause that succeeds
or terminates is chosen as the clause that provides the outcome of the visit. If a clause
fails, the next clause is evaluated.

• During the evaluation of a clause, the rules are evaluated in a scheduled order. When
a rule succeeds, the next rule is evaluated. If all rules succeed, the clause succeeds.
However, a clause fails if the evaluation of a rule terminates exceptionally or fails.

• A visit terminates if any of its evaluated clauses terminate, and otherwise succeeds if a
clause succeeds. If all of its clause fail then the visit terminates exceptionally or fails
recoverable. The respective difference is made by whether the visit is annotated as total
or annotated with a partial strategy. Visits are declared as total by default.

There are two types of rules that may fail:

• An invoke-rule may be annotated with a partial strategy. If it is, the invoke-rule fails
if the visit to the child fails. Otherwise the invoke-rule either succeeds or terminates
exceptionally.

• We present match-rules to specify conditions. A rule match p = e requires that the
value of e satisfies the pattern p, otherwise evaluation for the match-rule fails.

In the rule ordering, match-rules must be evaluated as part of the clause in which it is declared.
Moreover, match-rules take priority in the rule scheduling. If two match rules are independent
of each other, then the order of appearance determines which rule is scheduled first. As
notational convention, we usually write match-rules up front in code examples.

Chapter 3 describes the evaluation of clauses as a generalization of productions. Chapter 5
describes an implementation in Haskell. Also, Chapter 7 shows how to evaluate clauses
simultaneously.

In comparison to Conditional Attribute Grammars [Boyland, 1996] or conditionally de-
fined rules in general, clauses allow us to define a condition for multiple attributes and also
children.
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grammar Eq prod Check -- multiple clauses below
itf Eq visit check -- checks type equality

inh tp1 :: Type
inh tp2 :: Type
syn errs :: Errs -- outcome of check

sem Eq prod Check visit check -- semantics of Check prod
default errs = concat -- collect type errors
clause twoInts -- when tp1 and tp2 are Ints

match Ty Int = lhs.tp1
match Ty Int = lhs.tp2

clause twoArrs -- tp1 and tp2 both arrow-types
match (Ty Arr loc.a loc.b) = lhs.tp1 -- tests if lhs.tp1 is an arr
match (Ty Arr loc.c loc.d) = lhs.tp2 -- tests if lhs.tp2 is an arr
child u1 : Eq = sem Check -- recursion on both arg-types
child u2 : Eq = sem Check -- recursion on both res-types
u1.tp1 = loc.a; u1.tp2 = loc.c -- definitions of inh attrs of u1
u2.tp1 = loc.b; u2.tp2 = loc.d -- definitions of inh attrs of u2

clause mismatch -- catch-all clause
lhs.errs = [Err Mismatch lhs.tp1 lhs.tp2 ] -- error for each mismatch

Figure 2.9: Matching example.

Multi-attribute dispatch. Clauses provide a convenient way to describe the structure of a
derivation tree when the structure of the tree depends on the values of attributes. For example,
to prove type equality, the structure of the derivation tree is a determined by two attributes
that represent the types in question.

The example in Figure 2.9 shows a first-order matching algorithm for the construction of
a derivation tree for an equality judgment. Given two attributes tp1 and tp2 which values
represent types (in some object language), we match pointwise against the structure of these
types. The value of such an attribute is either the integer type constructor or a function type
constructor. During evaluation, the derivation tree is constructed up to the points that the
types match. The result of evaluation is an attribute errs that contains an error message for
each type mismatch. The production Check does not declare any terminal nor nonterminal
symbols. The example relies on higher-order children and clauses instead.

Iteration. A judgment R p can be seen as a constraint R between parameters p where R is
a relation. Fixpoint iteration is often employed to gradually construct a solution to a set of
such constraints.

In Figure 2.10 we show how to encode fixpoint iteration in AGs by iterating visits. We use
some extensions of previous sections and Section 1.3.12 to keep the description concise. We
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grammar Top prod Top nonterm root : Constrs -- root symbol
grammar Constrs = [Constr ] -- short hand for cons-list
grammar Constr prod Subset term a,b :: Ident -- subset constraint
itf Constrs Constr -- shorthand notation

visit solve fixed -- a fixed visit (explained below)
chn env :: Map Ident IntSet -- chained attribute
syn changed :: Bool -- True if env changed
default env = head -- default rule for env
default changed = or -- default rule for changed

sem Constr prod Subset -- approximation of loc.newVal
loc.bVal = lookupWithDefault /0 loc.b lhs.env
loc.aVal = lookupWithDefault /0 loc.a lhs.env
loc.newVal = loc.aVal∪ loc.bVal
lhs.env = insert loc.b loc.bVal lhs.env
lhs.changed = loc.newVal 6≡ loc.bVal

Figure 2.10: AG for solving subset constraints.

explain some aspects of the example below.
We first give a grammar for a constraint language: a sentence in this language is a list of

subset constraints (a⊆ b) on some symbols (a, b) that represent integer sets. Given the list of
constraints and an initial mapping env from symbol to integer set, we describe an algorithm
that refines the mapping until all constraints are satisfied. The nonterminal Constr represents
a subset constraint and the nonterminal Constrs a list of such constraints.

Secondly, we show how to refine the mapping for a single constraint, then show further
below how to iterate over such a list of constraints. The rules in Figure 2.10 describe how the
new env is computed from the initial env in a single iteration. The attribute changed is True
if and only if the mapping was changed. The semantics for Constrs is fully determined by
default rules.

Finally, we work below towards a specification of iteration for a list of constraints. The
semantics of nonterminal Constrs is fully determined by the default rules: we thus specify
iteration as part of the semantics of the Top-production, for which we introduce some addi-
tional annotation.

An invoke-rule may be annotated with strategies z as we saw earlier. We introduce two
new strategies: oneshot and iterate. By default an invoke-ruke is (implicitly) annotated as
oneshot, which means that the visit is at most invoked once. However, when the annotation
is iterate, then the visit may be repeated multiple times:

r ::= invoke x of c z -- annotated invoke-rule
z ::=oneshot -- by default (implicit)
| iterate e -- repetitive invocation
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again = Just :: Inp N x→Maybe (Inp N x) -- API function
stop = Nothing :: Maybe (Inp N x) -- API function

The expression e is a function that takes two parameters. The first parameter is the set of
values for inherited attributes of the last iteration, and the second parameter the set of values
for the synthesized attributes that resulting from that last iteration. The result of the function
describes if the visit is repeated. If the result is produced using the constant stop, then the
visit is not repeated. If, however, the result is produced using the function again, which takes
as parameter the set of inherited attribute values that are used for the next iteration, then the
visit is repeated with those values.

We apply this strategy to repeat the solve-visit on lists of constraints until a fixpoint is
reached for the environment, which is the case when the attribute changed is False at the end
of an iteration:

sem Top prod Top -- semantics of the root
inh.root.env = lhs.initialEnv -- env for the first iteration
invoke solve of root iterate λ inp outp→ -- iterative invoke strategy

if changed outp -- query attribute changed
then again (inp {env = env outp}) -- repeat with updated env
else stop -- stop iterations

lhs.result = syn.root.env -- takes result of last iteration

The values of the attributes are stored in a record for the inherited and synthesized attributes
of a visit11. The labels are an encoding of the name of the attribute.

As a constraint solving strategy we may be interested in results of previous iterations. To
keep a local state per node we introduce visit-local chained attributes, so that the notation for
visit-declarations becomes:

t ::=visit x chn y :: ty r t -- the type ty is optional

Note that the name of a visit may not clash with the name of a child, and y must be unique
with respect to all visit-local attributes of a production.

The name y in the attribute declaration denotes four attributes that are local to the produc-
tion:

attribute meaning scheduling notation
inh.x.y initial value of inh.vis.y outside visit x inh is a keyword
syn.x.y last value of syn.vis.y outside visit x syn is a keyword
inh.vis.y input to visit inside visit x inh and vis are keywords
syn.vis.y result of visit inside visit x syn and vis are keywords

11 In case of the generalization to phases of the previous section, an association of attributes to phases may be
determined automatically when such an association is not manually given. However, when this happens, it is
unclear which attributes are present in the record. Therefore, to be able to iterate a phase, we require the phase
declaration to be annotated with the annotation fixed which disallows the automatic scheduling of attributes to
the phase.
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itf Constr -- more visits
visit initial inh topVal :: IntSet -- value of top element
visit solve fixed chn ... -- as defined above
visit generate syn outcome :: (IntSet, IntSet) -- outcome of solving

sem Constr prod Subset
lhs.output = (loc.aVal, loc.newVal) -- the computation for the result
inh.solve.reps = 0 -- initial val of vis chained attr
syn.vis.last = inh.vis.last+1 -- increment
...
loc.newVal = loc.aVal∪ loc.bVal∪ loc.cVal
loc.cVal = if inh.vis.last > 5 then lhs.topVal else /0
visit solve chn reps :: Int -- visit local chained attribute

Figure 2.11: Example of weakening.

In Figure 2.11, we express that if the number of iterations exceeds a threshold of 5, then the
result is weakened by enlarging it to the top-value in our set-lattice. This approach enforces
convergence. The top-value is provided as attribute lhs.topVal. Note that we specified the
rules outside the solve visit-block. The rule scheduling moves these rules to the appropriate
block.

In contrast to conventional fixpoint evaluators for AGs, we precisely specify the iteration
points, may perform fixpoint iteration over multiple attributes, and keep (purely functional)
state between iterations. We may even construct children as part of a fixed visit, although to
prevent constructing children over-and-over again, we may need to store the state of a child
as part of the iteration state. We can accomplish this by detaching and attaching children.

First-class children. Constraints are used in inference algorithms to delegate a proof obli-
gation to a different location in the tree. Constraints are typically used to delay a proof until
all constraints in a given scope are collected.

In an AG, proof obligations can be encoded as a visit on a child that still needs to be
invoked. Invoking the visit corresponds to constructing the proof. In the model as presented
so far, we statically know the configuration of a child’s state at each point during evaluation
of the node. We present rules to detach and attach children that are in a given configuration,
which permit us to treat children as first class values, and thus as constraints:

p = detach x of c -- detaches c in the state that visit x is pending
attach x of c = e -- attaches e as c in the state that visit x is pending

The attach-rule is a generalization of the child-rule that specifies that visit x and later are
accessible on child c. The detach-rule specifies that visit x and later are not accessible on
child c and provides a value that represents the child prior to the invocation of x. These two
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itf Expr -- some example
visit gather

syn gathCnstrs :: IntMap Sem Cnstrs solve -- use to gather of children
visit distribute

inh distCnstrs :: IntMap Sem Cnstrs generate -- used to distribute children
syn transformed :: Expr

sem Expr prod Var
child c : Constr = sem Subset loc.nm lhs.parentNm
c.topVal = lhs.topVal -- for first visit to c
lhs.gathCnstrs = singleton loc.nodeId (detach solve of c)
attach generate of c = lookup loc.nodeId lhs.distCnstrs
lhs.transformed = Expr Const $ fst $ c.output -- based on the last visit of c

Figure 2.12: Example of child detachment.

rules may be used in conjunction, however, to prevent conflicts only one attach or detach rule
is allowed per child and visit combination. A detached child may be attached at a different
location in the tree and visited as part of the evaluation for that location, or be visited through
a wrapper function in the host language as part of an external solving algorithm.

Figure 2.12 shows an example of how a child can be detached. We collect the detached
children in an attribute gathCnstrs as constraints. These constraints are solved elsewhere by
invoking the solve visit on them, then transferred back as attribute distCnstrs and attached
again. The type Sem Cnstrs solve is the type of a detached child prior to the invocation of
solve. At another location in the tree, we may attach the constraints in the list and apply the
iteration technique of above to solve the constraints.

This approach has the advantage that we can easily transport context information from the
node that defines the constraint to the location where we solve the constraint, and vice versa.
Middelkoop [2011b] gives additional examples of this technique. Moreover, the dependency
analysis provides define-before-use guarantees. Chapter 9 describes how dependent types
can be used to prove that a detached subtree is attached at precisely one other location in the
tree.

Remarks. By making visits explicit we gained the ability to describe evaluation strategies
by annotating the callee (visit declarations) or the caller (invoke-rules). Clauses offer a means
to specify alternatives. Children in a given state are first class and can be passed around to
describe complex traversals. The extensions preserve the attractive properties of AGs, such
as automatic rule scheduling and purely functional descriptions. Also, the implementation in
the host language is purely functional.

In Chapter 5 we present a large example, and give a translation of the notation to Haskell
code. We show in Middelkoop [2011b] that we can also describe complex traversals over
trees and even graph structures.
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data Index a where -- data type written using GADT notation
TInt :: Index Int -- parameterless constructor with a≡ Int
TBool :: Index Bool -- parameterless constructor with a≡ Bool

append :: Index a→ a→ a→ a
append TInt = (+) -- coercion of Int to a
append TBool = (∧) -- coercion of Bool to a
ex1 = (append TInt 1 2,append TBool True False) -- OK: (3, False)
ex2 = append TInt 1 2+append TBool True False -- type error (Int ! =Bool)
ex3 = append TBool 1 2 -- type error (Int ! =Bool)

Figure 2.13: Example of a GADT as type index.

2.4 Case Study with GADTs

Constructors of an algebraic data type specify how a value of the data type is structured. A
data type may be parameterized. Generalized Algebraic Data Types (GADTs) [Cheney and
Hinze, 2003] associate per data constructor a set of type equivalences between the parameters
of the data type. When building a value using a GADT constructor, and thus specifying how
the parameters are instantiated, the type equivalences must be satisfied. In the scope of a
successful pattern match against a GADT data constructor, the type equivalences may be
assumed to hold and can be used to refine or safely coerce types.

In the extended edition of this thesis, we present a type system for GADTs as a case study
for several reasons [Middelkoop, 2011a]. Firstly, a type system for GADTs poses additional
challenges to a description of a type inference algorithm compared to a conventional DHM-
style inference algorithm (Section 1.2.6, Section 1.3.11) which give insight in what features
our meta language for type system needs to support. Secondly, we investigate the description
of GADTs as a minimalistic type system extension. Moreover, we make extensive use of
GADTs in this thesis, thus this chapter can then also be used as an explanation of GADTs.

In this section, we take a simplified subset of the actual type system: equality proofs. We
first give a specification, then look at properties of an inference algorithm, and consider a
description of the algorithm with attribute grammars.

Specification. GADTs are typically used as type index. In the example of Figure 2.13, the
type Index a is a first-class description of the type a. By pattern matching on the description
we reconstruct what the concrete type was to which a was instantiated. The expression TBool
must be of type Index Bool, thus the a of append TBool must be Bool. Consequently, ex2 and
ex3 are ill-typed.

In the above example, there exists a type equality assumption a ∼ Int in the context of
having matched against the TInt constructor. The assumption is used to prove that Int→ Int
can be coerced into a→ a. The actual facilities that we need to reason with GADTs is the
introduction of type equality assumptions in a scope, and equality reasoning on types. These
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Γ ` τ ≡ ρ

Γ ` τ ≡ τ REFL

Γ ` τ ≡ ρ

Γ ` ρ ≡ τ
SYM

Γ ` τ ≡ ρ

Γ ` ρ ≡ σ

Γ ` τ ≡ σ
TRANS

(τ ∼ ρ) ∈ Γ

Γ ` τ ≡ ρ
ASSUM

Γ ` τ ≡ ρ Γ ` σ ≡ ω

Γ ` τ → ρ ≡ σ → ω
CONGR

τ → ρ ≡ σ → ω

Γ ` τ ≡ σ
SUB.L

τ → ρ ≡ σ → ω

Γ ` ρ ≡ ω
SUB.R

Figure 2.14:

facilities are orthogonal to the actual treatment of algebraic data types. To be able to describe
GADTs as a separate aspect of a type system, it is thus desirable to separate these facilities.

In the above example, we used simple types constructed by type arrows and type constants.
In the specification we use the following grammar for types and environments containing
equality assumptions:

τ ::=a | Int | Bool | τ1→ τ2 -- types, also: ρ , ω , and σ

Γ ::= /0 | Γ,(τ1 ∼ τ2) -- environment containing type equality assumptions

The type equality relation is used to reason with the equality between types.
Given an environment Γ that consists of the type equality assumptions, the inference rules

in Figure 2.14 describe the type equality relation. The first three rules are properties that any
equality relation is supposed to exhibit. In addition, the rule ASSUM expresses a proof by
assumption, and the remaining three are related to congruence and subsumption properties
derived from the structure of types. See Middelkoop [2011a] for some exemplary proofs for
judgments of this relation.

Forward and backward chaining. The above rules are not straightforwardly mapped to
an inference algorithm. The rule SYM can always be applied, thus some condition is needed
to determine when not to apply this rule. In Section 1.2.6 we describes properties of the
type rules of the DHM type system that permit an attractive implementation in the form of
algorithm W. Similarly, we apply apply domain knowledge here to impose conditions on
above rules so that problematic derivation trees are avoided or do not have to be considered
by the algorithm. For example, we require that a derivation tree for judgment a≡ b may not
contain (indirectly) a child for the same judgment, as the proof would then be circular. This
constraint ensures that the number of applications of the sym-rule is bounded.

To explain why the other rules are not straightforwardly mapped to an inference algorithm,
we mention first that there are two ways of reasoning with inference rules [Russell et al.,
1996]. With forward chaining inference starts with assumptions and derives conclusions.
With backward chaining inference starts at conclusions and tries to prove premisses until
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they can be discharged by assumptions. Inference algorithms as discussed so far use a limited
form of backward chaining.

Backward chaining is suitable when a conclusion can be decomposed into smaller pre-
misses, which is indeed the case for rules REFL, ASSUM and CONGR, and also for rule SYM

with the aforementioned restriction. This is not the case for the rules TRANS, SUB.L, and
SUB.R. These contain one or more meta variables in their premises that are not fixed by their
conclusion judgments. As a consequence, arbitrary (infinite) branches can be introduced in
the derivation tree by applying these rules.

Forward chaining is suitable when premisses can be decomposed into smaller conclusions.
This is the case for all rules except REFL and CONGR. To deal with all rules, we use a combina-
tion of backward and forward chaining by distinguishing proof obligations and proven facts.
Rule CONGR may only be applied on a proof obligation whereas Rules SUB.L and SUB.R may
only be applied on proven facts. The TRANS may only be applied if one of the premisses is a
proven fact. As part of the case study in Middelkoop [2011a], we implemented a solver for
equality constraints in UHC using an implementation of constraint handling rules [Frühwirth,
1998] that provides forward chaining and can emulate backward chaining [Dijkstra et al.,
2007b].

Lookahead. Forward chaining can be implemented with backward chaining by defining
a reduction relation on environments which keep track of derived facts. We thus concern
ourselves in the remainder of this section with the implementation of backward chaining
using attribute grammars.

To implement backward chaining, we use clauses to represent the various alternatives.
However, the rule TRANS poses an additional challenge: a choice made for the left premise
has consequences for the right premise. To express that a clause may only be selected if the
remaining evaluation in a given context (the remainder-context) does not fail, we introduce
two more strategy annotations: the lookahead-strategy and the onlylocal-strategy which serve
as annotations for visit-blocks and invoke-rules:

t ::=visit x z k -- visit-block as presented before
r ::= invoke x of c z -- invoke-rule as presented before
z ::=onlylocal -- does not take the remainder-context into account
| lookahead -- takes the remainder-context into account

The onlylocal-strategy is the default.
The remainder-context is a runtime property that can be influenced by invoke-rules. When

an invoke rule is evaluated and it is annotated with the lookahead-annotation, the remaining
evaluation in the parent’s remainder context contributes to the remainder-context of the child.
Otherwise, the invoke-rule behaves as a cut-operator which fixes the choices of clauses made
by the child. The partial-strategy and total-strategy as mentioned before are orthogonal to the
onlylocal-strategy and lookahead-strategy.

The example in Figure 2.15 serves as illustration and we explain it below. For brevity,
we left out details of the description that are related to the prevention of infinite derivations,
the administration of substitutions, and the reuse of prior derivation trees. Moreover, we
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grammar Eq prod Check
itf Eq visit check partial

inh env :: Set (Ty,Ty)
inh tp1, tp2 :: Ty

sem Eq prod Check visit check
lookahead -- visit annotation
default env -- rule in scope visit
invoke check lookahead parent
clause refl

child u : Unify = sem Unif
u.tp1 = lhs.tp1
u.tp2 = lhs.tp2

clause sym
child flipped : Eq = sem Check
flipped.tp1 = lhs.tp2
flipped.tp2 = lhs.tp1

clause trans
child fr : Fresh = sem Fresh
child left : Eq = sem Check
child right : Eq = sem Check
left.tp1 = lhs.tp1
left.tp2 = fr.tp
right.tp1 = fr.tp
right.tp2 = lhs.tp2

clause assum
match (u1.tp2,u2.tp2)← do

ahead $ λk→ some $
map k $ elems lhs.env

child u1,u2 : Unify = sem Unif
u1.tp1 = lhs.tp1
u2.tp1 = lhs.tp2

Figure 2.15: Example of an AG that represents an equality solver.

omitted attributes and rules to construct coercion terms from such a derivation tree. Such
topics are discussed in Section 2.3. Only one production is declared for the Eq-nonterminal.
The clauses in combination with higher-order children determine the structure of the equality
proof.

The example features a monadic match rule. The right-hand side of this rule is a monadic
expression that determines the value to match against. In clause assum, we take a type equal-
ity assumption from the environment. There may be multiple of such assumptions in the
environment. We derive from these assumptions a monadic expression that explores the pos-
sibilities one after the other and selects the first one that succeeds. Via ahead (explained
below), we get a continuation k that expects a value for the pair and performs the remaining
computations for the current context. The function some is defined below. It selects the first
computation that succeeds.

We saw above how to express backward chaining with clauses in combination with looka-
head. In Section 2.1 we mentioned that the AG can be expressed as a monad. First we show
an implementation of lookahead by using a backtracking monad, then show how clauses can
be mapped to this monad.

Backtracking monad. We wrap the actual underlying monad m into a monad transformer
BackT that consists of a composition of the continuation transformer on top of the error
transformer. The continuation monad transformer provides a continuation, and via the error
monad transformer a failing computation can be observed [Jones, 1995]. The result type of
the continuation is the parameter r:
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data Back = Back -- backtrack message
type BackT r m a = ContT r (ErrorT Back m) a -- transformer

Backtrack points are specified using the operator (�) which represents local choice. It selects
its right argument if and only if the evaluation of the left argument fails. Alternatively, the
operator� represents a global choice, which takes the continuation of the parent of the choice
into account:

(�) :: Monad m⇒ BackT a m a→ BackT a m a→ BackT r m a
p�q = ContT (λc→ catchError (cut p) (const (cut q))>>= c)
(�) :: Monad m⇒ BackT r m a→ BackT r m a→ BackT r m a
p�q = ConT (λc→ catchError (runContT p c) (const (runContT q c)))
cut p = runConT p return
msum = foldr (�) (fail "backtrack")
resolve p = ContT (λc→ cut p>>= c)

The function resolve limits the continuation. The function ahead exposes the continuation to
the higher-order function f :

ahead :: Monad m⇒ ((a→ ContT r m r)→ ContT r m r)→ ContT r m a
ahead f = ContT (λc→ runContT (f (λa→ ContT (λk→ c a>>= k))) return)
p�q = ahead (λk→ p>>= k�q>>= k) -- alternative implementation

The function ahead provides the ability to explore different values for the continuation, and
make choices based on the outcome of the continuation. We show in Chapter 7 how to
extend this mechanism to make choices based on intermediate results that are computed in
the continuation.

In a continuation monad, a computation BackT r m a represents a computation for a value
of type r with a pending computation that takes a to r. The function f in ahead takes the
pending computation as parameter, and replaces the computation for r with a computation that
immediately goes to r. Ahead f can thus be understood as replacing the pending computation
with (the computation produced by) f .

Mapping of clauses to monads. The evaluation algorithm for a clause is a monadic
expression that computes values for the synthesized attributes of the visit. We thus define the
body of a visit function as a sequence of these monadic expressions that are either combined
with the global choice operator when the visit is annotated with the lookahead-annotation,
or with the local choice operator when the visit has the default onlylocal-annotation. If an
invoke-rule is not annotated with a lookahead-annotation, it applies resolve to the monadic
expression of the child after applying the values for the inherited attributes.

Remarks. As mentioned in the previous section, clauses represent a search tree, which
encodes alternative ways to compute the decorations of the tree. The exploration of these
alternatives using the BackT monad is depth-first. Chapter 7 describes how to explore clauses
in a breadth-first way, which may give a more balanced exploration.
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Overhead is the work that is performed for the exploration of an alternative that is not
selected. In practice, we preferably solve problems using a single pass traversal, or a fixpoint
iteration. A search for a solution, however, cannot always be avoided, as is demonstrated by
the GADT use-case. Moreover, the naive exploration of alternatives may be convenient for
prototyping purposes.

2.5 Attribute Grammars with Stepwise Evaluation

Some type inference algorithms require an exploration of a forest of potential derivation trees.
We can encode such a forest as a search tree that contains additional nodes which represent
choices between derivations. In Chapter 7 we present a library to describe such explorations
of the search tree.

Stepwise evaluation. In the evaluation algorithms of Chapter 5, clauses are explored one
after the other. This approach corresponds to a depth-first exploration of alternatives. In
Chapter 7 we show how to evaluate clauses simultaneously, which corresponds to a breadth-
first exploration of alternatives. A breadth-first exploration provides a balanced exploration
for alternatives, which may be more efficient.

With statically ordered AG evaluation (Section 1.3.4), the evaluation of an AG is a se-
quence of rule evaluations. In this section, we group a number of these rule evaluations
together and call that a step. We represent the evaluation of a tree as a computation which can
be asked to execute one step, and afterwards pauses and returns control back to the caller. To
decorate the tree, we provide a computation (the root-computation) at the root which takes
the computation of the tree and repeatedly asks it to perform a step until the decorations are
computed.

Simultaneous exploration. To explore alternatives, we mentioned in the previous section
that we combine the computations of alternatives, for example using the �-operator. We now
consider different ways to combine the computations of alternatives. We provide a compu-
tation (the choice-computation) that asks the alternatives to perform steps in an interleaved
fashion. When an alternative succeeds, we replace the choice-computation with the alterna-
tive. When an alternative fails, we replace the choice-computation with the other alternative.
When each alternative performed one step, the choice-computation exposes one step to its
parent choice-computation or the root. With this approach we obtain a breadth-first traversal
of alternatives.

In this section, we first describe how to write such an algorithm as a monad that represents
a coroutine, and how to specify what constitutes to a step in this monad. Then, we show how
this monad is used in RulerCore descriptions, and show an implementation of the monad.

Coroutines. A coroutine is a function that during its execution performs zero or more
yield operations which denote re-entry points. A yield operation pauses the execution of the
function and returns control to the caller. The caller may resume the execution of the callee
from the point where it was paused. The callee may expose intermediate results to the caller
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yield :: Stepwise m ()
step :: Monad m⇒ Stepwise m a→ m (Report m a)
lift :: Monad m⇒ m a→ Stepwise m a
ahead :: (∀r.(a→ Stepwise m r)→ Stepwise m r)→ Stepwise m a
data Report m a -- represents a progress report

= Done a -- finished and produced a value a
| Failed String -- failed with a given error message
| Paused (Stepwise m a) -- paused with the residual computation

Figure 2.16: API of the Stepwise monad.

and the caller may provide additional parameters when resuming the function. We assume
initially as simplification that no results are exchanged between caller and callee.

Visit functions are examples of coroutines (Section 1.3.5) that are invoked a statically fixed
number of times. The evaluation of a child pauses at the end of the visit, and proceeds with
the evaluation of the next visit when the parent invokes the subsequent invoke-rule. In this
section, however, we consider coroutines that in addition to the statically fixed yields between
visits, may yield a statically unbounded number of times during the execution of a visit. The
evaluation up-to the next yield is what we call a step.

We design a coroutine monad Stepwise, which represents a stepwise computation special-
ized for the exploration of alternatives. It supports a number of operations in addition to those
of the BackT monad. Figure 2.16 shows the API. The operation yield pauses the execution
and resumes the caller. The operation step runs the coroutine until the coroutine either fails
or succeeds, or reaches the next yield instruction. The outcome of the evaluation is presented
as a progress report in the encapsulated monad m. A yield-operation thus specifies what con-
stitutes as a single step. With lift, we wrap the effects of m into a stepwise computation so
that these effects can be merged with the effects embedded in other stepwise computations.
For example, we typically use lift to describe how the effects of a step-operation on a child
are merged with some parent computation.

With the choice combinators, we define a computation that represents a traversal over a
search tree. Each subtree encodes an alternative. With the above API, Figure 2.17 shows a
breadth-first version of the choice combinators. The traversal is breadth-first because when
act reports a step to the caller, each of the non-failed children performed one step. Iteration is
encoded by replacing the choice-computation with a computation that calls the choice func-
tion again. Thus, when we commit to a certain alternative, we replace the choice-computation
with the selected alternative, and thereby eliminate the choice.

Figure 2.18 A depth-first version of the choice combinators is obtained by applying the
function fullred to the left alternative. This function returns the computation with all steps
stripped, thus forcing it to evaluate fully. The control we have over stepwise computations
allows us to express a whole range of strategies, such as taking two steps left for each step
right.
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p�q = ahead (λk→ p>>= k�q>>= k)
p�q = do a← lift (step p) -- perform a step for p

b← lift (step q) -- perform a step for q
act a b -- inspects the outcomes

act :: Report m a→ Report m a→ Stepwise m a
act (Done a) = return a -- commit to finished p
act (Done a) = return a -- commit to finished q
act (Failed s) (Failed ) = fail s -- both fail
act (Failed ) (Paused r) = r -- p fails, commit to q
act (Paused r) (Failed ) = r -- q fails, commit to p
act (Paused p′) (Paused q′) = yield>> (p′�q′) -- pause, later continue with choice

Figure 2.17: Breadth-first choice combinators.

fullred :: Stepwise m a→ m (Stepwise m a)
fullred p = do rep← step p -- perform a step

case rep of -- inspect report
Paused r→ fullred r -- repeat after yield

→ return $ comp rep -- either Failed or Done
comp :: Report m a→ Stepwise m a -- report to residual computation
comp (Paused m) = m
comp (Failed s) = fail s
comp (Done v) = return v

Figure 2.18: Depth-first choice combinators

The underlying monad m can be used to exchange information between the computation of
an alternative and the choice between alternatives. For example, when m is a writer monad,
an alternative can provide an estimate of the amount of work that has been performed. When
m supports IO, the system time can be used to balance the two computations. Stepwise
computations thus offer a means to describe powerful and complex exploration strategies.

Children as stepwise computations. The evaluation of an AG we represent as a monadic
computation, and thus fits the Stepwise-monad straightforwardly. In the remainder of this
section, we show how to specify yield operations and how to express alternatives.

We do not need to introduce additional syntax to express yield operations because monadic
child rules have monadic right-hand sides and can therefore be used to express the yield
operations. For example, we introduce a dummy nonterminal Yield in Figure 2.19 and use it
to specify a yield operation using a child rule in some exemplary production Var. A monadic
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itf Yield -- interface without visits nor attributes
grammar Yield prod Yield -- single production
sem Yield prod Yield -- empty semantics
sem Expr prod Var visit check

child y : Yield← do -- monadic child rule
yield -- monadic operation
return sem Yield -- semantics of child (trivial)

Figure 2.19: Yielding of steps expressed as nonterminal.

sem Tree prod Alt -- semantics for a choice node
child left : Tree = ... -- define child left
child right : Tree = ... -- define child right
left.i1 = ... -- definition of some attributes
right.i1 = ...

loc.p = detach upon v of left -- evaluates left up to visit v
loc.q = detach upon v of right -- evaluates right up to visit v
attach upon v of res : N← do -- attaches as child res

loc.p� loc.q -- choice between children
lhs.s = res.s1 -- use results of the chosen child

Figure 2.20: A sketch of a parallel exploration.

child rule is guaranteed to be evaluated in the visit it is constrained to. Thus, the right-hand
side of the rule is evaluated during visit check.

Encoding of alternatives. To express alternatives we can explicitly encode a search tree
using higher-order children or by using clauses. We first consider the encoding of a search
tree. A node in a search tree may express a choice between its children. For this purpose we
refine the notation introduced in Section 2.3 to attach and detach children with an additional
keyword (explained below).

We detach alternatives and attach a computation that determines the chosen alternative.
The abstract example in Figure 2.20 provides a sketch. Recall that the semantics of a visit of a
child is a function that takes values for inherited attributes and returns a monadic computation
for the synthesized attributes of that visit. We are thus interested in the state of the children
after they received the values for the inherited attributes. We use the upon-keyword for this
purpose. The detach-rule thus provides the monadic computation for the specified visit of a
child, and the attach-rule runs the computation to obtain the synthesized values for that visit.
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data Stepwise m a where
Return :: a→ Stepwise m a
Bind :: Stepwise m a→ Parents m a b→ Stepwise m b
Fail :: String→ Stepwise m a
Yield :: Stepwise m ()
Lift :: m a→ Stepwise m a
Ahead :: (∀r.(a→ Stepwise m r)→ Stepwise m r)→ Stepwise m a

data Parents :: m a b where
Root :: Parents m a a
Pending :: (a→ Stepwise m b)→ Parents m b c→ Parents m a c

instance Monad (Stepwise m) where
return = Return
m>>= f = Bind m (Pending f Root)

Figure 2.21: The structure of Stepwise.

Strategy for clauses. Instead of explicitly encoding a search tree as above, we can also
use clauses. To specify a choice between clauses, we present additional notation. A visit-
block may be annotated with a select-strategy:

t ::=visit x z c -- existing syntax for visit-blocks
z ::=onlylocal -- combine clauses with the local choice operator
| lookahead -- combine clauses with the global choice operator
| select e -- custom, e is e.g. a function λc1 ... ck→ ...

The select-strategy specifies a function e that takes a computation for each clause of the visit-
block as parameter and provides a computation for the results of the visit. The computation
for the results of a visit is e c1 ... ck where c1, ...,ck are the computations corresponding to
each clause12.

Implementation. In the remainder of the section we describe how intermediate results
can be exposed to the selection function. However, we first show how the Stepwise-monad
is implemented. The algorithm13 that we show here is slightly simplified with respect to
Chapter 7 and its full understanding is not required for the remainder of this chapter.

We represent the Stepwise-monad in Figure 2.21 as a computation that can be inspected
(Section 1.3.9). The function step interprets the computation in order to evaluate it one step.
The right-hand side of a bind contains a stack Parents of all the continuations to the right of
a monadic expression. The expression (m>>= f )>>=g is represented as:
12 Several notational variants are possible. It may sometimes be more convenient to obtain the computations of the

clauses as a list or as a record with a field for each clause.
13 Complete Haskell module of the simplified implementation:

https://svn.science.uu.nl/repos/project.ruler.papers/archive/RefStepwise.hs
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step :: Monad m⇒ Stepwise m a→ m (Report m a)
step m = reduce m Root
reduce :: Monad m⇒ Stepwise m a→ Parents m a b→ m (Report m b)
reduce Yield r = return $ Paused (r ‘apply‘ ())
reduce (Fail s) = return $ Failed s
reduce (Lift m) r = m>>= step.apply r
reduce (Ahead f ) r = step $ f (apply r)
reduce (Return v) Root = return $ Done v
reduce (Return v) (Pending f r) = reduce (f v) r
reduce (Bind m r) r′ = reduce m (push r r′)
apply :: Parents m a b→ a→ Stepwise m b
apply r v = Bind (Return v) r
push :: Parents m a b→ Parents m b c→ Parents m a c
push r Root = r
push Root r = r
push (Pending f r′) r = Pending f (push r′ r)

Figure 2.22: The implementation of reduce.

Bind m (Pending f (Pending g Root))

Since monadic binds are right-associative, the stack only grows when an expression occurs
as left-and side of a monadic bind that expands to one or more binds. This is the case when
calling the visit function of a child, hence the stack contains the continuations of all parents
till the location where step is performed. The child that is undergoing evaluation is on top of
the stack.

The function reduce in Figure 2.22 takes a computation m and a pending stack p. It eval-
uates m one step. If m yields or fails it returns a progress report. Otherwise, it continues
evaluating m until it obtains a result that can be fed into the parents-stack. If the parents-stack
is empty, evaluation is finished. Otherwise, the parent-stack contains the continuation to pro-
ceed with. The function step delegates to reduce with an empty stack. The function apply
turns a pending parent into a monadic computation by passing it the result it was waiting for.
The function push concatenates two parent stacks.

Coordination. We presented above how to specify selection strategies. To encode power-
ful coordination strategies, we improve the above approach so that computations can yield
results and take arguments when resumed.

Definition (Tag). A tag of type Op i o specifies the interface between the callee (the compu-
tation) and the caller (execution of step), where i is a type index that fixes the data-type that
is used for tags (Op i o is a type family), and o is the type of the results exchanged between
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action :: Op i o→ Inp o→ Stepwise m (Out o)
data Report i m a -- refinement of the Report data type
| ∀o. Paused (Op i o) (Inp o)

((Stepwise m (Out o)→ Stepwise m a)→ Stepwise m a)
data family Op i ::∗→ ∗ -- a tag of an operation (of some set indexed by i)
type family Inp o ::∗ -- inputs to the operation Op i o
type family Out o ::∗ -- resulting outputs of operation Op i o

Figure 2.23:

callee and caller. The computation yields results of the type Inp o and takes arguments of
type Out o as parameter for the next visit.

We refine the operation yield so that it takes a tag of type Op i o and intermediate results
of type Inp o for the caller and provides arguments of type Out o as given by the caller when
the callee is resumed. Figure 2.23 shows the encoding in Haskell with type families.

For example, action can be used by a computation to report the number of open goals, and
receive a priority rating from the caller. In that case, we specify the following instances for
the above type families:

data Meta -- type index for the set of tags
data OInfo -- type index for a particular tag
data instance Op Meta o where -- declares the tags

OpInfo :: Op Meta OInfo -- one tag
type instance Inp OInfo = Int -- specification of inputs of operation o
type instance Out OInfo = Int -- specification of results of operation o

The report-handling code in selection strategies may match on Yield-reports to obtain the
Op i o and Inp o values, plus the continuation which may be used to resume the computation
when a computation is provided that produces the Out o values.

This approach is powerful: arbitrary traps to operations can be expressed this way. For
example, it is possible to create tags for that represent operations such as unification, gener-
ation of unique numbers, lookups in memo tables, and output to the console. The caller can
determine what semantics to give to these operations. The construction offers an inversion of
control: the callee declaratively specifies operations, and the caller determines the semantics.

Memoization. As mentioned in the GADT example, it may be desirable to cache results
of subtrees and reuse these results at other locations in the tree. However, if the continuation
(accessed using ahead) is used to distinguish the result of the computation, the results should
not be cached, unless the continuation is the same for each context the shared computation
appears in.

110



2.6 Attribute Grammars with Dependent Types

Moreover, in case of a stepwise computation, these results may not be available yet, and it
may be desirable to share computations instead. A computation can be shared by storing it in
an updatable state, and updating this state after each call to step. The computation may then
each time receive the result of an action from a different context. Also, each contexts may
only receive a partition of the actions yielded by the computation.

Remarks. Chapter 7 focusses on generators which are coroutines that only yield informa-
tion but do not take parameters. We show how to evaluate such coroutines strictly or lazily.
In the latter case, results can already be produced when it depends on a choice for which only
one alternative is left.

2.6 Attribute Grammars with Dependent Types

In Chapter 9 we investigate AGs where attributes may have a dependent type, which can be
used to state and prove properties of the AG. For this purpose, we describe an embedding of
AGs in Agda14 [Bove and Dybjer, 2009]. Dependent types provide a means to use types to
encode properties with the expressiveness of (higher-order) intuitionistic propositional logic,
and terms to encode proofs. In this setting, a parameterized type constructor specifies a
relation between its type parameters and data constructors form the inference rules of the
relation.

In a dependently typed AG, the type of an attribute may refer to values of attributes. The
type of an attribute is an invariant and the value of an attribute a proof for that invariant. More-
over, because of the Curry-Howard correspondence, dependently typed AGs are a domain-
specific language to write structurally inductive proofs in a composable, aspect-oriented fash-
ion; each attribute represents a separate aspect of the proof.

Some knowledge of dependent types and Agda is a prerequisite for this section. We first
give an example and some notation. We follow up with an extension that permits the visits of
a nonterminal to be organized as a tree instead of a totally ordered sequence.

Dependent attribute type. The following interface declaration for some nonterminal
Pat demonstrates attributes with a dependent type. The gathered environment syn.gathEnv is
a subset of the final environment inh.finEnv, which is expressed as the type syn.gathEnv ⊆
inh.finEnv. We assume the existence of a type constructor⊆ and several utility functions. The
attribute inh.gathInFin has the above type and therefore represents a proof of this property:

itf Pat
visit analyze syn gathEnv :: Env
visit translate inh finEnv :: Env

inh gathInFin :: syn.gathEnv⊆ inh.finEnv
grammar Pat prod Var term nm :: Ident

14 In this section, we deviate slightly from the actual syntax to have a closer correspondence with Haskell.
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The gathInFin attribute provides the guarantee that elements that are in syn.gathEnv are also
in inh.finEnv. Rules of productions of Pat may exploit this guarantee.

The lookup of an identifier in the final environment may return Left notIn where notIn is
a proof that the identifier is not in the environment, or Right v where v is the value of the
identifier in the environment.

In the following example, production Var, which has a terminal loc.nm, we define with a
proof15 loc.prv2 that the identifier is in the environment, and we use loc.prv2 to prove that the
lookup cannot return a Left-value:

sem Pat prod Var
loc.prv1 = here loc.nm syn.lhs.gathEnv -- proof of nm in gathEnv
loc.prv2 = inSubset lhs.gathInFin loc.prv1 -- proof of nm in finEnv
loc.val case loc.nm ‘lookup‘ lhs.finEnv of -- defined by case distinction

| Left notIn falsum notIn loc.prv2 -- impossible case
| Right v → v -- case that loc.nm is in finEnv

The case that the element is not in lhs.finEnv is in contradiction with loc.prv2. Their ap-
plication has an uninhabitable type, which we use in combination with the falsum-case to
terminate the branch without giving a definition.

This example shows three ways to define an attribute: with a plain RHS, with case distinc-
tion, and with falsum e where host-language expression e has an uninhabitable type:

r ::=p = e -- with plain RHS
| p m -- with complex RHS

m ::= falsum e -- unreachable case (e has an uninhabitable type)
| case e of b -- with case distinction, and cases b

b ::=ρ → e -- nested plain RHS in a case distinction
| ρ t -- nested complex RHS in a case distinction

ρ -- pattern in the host language (no attributes)

The additional syntax provides us with a means to give provable total definitions of attributes.

Cycle analysis and consistency. Functions are required to be total in dependently typed
programs for reasons of logical consistency and termination of type checking, which in case
of AGs correspond to total definitions of attributes and the requirement that dependencies
between attributes are acyclic.

Partitions. In Chapter 4, the ordering algorithm implicitly distinguishes different contexts
in which a nonterminal is used. However, to ensure that attribute definitions are total, it may
be convenient to make such contexts explicit.

In the following example, we specify code generation depending on the absence of errors.
We define two contexts for the generate visit. The context errorfree provides an attribute
15 The functions here and inSubset are conventional dependently typed functions that construct the appropriate

proofs. Their implementation are beyond the scope of this section.
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sem Pat prod App
lhs.errors = f .errors++a.errors -- collect errors
context errorfree -- rules exclusive for errorfree

invoke generate of left context errorfree -- specifies context to invoke
invoke generate of right context errorfree -- specifies context to invoke
left.noErrors = leftNil left.errors right.errors lhs.noErrors
right.noErrors = rightNil left.errors right.errors lhs.noErrors
lhs.code = left.code ‘apply‘ right.code
context haserrors -- rules exclusive for haserrors

invoke generate of left context haserrors
invoke generate of right context haserrors
lhs.pretty = left.pretty� right.pretty -- collect pretty print

Figure 2.24: Example of rules specified for a specific context.

code, but it may only be invoked when errors are absent. The context haserrors alternatively
provides an attribute pretty, which contains an annotated pretty print of the program:

itf Pat
visit report syn errors :: Errs inh.finEnv
visit generate -- a visit may consist of one or more partitions

context errorfree -- a partition has a name
inh noErrors :: syn.errors≡ [ ]
syn code :: Target inh.finEnv

context haserrors -- a partition may also contain subsequent visits
syn pretty :: Doc

The caller invokes a visit on the callee, and is responsible for selecting what context it wants
to use. The callee is required to produce results for that choice. The callee can encode
restrictions on the available choices for the parent as inherited attributes. The caller must
provide values for the inherited attributes of the partition it chooses.

We specify a context as annotation of the invoke-rule. Moreover, we may specify rules for
particular contexts as is demonstrated in Figure 2.24. A special falsum-rule may be used to
denote that a visit, clause or context is unreachable.

Remarks. Type attributes correspond to quantification. An inherited type attribute corre-
sponds to universal quantification, since the caller can choose its instantiation. A synthesized
type attribute corresponds to existential quantification. The callee can choose its type, but the
caller cannot make an assumption about it. This mechanism allows us to deal with polymor-
phism in interfaces.

Indeed, the above ideas allow quantification in an AG for Haskell to be expressed. In a
dependently typed AG, attributes can represent both values and types. In Haskell, there is a
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clear distinction between values and types. In an AG for Haskell, we can make an explicit
distinction between attributes that represent types (and specify a kind as type) and attributes
that represent values. The type of a type attribute may not refer to other attributes. The type
of a value attribute, however, may refer to a type attribute.

2.7 Attribute Grammars on DAGs

In the extended edition, we included a relatively short chapter [Middelkoop, 2011a] that pro-
vides examples of other ways to apply the techniques as presented. There are two common
data structures in compilers: trees and directed graphs. Ordered attribute grammars are suit-
able to define a semantics on trees but not suitable to define the semantics of graphs. The
reasons is that nodes in a graph may occur in different contexts at execution time, which
makes a static dependency analysis difficult. In that chapter, we also show how our approach
relates to (cyclic) reference attribute grammars.

2.8 Conclusion

We gave a detailed summary of the following chapters, and described how the chapters are
connected together. Also, this chapter showed the features of RulerCore in relation to con-
ventional attribute grammars.

A prototype implementation of RulerCore is available as the compiler ruler-core. Its
implementation is based on higher-order attribute grammars and Haskell, and can be obtained
from:

https://svn.science.uu.nl/repos/project.ruler.papers

/archive/ruler-core-1.0.tar.gz

The examples subdirectory contains some minimalistic examples. A large example based
on the HML type system [Leijen, 2009] can be obtained from:

https://svn.science.uu.nl/repos/project.UHC.pub

/branches/tnfchris-hml/
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This chapter introduces the concept of visits, which play an important role in subsequent
chapters of this thesis. We present this concept by means of a correspondence with the visitor
design pattern.

The visitor design pattern is often applied to describe traversal algorithms over Abstract
Syntax Trees (ASTs) in imperative programming languages. It defines a visitor, an object
with a visit method that is executed for each node in the AST, and updates the state of the
visitor, and possibly the states of nodes as well. The order in which the visitor visits the nodes
is explicitly under control of the programmer, which is essential to deal with the side-effectful
computations that modify the state of the visitor. However, the exchange of results between
traversals is error-prone.

Attribute grammars with a statically ordered attribute evaluation (Section 1.3.5) are an al-
ternative way to describe multi-traversal algorithms. An Attribute Grammar (AG) defines
attributes of nodes in the AST as functions of other attributes, and an attribute evaluator dec-
orates the AST with the attributes in one or more traversals. The attributes form a convenient
mechanism to exchange results between traversals. A strong point of AGs is that the order of
evaluation is implicit. As a consequence, however, AGs discourage the use of side effects.

We present RulerCore, a language that combines attribute grammars with visitors. In
RulerCore, sufficient assumptions can be made about the evaluation order to facilitate side
effects. In Chapter 4 we show how to formally reason with such side effect.

A RulerCore grammar can be used in combination with several host languages. In the out-
line of this chapter (Section 2.1) we sketched RulerCore with the purely functional, statically
typed language Haskell as host language. In this chapter, we actually show RulerCore in
combination with the imperative and dynamically typed language JavaScript1. This chapter
thus introduces the concepts that underly the subsequent chapters without a dependency on
knowledge of Haskell. Also, it serves as a basis of how contents of the subsequent chapters
can be mapped to other languages than Haskell.

3.1 Introduction

Algorithms for traversing tree-shaped data structures appear in many applications, especially
in compilers. A lot of effort has been invested in developing proper abstractions for tree
traversals, for example in the form of a tree-walking automaton (Section 1.3.3), or in a more
abstract way with Attribute Grammars (AGs) [Knuth, 1968].

1 In the outline of this chapter, we limited side effects in RulerCore to rules that determine the shape of children.
Since we cannot enforce the absence of side effects in JavaScript expressions, we do not impose this restriction.
Instead we present a pin-rule, which can be restricted to a visit and allows for safe use of side effect.
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AGs are an attractive language for the development of compilers. We applied AGs in
many small projects (to teach compiler construction [Utrecht, 2010], master projects, etc.),
and several large projects, including the Utrecht Haskell Compiler [Dijkstra et al., 2009], the
Helium [Heeren et al., 2003b] compiler, and the editor Proxima [Schrage and Jeuring, 2004].
AGs are an important asset in these projects. The example in Section 3.2 demonstrates some
of the reasons.

Tree traversals play a role in many other fields, including end-user applications. Web
applications, for example, traverse and compute properties of DOM trees. Unfortunately, the
abstractions that emerge from research in compiler construction are not used to write such
traversals. To use AGs, sufficient familiarity with the formalism is required, which may be an
obstacle for many programmers. Also, tool support is typically absent for the programming
language in question, and the AG formalism poses severe restrictions to be used effectively
in these areas, such as prohibition of side effect. In this chapter, we treat the latter two
challenges, which are of a technical nature.

Considering the first challenge, for imperative languages like JavaScript, a programmer
either writes recursive functions, or takes a more structured approach via the visitor design
pattern [Gamma et al., 1993, Palsberg and Jay, 1998, Oliveira et al., 2008]. Tool support for
the visitor design pattern is available for many languages. For example, the parser generator
SableCC [Gagnon and Hendren, 1998] generates visitor skeleton code for the ASTs that the
parser produces. With visitors, side effects are used to carry over results computed in one
visit to the next visit. In our experience, the scheduling of visits and their side effects is an
error-prone process, due to the absence of the define-before-use guarantee. We elaborate on
this in Section 3.2.1.

Attribute grammars offer a programming model where each node in the AST is associated
with named values that are called attributes. An AG description contains computations that
define attributes in terms of other attributes. If these definitions are noncircular, the descrip-
tion can be translated to a multi-visit traversal algorithm where each attribute is defined before
it is used. The scheduling of the computations in implicit, which saves a programmer from
writing the scheduling manually, and thus also cannot do it wrong. However, the implicit
scheduling comes with a severe restriction: side effects cannot be used reliably and should
not be used in attribute computations. In web applications, for example, we typically need
side effects to influence the contents of a webpage. We elaborate on this in Section 3.2.2.

The main contribution of this Chapter is an extension of attribute grammars that has an
explicit notion of visits, which offers a hybrid model between visitors and attribute gram-
mars, while maintaining the best of both worlds. In fact, besides being more expressive, our
extension make attribute grammars more intuitive to use.

We also address the second challenge, which is to make our approach available for many
host languages. We present RulerCore, a small but powerful language for tree traversals. We
managed to isolate the language-dependent part into a small subset called RulerBack, and
show the translation from RulerBack to JavaScript. In later chapters, we show a translation
to Haskell. With these two languages, we cover the implementation issues regarding the full
spectrum of mainstream general purpose programming languages available today.

Similar to other preprocessed languages, code fragments of the host language are embed-
ded in RulerCore to describe the computations for attributes. The embedding keeps general-
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purpose programming constructs out of RulerBack, and allows the programmer to express
computations without having to learn a special language. In particular, RulerBack is suitable
as a host language for attribute grammars.

In this chapter, we present the languages RulerCore and RulerBack. We do so by using an
example based on the alignment of HTML menus. This example requires a traversal of the
AST to determine the sizes of the HTML items, and another pass to compute the locations of
the items. Section 3.2 presents the example in each of the above languages.

This chapter focussed on RulerBack. We introduce RulerBack in Section 3.3 and show
a translation to JavaScript in In Section 3.4. In Section 3.5 we get back to RulerCore and
describe the translation to RulerBack.

3.2 Example

In this section, we motivate the claims of the introduction in more detail, and introduce the
background information relevant for the remainder of the chapter. We take as a use case the
alignment of an HTML menu in a web application using JavaScript, based on a multi-visit
tree traversal over an abstract description of the menu. We first show a solution using the
visitor-pattern, then a near-solution using attribute grammars, and finally two solutions using
RulerCore.

3.2.1 Visitor Design Pattern

In the visitor design pattern, each node of the Abstract Syntax Tree (AST) is modelled as
an object, which stores references to the subtrees, and has an accept method. The accept
method takes a visitor as parameter. A visitor is an object with a visit-method for each type
of node. The accept method of the AST node calls the appropriate visit-method on the visitor
and passes the node as an argument. This visit method consists of statements that manipulate
the state of the visitor and the AST node, and can visit a subtree by calling the accept method
on the root of a subtree, with the visitor-object as parameter.

Figure 3.1 shows an example of a visitor that lays out HTML items as a menu in a tree-
like fashion, as visualized in the upper-right corner of the figure. The menus are aligned
to the right, and submenus are slightly indented. Furthermore, we desire the items to have
a minimal size, but large enough to contain their contents. The variable root contains an
abstract description of the menu as a tree of Menu objects (the AST). Associated with each
Menu object is an HTML item with the same name. We interpret the menu structure to layout
the HTML items. In the first visit to the menu tree, we query the widths of the corresponding
HTML items. In the second visit, we adjust the positions and sizes of these items. Some
information (such as indentation based on the depth) is computed in the first visit, and also
needed in the second visit. This information is stored as additional fields in the menu objects.

The order in which the tree is visited is clearly defined by the explicit accept-calls in the
visit-methods. The order of the calls ensures that the sized of the HTML items are queried
before they are resized.
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item a

very big item b

not so big c

tiny

function Menu (name,children) { -- constructor of a Menu AST node
this.name = name; -- the name of the element to align
this.children = children; -- an array of children menus
}
Menu.prototype.accept = function (visitor) {

visitor.visitMenu (this); } -- invokes the appropriate visit method

function Visitor () { -- constructor of a Visitor object
this.depth = 0; -- the depth so far in the menu tree
this.maximum = 0; -- the maximum width observed so far
this.count = 0; } -- the number of menus laid out so far

var root = -- the menu tree and corresponding html nodes
new Menu ("a", [ -- <div id="a">item a</div>

new Menu ("b", [ -- <div id="b">very big item b</div>

new Menu ("c", [ ]) -- <div id="c">not so big c</div>

, new Menu ("d", [ ]) -- <div id="d">tiny</div>

])
]); -- <div id="anchor" onLoad="align(root,this);"></div>

function align (root,anchor) { -- aligns the html nodes according to the menu tree
var v = new Visitor (); -- creates visitor with empty state

v.visitMenu = function (menu) { -- first visit method (gets menu node as param)
menu.elem = document.getElementById (menu.name);
menu.depth = this.depth; -- remember depth for the second visit

this.maximum = Math.max (this.maximum, this.depth∗20+menu.elem.clientWidth);

for (var i in menu.children) {
this.depth = menu.depth+1; -- reset this.depth to one deeper than current
menu.children [i ].accept (this); -- invokes visitor on children
}}

root.accept (v); -- invokes the first visit (on the root)

v.visitMenu = function (menu) { -- second visit method (gets menu node as param)
var offset = menu.depth∗20;
menu.elem.style.left = (anchor.offsetLeft+offset)+"px";
menu.elem.style.top = (anchor.offsetTop+ this.count ∗30)+"px";
menu.elem.style.width = (this.maximum−offset)+"px";
menu.elem.style.height = 30+"px";

this.count++; -- inorder numbering of nodes

for (var i in menu.children) { -- invokes visitor on menus children
menu.children [i ].accept (this); -- count should not be reset in this case
}}

root.accept (v); } -- invokes the second visit (on the root)

Figure 3.1: Pseudocode of dual-visit menu alignment.
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However, there are a number of issues with the above solution. In the second visit, we
require that a number of values are computed in the first visit. These values are stored in
the state of the AST nodes during the first visit. This approach has a number of problems.
It does not guarantee that the values that we store indeed those values that we need later.
Furthermore, we never remove any of these values from the state, and thus retain all memory
until the AST gets deallocated. This especially becomes a problem when using large ASTs
in which many results are stored.

Furthermore, the order of appearance of the statements is relevant. For example, the value
this.depth needs to be reset at the appropriate place, and requires that the assignment to
menu.depth is done before. Similarly, the increment to this.count needs to be positioned
carefully. These are actually separate aspects that we would like to implement in isolation.
However, separate pieces of code cannot easily be composed due to side effect.

Finally, we need to explicitly write visits to children using accept. Some tools generate
depth-first visitors, which alleviates the need to do so. However, such approaches come
with restrictions. The restriction that all statements must take place before the invocations to
children is an example. In Figure 3.1 we reset this.depth in between visits to children. To use
a depth-first visitor, we would have to move this statements, which may not be immediately
possible. Moreover, in the simple example that we showed, the two visits are invoked after
each other at the root. In practice, for example in type checking languages with principal
types, we actually invoke multiple visits on a subtree before moving on to the next subtree.
This rules out depth-first visitors, and is also error-prone to write manually.

The example in Figure 3.1 can be made more complicated by allowing menus to share
submenus. The menu structure then forms an acyclic directed graph instead of a tree. With
such a complication, the problems mentioned above become harder to deal with.

As a sidenote, in this chapter, we treat the AST as a fixed data structure. For example,
we do not consider adding menu entries on the fly. The ideas we propose can deal with the
dynamic construction of proof trees (Chapter 5), and we think that this is sufficient to deal
with dynamic changes to the AST as well, but leave this topic as future work.

Below, we look for a way to generate code similar to the code above, but using a description
that alleviates the programmer from the aforementioned problems.

3.2.2 Attribute Grammars

Attribute grammars take care of the problems mentioned above related to visitors, but are not
flexible enough to take side effects into account. Before we show the example, we first give
some background information on attribute grammars, and their encoding in JavaScript.

We introduced attribute grammars in Section 1.3.1, and we use a similar syntax here with
minor differences due to the JavaScript host language and to stay close to the syntax that we
introduce later with respect to RulerCore. To summarize, an attribute grammar is an extension
of a context-free grammar. Nonterminals are annotated with attributes. Productions specify
equations between attributes. The context-free grammar specifies the structure of the AST.
Each node of the AST is associated with a production, and thus also the nonterminal of the
nonterminal symbol that appears as left-hand side of the production. Each child of a node
corresponds to a nonterminal symbol on the right-hand side of the production.
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For example, we can denote a production as well as the structure of a node in the AST
using a grammar definition (explained below):

grammar Menus -- nonterminal Menus
prod Cons hd :Menu tl :Menus -- production Cons, with two nonterminals
prod Nil -- production Nil, empty

This grammar definition introduces a nonterminal Menus with two productions, representing
a cons-list. The first production is named Cons. In BNF notation, it corresponds to Menus→
Menu Menus. The two nonterminals Menu and Menus in the right-hand side (RHS) have
explicitly been given the respective names hd and tl. Terminals only have a name (shown
later in Figure 3.2).

The grammar declaration corresponds to generated JavaScript constructor functions in the
host language, which can be used to construct ASTs. Each production is mapped to a con-
structor function that gets as parameter an object corresponding to the symbols in the RHS of
the production. Each nonterminal is mapped to a constructor function that creates a base ob-
ject that each of the objects corresponding to the productions inherits. Because of inheritance,
we can verify at the point of construction that the AST matches the grammar:

function Menus () { } -- nonterminal Menus: base class
function Menus Cons (hd, tl) { -- production Cons: subclass

this.hd = hd;assert (hd instanceof Menu);
this.tl = tl;assert (tl instanceof Menus);
}
Menus Cons.prototype = new Menus ();
Menus Cons.prototype.constructor = Menus Cons;
function Menus Nil () { } -- production Nil: subclass
Menus Nil.prototype = new Menus ();
Menus Nil.prototype.constructor = Menus Nil;

Cons-lists occur often in AGs. As a shortcut, the following shorthand notation may be used,
which specifies that the nonterminal Menus is a list of Menu nonterminals:

grammar Menus : [Menu]

This shorthand notation has an additional benefit: the list of menus is conceptually a cons-list
in the AG description but represented efficiently as a JavaScript array in the generated code.
This distinction is hidden from the programmer.

The evaluation of an attribute grammar constitutes to running an evaluation algorithm on
each node. The algorithm is derived from the equations of the production that is associated
with the node. The algorithm describes the decoration of the node with attributes. We assume
that attributes are physically represented as JavaScript properties of the AST objects. Nodes
are decorated with two types of attributes: inherited attributes are computed during evaluation
of the parent of that node, and synthesized attributes are computed during evaluation of the
node itself.
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We declare the attributes of a nonterminal using an attribute declaration:

attr Menu inh depth -- inherited attribute
syn gathMax -- synthesized attribute

These attribute names are mapped to object properties named inh depth and syn gathMax.
At some point during attribute evaluation, given a participating Menu object m, the objects
properties m . inh depth and m . syn gathMax will be defined. An inherited attribute may
have the same name as a synthesized attribute: they are mapped to differently named proper-
ties. As an aside, nodes may define a number of local attributes, which can be seen as local
variables.

To give a semantics to these attributes, we organize equations (rules) per production in
semantics-blocks. We explain the following example below:

datasem Menu -- nonterminal Menu
prod Menu -- production Menu

cs :depth = 1+ lhs :depth -- rule
loc :width = 20∗ lhs :width -- rule
lhs :gathMax = Math.max (loc :width,cs :gathMax) -- rule

The full details of the nonterminal and its semantics can be found in Figure 3.2.
The left-hand side of an equation designates an attribute. The notation for attribute occur-

rences nodename : attrname refers to an attribute attrname of some node nodename, where
nodename is either the name of a child, or loc or lhs. The colon ensures that attribute oc-
currences are district from JavaScript notation for properties. Attribute occurrences in the
left-hand side of a rule refer to inherited attributes of children, but a synthesized attribute
of lhs and a local attribute in case of loc. Thus, the attributes we need to define appear as
left-hand side. For example, the above attribute occurrences refer to the JavaScript properties
this.cs . inh depth, this . loc width, and this . syn gathMax respectively.

Similarly, the right-hand side consists of a JavaScript expressions, with embedded attribute
occurrences. In this case, we may refer to the synthesized attributes of children, or with lhs
to the inherited attributes of the current node. The terminals of a production are available as
local attributes. In production Menu, there is a terminal called name, which is available as
attribute loc :name. The translation of attribute references is similar as described above. For
example, the last rule expands to the JavaScript statement:

this . syn gathMax = Math.max (this . loc width, this.cs . syn gathMax);

Evaluation of an attribute grammar corresponds to traversing the AST one or more times,
and executing rules, according to an evaluation strategy. In this chapter, we restrict ourselves
to the class of well-defined attribute grammars, whose attribute dependencies can be statically
proven to be acyclic [Knuth, 1968]. For these grammars, the attributes can be computed by
visiting each node a bounded number of times. This corresponds precisely with typical uses
of the visitor-design pattern.
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grammar Root prod Root root :Menu -- node with a child named root
grammar Menu prod Menu name cs :Menus -- node with a property name, and a child cs
grammar Menus : [Menu ] -- conceptually a cons-list, physically an array

var root = new Root Root ( -- the Menus are physically represented
new Menu Menu ("a", [ -- as an array. However, conceptually

new Menu Menu ("b", [ -- we define its attributes using the
new Menu Menu ("c", [ ]) -- above cons-list representation.
,new Menu Menu ("d", [ ])])]));

attr Menu Menus inh depth finMax count -- gathMax: width of submenu
syn gathMax count -- note: count is both inh and syn

function align (root,anchor) { -- uses embedded attribute grammars
datasem Root prod Root -- equations of production Root of nont Root

root :depth = 0 -- initial depth
root :count = 0 -- initial count
root :finMax = root :gathMax -- choose gathered max as global max

datasem Menu prod Menu -- production Menu of nonterm Menu
cs :depth = 1+ lhs :depth -- increase depth for submenus
cs :count = 1+ lhs :count -- increase count
lhs :count = cs :count -- provide the updated count to the parent

loc :elem = document.getElementById (loc :name)
loc :offset = lhs :depth∗20 -- indentation
loc :width = loc :offset+ loc :elem.clientWidth
lhs :gathMax = Math.max (cs :gathMax, loc :width)
cs :finMax = lhs :finMax -- pass down final maximum

loc :dummy = (function () { -- side-effectful statements (wrapped)
loc :elem.style.left = (anchor.offsetLeft+ loc :offset)+"px";
loc :elem.style.top = (anchor.offsetTop+ lhs :count ∗30)+"px";
loc :elem.style.width = (lhs :finMax− loc :offset)+"px";
loc :elem.style.height = 30+"px"; }) () -- unwrap directly

datasem Menus prod Cons -- equations of production Cons
hd :depth = lhs :depth -- pass depth downwards through the menus
tl :depth = lhs :depth
hd :count = lhs :count -- thread the count through the menus, in an
tl :count = hd :count -- in-order fashion. First to the head, then to
lhs :count = tl :count -- the tail, then back up to the parent.
lhs :gathMax = Math.max (hd :gathMax, tl :gathMax)
hd :finMax = lhs :finMax -- pass global maximum downwards
tl :finMax = lhs :finMax

datasem Menus prod Nil -- equations of production Nil
lhs :count = lhs :count -- thread count through without changing it
lhs :gathMax = 0 -- initial maximum

var inhs = new Inh Root (); -- contains inh attrs of the root (empty)
eval Root (sem Root,root, inhs); } -- run the attribute evaluator

Figure 3.2: Attribute grammar-based near-solution to menu alignment.
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From a semantics-blocks (datasem-blocks in Figure 3.2), a function is generated that con-
tains the evaluation algorithm. For example, the function sem Menu is generated from the se-
mantics of nonterminal Menu. Furthermore, to interface with the decorated tree in JavaScript
code, a function eval Menu is generated that takes the AST, the function sem Menu, and an
object containing values for the inherited attributes. It applies the semantic value and returns
an object with the synthesized attributes:

var inhs = new Inh Menu ();
inhs.depth = 0; -- provide inh attrs of root
syns = eval Menu (sem Menu,menu, inhs); -- initiate evaluation
window.alert (syns.gathMax); -- access syn attrs of root

In Figure 3.2, we show an attribute grammar version of the example that we presented ear-
lier. It is a non-solution, for reasons explained later, but exhibits various important properties.
Below, we comment on some aspects of the example.

The attribute grammar code in Figure 3.2 starts with a number of grammar definitions that
describe the structure of the menu tree. We then define a number of attributes. In particular,
the idea is that we gather a maximum gathMax (synthesized), and use its value at the root
to pass down the global maximum finMax (inherited). Moreover, we count the menus. The
inherited attribute count specifies the count for the current menu, and the synthesized count
is the count incremented with the total number of children.

We define the semantics for these attributes in the function align. Because root and anchor
are its parameters, we also have access to these in the right-hand sides of rules.

A HTML item can be laid out using statements that assign to properties of an HTML
item. Since the right-hand side of an attribute equation (rule) is an expression, a sequence of
statements needs to be wrapped as an expression. In JavaScript, this can be accomplished in
a variety of ways. In the example, we choose to use a parameterless anonymous function for
this purpose.

In the semantics of Menus, rules are given to compute the attributes for lists of menus using
the cons-list representation. These rules follow standard patterns. The attributes depth and
finMax are passed topdown. The attribute gathMax is computed bottom-up. The attribute
count is threaded through the tree. In the visitor-example, the fields in the visitor combined
with side effects took care of this behavior. With attribute grammars, we have to describe
it explicitly. However, with copy rules (Section 1.3.12), collection rules [Magnusson et al.,
2007], and a generalization called default rules (Chapter 5), we can abstract from these pat-
terns, so that a more concise semantics of Menus can be given (as we see later).

The AG code has three nice properties. Firstly, the order of appearance of the rules is
irrelevant. This allows the rules for depth and count to be written separately and merged
automatically [Löh et al., 1998]. In the example, we give all the rules without using such
composition facilities. However, for larger projects the ability to write such rules separately
is important with respect to modularity.

Secondly, a nice property is the absence of invocations of visits (the accept calls in the
visitor-example). The number of visits is totally implicit. From the dependencies between
attributes in the rules, it can be determined automatically that the attribute root : gathMax
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(in the semantics of Root) must be computed in a visit before the visit where it is passed as
root :finMax.

Thirdly, we check statically if there is an evaluation order of statements such that all at-
tributes are defined before their value is accessed. The attribute declarations describe the
attributes that must be defined, and those that are available. The rules describe what at-
tributes must be available before computing an attribute, and an evaluation order is possible
if the transitive closure of the dependencies is acyclic [Knuth, 1968].

Unfortunately, when the above is evaluated on-demand it is incorrect because the order of
evaluation of rules is determined is not only determined by dependencies on attributes but
also by the side effects that rearrange the HTML items. Since the latter effects are not present
as a dependency between rules and attributes, the order of evaluation may be wrong. In fact,
the root of the tree does not have any attributes defined, so when assuming a on-demand
evaluation of the grammar, it is actually expected that none of the rules are evaluated. Hence,
we allow the programmer to explicitly encode the dependencies imposed by side effects in
the next section.

3.2.3 RulerCore

We now present a solution using RulerCore in Figure 3.3 which resembles the code in Fig-
ure 3.2. We discuss similarities and differences below.

The essential difference is that RulerCore has notation to explicitly describe visits to an
AST node during attribute evaluation, and notation to associate side effects with individual
visits.

Interfaces. Instead of declaring attributes for a nonterminal, we declare an interface for a
nonterminal. An interface declaration specifies the visits of a nonterminal and attributes per
visit. The following example specifies that the attributes of Menu are computed in two visits:

itf Menu -- interface for nonterminal Menu
visit gather -- declaration of first visit

syn gathMax -- synthesized attr computed by visit
visit layout -- declaration second visit

inh finMax count -- two inherited attributes
syn count -- synthesized attr computed by visit

The order of appearance of visit declarations dictates the order of visits to AST nodes with
this interface. In order to visit a node, all previous visits must have occurred. Values for
inherited attributes must be provided prior to the visit. Values for synthesized attributes are
only available after a visit has been performed.

Scheduling. The rules of a semantics-block are automatically scheduled over visits using
an as-late-as-possible strategy (Section 3.5.2). If the rules are cyclic, the scheduling is not
possible, and a static error is reported. The scheduling determines which children to visit and
in what order. However, since Root has no attributes, there is no need to invoke any visits of
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grammar Root prod Root root :Menu -- node with a child named root
grammar Menu prod Menu name cs :Menus -- node with a property name, and a child cs
grammar Menus : [Menu ] -- conceptually a cons-list, physically an array

var root = new Root Root ( -- the Menus are physically represented
new Menu Menu ("a", [ -- as an array. However, conceptually

new Menu Menu ("b", [ -- we define its attributes using the
new Menu Menu ("c", [ ]) -- above cons-list representation.
,new Menu Menu ("d", [ ])])]));

itf Root visit perform -- root node has one visit, but no attrs
itf Menu Menus -- itf for nonterminals Menus (menu nodes)

visit gather inh depth syn gathMax -- first visit: compute maximum
visit layout inh finMax count syn count -- second visit: layout the HTML items

function align (root,anchor) { -- uses embedded attribute grammars
datasem Root prod Root -- equations of production Root of Root

root :depth = 0 -- initial depth
root :count = 0 -- initial count
root :finMax = root :gathMax -- global max is the gathered max here
invoke layout of root -- require that visit layout of root is invoked

datasem Menu prod Menu -- equations scheduled to visits of Menu
cs :depth = 1+ lhs :depth -- increase depth for submenus
cs :count = 1+ lhs :count -- increase count
lhs :count = cs :count -- provide the updated count to the parent

loc :offset = lhs :depth∗20 -- indentation
loc :width = loc :offset+ loc :elem.clientWidth
lhs :gathMax = Math.max (cs :gathMax, loc :width)
cs :finMax = lhs :finMax -- pass down final maximum

visit gather
pin loc :elem = document.getElementById (loc :name)
visit layout -- equations for visit layout and later

pin = (function () { -- side-effectful statements (wrapped as function)
loc :elem.style.left = (anchor.offsetLeft+ loc :offset)+"px";
loc :elem.style.top = (anchor.offsetTop+ lhs :count ∗30)+"px";
loc :elem.style.width = (lhs :finMax− loc :offset)+"px";
loc :elem.style.height = 30+"px";
}) () -- directly call the anonymous function

datasem Menus -- standard patterns for Menus
default depth = function (depths) {return depths [depths.length−1]; }
default finMax = function (maxs) {return maxs [maxs.length−1 ]; }
default gathMax = function (maxs) {return Math.max.apply (Math,maxs); }
default count = function (counts) {return counts [0]; }
prod Cons -- each production must be explicitly listed,
prod Nil -- even if they do not have individual rules

var inhs = new Inh Root perform (); -- contains inh attrs for the root (empty)
eval Root (sem Root,root, inhs); } -- run the attribute evaluator

Figure 3.3: RulerCore solution to menu alignment.
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root. Therefore, we specify through an invoke-rule that visit layout must be invoked, which
requires through attribute dependencies that also visit gather must be invoked, and kickstarts
the evaluation.

Scheduling constraints. Rules can be constrained to visits. Rules that appear in a visit-
block are constraint to that visit or a later visit. The example below illustrates the various
possibilities. An attribute definition that is prefixed with the keyword pin is restricted to
exactly the visit that it appears in, and is executed during that visit even where there are no
value dependencies on the attributes that it defines:

datasem Menu -- rules for nonterminal Menu
prod Menu -- rules for production Menu

cs :count = lhs :count+1 -- scheduled in visit gather or later
visit gather

pin loc :elem = ... -- precisely in visit gather
visit layout -- rules for visit layout or later

pin = ... -- precisely in visit layout
lhs :count = cs :count -- constrained to layout or later

With an underscore, we bind the value of the RHS of a rule to an anonymous attribute that
we cannot refer to anymore.

A visit-block may contain rules and optionally either a nested visit-block or a nested clause-
block. We use and explain clause-blocks later.

A visit-block introduces a subscope. A local attribute defined in a visit-block is not avail-
able for a rule defined in a higher scope, even if that rule is scheduled to a subscope. Attributes
of children are available to higher scopes.

After all these preparations, we finally present the RulerCore solution in Figure 3.3. In
this example, we express that the side effects that query the widths of the HTML items are
constrained to the first visit, and that the side effects that change the locations and dimensions
are constrained to the second visit.

For the Menus-nonterminal, we give default-rules for equality named attributes in its pro-
ductions. If such an attribute (e.g. ki : a) does not have an explicit definition, it is implicitly
defined by the default rule. Associated with the children in a production is their order of ap-
pearance. The default-rule provides a function which receives a list (an array in JavaScript)
as argument that contains the values of the attributes a of the children in the production and
preserving the order of the children. Children without an attribute a do not have a value of
this list. Also, the value of inherited lhs :a is added to the end of the list if it exists.

Remarks. In the above example, we combined both side effects and attribute evaluation.
We retain the advantages that AGs offer, such as the ease of adding attributes. As we show
later, the description still permits the AG to be analyzed and the rules to be ordered.

However, we require the programmer to manually assign attributes to visits, and to con-
strain side-effectful rules to particular visits, which is not necessary for conventional attribute
grammars. In practice, this is only a minimal amount of extra work that has as an additional
advantage that it makes attribute evaluation more predictable and thus easier to understand.
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function align (root,anchor) { -- uses embedded attribute grammars
var sem Root = -- semantic function with itf Root

sem prodRoot :Root -- equations for itf Root
visit perform -- equations for the perform, the only visit

clause Root -- production named Root
child root :Menu = sem Menu -- introduce a child root of nonterm Menu
root :ast = lhs :ast -- use lhs :ast as AST

root :depth = 0 -- initial depth
root :count = 0 -- initial count
root :finMax = root :gathMax -- global max is the gathered max of here

invoke layout of root -- demand invocation layout of root

var sem Menu = -- semantic function with itf Menu
sem prodMenu :Menu -- equations for itf Menu

visit gather -- equations for first visit
clause Menu -- production named Menu

child cs :Menus = sem Menus -- introduce a child cs of nonterm Menus
cs :ast = lhs :ast.cs -- pass submenus as AST for cs

cs :depth = 1+ lhs :depth -- increase depth for submenus

pin loc :elem = document.getElementById (loc.name)
loc :offset = lhs :depth∗20 -- indentation
loc :width = loc :offset+ loc :elem.clientWidth
lhs :gathMax = Math.max (cs :gathMax, loc :width)
cs :finMax = lhs :finMax -- pass down global maximum

visit layout -- equations for visit layout
clause Menu′ -- subproduction named Menu′

cs :count = 1+ lhs :count -- increase count
lhs :count = cs :count -- provide the updated count to the parent
pin = (function () { -- side-effectful statements

loc :elem.style.left = (anchor.offsetLeft+ loc :offset)+"px";
loc :elem.style.top = (anchor.offsetTop+ lhs :count ∗30)+"px";
loc :elem.style.width = (lhs :finMax− loc :offset)+"px";
loc :elem.style.height = 30+"px";

}) () -- directly call the anonymous function

... -- See Figure 3.5

var inhs = new Inh Root perform (); -- contains inh attrs for the root
inhs.ast = root -- AST as inherited attribute
eval Root perform (sem Root, inhs); -- run the attribute evaluator
}

Figure 3.4: Desugared RulerCore solution to menu alignment (part 1).
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3.2.4 Desugared RulerCore

In Figure 3.4 (explained below), we give a different desugared of Figure 3.3. Both versions
are valid RulerCore programs. This desugared version only uses a subset of RulerCore,
which we call RulerBack. This representation is more verbose, but more suitable for code
generation.

RulerBack generalizes over higher-order [Vogt et al., 1989] and conditional [Boyland,
1996] attribute grammars. In the next section, we introduce RulerBack. The example in
Figure 3.4 serves as preparation. In Figure 3.4, we omit the grammar definitions, interface
declaration, and root variable, which are equal to those in the first half of Figure 3.3.

In an attribute grammar, there is a fixed association between a node in the AST and a
production and a fixed association between a production and a collection of rules. The code
to execute for a node in the AST is derived from the associated collection of rules. RulerBack
virtualizes productions: we define grammars that describe traversals instead of data structures
(Section 1.3.12). The rules of a RulerBack production are organized in clauses (introduced
below), and rules can programmatically determine which clauses to evaluate.

The above functionality allows us to define a single production per nonterminal. The non-
terminal has an inherited attribute ast which contains the AST as an inspectable value. Note
that in RulerBack the representation of cons-lists using arrays becomes visible whereas this is
hidden in the RulerCore example. In the translation from RulerCore to RulerBack additional
RulerBack rules are generated to treat the explicit array representation. We show this in the
example.

Semantics blocks, which are of the form sem P : N..., introduce a production P of nonter-
minal N. The visits and attributes of N are declared separately with an interface declaration.
Additionally, the code generated from a sem-block is a constructor-function that produces an
AST node with attributes as described by N. The AST is provided explicitly as the inherited
attribute ast.

In Figure 3.4, we start with a definition of the semantics for the root. The interface Root
declares one visit, and we give rules for that visit in a visit-block. RulerBack provides clauses
as a means to generalize over productions. Each clause provides a way to compute the at-
tribute values of a visit. Moreover, a clause may specify constraints. Clauses are executed
in the order of appearance. A clause is selected if its constraints are satisfied. Conventional
productions, which specify a constraint on the node of the tree, can thus be represented with
clauses.

Clauses and visit-blocks may contain rules. Rules given for a visit are in scope of all
clauses declared for that visit. Rules for a clause are only visible in that clause. We introduce
child-rules. A child-rule introduces child. In the example, we introduce a child root, with
interface Menu, and the semantics defined by the JavaScript value sem Menu. This is an
example of a higher-order child (Section 1.3.7) and is used to virtualize the AST. Unlike
in later chapters, in this chapter the virtual AST is isomorphic to the actual AST. Also, we
assume that a visit v to child x is only possible if there exists an invoke-rule for it.

The left-hand sides of an evaluation-rule may be a pattern. This is either an attribute
reference, an underscore, or a constant. Evaluation of such a rule fails when its execution
throws an exception or the left-hand side is a value that is not equal to the value computed for
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function align (root,anchor) { -- uses embedded attribute grammars
... -- See Figure 3.4

var sem Menus = -- semantic function, also itf Menu
sem prodMenus :Menu -- equations for itf Menu

visit gather -- equations for visit gather
default depth = function (depths) {return depths [depths.length−1 ]; }
default finMax = function (maxs) {return maxs [maxs.length−1]; }
default gathMax = function (maxs) {return Math.max.apply (Math,maxs); }
default count = function (counts) {return counts [0]; }
clause Cons -- production Cons as clause

match true = lhs :ast.length> 1 -- clause matches if array has an element

child hd :Menu = sem Menu -- introduce child hd using sem Menu
hd.ast = lhs :ast [0] -- head of the array

child tl :Menu = sem Menus -- introduce child tl using sem Menus
tl.ast = lhs :ast.slice (1) -- tail of the array

clause Nil -- production Nil (matches always)

var inhs = new Inh Root perform (); -- contains inh attrs for the root
inhs.ast = root -- AST as inherited attribute
eval Root perform (sem Root, inhs); } -- run the attribute evaluator

Figure 3.5: Desugared RulerCore solution to menu alignment (part 2).

the right-hand side. Such a failing rule causes an exceptional termination of the evaluation,
unless the evaluation-rule is prefixed with the match-keyword, and the rule does not throw an
exception other than a special fail-exception. In this case, we say that the clause fails. Thus,
the match-rules allow us to distinguish clauses Cons and Nil of ntMenus by matching on the
length of the list.

Invoke rules and visit-blocks may be annotated with strategies of various kinds. Chapter 2
describes these strategies: in this chapter the strategies partial and total, which describe
backtracking behavior, appear.

During attribute evaluation, the clauses of a visit are evaluated in the order of appearance.
When evaluation for a clause fails, the evaluation backtracks to the next clause2. A backtrack
does not revert potential side effects of the results that are evaluated so far. If the last clause
fails, the default behavior is that the evaluation fails exceptionally. However, if both the visit
itself and the invoke-rule of the parent are annotated with the strategy partial, then the invoke-
rule of the parent fails and causes backtracking in the parent. By default, a total strategy is
assumed.

Unspecified visit-blocks are implicitly defined as an empty visit-block. A visit-block with-
out clauses implicitly has a single clause. This clause matches always unless match-rules are
present. Therefore, we neither have to specify the visit-block layout nor clauses for it in the

2 Chapter 7 describes a different strategy where clauses are simultaneously tried.
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3 AGs with Side Effects

e ::=J [b ] -- embedded RulerBack blocks b in JavaScript code J
b ::= i | s | o -- RulerBack blocks
i ::= itf I v -- interface decl, with visit sequence v
v ::=visit x inh x1 syn x2 z v -- visit decl, with atributes x1 and x2 and strategy z
| � -- terminator visit (optional in the notation)

s ::= sem x : I t -- semantics expr, defines production x
t ::=visit x r k -- visit-block, with rules r and clauses k
| � -- no visit (serves as terminator)

k ::= clause x r t -- clause definition, with next visit t
r ::=p = e -- assert-rule, evaluates e, binds to pattern p
| pin p = e -- pinned assert rule (bound to visit it occurs in)
| match p = e -- match-rule, backtracking variant
| invoke x of c z -- invoke-rule, invokes visit x on c
| child c : I = e -- child-rule, introduces a child c of itf I

z ::=partial | total -- behavior in case of rule failure
o ::= c :x -- attribute reference in some embedded code
p ::= c :x -- attribute reference in pattern
| -- wildcard
| K -- constant K

x,c p,e -- identifiers, child identifiers, patterns, expressions respectively
Γ,Σ ::= ε -- attr+child environment (used in semantics)

| Γ,◦ -- new scope
| Γ, inh c :x -- inh attr c :x
| Γ,syn c :x -- syn attr c :x
| Γ,c : I v -- child c with available visit sequence v

Φ ::= ε -- interface environment (used in semantics)
| Φ, I v -- itf I with visit decls v

Figure 3.6: Syntax of RulerBack
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itf S visit v1 inh l syn /0 total -- decompose array l down
visit v2 inh /0 syn s total -- compute sum s up
� -- end of visit decls

var sumArr = sem sum :S
visit v1 /0 -- first visit

clause sumNil -- when list is empty
match 0 = lhs : l.length -- match empty l
visit v2 /0 -- second visit

clause sumNil2 -- single clause
lhs :s = 0 -- empty list, zero sum
� -- end of visit blocks

clause sumCons -- when list non-empty
loc :x = lhs : l [0] -- head of the list
loc :xs = lhs : l.slice (1) -- tail of the list
child tl :S = sumArr -- recursive call
tl : l = loc :xs -- l param of call
invoke v1 of tl total -- invoke on child
visit v2 /0 -- second visit

clause sumCons2 -- single clause
invoke v2 of tl total -- invoke on child
lhs :s = loc :x+ tl :s -- sum of head and tail
� -- end of visit blocks

Figure 3.7: Example of RulerBack syntax: summing an array of integers.

semantics of ntMenus. Also, because of the automatic ordering of rules, many of the rules
defined in visit layout of ntMenu, could also be defined one level higher, in visit gather.

Note that this representation is more general than conventional attribute grammars, and that
an attribute grammar can easily be mapped to this representation, as shown by the difference
between Figure 3.3 and Figure 3.4.

3.3 Static Semantics of RulerBack

In this section, we introduce RulerBack, a small subset of RulerCore. It serves as an inter-
mediate language for RulerCore. Figure 3.6 shows the syntax of RulerBack. A RulerBack
program e is a JavaScript program J , with embedded RulerBack blocks b. A block b is either
an interface declaration, semantics-block, or attribute reference. The syntax of visits in inter-
face declarations and semantics-blocks use a cons-list representation which is convenient for
the specification of translation schemes later. We explain the individual forms of syntax in
more detail below.
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3 AGs with Side Effects

There are some essential differences with respect to RulerCore that we gradually intro-
duced in the previous section. The order of appearance of rules defines the evaluation order,
and each invocation of a visit must explicitly be stated through an invoke rule. Grammar
blocks can be desugared and are optional in RulerBack. Instead, with clauses and (match)
rules, we provide a general mechanism to traverse arbitrary JavaScript data structures.

The embedded blocks may occur anywhere in a JavaScript program. The programmer is
required to position semantics blocks and attribute references at expression positions in the
host language, and interface declarations at statement positions. It is the responsibility of the
programmer to handle the scoping of embedded blocks.

Figure 3.7 shows a RulerBack program that computes the sum of an array of integers in two
visits. This simple example can also be formulated as a single visit. However, it serves here
as a short example of a dual-visit program. The first visit has two clauses: a clause sumNil
when the array is empty, and sumCons when there is at least one element. In the second visit,
the actual sum is computed, using the rules that depend on which clause is chosen in the first
visit.

A semantics-block introduces a visitor-object with an interface I. The interface dictates
what visits can be made to the object, and what the inputs (inherited attributes) and outputs
are (synthesized attributes). The outputs for a visit are produced by executing rules. We write
these rules down in a tree of clauses and visits, as illustrated by the indentation in Figure 3.7
and the state diagram in Figure 3.8.

v1 /0 sumNil

sumCons v2 /0 sumCons2 ()

v2 /0 sumNil2 ()

Figure 3.8: States of nodes with semantics sum.

The black nodes represent the state of the AST-node prior to a visit and the white nodes
indicate a branch point. Upon creation, an AST node is in the state represented by the root
node. With each edge, alternatively the rules of a visit or the rules of a clause are associated.
With each visit, an AST node changes state to a next black node by executing the rules on the
path to such a node. Execution of all of the rules must succeed. At a branch-point, rules on
edges of clauses are tried in order of appearance. Results produced by executing rules are in
scope of rules further along the path.

There are four types of rules in RulerCore.

• match p = e -- match-rule
match loc :x = 3 -- example that succeeds
match true = false -- example that fails

The pattern p must match the value of the right hand side. If the evaluation of e re-
sults in an exception, or the match fails, a backtrack is made to the next clause. If p
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Γ ` s v ; Γ ` t Σ ; Γ0 ` r : Γ1 Γ ` e -- signatures of the relations
Γ ` o v ; x ; Γ ` c Σ ; Γ0 ` p : Γ1 -- used by judgments below

x unique
I v ∈Φ v ; Γ,◦ ` t

Γ ` sem x : I t
SEM

� ; Γ `� END

Γ0∪avail (visit x r k) ; Γ0∪{ inh lhs :a | a ∈ i} ` r : Γ1 v ; s ; Γ1 ` k

visit x inh i syn s v ; Γ0 ` visit x r k
VISIT

x unique
Γ0∪avail (clause x r k) ; Γ0 ` r : Γ1 v ; Γ1 ` t {syn lhs :a | a ∈ s} ⊆ Γ1

v ; s ; Γ0 ` clause x r t
CLAUSE

Σ ; Γ0 ` p : Γ1 Γ0 ` e

Σ ; Γ0 ` pin? p = e : Γ1
ASSERT

Σ ; Γ0 ` p : Γ1 Γ0 ` e

Σ ; Γ0 `match p = e : Γ1
MATCH

Φ (Ic) = v visit x inh i syn s z2 ∈ v z1 v z2 c : Ic w ∈ Γ0 next w v = x
{inh c :a | a ∈ i} ⊆ Γ0 Γ1 = Γ0∪{syn c :a | a ∈ s}∪{c : Ic (w,visit x inh i syn s)}

Σ ; Γ0 ` invoke x of c z1 : Γ1
INVOKE

Γ0 ` e Γ1 = Γ0∪{c : I /0}
Σ ; Γ0 ` child c : I = e : Γ1

CHILD
inh lhs :a ∈ Γ

Γ ` lhs :a
OCC.LHS

syn c :a ∈ Γ

Γ ` c :a
OCC.CHILD

syn lhs :a ∈ Σ

Σ ; Γ0 ` lhs :a : Γ0,syn lhs :a
PAT.LHS

Σ ; Γ0 ` loc :a : Γ0,syn loc :a PAT.LOC

inh c :a ∈ Σ

Σ ; Γ0 ` c :a : Γ0, inh c :a
PAT.CHILD

Σ ; Γ ` K : Γ CONST Σ ; Γ ` : Γ ANY

avail (visit x r k) = avail∪ (r)∪avail∩ (k)
∪{syn lhs :b | visit x inh a syn b ∈Φ (Ix)}

avail (clause x r t) = avail∪ (r)∪avail (t)

avail (p = e) = /0
avail (match p = e) = /0
avail (invoke x of c) = {inh c :a | a ∈ a,visit x inh a syn b ∈Φ (Ic)}
avail (child c : I = e) = {c : I (Φ I)}

Figure 3.9: Static semantics of RulerBack
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represents an attribute, the attribute gets defined.

• pin? p = e -- eval-rule (optionally pinned)

Similar to the above, except that the match is expected to succeed. If not, the evaluation
itself aborts with an exception. For that reason, we also call these rules assert-rules.
Note that these are the conventional rules of attribute grammars.

• child c : I = e -- child-rule
child root :Menu = ntMenu -- example that introduces a Menu child

Evaluation of the rule above creates a child c, visitable according to the interface I, and
created by executing the constructor function e.

• invoke x of c z -- invoke rule

Executes visit x of child c. The inherited attributes of x must be defined, and all prior
visits to c must have been performed. The invocation fails if no clause matches and
the strategy z is partial. Otherwise, the evaluation aborts exceptionally. If success-
ful, the synthesized attributes of x become available. If there is an invoke with a
partial-annotation, then the visit of the corresponding interface must also have a partial-
annotation.

Figure 3.9 shows RulerBack’s static semantics for sem-blocks. We omitted the rules that
state the uniqueness of interfaces and attributes of interfaces. A RulerBack program that
satisfies these conditions never crashes due to an undefined attribute, invalid rule order, or
forgotten invocation to a child. The dynamic or static type checking we leave as responsibility
of the host language.

We briefly consider some aspects of these rules. Three environments play an important
role. The environment Φ contains for each interface the sequence of visits. The environment
Γ represents the children and attributes defined so far for one node (to test for missing and
duplicated definitions). The environment Σ represents the attributes that are allowed to be de-
fined (to test for definitions of unknown attributes). As additional constraint on environments,
we consider it a static error when there is a duplicate attribute in the environment within two
scope markers.

Visit-blocks must be specified in the order as declared on the interface, and none may
be omitted. The relation for visits t gets a sequence of pending visits v as declared in the
interface. In rule VISIT, we verify that the name of the visit matches the expected visit in the
head of v. The next visit must match the head of the tail of this list, until in the end v is empty.
We also add the inherited attributes of the visits to the environment.

The function avail defines which attributes may be defined. Higher-up in the visit-clauses-
tree, we may only define those attributes that are common to all lower clauses. In rules
PAT.LHS and PAT.CHILD, we verify that we are indeed defining an attribute belonging to a
certain child. The avail-function either generalizes over lists using intersection or union.
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Rule SEM forms the root of derivation trees. Since semantics blocks can occur nested, Γ

contains potential bindings in scope from encapsulating semantics blocks. A new scope entry
is added to Γ. The rule matches the visits blocks t against the declared visits v. Rule END

matches with the end of a sequence of visits blocks, and requires also to have reached the
end of the declared visits. Rule VISIT requires that the clauses and rules are well-formed.
From the rules r it obtains an environment Γ1 with additional bindings that are available to
the clauses. Both the rules and the clauses may refer to the inherited attributes of the visit.
Each clause must define the set s of synthesized attributes of the visit. We assume that the
type rule for a rule r is lifted to a list of rules r by chaining the environment Γ.

Rule CLAUSE verifies that the rules it contains and the next visit are well-formed. Further-
more, it verifies that the synthesized attributes of the visit are defined. The type rules ASSERT,
MATCH, INVOKE, and CHILD correspond to RulerBack rules. The ASSERT and MATCH rules
verify that the pattern and expression are well-formed. The CHILD rule adds the child in an
empty state to the environment.

Rule INVOKE verifies that visit x is indeed the next visit in the expected sequence of visits
v, given the previous invocations w. It furthermore verifies that the inherited attributes for
the visit of c are defined, and adds the synthesized attributes to the environment. Finally,
the strategy annotation of the invoke-rule must be greater than the strategy annotation of the
visit. If the visit is declared as total, then as sanity-check, an invoke may not have partial as
strategy.

3.4 Translation of RulerBack to JavaScript

In this section, we describe how to translate RulerBack programs to JavaScript. We translate
each semantics-block to a coroutine, which we implement as one-shot continuations. Each
call to the coroutine represents a visit. The parameters of the coroutine are the inherited
attributes of the visit. The result of the call is an object containing values for the synthesized
attributes, and the continuation to call for the visit.

As an example, we show in Figure 3.10 the translation of the example in the previous
section. To deal with backtracking, we use the exception mechanism, and throw an exception
to switch to the next clause. Note that this does not rollback any side effects that the partial
execution of the rules may have caused. To be able to do so, we can run the rules in a software
transaction [Heidegger et al., 2010], which are nowadays supported by many programming
languages. Alternatively, when the side effects matter, the programmer can schedule the rule
to an earlier or later visit, such that it is not influenced by backtracking.

To deal with continuations, we use closures. The function to be used for the next visit is
constructed in the previous visit. This function has access to all the results computed in the
previous visit. Furthermore, we store values for attributes in local variables. Those values
that are not needed anymore are automatically cleaned up by the garbage collector.

Figure 3.11 shows the general translation scheme, and the naming scheme for attributes.
In particular, for each visit, we generate a closure that takes values for inherited attributes as
parameter. Clauses are dealt with through exception handling. When a clause successfully
executed all statements, it returns an object containing values for synthesized attributes, as
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var sumArr = function () { -- semantic function
function nt sum ( inps) { -- visit v1

var lhsIl = inps.l; -- extract lhs : l
try { -- try clause sumNil

if (lhsIl.length ! =0) throw eEval; -- if lhs : l is empty

var res = new Object (); -- produce results of v1
res . next = function ( inps) { -- cont. for visit v2

var lhsSs = 0; -- lhs :s rule

var res = new Object (); -- produce results of v2
res . next = null; -- no next visit
res.s = lhsSs; -- store lhs :s

return res; -- return result of v2
};

return res; -- return result of v1
} catch (err) { -- try clause sumCons

var locLx = lhsIl [0]; -- loc :x rule
var locLxs = lhsIl.slice (1); -- loc :xs rule
var vis tl = sumArr (); -- creation of child tl
tlIl = locLxs; -- tl : l rule

var args = new Object (); -- inputs for v1 of tl
args.l = tlIl; -- store tl : l

var res = vis tl ( args); -- invoke v1 of tl
var vis tl = res . next; -- extract results

var res = new Object (); -- produce results of v1
res . next = function ( inps) { -- cont. for visit v2

var args = new Object (); -- inputs for v2 of tl
var res = vis tl ( args); -- invoke v2 of tl
var tlSs = res.s; -- extract tl :s result

var lhsSs = locLx+ tlSs; -- compute lhs :s

var res = new Object (); -- produce results of v1
res . next = null; -- no next visit
res.s = lhsSs; -- store lhs :s

return res; -- return result of v2
};

return res; -- return result of v1
}};return nt sum; }; -- return visitor function

Figure 3.10: Example translation
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well as the continuation function for the next visit.
The above translation is relatively straightforward. In practice, the selection of a clause is

functionally dependent on the value of an inherited attribute, or a local attribute computed in
a previous visit. In those cases, the selection of clauses can be implemented more efficiently
using conventional branching mechanisms. Also, instead of using the exception mechanism
to implement backtracking, we can use code duplication, which results in more efficient code.
Chapter 9 shows such a translation scheme.

We verified that the above implementation runs in time linear in the size of the tree when we
use a version of the slice operation that does not make a copy of the array. With a throughput
of about hundred array elements per microsecond, and about a thousand per microsecond
with the exception handling replaced by conventional branching, this is still about one or two
orders of magnitude slower than using a hand-written loop. In our experience, however, the
traversal performance is rarely an issue. In general, the asymptotic complexity of the traversal
is linear in the size of the tree, and the actual time taken by traversing the trees is insignificant
compared to the work performed by the right-hand sides of the rules in a real application.

3.5 Translation of RulerCore to RulerBack

In Section 3.2.4, we showed in an example how a RulerCore program can be encoded using
only syntax of RulerBack. We omit the data-type driven translation from a datasem into a
sem, nor the translation of default-rules. Instead, in this section we assume that RulerCore
consists of those programs that after insertion of invoke-rules and reordering of rules are a
valid RulerBack program.

3.5.1 Implicit Invocations

In RulerCore, invoke-rules may be omitted. From a RulerBack program, we derive a number
of implicit invocations. We first determine the attributes that are needed. From these we
determine the maximum needed visit, and thus the sequence of visits that is needed. An
invoke-rule needs to be inserted if there is no invoke-rule for any of these visits yet. We start
the insertion-process at the root of the tree, and check at each level downwards which invokes
need to be inserted. With this process, we insert the invoke-rules at the lowest point, while
still being in scope of all rules that need it. Automatic rule ordering then positions the invokes
at their appropriate places.

A synthesized attribute a of child c is needed if there exists a rule which has the attribute
reference c : a in its right-hand side. The needed attributes may differ per clause and visit,
which we define in a similar way as avail in Section 3.3:

need (visit x r k) = need∪ r∪need∩ k
need (clause x r t) = need∪ r∪need t
need (p = e) = need e

Note that need generalizes to lists by using either intersection or union, which we denoted
explicitly with need∪ and need∩.
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Jsem x : I tK  function () {var Jnt xK = JtKI ;return Jnt xK; }
Jc :xK  Jinp c xK
JεKI  null
Jvisit x r k zKI  function ( inps) {

Jinp lhs (inhs I x)K = inps.Jinhs I xK;
JrK;JkKI,z,syns I x; }

J[ ]KI,partial,s  throw eEval;
J[ ]KI,total,s  throw eAbort;
Jk :kKI,z,s  try {JkKI,s; }

catch (err) {
if (err == eEval) {JkKI,z,s; }
else throw err; }

Jclause x r tKI,s  JrK;
var outs = new Object ();
outs . next = JtKI ;
outs.s = Jout lhs sK;

return outs;

Jpin? p = eK  Jvar res = JeKKtotal;
JpKeAbort

Jmatch p = eK  var res = JeK;JpKeEval;
Jchild c : I = eK  var Jvis cK = (JeK) ();
Jinvoke x of c zK  var args = new Object ();

args.Jinhs Ic xK = Jout c (inhs Ic x)K;
Jvar res = Jvis cK ( args)Kz;
var Jinp c (syns Ic x)K = res.Jsyns Ic xK;
var Jvis cK = res . next;

JeKpartial  e
JeKtotal  try {e; } catch (err) {

if (err == eEval) throw eAbort;else throw err; }
Jc :aKe  var Jout c aK = res;
J Ke  ;
JkKe  if ( res ! = k) throw e;

out "loc" x = "locL" x inp "loc" x = "locI" x
out "lhs" x = "lhsS" x inp "lhs" x = "lhsI" x
out c x = c "I" x inp c x = c "S" x
vis c = "vis_" c nt x = "nt_" x
syns I x inhs I x -- respectively, inh and syn attrs of x of I

Figure 3.11: Denotational semantics of RulerBack
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In our actual implementation, we defined the function need in a slightly more subtle way.
A default-rule may indirectly express a need on an attribute (and corresponding visit). Fur-
thermore, when a programmer provided an explicit invoke rule for a visit of a child c, then
the programmer must give explicit invoke rules in all clauses that require attributes of this
visit of c. This is a policy that we impose, because apparently the programmer had a reason
to explicitly specify an invocation of the visit, instead of using the implicit specification.

3.5.2 Rule Ordering

To order the rules, we first create production dependency graphs (PDGs) (Section 1.3.4).
Note that we do not need nonterminal dependency graphs, because these are fully implied by
the interface of a nonterminal. In comparison to conventional PDGs, the PDGs of RulerCore
contain also vertices that represent visits, clauses, and invocations of visits. The graph is also
slightly less complex because rules do not depend on synthesized attributes of children, but
on the visits of the children that produce these attributes.

In the PDG of a production (thus, a semantics block), there exists a begin and end vertex for
each visit in the interface. There exists also a vertex for each clause and each rule. Figure 3.12
lists the dependencies between vertices, and gives an impression of the dependency graph of
Menu in Figure 3.3. The dependency graph is acyclic, thus the rules can be ordered.

In this sketch, the ovals represent rules, and the square boxes represent the begin and end
of visits and clauses. The numbers represent the line numbers3. The squares immediately
following the root are the begin points of the clauses for that visit. Clauses are constrained
by begin and end points of visits. Therefore, branches come together again. Some rules are
constrained to visits (notably match rules). For other rules, we have more flexibility in their
scheduling. For Menu, we did not define clauses for the second visits, hence the implicit
clause in the graph.

Note that we consider the edges in the direction of their dependency, not in the direction
of the value flow. Thus, p is a successor of q if p needs to be defined before q. To make the
distinction clearer, we refer to the direct and indirect successors as dependencies and direct
and indirect predecessors as users.

The acyclic graph represents a partial order between rules, visits and clauses. We turn the
partial order in a total order in a number of preprocessing steps. Any total order that satisfies
the partial order must result in a semantically equivalent result. However, differences between
total orders may affect the performance of the resulting algorithm. In the dependency graph,
each rule is associated with a unique vertex.

Step 1: order by visit. First, we determine for each rule to which visit to schedule it.
Sometimes, rules can be scheduled to more than one visit. The visit a rule is scheduled to
influences the amount of data that has to be transported between visits. The inputs for the
rule need to be transported to the visit of the rule, and the result of the rule to the visits where
these results are used. The set of visits to which a rule r of a production of nonterminal N

3 See https://svn.science.uu.nl/repos/project.ruler.systems/ruler-core/examples/JsMenu.

rul.
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source node destination node
begin visit end of previous visit
end visit begin visit, clauses, syn attr def. rules, match and pin rules
clause begin visit
any rule begin visit or clause
invoke rule prev invoke or child, inh attr def. rules
any rule w. rhs begin visit for inh attrs, loc attrs def., invoke of attr

 match@58

 vis start perform@27

 clause Root@59

 match@65

 vis start gather@31

 clause Menu@66

 match@72

 match@78

 eval@73

 vis start layout@77

 match@85

 vis start gather@41

 clause Cons@90

 match@85

 clause Nil@91

 eval@58

 eval@60

 eval@61

 eval@62

 invoke root.gather@58

 eval@65

 eval@67

 eval@68

 eval@69

 eval@70

 invoke cs.layout@65

 eval@74

 eval@75

 invoke cs.gather@65

 eval@85  eval@85

 eval@90

 dflt 4

 invoke hd.layout@85

 invoke tl.layout@85

 vis start layout@45

 clause layout_Cons_Menus@90

 eval@90

 dflt 1

 eval@90  eval@90

 dflt 2

 eval@90

 eval@90

 eval@90

 eval@90

 dflt 3 invoke hd.gather@85  invoke tl.gather@85

 eval@91

 clause layout_Nil_Menus@91

 eval@91

 child@58

 child@65

 child@85 child@85

 invoke root.layout@63

 vis end gather@31<

 vis end gather@41<

 clause impl_Menu_Menu@77

 vis end layout@77<  vis end layout@45< vis end perform@27<

Figure 3.12: Dependencies between RulerCore entities, and the dependency graph of Menu.
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can be scheduled to are all visits of N, except the visits associated with end-visit nodes in the
dependencies of r, and the visits associated with the begin-visit nodes in the users of r.

Given these sets of visits for rules, we can apply scheduling strategies. For example, in
Chapter 5, we present notation to specify the iteration of visits. We try to avoid scheduling a
rule to such visits, if possible.

We may schedule rule r to any of these visits, however, by doing so, the scheduling may
affect the set of possible visits for dependencies and users of r. As our default scheduling
strategy, we schedule each rule to its last possible visit4, and add correspondingly a schedul-
ing dependency from the rule to the beginning of that visit to the graph. This approach has the
advantage that the order in which we make decisions for rules does not influence the resulting
graph, and also ensures that the graph remains acyclic.

Step 2: order by partition. Secondly, we determine per visit the order of its rules. The
order of the rules may affect the amount of overhead in the clause selection. We need to
consider the following items.

• Rules are preferably executed once per visit. As heuristic, we schedule rules that do
not depend on any clause before the clause selection5.

• Match-rules and invoke-rules with the partial-strategy may fail. Such rules are prefer-
ably scheduled early, because all computations that are performed for a clause that fails
is overhead. For example, the match-rules that test the value of an inherited attribute,
as introduced by the translation of datasems, should be scheduled upfront.

• Rules may have expressions that are expensive to compute. An accurate estimation of
such costs requires an analysis of host-language terms and is hard in general.

• Rules of a particular form may depend on other rules of a different form. We therefore
cannot straightforwardly group all match-rules together.

To take these items into account, we use a customizable strategy. We associate with each rule
a partition and class for a finite sequence of partitions and a finite sequence of classes. Rules
of one partition are scheduled before rules of a later partition. Within a partition, we schedule
rules iteratively. With each iteration, we schedule the rules of the earliest class that has rules
that can be scheduled. With this approach, rules of an earlier class precede rules of a later
class, if possible. We describe this approach in more detail below.

We define an ordered sequence of partitions. Each rule must be associated with one parti-
tion, and a rule may not have a dependency that belongs to a later partition. For a given visit,
we schedule the rules of one partition before those of the next partition. The default partitions
are:

4 Each nonterminal has a terminator visit ε , which does not have any attributes, and for which no code is generated.
Rules that are scheduled to that visit are discarded during code generation.

5 An alternative approach is to keep track of which rules that do not depend on clauses are already applied during
the evaluation of a previous clause. However, the savings on overhead are likely small. For visits declared as
total, such rules eventually need to be applied.
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3 AGs with Side Effects

data P = InCommon | InClause deriving (Eq,Ord)

We associate with InCommon all rules of a visit that are not users of a begin-clause-node of
that visit, and with InClause the remaining rules of that visit.

type of rule classification strategy
match-rules Earliest quick clause selection
partial invoke-rules Earlier clause selection
pin-rules Middle early side effect, preferably no backtrack
total invoke-rules Later visit children when needed
eval-rules Latest minimize distance between computation and use

Figure 3.13: Association of rules with classes.

Step 3: order by classification. For each partition, we define the order of the rules based
on a classification of the rule. Each rule must be associated with a class, which represents a
scheduling preference. By default, we distinguish the following classes:

data C = Earliest | Earlier |Middle | Later | Latest deriving (Eq,Ord)

Figure 3.13 shows the default association based on a rule’s type. To influence the ordering,
a programmer can specify more classes, and explicitly specify such a class for some of the
rules.

The classes specify a scheduling preference: a rule of an earlier class is preferably sched-
uled before a rule of a higher class. However, this is not possible when a rule of an earlier
class depends on a rule of a later class. Moreover, to schedule some rules of an earlier class,
there may be different minimal subsets of rules of a later class possible, so that it is not
obvious which subset to take.

In the following example, the first match-rule is scheduled first. None of the other match-
rules can be scheduled, unless either the rule for loc.a or the rule for loc.b is scheduled before.
To ensure a deterministic scheduling, we schedule both loc.a and loc.b rules, and use their
order of appearance as final distinguishing factor:

match loc.x = 3 -- class: Earliest
loc.a = e -- class: Latest
loc.b = loc.x -- class: Latest
match loc.y = f loc.a -- class: Earliest
match loc.z = g loc.b -- class: Earliest

However, if the rule for loc.y would additionally mention loc.z in its RHS, then the rule for
loc.a is scheduled directly after the rule for loc.x, followed by the rule for loc.z, and only then
the rule for loc.b.

Figure 3.14 shows the scheduling algorithm rankVertices. It uses the rank monad R, which
is a combination of a list, state, and continuation monad with monad comprehensions [Mid-
delkoop, 2011c], to describe algorithms with the enumeration combinator foreach and the
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3.5 Translation of RulerCore to RulerBack

-- gives each vertex of verts a unique rank based on classes
rankVertices :: [C ]→ [Node]→ R ()
rankVertices classes verts = do

c← foreach classes
iter $ do

vs← unionM [ps | v← verts,hasClass v c, let ps = deps′ verts v
,allM (λn→ hasClass n c ‘impliesM‘ isRanked n) (ps\\ [v])]

guard (notNull vs)
iter $ do

vss← filterM notNull $ mapM (readyNodes verts vs) classes
guard (notNull vss)
v ← foreach $ sortAsc cmpNodePos $ head vss
rank v

-- returns the subset of vs that can be scheduled
readyNodes :: [Node]→ [Node]→ C→ R [Node]
readyNodes verts vs c =
[v | v← vs, isNotRanked v,hasClass v c,allM isRanked (deps verts v)]
-- returns v and its indirect dependencies

deps′ :: [Node ]→ Node→ [Node]
deps′ verts v = [v]∪map (deps′ verts) (deps verts v)

iter :: R ()→ R () -- iterate param until a guard is False
guard :: Bool→ R () -- check a condition; fail if False
foreach :: [a ]→ R a -- repeat cont. for each item in list
rank :: Node→ R () -- gives the node the next rank
deps :: [Node]→ Node→ [Node] -- direct dependencies
hasClass :: Node→ C→ R Bool -- True iff the node has the given class
isRanked :: Node→ R Bool -- True iff the node is ranked
sortAsc :: (Node→ Node→ Ordering)→ [Node]→ R [Node]
cmpNodePos :: Node→ Node→ Ordering

Figure 3.14: Order algorithm for the visit’s rules.
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iteration combinator iter. As parameters, it gets the sequence of classes in the order from ear-
liest to latest, and the set of vertices of the partition to schedule. The result of the algorithm
is an association with a unique rank for each of these vertices.

With this algorithm, we try to schedule rules in increasing class order by giving the vertices
of such rules an increasing rank. The class c is the class we currently schedule for. For class
c, we determine the set vs, which is the smallest set that contains all vertices of rules of class
c that do not depend on an unranked vertex of class c or an earlier class. Moreover, the set
contains the indirect dependencies of these rules. This set may include vertices of a later
class, or already ranked vertices. Thus, vs contains the largest set of vertices of class c that
can be ranked when we only consider already ranked vertices of the same class or earlier.
Also, it contains the smallest set of vertices of a later class that need to be ranked to allow the
ranking of all the vertices of an earlier class in vs. For an acyclic graph, and as long as there
are unscheduled rules of class c, the set vs has at least one rule. We ensure that each rule in
vs is scheduled. Thus, by repeating this process we rank all rules of class c. Consequently,
after processing all classes, all vertices in verts are ranked.

We rank the vertices of vs in iterations. With readyNodes we determine for each class the
set of unranked vertices that have ranked dependencies, and take the nonempty subset of the
earliest class. Such a set exists, unless all vertices of vs are ranked. We rank these vertices in
the order of the appearance of their rules. The algorithm guarantees that an unranked node is
ranked if all its dependencies are ranked (soundness property), and that there is per iteration
at least one vertex ranked as long as there are unranked vertices left (progress property).

Assume the number of vertices to be ranked is n, and the number of classes is c. Both
the worst-case asymptotic time and memory complexity of deps′ is O(n), where |vs| 6 n.
The functional implementation assumes that vertices are represented as an integer. The cor-
responding rule can be determined in constant time via a lookup table. For readyNodes the
time and memory complexities are O(n2). The time complexity of the algorithm for vss is
thus O(cn2), and of the algorithm for vs is O(n2). The memory complexity is O(n2). Despite
the double iter-blocks, each line is at most repeated n+c times, because with every repetition
at least one vertex is ranked. The worst-case time complexity of rankVertices is thus O(cn3)
and the worst-case memory complexity is O(n2). Note that in practice the values for c and n
are small, and that most rules have only a small number of dependencies.

Step 4: cleanup. We schedule the rules in a partition in the order of their rank. For the
purely functional eval-rules, we make an exception. Starting with the highest-ranked eval-
rule, we shift it just before the lowest-ranked of its users in the dependency graph. Scheduling
such rules later does not affect the overhead of clause selection, and our strategy is to bring
such rules close to where their results are used. Since eval-rules have the Latest-classification,
it is already likely that these rules are already at such a position. In a similar way, we could
also move total invoke-rules. However, the visit invoked by total invoke-rules may contain
pin-rules, thus for such rules we keep the scheduling via the classification mechanism.

Remarks. The implicit invokes and automatic ordering allow a straightforward transfor-
mation from a datasem-block to a sem-block. Essentially, a datasem-block is syntactic sugar
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for a number of clauses, each with a match-rule, and a number of child-rules. We also al-
low in RulerCore omitted visits and clauses to be implicitly defined. Combined with implicit
invocations, this makes it easy to add additional visits to an interface. Furthermore, the auto-
matic rule ordering allows us to write independent rules separately from each other (possibly
in separate files) and use a preprocessing step to merge the rules together.

The scheduling also offers opportunities to exploit parallelism. When the head vss con-
sists of total invoke-rules, during rankVertices, these invocations are candidates to evaluate in
parallel because their computations are independent. However, whether or not parallelism is
beneficial depends on how expensive the computation of the visit is. With the classification
mechanism, a rough static approximation can be expressed by the programmer. For example,
we can introduce a class for total invocation rules that take priority over conventional invoca-
tion rules. When multiple of these invocation-rules are scheduled together, we can actually
generate code that performs the visits in parallel.

3.6 Discussion

RulerCore can be used to express traversals over tree-like data structures. To a limited extend
RulerCore may be applicable to graphs traversals that are technically tree traversals (such
as a traversal over a depth-first forest). Loops and iteration can be expressed with higher-
order attributes. In related work, we expressed these by iterating visits [Middelkoop et al.,
2010a]). However, RulerCore is not suitable to express traversals over drastically changing
data structures.

In our actual implementation, we also provide a notion of internal visits. A conventional
visit is invoked externally by the parent, and can choose a clause. This means that we can
only conditionally compute attributes once per visit. In contrast, an internal visit is invoked at
the end of the clause, and is not visible externally. An internal visit may again have clauses,
and these clauses may again specify an internal visit as next visit, or a conventional visit.
With this relatively simple extension, we can arbitrarily often branch inside a visit.

In the Haskell version of RulerCore, we require type signatures for attributes. In JavaScript,
instead of type signatures, the notion of a type signature represents a dynamic check in the
form of assertion-functions that validate the values for attributes.

To fully enjoy the benefits of attribute grammars, the host language requires support for
purely functional data structures [Okasaki, 1998]. Such data structures can be encoded in
JavaScript, but efficient versions with copy-on-write semantics are cumbersome to implement
manually.

3.7 Related Work

Related to this chapter are various visitor-like approaches and attribute grammar techniques.
The purpose of the Visitor design pattern [Gamma et al., 1993] is to decouple traversal

operations from the specification of the tree to be traversed, in order to make it easier to
add new operations without changing the existing specification of the tree. This allows us to
write a multi-visit traversal using a separate visitor per traversal. Multi-methods [Chambers
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and Leavens, 1994] are supposed to replace the visitor pattern. A multi-method allows over-
loading of methods on multiple parameters, and makes accept-methods superfluous. This,
however, is orthogonal to the problems and solutions that we presented in this chapter.

In Section 3.2.1, we discussed advantages and disadvantages of modeling traversals with
visitors. In particular, side effects are permitted, and used to store results for use in later visits.
The side effects make it hard to predict if results needed in a next visit are actually stored by
a first visit. This is a fundamental problem of visitors. Oliveira et al. [2008], for example,
show many enhancements with respect to the type safety of visitors, but do not address the
transfer of results between visits.

Attribute grammars [Knuth, 1968, 1990] are considered to be a promising implementation
for compiler construction. Several attribute grammar techniques are important for our work.
Kastens [1980] introduces ordered attribute grammars. In OAGs, the evaluation order of
attribute computations as well as attribute lifetime can be determined statically, allowing
severe optimizations.

Boyland [1996] introduces conditional attribute grammars. In such a grammar, semantic
rules may be guarded. A rule may be evaluated if its guard is satisfied. Evaluation of guards
may influence the evaluation order, which makes the evaluation less predictable. In compar-
ison, in our clauses-in-visits model, we have to explicitly indicate in which visits guards are
evaluated (the match-statements of a clause), which makes it clear what the evaluation order
is. Our approach has the additional benefit that children may be conditionally introduced and
visited.

Recently, many Attribute Grammar systems arose for mainstream languages, such as Sil-
ver [Wyk et al., 2008] and JastAdd [Ekman and Hedin, 2007] for Java, and UUAG [Löh et al.,
1998] for Haskell. In contrast to the work in this chapter, these systems strictly discourage or
disallow the use of side effects. The design of RulerBack is inspired by the language of exe-
cution plans of UUAG. In certain languages, AGs can be implemented via meta-programming
facilities, which obliviates the need of a preprocessor. Viera et al. [2009] show how to im-
plement AGs in Haskell through type level programming. The ideas that we presented in this
chapter are orthogonal to such approaches, although the necessary dependency analysis may
be difficult to express depending on the expressiveness of the meta language.

3.8 Conclusion

We introduced the language RulerCore, an extension of Attribute Grammars that makes visits
to nonterminals explicit. As a consequence, it is possible to use side effects in rules. Ruler-
Core combines the freedom of visitors as described by the visitor design pattern with the
convenience of programming with attributes, as shown in Section 3.2.

Moreover, we presented RulerBack, a subset of RulerCore, which serves as a small core
language for visitor-based Attribute Grammars. In RulerBack, the lifetime of attributes is
explicit, as well as the evaluation order of rules and visits to children. We described how
RulerCore programs are mapped to RulerBack in Section 3.5. A RulerBack program has
a straightforward translation to many languages. In Section 3.4, we gave a translation to
JavaScript by making use of exceptions in combination with the try-catch mechanism. A
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more sophisticated translation is possible that does not require exceptions, as we show in
later chapters.

Future work. A direction of future work is to consider destructive updates on attributed
trees. Event-handling traversals over data structures may need to respond to dynamic changes
induced by user input or external events. In RulerFront, the visits performed on an attributed
tree explicitly specify which attributes are defined. When we apply a destructive update to
the tree, we thus know precisely what information is based upon the previous structure of
the tree. This knowledge can be exploited to reason about mutations of the attributes tree.
Incremental evaluation of attribute grammars [Vogt et al., 1991, Yeh and Kastens, 1988] may
be used to efficiently recompute attributes after modifications of the AST.

This chapter treated the scheduling of rules in the presence of side effects. Side effects are
not visible in value dependencies between attributes. In Chapter 9 we show how to incorpo-
rate dependently-typed programming languages, which have type assumptions resulting from
pattern matches as ‘effect’.

3.A The Ranking Monad

Figure 3.14 uses the ranking monad R, which we define in this section6 as background mate-
rial. These definitions require the Control.Monad module. R is a continuation-based monad
with failure. We define similar monads in Section 2.4, Section 2.5 and Chapter 5.

Internally, R is a wrapper around a function that threads a state S. We leave S unspeci-
fied. This function takes a continuation as parameter, which gets the result of the monadic
computation and an updated state. Failure is expressed with a Maybe result value:

data R a where
R :: (∀ b.((a→ S→ (Maybe b,S))→ S→ (Maybe b,S)))→ R a

instance Functor R where
fmap f (R h) = R (λc→ h (c.f ))

instance Monad R where
return x = R (λc → c x)
R g>>= f = R (λc → g (λa→ case f a of R h→ h c))
fail = throwError ()

instance MonadState S R where
get = R (λc s → c s s)
put s = R (λc → c () s)

instance MonadError () R where
throwError () = R (λ s→ (Nothing,s))
catchError m h = R (λc s → let f c Nothing s = runR (h ()) s (g c)

f c (Just x) s = c x s
g c Nothing s = (Nothing,s)

6 Code: https://svn.science.uu.nl/repos/project.ruler.papers/archive/RankMonad.hs
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g c (Just x) s = c x s
in runR m s (f c))

runR :: R a→ S→ (Maybe a→ S→ b)→ b
runR (R f ) s g = case f (λx s→ (Just x,s)) s of (o,s′)→ g o s′

The function foreach applies the continuation to each element of the list and threads the
state through these computations. The result is the outcome of the last succeeding computa-
tion:

foreach :: [a]→ R a
foreach xs = R (λc s→ let f c (o,s0) x = case c x s0 of

(Nothing,s′)→ (o, s′)
(o′, s′)→ (o′,s′)

in foldl (f c) (Nothing,s) xs)

The remaining API functions can be defined in terms of the above functions. The iter
function runs the computation m that it takes as parameter until a guard of m fails:

iter :: R ()→ R ()
iter m = (m>> iter m) ‘orElse‘ ()
orElse :: R a→ a→ R a
orElse m r = m ‘catchError‘ (λ → return r)
guard :: Bool→ R ()
guard g = when (¬ g) (throwError ())

The function foreachL is used in the translation of the monadic list comprehensions, which
are not to be confused with monad comprehensions:

foreachL :: [R a ]→ R [a ]
foreachL = foldM f [ ] where

f acc m = do acc′← singleR m ‘orElse‘ [ ]
return (acc++acc′)

singleR :: R a→ R [a]
singleR m = m>>= return.return
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In Chapter 3 we described a programming model based on visits as an extension of attribute
grammars. Using this model, attribute declarations are not as easily composed as with con-
ventional attribute grammars. This chapter addresses this issue. We show how to generalize
visits to phases. This generalized model is more convenient for programming.

Further, we present commuting rules, which are rules that are connected via a chained
attribute1, but which do not depend on previous rules in the chain. With these rules we can
describe the threading of an attribute that follows the implicit visit order of the phases model.
To preserve referential transparency, the commuting rules must satisfy a liberal commutativity
law.

The extensions of subsequent chapters generalize straightforwardly to phases, although the
description is more convenient in terms of visits. Therefore, we describe our extensions in
later chapters in terms of visits without loss of generalization.

4.1 Introduction

In this chapter, we show three related extensions of the explicit visit-approach in Chapter 3
and ordered attribute grammars in general.

Firstly, we show how to generalize visits to more declarative phases. Computations for a
nonterminal symbol take place in one or more distinct phases. We define later that the phase
interface of a nonterminal is a set of declarations of these phases. Attribute declarations and
rules may be constrained to a phase. The phases are subjected to a partial order. When the
value-dependencies between attributes and rules and the dependencies induced by phases are
acyclic, the attributes that are associated to a previous phase are defined before any attributes
that are associated with a later phase. An evaluation algorithm can be associated with a
phase. In this chapter, we assume a statically ordered evaluation algorithm that uses one or
more implicit visits per phase.

Secondly, we present a Kennedy and Warren [1976] style scheduling algorithm that infers
multiple visit-interfaces from the phase-interface of a nonterminal. For each visit-interface, a
production has a potentially different execution plan. An execution plan specifies an explicit
ordering of rules per visit (Section 1.3.3). Such a plan specifies also for each child which
visit-interface is used for its evaluation.

In the generated code, semantic functions are indexed by the choice of the visit interface
for which it provides a semantics, and we show how to encode this in a strongly typed, purely
functional language. There may be many possible visit interfaces given the phase interface

1 A chained attribute is an inherited and a synthesized attribute combination that is threaded through the three by
default with copy rules.
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of a nonterminal. The order constraints as mentioned above can be used to significantly limit
the number of possible visit interfaces.

Finally, we present commutable rules, which allows us to functionally encode side effects.
A functional encoding of side effects as mentioned in Chapter 3 can be accomplished with
a chained attribute that is threaded through each operation, where an operation is a rule or
higher-order child. For example, a substitution attribute captures the side effects that result
from substitutions during type inference, and an attribute with the type RealWorld captures
arbitrary I/O. The attribute’s threading determines the order in which the side effects are
observable in the values of the attribute.

The order imposed by the threading may be too strict. For commuting operations, such
as a unique identifier dispenser, the order is largely irrelevant. However, if the associated
attribute is not threaded carefully, the order may induce accidental cycles in the dependencies
of attributes.

Definition (Commutable rule). A commutable rule is a rule that threads a chained attribute.

We present commutable rules, which are rules that are connected via a chained attribute,
but do not depend on previous rules in the chain. Such rules thus provide more freedom in
their ordering. To preserve referential transparency, the composition of commutable rules
must satisfy a liberal commutativity law. Commutable rules also allow the functional encod-
ing of a side-effectful rule that is scheduled to different implicit visits.

We thus offer a mechanism to explicitly enforce constraints on the evaluation order of at-
tributes, and another mechanism to loosen the constraints imposed by rules. The combination
offers convenient ways to declaratively specify side-effectful operations and their algorithmic
evaluation order.

The above subjects have in common that the associated scheduling algorithm takes infor-
mation into account that is not visible in the attribute dependencies induced by the rules.
Phases induce ordering constraints based on dependencies between attributes and the lexical
scope of rules. Commutable rules require a barrier between rules that commute over an at-
tribute and rules that do not. Therefore, we introduce barrier attributes and dependency rules,
which allow the encoding of such additional dependencies.

Definition (Designator). A designator represents an attribute occurrence or a rule.

Definition (Dependency rule). A dependency rule d1 ≺ d2 specifies that designator d1 must
be scheduled before designator d2.

Definition (Barrier attribute). A barrier attribute is an attribute that can be used as a des-
ignator (dependee/depender) in combination with dependency rules. The value of a barrier
attribute is implicitly defined.

In this chapter, we first work out the concepts of barrier attributes and dependency rules
(Section 4.2), and then show how these concepts can be exploited to deal with phases (Sec-
tion 4.8) and commutable rules (Section 4.9).
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grammar Tree -- grammar for nonterm Tree
| Leaf x :: Int -- production Leaf
| Bin l,r : Tree -- production Bin with two nonterms

attr Tree syn gath :: Int -- attributes for nonterm Tree
inh mini :: Int
syn repl :: Tree

sem Tree -- semantics for nonterm Tree
| Leaf lhs.gath = loc.x

lhs.repl = Leaf lhs.mini -- replacement tree
| Bin lhs.gath = min l.gath r.gath -- global minimum gathering

l.mini = r.gath -- crossover between r and l
r.mini = l.gath
lhs.repl = Bin l.repl r.repl -- replacement tree

Figure 4.1: A variant of the Repmin example.

4.2 Example with Barriers

We use Haskell as host language. Figure 4.1 shows a variant of the classical Repmin [Bird,
1984] example, which requires more than one visit to compute the attributes with a statically
ordered evaluation strategy. The attribute repl contains a clone of the tree with each leaf-child
replaced with the minimum of its sibling’s subtree. In order to get the min attribute of l, the
gath attribute of r is needed and vice versa. With statically ordered evaluation, this can be
accomplished by first computing the gath attribute in a first visit, then compute min and repl
in a later visit.

Barriers. The evaluations for l.repl and r.repl are independent. For debugging purposes,
we may want to specify that the l.repl attribute is computed before the r.repl attribute. Since
the syn.repl attribute depends on the inh.min attribute, we get the desired behavior when l.repl
is a dependency of r.min. The following dependency rule expresses this dependency:

sem Tree | Bin order l.repl≺ r.min

This rule requires that inh.min is a dependency of syn.repl. Note that the dependencies are
transitive.

The dependencies of dependency rules may not be clear when multiple synthesized at-
tributes are involved, nor remain stable after code changes. For this purpose, we introduce a
barrier attribute:

attr Tree inh sync barrier
sem Tree
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| Leaf order lhs.sync≺ lhs.repl
| Bin order lhs.sync≺ l.sync

order lhs.sync≺ r.sync
order l.repl ≺ r.sync -- actually subsumes lhs.sync≺ r.sync

Barrier attributes are not defined by a rule. Instead, these attributes are defined implicitly.
However, we require that for a synthesized barrier attribute y, that there is at least one pro-
duction with a dependency rule where lhs.y occurs as RHS, and at least one production with
a child k where k.y occurs as LHS in a dependency rule. For an inherited barrier attribute
y, we require the inverse. There is actually no technical reason for this requirement: if the
requirement is not met, it should be taken as a warning that a barrier is not used.

Definition (Updatable attribute). An updatable attribute is an attribute containing a reference
to a shared state. As an expression, an occurrence o◦ represents the value of o in the shared
state. As a pattern, an occurrence o◦ means that the shared state at the location pointed to by
o is updated with the matched value. An occurrence o× in a pattern means that a new shared
location is allocated with the matched value and a reference to it stored in o.

We incorporate side-effects in BarrierAG (Chapter 3) in the form of updatable attributes.
In the following example an updatable attribute unq is created, read from, and updated:

attr Tree inh unq :: IORef Int -- inherited unique number dispenser
sem Root | Root

root.unq× = 1 -- creates reference and assigns initial value
sem Tree | Leaf -- reads and updates reference
(loc.myId,alhs.unq◦) = (alhs.unq◦,alhs.unq◦+1)

Normally, attribute occurrences in a pattern are at defining positions. However when ◦ is
used to specify a store to a shared state, the attribute occurrence is at a usage position. Hence
alhs.unq refers to the inherited attribute alhs.unq, and is a dependency of the rule.

Rules that write to a reference are guaranteed to be applied at most once. The order in
which these writes take place depends on the scheduling of attributes. When the attribute
loc.myId is not used, the write actually does not take place. The only guarantee that is given
for such a write is that the reference is created and initialized. For more guarantees, barriers
can be used to control and specify the order.

Remarks. Barriers and updatable references should be used sparingly. In particular, rules
with updatable references are not functional, which breaks equational reasoning. We present
them here as an implementation mechanism for phases and commutable rules. With the later
property, we can recover equational reasoning. Note that the code generated from an AG may
be functional even if the AG description itself is non-functional.

4.3 Core Representation of AGs with Barriers

In this section, we define the semantics of the dependency rules and barrier attributes using the
core language BarrierAG, a desugared subset of higher-order AGs. BarrierAG also permits

152



4.3 Core Representation of AGs with Barriers

I ::=attr N a -- attr decls for nonterminal N
a ::= k x t -- attribute declaration with form k, attr name x and type t
k ::= inh | syn -- attribute forms (often also written as identifier)
t ::= :: τ -- attribute type (host language)
| barrier -- barrier type

s ::= sem Γ P : N r -- semantics of a production P of nonterm N in env Γ

r ::= child x : N = f z. -- (higher order) child declaration
| x : p z/ = f z. -- evaluation rule named x with LHS p and RHS f
| order d1 ≺ d2 -- order declaration

d ::= child x -- designates child x
| rule x -- designates a rule named x
| z -- designates an attribute occurrence

z/ ::= z• -- store in occurrence z
| z◦ -- write to location referenced by z
| z× -- store new handle in z

z. ::= z• | z◦ -- respectively read (closed), and deref (open)
z ::=h.c.x -- occurrence attr x of c with form h
h ::= k | loc -- attribute forms (extended with locals)
c ::= lhs | loc | x -- child designators
x, f ,p,P -- identifiers

Figure 4.2: AG core representation.

attributes that have references to a global state as value, which we need later.

Syntax. Figure 4.2 gives the syntax of BarrierAG. BarrierAG serves as a core language
for AGs. Hence, we assume that static checks, desugaring, item grouping, and copy rule
insertion have been performed (Section 1.3.6 and Section 1.3.12). This core representation
serves two purposes: it allows formal reasoning with AGs, and specifying the construction of
dependency graphs and execution plans (also see Section 1.3.2).

The main (meta) nonterminals in the (meta) grammar of Figure 4.2 are I (attr-block) and
s (semantics blocks). An attr-block consists of a set of attribute declarations. A semantics
block provides the rules for a single production. The environment Γ is often left implicit.

Figure 4.3 shows a desugared version of the earlier example in BarrierAG. The context
free grammar is translated to terms in the host language, and is not part of the core language.
The symbols of the production are represented as higher-order children and local attributes.
Evaluation rules are explicitly named, and consist of a function symbol p and f . The evalua-
tion rule represents the function z1 = p (f z2). For example, the rule r3 represents the function
syn.lhs.gath = id (f3 syn.l.gath syn.r.gath). The definition of these functions are bound in
the environment Γ, which is an annotation of the sem-block. This representation has the
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sem Tree (Leaf x) = sem Leaf x
sem Tree (Bin l r) = sem Bin (sem Tree l) (sem Tree r)
attr Tree syn gath :: Int

inh mini :: Int
inh sync barrier
syn repl :: Tree

sem Leaf field x =
sem {f1 = field x, f2 = Leaf } Leaf : Tree

r0 : id loc.loc.x• = f1
r1 : id syn.lhs.gath• = id loc.loc.x•

r2 : id syn.lhs.repl• = f2 inh.lhs.mini•

order inh.lhs.sync≺ syn.lhs.repl
sem Bin field l field r =

sem {f1 = field l, f2 = field r, f3 = min, f4 = Bin} Bin : Tree
child l : Tree = f1
child r : Tree = f2
r3 : id syn.lhs.gath• = f3 syn.l.gath• syn.r.gath•

r4 : id syn.lhs.repl• = f4 syn.l.repl• syn.r.repl•

r5 : id inh.l.mini• = id syn.r.gath•

r6 : id inh.r.mini• = id syn.l.gath•

order inh.lhs.sync≺ inh.l.sync
order inh.lhs.sync≺ inh.r.sync
order syn.l.repl ≺ inh.r.sync

ast = sem Bin (sem Leaf 1) (sem Leaf 2)

Figure 4.3: Desugared example.

advantage that the rules can be duplicated without duplicating the body of the function.

Semantics. Ultimately, we generate host-language code for the core language term. How-
ever, to facilitate reasoning with terms in the core language, we first define an operational
semantics2 in Figure 4.4 which denotes a tree walking automaton (Section 1.3.3). The se-
mantics refers to rules in Figure 4.5, which can be interpreted as a dynamic version of the
dependency analysis that we define in the next section or as a specification of a tree-walking
automaton (Section 1.3.3). Since we deal with higher-order AGs, the operational semantics
describes both the construction and decoration of the AST.

A decorated node of the AST is represented as a tuple (N,P,Γ,H), where N is the associ-

2 This operational semantics is also implemented as part of the ruler-interpreter: https://svn.science.
uu.nl/repos/project.ruler.papers/archive/ruler-interpreter-0.1.tar.gz.
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4.3 Core Representation of AGs with Barriers

Γ `Ψ0 ; v0 −→ v1 ; Ψ1

H(child x) = v0 Γ0 `Ψ0 ; v0 −→ v1 ; Ψ1

Γ0 `Ψ0 ; (N,P,Γ1,H)−→ (N,P,Γ1,{child x 7→ v1}∪H) ; Ψ1
E.DESCENT

H(inh.x.y) = v H(child x) = (N′,P′,Γ2,H′) N′ ; P′ ; H′
√

inh.lhs.y

Γ0 `Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{child x 7→ (N′,P′,Γ2,{inh.lhs.y 7→ v}]H′)}∪H) ; Ψ
E.INH

H(child x) = (N′,P′,Γ2,H′) H′(syn.lhs.y) = v N ; P ; H
√

syn.x.y

Γ0 `Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{syn.x.y 7→ v}]H) ; Ψ
E.SYN

(child x : N′ = f (z.)) ∈ rules (N,P) N ; P ; H
√

child x Ψ ; H ` z. ↑ v

Γ0 `Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{child x 7→ (Γ0 Γ1 f ) v}]H) ; Ψ
E.CHILD

(x : p (z1/) = f (z2.)) ∈ rules (N,P) N ; P ; H0
√

rule x
Ψ0 ; H0 ` z2. ↑ v0 v1 = (Γ0 Γ1 p . Γ0 Γ1 f ) v0

H0 ` v1 ↓ z1/ H ; Ψ ; ϒ ϒ1] ...]ϒn]dom Ψ = `

Γ0 `Ψ0 ; (N,P,Γ1,H0)−→ (N,P,Γ1,H]{rule x 7→ ı}]H0) ; Ψ Ψ0
E.EVAL

syn.y ∈ barriers N N ; P ; H
√

syn.lhs.y

Γ0 `Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{syn.lhs.y 7→ ı}]H) ; Ψ
E.BAR.LHS

(child x : N′ = f (z.)) ∈ rules (N,P) inh.y ∈ barriers N′ N ; P ; H
√

inh.x.y

Γ0 `Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{inh.x.y 7→ ı}]H) ; Ψ
E.BAR.INH

Figure 4.4: Small-step evaluation rules for a node.

ated nonterminal, P is the associated production, Γ is an environment that contains bindings
for the functions that are mentioned in the rules of P, and the heap H contains values for
attributes and nodes that form the children of P.

More precisely, a heap H is a partial map between descriptors d and a value v. A descriptor
is either an identifier for an attribute or a child:

v ::=ν | ı | n | ` -- atomic value ν , or unit value ı, or node n, or reference `
n ::=(N,P,Γ,H) -- node associated to N and P, with env Γ, and heap H
H ::= /0 | H,d 7→δ v -- heap of a node (partial map from descriptor to value)
Ψ ::= /0 |Ψ, ` 7→ v -- threaded heap (partial map from reference to value)
ϒ ::= /0 | ϒ, ` -- set of references `

A value of an attribute is either an atomic value ν in the domain of the attribute, or a tree in
case of a higher-order attribute.

Definition (Normal form). A tree n is in normal form when the synthesized attributes of the
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4 AGs with Commuting Rules

root have been computed, thus when the root node n has a heap with bindings for all syn.lhs.x
where syn.x is a synthesized attribute declared for the nonterminal of n.

The small-step relation Γ0 `Ψ ; v−→ v′ ; Ψ′ (Figure 4.4) describes how to evaluate a tree
v one step further to v′ in a global environment Γ0. The threaded heap Ψ contains bindings
for references, and is threaded through the evaluation.

To reduce a tree, we start with an initial tree and gradually grow the tree by modifying the
heaps. In the initial tree v0 = (N,P,Γ, /0), N is the nonterminal of the root, P is the production
of the root, and Γ contains bindings for functions as mentioned in the rules of P. In particular,
for each child-rule in P, there is a binding for a function in Γ that provides the semantics for
that child. When the AG is well-formed, the resulting tree is in normal form when the rules
are applied exhaustively.

We use the following notation in the rules. The operator ∪ represents the left-biassed
union of its two operands heaps, and operator ] takes the union of two heaps with disjoined
keys. The domain dom (H) of a heap H is the set of the heap’s keys. A heap H applied
to a designator d, written H (d), returns the binding for d in H. Similarly, Γ0 Γ1 f returns
the function binding for f in the right-biassed union of Γ0 and Γ1. Juxtaposition of heaps
represents the left-biassed union.

In Figure 4.4, rule E.DECENT incorporates the idea of nondeterministically selecting a node
constructed so far, and reducing it a bit further. Each node has its own heap that explicitly
tracks which attributes have been computed, which children have been constructed, and which
rules have been applied. A test to check if a rule can be applied then boils down to verifying
that their dependencies are met (Figure 4.5).

With Rule E.INH bindings for the inherited attribute of a child can be copied to the heap of
that child when the child is ready to receive these bindings. For example, inherited attributes
for a child can be computed even before the child is introduced. Rule E.SYN represents the
inverse for synthesized attributes. Note the careful use of disjoined unions which ensure that
a rule is only applicable once per attribute.

With rules E.CHILD, E.EVAL, E.BAR.INH, and E.BAR.SYN, bindings can be added to the heap.
Evaluation of the RHS of the AG’s child-rule gives us the initial tree to use for that child in the
heap. Evaluation of the AG’s evaluation rule results in bindings for one or more attributes.
The rule E.EVAL ensures in addition that potentially newly introduced references ϒ do not
clash with existing references. The rule E.BAR.INH defines an inherited barrier attribute of a
child x. Rule E.BAR.SYN defines a synthesized barrier attribute of lhs.

Figure 4.5 shows load, store, and ready rules. The relation Ψ ; H ` z. ↑ v represents a
load of value v using designator z in heap H. The load rule L.VAL requires the presence of a
designator in the heap. With the rule the value of the designator can be extracted from the
head. The load rule L.REF represents an indirect load from the threaded heap Ψ.

The relation H0 ` v ↓ z H ; Ψ ; ϒ represents a store of value v. The heap H and treaded
heap Ψ contain the new bindings that result from storing v. The initial heap H0 is stores
the reference when z/ is an indirection. The set of references ϒ contains the newly added
references. The store rule S.NEW represents the creation and assignment of a new reference
`, and S.UPDATE an update via such a reference. With rule S.SAVE a binding for z is added
without an indirection.
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4.3 Core Representation of AGs with Barriers

Ψ ; H ` z. ↑ v

H(z) = v

Ψ ; H ` z• ↑ v
L.VAL

H(z) = ` Ψ(`) = v

Ψ ; H ` z◦ ↑ v
L.REF

H0 ` v ↓ z/ H ; Ψ ; ϒ

H0 ` v ↓ z× {z 7→ `} ; {` 7→ v} ; {`} S.NEW H0 ` v ↓ z• {z 7→ v} ; /0 ; /0 S.SAVE

H(z) = `

H0 ` v ↓ z◦ /0 ; {` 7→ v} ; /0
S.UPDATE

N ; P ; H
√

d

N ; P ; H
√

dep d {d′ | (order d′ ≺ d) ∈ rules (N,P)} ⊆ dom H

N ; P ; H
√

d
D.ORDER

(x : p z1/ = f z2.) ∈ rules (N,P)
N ; P ; H

√
z1

N ; P ; H
√

dep rule x
D.R

N ; P ; H
√

dep child x
D.C

N ; P ; H
√

dep z
D.A

Figure 4.5: Load, store and designator dependency rules.

The relation N ; P ; H
√

d describes when d is ready to be defined while taking dependency-
rules into account. These rules do not test for the existence of values in the heap, because
the load and store rules already cover for this. The rule D.ORDER handles dependency-rules
generically for the designators. The rule D.R states that an AG rule is ready when its LHS is
ready.

Remarks. If we can determine for a nonterminal that no subtree applies rule S.NEW or
S.UPDATE, only topdown behavior for Ψ is needed. If in addition L.REF cannot occur, the two
Ψ parameters can be omitted from the relation.

The rule E.DESCENT facilitates a walk down the tree until the node to reduce is reached.
An actual implementation performs multiple evaluation steps (if possible) on such a node in
order to reduce traversal overhead. In fact, it is possible to statically analyze the AG and
obtain a static scheduling of the rules.
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4 AGs with Commuting Rules

Jsem P : N rKvert = {child lhs}∪ JaNKvert (lhs)∪ JrKvert
Jinh y tKvert (x) = {inh.x.y}
Jsyn y tKvert (x) = {syn.x.y}
Jchild x : N = f z.Kvert = {child x}∪ JaNKvert (x)
Jx : p z1/ = f z2.Kvert = {rule x}
Jorder d1 ≺ d2Kvert = /0

Jsem P : N rKedge = JrKedge
Jchild x : N = f z.Kedge = z← child x∪{child x← syn.x.y | syn.y ∈ aN }
Jx : p z1/ = f z2.Kedge = z2← rule x∪ Jz1

/Kpre (x)
Jorder d1 ≺ d2K· = {d1← d2}
Jz•Kpre (x) = {rule x← z}
Jz×Kpre (x) = {rule x← z}
Jz◦Kpre (x) = {z← rule x}

Figure 4.6: Vertices and edges of the initial production dependency graph.

4.4 Static Dependency Graphs

In order to obtain a static scheduling of the rules, we first construct dependency graphs in the
style of Knuth-1 [Knuth, 1968]. If these graphs are cycle free, a static scheduling of the rules
is possible.

Unlike in Section 1.3.2, we mean an augmented PDG when we talk about a PDG. When we
talk about the initial PDG, we mean the non-augmented PDG as in Section 1.3.2. Thus, we
will be dealing with dependency graphs per production (augmented production dependency
graph pdg (N,P)) and dependency graphs per nonterminal (a nonterminal dependency graph
ndg (N)).

We first define the initial graphs, then specify the actual graphs as the fixpoints of the
functions:

pdg N P = pdginit N P∪{ instantiate x (ndg Nx) | x ∈ children P}
ndg N = ndginit N ∪{abstract (pdg N P) | P ∈ prods N}

The function instantiate translates the edges between declarations of Nc in the NDG as edges
between the attributes of child c in the PDG. Similarly, when there is a path between two at-
tributes of lhs in the PDG, then abstract translates these as edges between the same attributes
in N’s NDG.

Initial production dependency graph. Per production P of nonterminal N, we construct
a production dependency graph pdginit N P. Thus, each sem-block is translated to a PDG.
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4.4 Static Dependency Graphs

Figure 4.6 shows that the vertices of pdginit N P consists of designators Jsem P : N rKvert. In
this notation, aN is the set of attribute declarations a of nonterminal N. The directed edges
Jsem P : N rKedge of pdg (N,P) relate designators. An edge from d2 to d1 denotes that d1 must
be defined before d2. Order rules are thus a means to arbitrarily add edges to the PDG.

The initial PDG does not contain the dependencies imposed by the semantics of each child
(e.g. the actual tree). We obtain the actual production dependency graph by augmenting it
with the edges taken from the nonterminal dependency graphs of the children which are an
approximation of the dependencies of such trees.

Initial nonterminal dependency graph. The vertices of the nondeterminal dependency
graph ndg (N) are the declarations a of N:

Jattr N aKvert = JaKvert
Jinh x tKvert = {inh.x}
Jsyn x tKvert = {syn.x}

The initial NDG does not have any edges. These edges are inferred from the PDGs, as we
see below.

Graph construction. The actual PDG is the least solution to the above equations with the
following definitions for abstract and instantiate. The relation d1 ←+ d2 represents a path
from d2 to d1, with d1 6≡ d2:

abstract g = {k1.x ← k2.y | k1.lhs.x←+ k2.lhs.y ∈ g}
instantiate x g = {k1.x.y← k2.x.z | k1.y ←+ k2.z ∈ g}

Conventionally, a synthesized attribute of a child only depends on an inherited attribute of a
child. However, due to dependency-rules, any attribute of a child can potentially depend on
any other attribute of the child, hence our definition of abstract and instantiate take these also
into account.

The construction of the graphs is a relatively straightforward fixpoint computation. As
intermediate data structure, a transitively closed PDG allows for efficient tests for paths be-
tween vertices.

Example. In the Leaf-production, there is dependency of syn.lhs.repl on inh.lhs.mini via
rule r2. This thus induces a dependency of syn.repl on inh.mini in the NDG. Figure 4.7 shows
the PDG of the production Bin. The solid edges are initial edges, and the dashed edges are
instantiated from the NDG. The Bin-production by itself does not induce any edges in the
NDG. We do not show the PDG of the Leaf-production here; it is shown in Figure 4.15(a).

Properties. A NDG can only be cyclic if at least one of the PDGs is cyclic. The reason
is that the edges of the NDG are projected into the PDGs, thus a PDG must have a subgraph
with these cyclic edges.
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lhs.mini lhs.gath lhs.repl

child l child r

l.mini l.gath l.repl r.mini r.gath r.repl

r3 r4

r5

r6

Figure 4.7: Example of the (augmented) PDG of the Bin-production.

When the PDGs are acyclic, then an evaluation to normal form is possible for any well-
formed tree. In other words, the graph construction is sound. This property has a relatively
straightforward structural induction proof on the shape of the tree. The NDGs symbolize the
induction hypothesis. When an evaluation algorithm respects the dependencies of the PDGs,
and the constraints of each rule are preserved, the evaluation algorithm is sound. Moreover,
the evaluation algorithm is complete if it finds a scheduling when the PDGs are acyclic. We
show such an algorithm in Section 4.5.

Rules of a production may make an inherited attribute of a child dependent on a synthesized
attribute of a child. These dependencies are not part of the NDG. When we add these edges
also to the NDG, each occurrence of a nonterminal has the same dependencies of its inherited
attributes on its synthesized attributes. When the PDGs are cycle free without these edges,
they are typically also cycle free with these additional edges. In the next section, it becomes
clear that adding these edges may reduce the number of visit interfaces that a nonterminal
symbol needs to support, thus can be beneficial when the code size is an issue.

4.5 Visits Graphs

An interface for a nonterminal is a partitioning of the attributes into a finite sequence of visits.
Given such a sequence, we can produce an execution plan and generate code, as we showed
in Chapter 3. We derive such interfaces from acyclic PDGs.

Given such a sequence, it induces a dependency of all attributes of a later visit on attributes
of an earlier visit. When represented as scheduling-induced edges in the PDG, it may make
the PDG cyclic. It is typically possible to define a single visit sequence per nonterminal that
does not make the PDG cyclic. However, it is generally hard to automatically find such a
sequence [Kastens, 1980] when the sequence is not manually specified as we presented in
Chapter 3. Instead, if we allow multiple interfaces for a nonterminal, we can define visit
sequences so that they do not lead to additional dependencies. This is the approach taken by
Kennedy and Warren [1976].
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4.5 Visits Graphs

Jvisit i k.yKvert (x) = {visit x i}
Jvisit i k.yKedge (x) = JiKedge (x,pre i)∪ Jk.yKedge (x,i)
JiKedge (x,ε) = {child x}
JiKedge (x,j) = {visit x j← visit x i}
Jinh.yKedge (x,i) = {inh.x.y ← visit x i}
Jsyn.yKedge (x,i) = {visit x i← syn.x.y}

Figure 4.8: The embedding of a context.

In our experience, Kastens’ approach requires severe manual intervention for large AGs,
thus we take the approach by Kennedy and Warren [1976]. However, it is not immediately
obvious how to deal with multiple interfaces in a strongly typed language, because the type
of the semantic function depends on the interface. In the next section, we solve this problem
using type indices in combination with GADTs. In this section, we show how to determine
these interfaces.

Contexts. A context C of a nonterminal N, or nonterminal symbol with N, or a production
of N is a visit sequence (many v) that is consistent with ndg N:

C ::= v -- a context consists of a sequence of visits v
v ::=visit i k.x -- a visit consists of a set of attributes k.v and globally unique i
i -- identifier

A context contains a subset of the attributes declared for a nonterminal. A nonterminal may
have a context with less attributes when not all attributes of a nonterminal symbol with this
nonterminal are needed.

A visit sequence is consistent with ndg N when the following conditions are met.

• For each attribute inh.x and syn.y in the sequence, with inh.x←+ syn.y in ndg N, either
syn.y is not part of the visit sequence ,or syn.y is in the same or later visit as inh.x.

• For each attribute syn.x and inh.y in the sequence, with syn.x←+ inh.y in ndg N, either
inh.y is not part of the visit sequence, or inh.y is in a later visit as syn.x.

The number of consistent visit sequences is finite, but potentially large, as it is in the worst
case exponential in the number of attributes.

Embedding of a context. We make the context of a child visible in the PDG. For that
purpose, we introduce a vertex form that represents a visit:

d ::= ...
| visit x i -- a visit to x identified by i
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visit v1 visit v2

inh.l.mini

syn.l.gath syn.l.repl

child l

(a) Context C1 with all attributes.

visit v3

inh.l.mini

syn.l.gath syn.l.repl

child l

(b) Context C2 with only syn.gath.

Figure 4.9: Examples of visit-additions to the PDG.

For a child x in context Cx, we add additional vertices and edges to the PDG, which we call
the embedding of Cx of child x in the PDG. Informally, to embed a context, we add a visit-
node and add edges between this node and the associated inherited and synthesized attributes.
Additionally, a visit node is dependent on the node of the preceding visit, if any, and the child-
node otherwise. Formally, let pre i either be the preceding visit j of i, or ε when i is the first
visit. We add vertices JCKvert (x) and edges JCKedge (x) as described in Figure 4.8.

Definition (Visit PDG). For some given contexts of children, a visit PDG (VPDG) is the
embedding of these contexts in the PDG.

The following are exemplary contexts of child l of production Bin. The context C1 describes
the computation of all attributes in two phases. The context C2 only the computation of
syn.gath:

C1 = [visit v1 {syn.gath},visit v2 {inh.mini,syn.repl} ]
C2 = [visit v3 {syn.gath} ]
C3 = [visit v4 {syn.gath, inh.mini,syn.repl} ]

Figure 4.9 shows the relevant subgraphs after embedding the respective contexts C1 and C2.
The dashed edges are already existing edges. The embedding of C3 would lead to a cycle in
the PDG.

A visit-node in a VPDG serves as bookkeeping that a visit to the child is needed to compute
the attributes it is associated with. It represents dependencies induced from the AG-wide
scheduling of attribute computations, and we will ensure later that each visit node has an
associated algorithm that computes the attributes.

Abstraction of visit-nodes. We see later as well that the bookkeeping with visits is too
verbose, so we establish a more compact representation. For that purpose, we change the
syntax of child-vertices. These additionally define in what state a the child is, which can be
used in the graph to abstract from a sequence of visits:

d ::= ...
| child x a -- a child x in state a (initially /0)
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abstract g
| 〈invoke x i〉 ∈ g ∧ 〈child x a← invoke x i〉 ∈ g =

let v = 〈child x (a]ai) 〉
es = {v← syn.x.y | syn.x.y ∈ g}∪

{v← invoke x j | 〈invoke x j〉 ∈ g,〈invoke x i← invoke x j〉 ∈ g}
in abstract ((g∪{v}∪ es)−{ invoke x i,child x a})
| otherwise = g

Figure 4.10: Abstraction on a VPDG.

Let g be an acyclic VPDG. Figure 4.10 shows how to abstract from the visit-vertices. We
first remove all visit-vertices. When a visit-vertex i is removed, its associated attributes ai are
added to the child-vertex. There are no visit-vertices left in g after abstract has been applied.

With abstraction applied to a VPDG we obtain scheduled PDGs:

Definition (Scheduled PDG). Given a production P in context C, and context C for its chil-
dren, its VPDG g is a scheduled PDG (SPDG) when:

• The VPDG g is acyclic.

• All reachable synthesized attributes of a child depend on a child node that includes the
synthesized attribute in its state. Thus, for each syn.y ∈ C, for each path in the VPDG
from vertex syn.lhs.y to a vertex syn.x.z, there exists a vertex child x a with syn.z ∈ a.

These two conditions allow us to gradually determine contexts, as we show in the remain-
der of this section. We show in the next section how to convert a SPDG to an execution plan
for a production.

Representation. We determine a set of contexts for each nonterminal, such that there
exists a SPDG for each context and each production. Preferably, the set of contexts is small,
because each context requires a different semantic function. Also, to save traversal overhead,
preferably each context contains visits with many attributes. To determine this set, we use a
more sophisticated representation, the visits graph, which we define below.

Note again that a context is a sequence of visits that is associated with a nonterminal N,
where each visit describes a transition of the configuration of a node associated with N. Given
a set of contexts, sequences of visits may have common intermediate configurations. Thus,
we can represent a set of contexts as a graph, which we call the visits graph:

Definition (Visits graph). Given a set of contexts C, a visits-graph is DAG where the vertices
are the union of JCKvert of each C ∈ C, and the edges are the union of JCKedge of each C ∈ C,
as described by Figure 4.11. The vertices represent configurations, and the edges represent
visits.
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4 AGs with Commuting Rules

JCKvert = JCKvert ( /0)

J /0Kvert (s) = {s}
Jvisit i a : vsKvert (s) = {s}∪ JvsKvert (s∪a)

JCKedge = JCKedge ( /0)

J /0Kedge (s) = /0

Jvisit i a : vsKedge (s) = {s i→ (s∪a)}∪ JvsKedge (s∪a)

Figure 4.11: Vertices and edges of the visits-graph.

s0 = /0 s2 = {inh.mini,syn.gath,syn.repl}

s1 = {syn.gath}

v3

v1 v2

Figure 4.12: Example of a visits-graph which represents contexts C1, C2 and C3.

Figure 4.12 shows the visits-graph that represents the contexts C1, C2 and C3. Note that the
context C2 is fully implied by the other contexts.

For a generated algorithm, a path in the visits-graph represents how a node is visited by its
parent. However, a parent may stop invoking visits after any visit. From a code generation
perspective, it may be beneficial to know at which vertex a parent stops. We can model this
situation in the graph, but we refrain from this complication here.

When two paths in the visits graph converge, this means that two different visit sequences
ended up in the same configuration. Consequently, the children are in the same configuration,
but were potentially subjected to different visit sequences. The VPDGs may thus differ in the
visit-vertices, therefore we need abstract (as defined earlier) to eliminate this difference.

We keep a more complex administration for the visits graph, with vertices of the form s and
edges of the form v, as described by Figure 4.13. We explain some aspects of this notation
below. Figure 4.14 shows this administration for the example.

A vertex of the visits graph represents a context. Per production, a vertex stores the VPDG
in this context, and the states of the children. An edge represents a visit, which is a transition
from one configuration to one of its next configurations. It stores the attributes a, which are
the inherited attributes provided by the parent for the visit, and the synthesized attributes that
need to be computed for the parent. Per production, an edge stores an ordered sequence of
invocations to children that are required for the visit. These visits are grouped in what we call
simultaneous visits. Visits of such a group visit children independently. Note that these visits
may be invoked in any order, and may also be invoked concurrently.

Figure 4.15(a) displays the graphs g1, g2, g3 and g4 that are mentioned in Figure 4.14. The
operation abstract is not yet applied in the graphs. The dotted edges represent the edges that
are inserted due to the embedding of visits. An important property of such a graph is that the
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s ::= conf N a p -- configuration of a node with nonterminal N (key a)
p ::=prod P k g -- production in a context of nonterminal N
k ::= child x : N a -- configuration of child x (key a)
e ::= s ; v ; s′ -- edge between s and s′

v ::=visit i : N a c -- visit i with production info c (key i, non-empty a)
c ::=prod P r -- sequence of invocation sets r (possibly empty)
r ::= sim m -- simultaneous invocations m (non-empty, unordered)
m ::= invoke x i -- invocation of visit i to x (key i)
g -- VPDG of a production in a given context
N,P -- identifier (nonterminal), identifier (production)

Figure 4.13: Notation for visits-graphs.

simultaneous visits contain precisely those synthesized attributes that can be visited because
the inherited attributes are available (described below with the relation avail), and also need
to be visited in order to produce values for the synthesized attributes.

The example is rather symmetric. The children of the production Bin are treated in the same
way. This is in general not the case and will be handled correctly. For example, children may
be of different nonterminals, or may be visited in a different order. This situation arises when
we use 〈invoke l 3〉 for the left child of the bin-production, or in the example of Section 2.2.

Invariants. The representation of visits graph leads to a recursive set of constraints (pre-
sented below) for which we can incrementally construct a visits graph. For a given attribute
grammar, there may be many possible visits graphs. The way we represent the graph gives
rise to visit sequences that are relatively independent and only compute what is necessary,
but which are not guaranteed to be as large as possible. Different visits graphs may exhibit
small differences in performance, although in principle any visits graph suffices. We impose
a number of constraints on the visits graph for which it is possible to find a solution when the
PDGs are acyclic, and for which it is possible to fine a unique solution.

In the formalization below, we denote a relation as partial function without a right-hand
side, or as (partial) boolean functions. Moreover, when used in a boolean expression, we
consider such relations a total function from the arguments to a Boolean result value, which
is True if and only if the arguments form an element of the relation. When the expression of
a guard has the value ⊥, then the guard itself has the value False. Also, for unbound vari-
ables in pattern expressions we assume existential quantification, unless indicated explicitly
otherwise.

Definition (Available). A vertex d is available in a VPDG g when vertex d can be sched-
uled, and respects the order imposed by g. Formally, the relation avail a g d as defined in
Figure 4.16 (explained below) states whether a vertex d in a VPDG g is available when the
node is in configuration a.
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s0 = conf Tree /0 {p1,p2}
s1 = conf Tree {syn.gath} {p3,p4}
s2 = conf Tree {inh.mini,syn.gath,syn.repl} {p5,p6}
p1 = prod Leaf /0 g1
p3 = prod Leaf /0 g1
p5 = prod Leaf /0 g1
p2 = prod Bin {child l : Tree /0,child r : Tree /0} (abstract g2)
p4 = prod Bin {child l : Tree {syn.gath},child r : Tree {syn.gath}} (abstract g3)
p6 = prod Bin {child l : Tree {inh.mini,syn.gath,syn.repl}

, child r : Tree {inh.mini,syn.gath,syn.repl}} (abstract g4)

v1 = visit 1 : Tree {syn.gath} {c1,c2}
v2 = visit 2 : Tree {inh.mini,syn.repl} {c3,c4}
v3 = visit 3 : Tree {inh.mini,syn.gath,syn.repl} {c5,c6}
c1 = prod Leaf /0
c3 = prod Leaf /0
c5 = prod Leaf /0
c2 = prod Bin {sim {invoke l 1, invoke r 1}}
c4 = prod Bin {sim {invoke l 2, invoke r 2}}
c6 = prod Bin {sim {invoke l 1, invoke r 1},sim {invoke l 2, invoke r 2}}

Figure 4.14: The contents of nodes and vertices of the visits graph of the example.

The relation avail states that a vertex d is available when all its dependencies are available,
with the exception that only the inherited attributes inh.lhs.y are available if they are part of
the configuration a, and that synthesized attributes of visits are only available if there was a
visit that computed them. Thus, avail gives us a notion of which vertices are scheduled in a
VPDG in a given configuration.

Definition (Well-formed). A visits-graph g is well-formed when it satisfies the invariants
below. Additionally, the visits-graph is acyclic, and so are the VPDGs that are stored in the
configurations. Also, in each edge of g or each vertex of g with some nonterminal N, there
is exactly an entry 〈prop P ... 〉 for each production P of N. We omit some straightforward
structural invariants, such as that each visit-edge is annotated with the same nonterminal N
as the nonterminal N of the two configurations it connects.

The main invariant is that all visits that are correctly represented in the graph, which is cap-
tured by the property in Figure 4.17. A visit-edge of nonterminal N requires a transformation
of the VPDG for each production of N. The visit must precisely mention the new attributes
a that are added to a0 to form a1. The sequence of simultaneous invocations r describes
these transitions for the children. When applied to the VPDG g0 of the old configuration,
embed a1 g0 r gives the unabstracted VPDG g1 of the new configuration. Moreover, g1 must
be complete, which means that all the synthesized attributes syn.lhs.y in the new configura-
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syn.lhs.gath inh.lhs.mini syn.lhs.repl

r1 loc.loc.x r0 r2

(a) VPDG g1 of production Leaf , which has no children.

inh.lhs.mini syn.lhs.gath syn.lhs.repl

child l /0

child r /0

syn.l.gath inh.l.mini syn.l.repl syn.r.gath

inh.r.mini

syn.r.repl

r3 r4

r6

r5

(b) VPDG g2 of production Bin, which has children l and r.

inh.lhs.mini syn.lhs.gath inh.lhs.repl

child l /0

child r /0

syn.l.gath inh.l.mini syn.l.repl syn.r.gath

inh.r.mini

syn.r.repl

r3 r4

r6

r5

invoke l 1

invoke r 1

(c) VPDG g3 after visit v1 in which it visited v1 of the children.

inh.lhs.mini syn.lhs.gath syn.lhs.repl

child l
{syn.gath}

child r
{syn.gath}

syn.l.gath inh.l.mini syn.l.repl
syn.r.gath

inh.r.mini

syn.r.repl

r3

r4

r6

r5

invoke l 2
invoke r 2

(d) VPDG g4 after visit v2 or v3 in which it visited v2 and possibly v1 of the children.

Figure 4.15: VPDGs of the visits graph example.
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avail a g d = all (avail a g) (deps g d) ∧ except a g d
except a g 〈 syn.x.y 〉 | 〈visit x i 〉 ∈ deps g 〈 syn.x.y 〉

| 〈child x a′ 〉 ∈ deps g 〈 syn.x.y〉 ∧ 〈syn.x.y〉 ∈ a′
except a g 〈 inh.x.y 〉 | True
except a g 〈 syn.lhs.y 〉 | True
except a g 〈 inh.lhs.y 〉 | inh.y ∈ a
except a g 〈 rule x 〉 | True
except a g 〈 child x 〉 | True
except a g 〈visit x i 〉 | True

Figure 4.16: The definition of avail.

〈 conf N a0 p0 ; visit i : N a c ; conf N a1 p1〉 ∈ edges VGN =
all3 (transition a1 a) p0 c p1 ∧ a1 ≡ a0]a

transition a1 a (prod P k0 g0) (prod P r) (prod P k1 g1) =

abstract (embed a1 g0 r)≡ g1 ∧ complete a1 a g1 ∧ all2 (trchild r) k0 k1

trchild r 〈 child x : N a 〉 〈child x : N a′〉 = a′ ≡ foldl (trsim x) a r
trsim x a 〈 sim m 〉
| x 6∈ children m = /0
| 〈 invoke x i〉 ∈1 m ∧ 〈s ; visit i : N a′ c ; s′〉 ∈ edges VGN = a]a′

children m = {x | 〈invoke x i〉 ∈ m}
complete a1 a g1 = all (avail a1 g1) {k.lhs.x | k.x ∈ a}

Figure 4.17: Main invariant: are all visits represented.

tion must be available in g1. Finally, the invocations r also describe the state transitions of
the children. The relation trchild r k0 k1 relates the old configuration k0 of a child to the new
configuration k1.

The relation req a g d in Figure 4.18 specifies if d is required for the synthesized attributes
of a to be available in g. Note that the relation d1 ←∗ d2 represents a possibly empty path
between d1 and d2.

The function embed in Figure 4.18 applies the invocations of visits r to the VPDG g. A visit
may only be invoked if its synthesized attributes are required, since our strategy schedules
only the attributes that are needed. Moreover, the inherited attributes must be available.

The simultaneous invokes represent invocations that can be applied in any order. Since we
test which inherited attributes are available according to g0, the order in which these visits
are applied does not affect the PDGs. This is because the synthesized attributes of the child
are not available in g0, and can thus not be used to make more inherited attributes of another
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req a g d = d ∈ reqs a g
reqs a g = {d | inh.x ∈ a,syn.y ∈ a,(inh.lhs.x←∗ d←∗ syn.lhs.y) ∈ g}

embed a g 〈 r 〉 = foldl (embed a) g r
embed a g 〈 sim m 〉 = foldl (embed a g) g r
embed a g0 g 〈 invoke x i 〉
| all (avail g0 a) inhs ∧ all (req g0 a) syns
= Jvisit i a′Kvert (x)] Jvisit i a′Kedge (x)]g
where
〈 s ; visit i : N a′ c ; s′〉 ∈ edges VGN

inhs = {inh.x.y | inh.y ∈ a′}
syns = {syn.x.y | syn.y ∈ a′}

Figure 4.18: The relations req and embed.

child available. This property allows us to determine visits graphs in a stable way. Some
modifications are possible to this approach to schedule attributes less eagerly.

Further, for each nonterminal N, there must be a vertex in the visits graph with an empty
configuration. An empty configuration consists of an empty configuration for the children
of each production. In addition, for the root symbols of the grammar with a non-empty set
of attributes, the configuration with all attributes defined must be part of the visits graph.
The configurations of the children do not have to be fully defined. Also, there must be an
appropriate edge between these configurations.

Properties. The invariants imposed on the visits graph ensure a number of properties for
which we sketch proofs.

The visits graph is acyclic. The destination configuration connected by an edge is larger than
the edge’s source configuration, because the set of attributes of an edge is not empty. Edges
thus connect distinct configurations. The configurations connected by edges form an ascend-
ing chain, and can thus not be cyclic.

The VPDGs are acyclic. The VPDGs of the initial configurations are by definition acyclic.
The transformation induced by a visit adds visit-vertices, although these keep the VPDG
acyclic. A vertex that is available requires its (indirect) dependencies to be available. Thus,
an available vertex cannot depend on an unavailable vertex. A visit-vertex connects available
vertices to unavailable vertices of synthesized attributes of a child. To form a cycle, such an
available vertex must depend (indirectly) on one of the synthesized attributes. Since such a
vertex is unavailable, a cycle is not possible.
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Consistent visits to children. The edges of the NDG of a child forms the edges between the
child’s inherited and synthesized attributes in the VPDG of a production that contains the
child. Suppose that we visit child x with a as the attributes of the visit. As induction hy-
pothesis, we assume that the available inherited and synthesized attributes of x are part of a
consistent visit sequence. To prove that the visit sequence with the visit added is consistent,
the definition requires us to consider four cases. In each case, one of the attributes is an
element of a.

As the first case, given an attribute inh.x.y and an attribute syn.x.z, suppose that inh.y←+

syn.z in the NDG of x, and syn.x.z ∈ a. Consequently, vertex syn.x.z is unavailable. Then
inh.x.y← syn.x.z in the VPDG, which means that inh.x.y is available. Hence, syn.x.z must be
in the same or later visit as inh.x.y. Proofs for the remaining three cases are similar.

Consistent states. When two potential edges in the visits graph converge, they result in the
same state. Clearly, when two edges converge, the edges have an equivalent set of attributes
a1 as destination state, otherwise the edges would not converge. Then, for both a VPDG g1 of
one edge, and a VPDG g2 for the same production of the other edge, the reqs sets for a1 are
equivalent. The attributes of a child’s state are exactly those in the reqs set, hence the states
of the children are equivalent.

Dependencies between attributes of the same kind. A synthesized attribute syn.x.y can de-
pend on a synthesized attribute syn.x.z and still be computed as part of the same visit when
the inherited attributes both syn.x.y and syn.x.z depend on are available. Similarly, two inher-
ited attributes can both be passed simultaneously to a child when they are both available. An
inherited attribute that depends on a synthesized attribute of the same child, however, cannot
be scheduled to the same visit.

Construction. The size of the visits graph is in both the worst and average case exponential
in the number of attributes. However, we normally need only a small portion of this graph.
In the remainder of this chapter, we call the visits graph of a program a slice of the graph that
we inferred from the program.

To incrementally construct this slice, we distinguish partial and final vertices and edges.
A partial vertex contains the configuration a, but not the administration for the productions.
A final vertex does contain this information. Similarly, a partial vertex contains only the visit
identifier i and the attributes a.

The partial vertices and edges represent information of the graph that needs to be in the
graph, but what we did not compute yet. The final vertices and edges represent already
computed parts of the graph. For example, the initial vertices with an empty state are final
vertices. For the root symbols, we insert a partial edge and partial destination vertex to
the graph. As algorithm, we repeatedly take a partial edge with a final source vertex, and
perform scheduling to turn it into a final edge, and consequently the destination vertex into a
final vertex. Scheduling may result in new edges and vertices being added to the graph.

The algorithm that performs scheduling for final edges computes the information for the
edge as a function of the source state and the attributes a of the edge. This ensures that the
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order in which we consider pending edges does not affect the resulting visits graph. More-
over, the visits graph is finite, thus if the computation for each pending edge is finite, then so
is the whole computation.

As a given, the input to the algorithm is a set of attributes a of the edge, and the VPDGs
of the productions of the previous configuration. To compute the remaining administration
of the edge, we infer the visits to the children. The embed relation tells us how. We first
determine which vertices are in the reqs set. Then we repeatedly which of the attributes of
the children are required and ready to be scheduled. Those form one group of simultaneous
visits. For each visit, we possibly add a pending edge and a pending vertex to the visits graph,
if such vertices are not yet in the graph. This process terminates because the VPDG is acyclic.
With each iteration, there is either at least one vertex that can be scheduled, or we are done.

The compilation of the largest AG of UUAG takes less than a minute using a slightly
optimized version of the algorithm as sketched above. To improve the performance, the
construction of the graph is relatively straightforward to parallelize. The processing of each
edge is independent and can be done in parallel. Most of the shared state is read-only. Only
updates on the state need to be properly synchronized, but these updates happen relatively
infrequent, and there is likely little contention. The construction of the graph is thus likely
to scale very well. Also, the process may be done incrementally. When a change in the AG
does not affect the PDGs of a nonterminal, the graphs constructed for that nonterminal so far
may be reused as initial visits graph. However, the implementation is performant enough to
be used in practice, even without such optimizations.

Remarks. Both the construction of the PDGs and the visits graph is a whole-program anal-
ysis of the sources related to an evaluation algorithm of a compiler for a particular tree (e.g.
one stage in the compiler pipeline). The requirement that the sources related to one algorithm
must be analyzed as a whole is usually not a problem in large compiler implementations,
because individual algorithms are usually monolithic. When plugins are concerned, such
plugins are typically a separate stage, and would thus be compiled independently. However,
it is in theory possible to defer the computations of the visits graph to load-time, although
then the composition of rules must also be determined at load-time, using meta programming
facilities such as Template Haskell.

There are various customizations posible in the construction on the visits graph which may
have severe consequences for the structure of the graph. The structure of the graph does not
influence the outcome of the attribute evaluation, but may affect execution time.

At the moment of writing, we are still gathering empirical data regarding performance. In
earlier measurements on UHC, the difference between on-demand (lazy) and eager (strict)
attribute evaluation turned out to be insignificant. This may be due to the use of strictness
annotations and DeepSeq in combination with the sequentialization of computations due to
unifications on a chained substitution attribute. However, in earlier measurements with the
AG implementation of the editor Proxima [Schrage and Jeuring, 2004], execution time almost
halved when eager AG evaluation was used. Note that with the rise of multi-core comput-
ing, the effects of visit sequences on parallel behavior may still be significant [Kuiper and
Swierstra, 1990, Klaiber and Gokhale, 1992, Wang and Ye, 1991].
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4.6 Optimizations

The shape of the graph may have an impact on the performance of the generated code. In our
approach, visits are likely to be small and independent, which is beneficial for parallelism and
incremental evaluation. However, when the visits graph is huge, code size becomes a more
pressing issue. The visits graph of the largest AG in the UHC project features about 10,000
configurations. Hence, we require measures to limit the size of this graph.

Subsumption. When the graph is huge, there are many contexts that are similar, yet differ
in one or more attributes because such an attribute was not needed or only needed later. Such
a small difference can easily cause many visits to be needed in the graph.

An edge i from a configuration a with attributes inh.y and syn.z subsumes an edge k from
a with attributes inh.p and syn.q when syn.y ⊆ inh.p and syn.q ⊆ syn.q. When we are about
to declare a visit, but it is subsumed by an already declared visit, we may use that visit in-
stead. This approach can potentially save many contexts, at the expense of producing some
results that are not needed yet. That is usually not a problem, because non-trivial computa-
tions of some node normally have dedicated inherited attributes, thus if one of these inherited
attributes is needed then so is the non-trivial computation that computes the synthesized at-
tribute.

A downside of the subsumption approach is that the order in which edges in the visits graph
are considered may influence the outcome. The effects of such approaches requires further
investigation.

We experimented with the strategy to determine the inherited attributes of a visit based
on the synthesized attributes that are required, but determining the largest set of synthesized
attributes that can be computed from the inherited attributes available so far. This strategy
reduced the graph of UHC’s largest AG to 1,500 nodes, at the slight expensive of returning
one or two attributes more than is strictly necessary. Under the assumption that complex syn-
thesized attributes are always dependent on their own set of inherited attributes, the additional
cost is negligible.

Partial Kastens. Two other decisive factors are the number of attributes and productions,
and sparse dependencies between attribues. The number of productions is typically fixed,
but the number of attributes and the dependencies can be influenced. We can produce an
algorithm for any consistent visit sequence. Consequently, a PDGs can be replaced with
supergraphs as long as these remain acyclic.

In our experience, orderable AGs are absolutely non-circular (Section 1.3.4). If for one
production there is a child x with nonterminal N that has a dependency of an attribute inh.x.y
on an attribute syn.x.z, then this dependency can also be imposed for all other children with
nonterminal N. For such an AG, the approach of Kastens [1980] is applicable.

The approach of Kastens determines a total order on the attributes in the NDGs using
a late-as-possible strategy. As mentioned earlier, this approach likely causes the graphs to
become cyclic. By removing the edges between vertices of strongly connected components
that are not in the original PDG, we obtain a non-cyclic supergraph of the original PDG. This
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supergraph has Kastens’ algorithm partially applied, and is likely to have a significant lower
number of possible contexts.

For large AGs, this appears to be the most effective step to limit the state explosion caused
by many productions and attributes. It does not require manual intervention. On the other
hand, it restricts the freedom in choosing smaller and independent visits.

Attribute elimination. In combination with copy rules, it is common practice to define
attributes on nonterminals where they are actually unused, or only used in chains of copy
rules. During the development of an AG, such attributes also show up because the AG is not
finished, thus not all attributes are in use.

Superfluous attributes seem innocent, but actually make the scheduling harder. These at-
tributes and their rules for such nonterminals are largely independent, thus easily lead to many
contexts in the visits graph, because many ways to interleave them are allowed. Further, the
Kastens’ algorithm typically schedules them too early, which causes cycles in the dependency
graphs, thus makes the above approach to reduce contexts less effective.

A combination of dead-code elimination and copy propagation [Nielson et al., 1999] can
be used to eliminate superfluous attributes of a nonterminal. As an additional benefit, their re-
moval may improve the performance of the application, because it prevents the trivial copying
of attributes around the tree.

Similarly to the dependency analysis itself, many analyses for AGs can be specified as a
recursive set of constraints. The common pattern is that some property of a nonterminal is
determined by combining the properties of each production, which we call abstraction. This
property of the nonterminal is then instantiated for each a child of the nonterminal. A fixpoint
can then be computed starting with a fixed value for the nonterminals that are roots, and a
bottom value for the other nonterminals.

In a similar way as shown in Section 4.4, we can define that an attribute is live if it is a
dependency of a live attribute. For the root nonterminal, all synthesized attributes are live.
Since this analysis is defined in terms of the attribute dependencies, the analysis can straight-
forwardly be defined in terms of the dependency graphs. As with dead-code elimination, the
attributes and rules that are not live are removed from the grammar.

Similarly, a collection attribute [Magnusson et al., 2007] is empty if it is composed with
either a copy rule or a monoid’s append from empty attributes. In this case, we start with
non-empty as bottom value, and do not treat start symbols of the grammar in a special way.
Instead, a use rule that depends on no attributes becomes empty as value eventually.

Finally, the output attribute of a copy rule is a copy of an attribute x, where x either equals
z when the input attribute y is a copy of another attribute z, or x equals y otherwise. This
also applies to rules for which we can syntactically determine that its body is essentially
the identity function, For other rules, the output attribute is not a copy of another attribute.
Initially, each attribute is not a copy of any attribute. set of attributes. During abstraction, a
synthesized attribute may be a copy of an inherited attribute if all productions agree on that
attribute.

Given the results of the copy and empty analyses, a rule that depends on an attribute x that
is a copy of y can substitute y for x. A rule that depends on an empty attribute can substitute
the attribute with the empty value, and thus remove the dependency on the attribute. Finally,
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dead-code elimination cleans up the unused copies, unused empty attributes, and unused other
attribues.

The updatable attributes provide some more options for extensions. When an attribute
is constant or the attribute is unique [Hage et al., 2007], these attributes can be stored as a
mutable structure in a global state, and replaced by a single attribute that stores a reference
to that structure. These are analyses that are relatively straightforward to implement and
exploit for BarrierAG, in contrast to general purpose programming languages, which have
complications due to data types and higher-order functions.

4.7 Execution Plans and Generated Code

With each vertex in the visits graph, we uniquely associate an identifier j. For each edge of
the visits graph, and for each of its productions, we construct an execution plan. The vertices
of the VDPG that are required for the new state, but not required for the old state, are the
edges that belong in the plan. In Chapter 3, we described how to derive a total order for the
vertices. In this section, we simply assume that we take a topological sort of the graph.

Plan representation. Figure 4.19 shows the syntax of execution plans, and the execution
plans for the production Bin. We organize the plans per production. For each production, it
contains an execution plan for each edge in the visits graph. The rules are ordered, and visits
to children are made explicit.

Definition (Intra-visit dependency). With each vertex in the visits graph, we associate a set of
intra-visit dependencies. These are values (denoted as descriptors d) in the state of a node that
are potentially needed in later visits. Given a visits graph V , the set of descriptors contained
in s for a production P is intra P s in Figure 4.20 (explained below).

The set of descriptors is determined by taking the descriptors introduced by by a visit, and
those needed by rules of later visits. Also note that the graph g is the graph of the new state for
defs, and the graph of the old state for uses. The difference is in the state of the child-nodes.
Finally, the set of intra-visit dependencies of the initial state and each final state is empty.

From execution plans, we generate visit functions (see also Section 1.3.5). The process for
individual visit functions is largely conventional (Section 2.1, and Section 5.3). However, the
weaving of the visit functions is more complex, because we encode the visits graph, which is
in general not a linear sequence of visits.

The visits graph specifies the possible states of an attributed tree, and models the visits
that can be done on it. Moreover, it specifies which attributes are in which state, and which
attributes are an input or output of a visit. In the generated code, an attributed tree is a value
that represents a vertex in the visits graph. A visit function represents an edge. Figure 4.21
shows their types for the example. Below, we explain these types.

Types. For each vertex j of a nonterminal N in the visits graph, we generate a type T N sj.
This is the type for an attributed tree with nonterminal N and in configuration j. For each
edge i of a nonterminal N in the visits graph, we generate a type T N vi. This is the type
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S ::= sem Γ P : N c q j -- execution plans q of production P, and initial config j
c ::= conf j a -- description of a configuration j
q ::= s ; s′ ; v -- edge between configurations s and s′

v ::=visit i : N a r -- visit combined with rules of the visit
r ::= child x : N = f z. -- (higher order) child declaration
| x : p z/ = f z. -- evaluation rule
| sim m -- simultaneous invocations

m ::= invoke x i : N -- child invocation

s ::= conf j k -- configuration of a node
k ::= child x : N j -- configuration of child x
j -- configuration identifier

sem {f1 = field l, f2 = field r, f3 = min, f4 = Bin} Bin : Tree 1
{conf 1 /0,conf 2 {syn.gath},conf 3 {inh.mini,syn.gath,syn.repl}}
[conf 1 {child l : Tree 1,child r : Tree 1}
;conf 2 {child l : Tree 2,child r : Tree 2}
;visit 1 : Tree child l : Tree = f1

child r : Tree = f2
sim {invoke l 1 : Tree, invoke r 1 : Tree}
r3 : id syn.lhs.gath• = f3 syn.l.gath• syn.r.gath•

,conf 2 {child l : Tree 2,child r : Tree 2}
;conf 3 {child l : Tree 3,child r : Tree 3}
;visit 2 : Tree r5 : id inh.l.mini• = id syn.r.gath•

r6 : id inh.r.mini• = id syn.l.gath•

sim {invoke l 2 : Tree, invoke r 2 : Tree}
r4 : id syn.lhs.repl• = f4 syn.l.repl• syn.r.repl•

,conf 1 {child l : Tree 1,child r : Tree 1}
;conf 3 {child l : Tree 3,child r : Tree 3}
;visit 3 : Tree child l : Tree = f1

child r : Tree = f2
sim {invoke l 1 : Tree, invoke r 1 : Tree}
r3 : id syn.lhs.gath• = f3 syn.l.gath• syn.r.gath•

r5 : id inh.l.mini• = id syn.r.gath•

r6 : id inh.r.mini• = id syn.l.gath•

sim {invoke l 2 : Tree, invoke r 2 : Tree}
r4 : id syn.lhs.repl• = f4 syn.l.repl• syn.r.repl• ]

Figure 4.19: Syntax of execution plans, and the plans of production Bin.
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intra P s = ∪{(uses P s s′∪ intra P s′)−defs P s s′ | (s ; s′ ; v) ∈ V }
uses P 〈 conf N a0 p0 〉 〈conf N a1 p1〉 | 〈prod P k g〉 ∈ p0 =
∪ (map (uses P) (reqs a1 g− reqs a0 g))

uses P 〈 k.x.y 〉 = /0
uses P 〈 child x a 〉
| abs a≡ 0 = ∪{map uses z | 〈child x : N = f z.〉 ∈ rules P}
| length a>0 = {child x a}

uses P 〈 rule x 〉 = ∪{z2∪map uses z1/ | 〈x : p z1/ = f z2.〉 ∈ rules P}
uses 〈 z◦ 〉 = {z}
uses 〈 z• 〉 = /0
uses 〈 z× 〉 = /0

defs P 〈 conf N a0 p0 〉 〈conf N a1 p1〉 | 〈prod P k g〉 ∈ p1 =
∪ (map (defs P) (reqs a1 g− reqs a0 g))

defs P 〈 k.x.y 〉 = /0
defs P 〈 child x a 〉 = {child x a}
defs P 〈 rule x 〉 = ∪{map defs z1/ | 〈x : p z1/ = f z2.〉 ∈ rules P}
defs 〈 z◦ 〉 = /0
defs 〈 z• 〉 = {z}
defs 〈 z× 〉 = {z}

Figure 4.20: Intra-visit dependencies of nodes.

for a visit function that takes the tree from its source configuration T N sJiKsource to its target
destination T N sJiKtarget .

We can apply one operation on an attributed tree. Given an typed key K N sj t and a tree
T N sj, the function inv N sj :: T N sj→ K N sj t→ t provides us with the visit function
of type t:

data T N sj where C N sj ::{inv N sj ::∀ t.K N sj t→ t}→ T N sj

The constructor C N sj is essentially a wrapper around the inv function.
The type t can be chosen by a parent by providing a key with this type. The key K N sj t

is a type index. The child can inspect the key to discover which type is actually represented
by t:

data K N sj t where
K N vi1 :: K N s T N vi1
...
K N vin :: K N s T N vin

For each outgoing edge i of j, K N sj contains a key K N vi that serves as evidence that t
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type T Tree = T Tree s1 -- initial configuration of the tree
-- type of tree in a given state s (function from key to visit)

data T Tree s1 where C Tree s1 ::{inv Tree s1 ::∀ t.K Tree s1 t→ t}→ T Tree s1
data T Tree s2 where C Tree s2 ::{inv Tree s2 ::∀ t.K Tree s2 t→ t}→ T Tree s2
data T Tree s3 where C Tree s3 ::{inv Tree s3 ::∀ t.K Tree s3 t→ t}→ T Tree s3

-- type of a key, which identifies a visit v from state s
data K Tree s1 t where

K Tree v1 :: K Tree s1 T Tree v1
K Tree v3 :: K Tree s1 T Tree v3

data K Tree s2 t where
K Tree v2 :: K Tree s2 T Tree v2

data K Tree s3 t where -- empty data declaration
-- type of a visit v, with continuation as the new state s

type T Tree v1 = IO (Int, T Tree s2)
type T Tree v2 = Int→ IO (Tree, T Tree s3)
type T Tree v3 = Int→ IO (Int,Tree,T Tree s3)

Figure 4.21: Types of keys and semantic functions.

equals T N vi. The type K N sj has no constructors when j has no outgoing edges in the
visits graph. Indeed, a tree in such a configuration cannot be visited.

The type of a visit function T N vi is a function of values of the visit’s inherited attributes
to a computation of a tuple of values of the visit’s synthesized attributes, and the new state
of the tree. Since BarrierAG includes updatable attributes, the computation takes place in the
IO monad:

type T N vi = τ inh1 → ...→ τ inhn → IO (τsyn1 , ...,τsynm ,T N sJiKtarget)

The type τ inhk is the type declared for the inherited attribute inhk of nonterminal N, and τsynk
the type for the synthesized attribute synk.

Translation of semantics-blocks. Figure 4.22 gives the generated code for a produc-
tion3. A sem-block is translated to a node constructor function stj for each state j, which
given values for the intra-dependencies of j, returns a node with this state, thus of type
T N sj. The node constructor st1 constructs the initial state. Therefore it has an empty
set of intra-dependencies and is thus represents the initial value of the node. In contrast, the
node constructor st2 takes the states of the live children as parameter, and values of the live
attributes.

3 The full code of the example can be downloaded from: https://svn.science.uu.nl/repos/project.

ruler.papers/archive/ExampleWarren.hs. It is compilable with GHC version 6.12.3.
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4 AGs with Commuting Rules

sem Bin :: T Tree→ T Tree→ T Tree
sem Bin field l field r = st1 where

st1 = let k1 :: K Tree s1 t→ t
k1 K Tree v1 = v1
k1 K Tree v3 = v3
k1 = error "unreachable"

v1 :: T Tree v1
v1 = do l1← return f1

r1← return f2
(l gath, l2) ← inv Tree s1 l1 K Tree v1
(r gath,r2)← inv Tree s1 r1 K Tree v1
lhs gath ← return.id $ f3 l gath r gath
return (lhs gath,st2 l2 r2 l gath r gath)

v3 :: T Tree v3
v3 lhs mini = do l1 ← return f1

r1 ← return f2
(l gath, l2) ← inv Tree s1 l1 K Tree v1
(r gath,r2)← inv Tree s1 r1 K Tree v1
lhs gath ← return.id $ f3 l gath r gath
l mini ← return.id $ id r gath
r mini ← return.id $ id l gath
(l repl, l3) ← inv Tree s2 l2 K Tree v2 l mini
(r repl,r3) ← inv Tree s2 r2 K Tree v2 r mini
lhs repl ← return.id $ f4 l repl r repl
return (lhs gath, lhs repl,st3)

in C Tree s1 k1

st2 l2 r2 l gath r gath
= let k2 :: K Tree s2 t→ t

k2 K Tree v2 = v2
k2 = error "unreachable"

v2 :: T Tree v2
v2 lhs mini = do l mini ← return.id $ id r gath

r mini ← return.id $ id l gath
(l repl, l3) ← inv Tree s2 l2 K Tree v2 l mini
(r repl,r3)← inv Tree s2 r2 K Tree v2 r mini
lhs repl ← return.id $ f4 l repl r repl
return (lhs repl,st3)

in C Tree s2 k2

st3 = let k3 :: K Tree s3 t→ t
k3 = error "unreachable"

in C Tree s3 k3

f1 = field l ; f2 = field r ; f3 = min ; f4 = Bin

Figure 4.22: Generated code of the production Bin.
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Jchild x : N = f z.Kgen = JxKgen (init N)← lift|z.| f Jz.K.
Jx : p z/ = f z.Kgen = y← lift|z.| f Jz.K.

Jz/K/ y where y fresh
Jinvoke x i : NKgen = let vis = invokesJiKsource

JxKsource (i) (K N vi)

(JxKsyn (i),JxKtarget i)← vis JxKinh (i)
JxKinh (i) = {Jinh.x.yKgen | inh.y← aNi }
JxKsyn (i) = {Jsyn.x.yKgen | syn.y← aNi }
Jz•K/ y = let JzKgen = y
Jz◦K/ y = writeIORef JzKgen y
Jz×K/ y = JzKgen← newIORef y
Jz•K. = return JzKgen
Jz◦K. = readIORef JzKgen
Jh.c.xKgen = h c x
JxKgen (j) = x j

Figure 4.23: Translation scheme for rules in the execution plan.

The body of a node constructor is a wrapper around a function kj, which returns the visit
function vi given the key K N vi that identifies one of the outgoing edges of j. For each visit
i that is a successor of configuration j, we generate a visit function vi. The visit function vi
takes values for the inherited attributes as parameter that are declared on edge i. It returns
a computation that gives a tuple of the synthesized attributes that are declared on edge i. In
addition , it returns the result state of the node by applying the constructor for the next state
to the values of that state’s intra dependencies.

Figure 4.23 shows a straightforward translation of the rules in the execution plan. We
assume that barrier attributes and dependency rules are stripped from the execution plan and
the administration after the visits graph has been constructed.

For each visit to a child we pass as additional parameter the appropriate key to the invoke-
function of the child’s state, which results in the visit function vis. The function vis subse-
quently takes the inherited attributes as parameters.

For an attribute occurrence z at an input position, either the transcribed identifier JzKgen is
z’s value, or is a reference that can be read from to provide z’s value. In a similar way, an
attribute occurrence z at an output position is either stored as the transcribed identifier JzKgen,
or written to the reference under that name.

Remarks. A nice property of the translation is that we explicitly declare the types of the
visit functions with type signatures. Since the types of the functions f are monomorphic, type
errors are usually to be reported in functions f , which are defined in the actual source code,
so that type errors can be related back to the original locations in the source file. We do not
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need to know the types of local attributes. Also, when we allow type variables in the types,
then these can be supported in our scheme using scoped type variables.

The translation can be optimized in various ways. When a configuration does not have
outgoing edges, a visit to a child that ends in this configuration does not need to construct
nor return the new state of the child, as the child cannot be visited anymore, and the state is
actually empty according to the definition of intra. When a configuration has one outgoing
edge, then the selection of a visit via a key is not needed. Also, when the visits graph for a
nonterminal is a tree, a single key that identifies the path in the tree can be given to the child
when it is created, instead of one segment of the path for each visit.

Instead of relying on Haskell to construct closures, the node constructors can use an un-
typed, updatable array instead. With conventional techniques from register scheduling, the
state can be represented such that needless copying of states is avoided during visits, which
makes visits cheap. In this thesis, we do not venture down this path, and rely on Haskell to
handle closures. A compiler that employes uniqueness and usage analysis [de Vries et al.,
2007, Hage et al., 2007] can apply this optimization transparently.

When a simultaneous invocation group contains more than one visit, we can use forkIO to
allow the Haskell runtime to evaluate the visits in parallel, since these do not have common
dependencies.

4.8 Generalization to Phases

We use BarrierAG as a host language to describe phases. A nonterminal declares a set of
phases. Attributes may be associated uniquely to a phase. A phase corresponds to one or
more implicit visits. Since a visit describes the smallest unit of evaluation of a node in the
tree, a phase describes a larger unit of evaluation. It allows us to express properties of chunks
of AG evaluation, without resorting to the low level details of visits.

The following example is a possible declaration of phases for nonterminal Tree. The in-
dentation determines which attribute is declared in which phase. The scope of the phase
declaration ends before a keyword at the same indentation level:

itf Tree -- declaration of attributes and phases of Tree
syn gath :: Int -- attribute not assigned to a phase
phase distribute -- declaration of a phase distribute

inh mini :: Int -- attribute mini in phase distribute
phase transform -- declaration of a phase transform

syn repl :: Tree -- attribute repl in phase transform

These phase declarations are unordered, and can be specified in any order.
Figure 4.24 shows the notation for phase interfaces. There is a high similarity with the

notation for visit interfaces of Chapter 3. The main difference is that we may specify multiple
blocks of subsequent phases in a phase-block. The lexical nesting of phase declarations (on a
nonterminal) and phase blocks (in a sem-block) impose a partial order on phases. Also order-
rules in combination with begin lhs ρ and end lhs ρ imposes a partial order. A phase-block
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I ::= itf N q -- a set of declaration of a phase-interface
q ::=a -- toplevel attribute decl (not associated with a phase)
| phase ρ q -- phase with attribute declarations

d ::= ... -- descriptors extended with phases
| begin x ρ -- begin of a phase ρ of child x
| end x ρ -- end of a phase ρ of child x

s ::= sem N prod P r t -- common rules r and a set of phase blocks t
t ::=phase ρ r t -- common rules r and subsequent phases t
r ::= ... -- AG rules
| invoke ρ of c z -- specifies invocation of phase ρ of c with strategy z

Figure 4.24: Notation for phase interfaces.

of phase ρ2 that is nested in a phase block ρ1 is evaluated either during the evaluation of ρ1
when there is a constraint begin lhs ρ2 ≺ end lhs ρ1, or after the evaluation of ρ otherwise.

Invoke-rules may be explicitly given or be implicit. An invoke-rule r with a phase ρ

corresponds to one or more actual visits to a child x. The rule itself precedes the first of these
visits, thus r ≺ begin x ρ .

The lexical scope of a phase block, which is relevant for local attributes and default-rules,
is only determined by the nesting of phase blocks in a production. Possibly more constraints
on the order induced by other productions or order-rules are not taken into account for scop-
ing. This technical detail ensures that we can determine the vertices of the PDGs before the
dependency analysis takes place.

We essentially have two main evaluation algorithms to choose from: demand-driven eval-
uation and statically ordered evaluation. We may specify several properties of a phase, such
as cyclic or acyclic, and pure or impure. Not all combinations are possible. For example, a
cyclic phase must use on-demand evaluation, and may not be impure. Also, the properties
impose constraints on rules in such a phase, or on rules that invoke such a phase. For example,
an invoke-rule in a pure phase may not invoke an impure phase on a child. The scheduling of
rules takes such constraints into account (Section 3.5.2). In a host language with lazy evalua-
tion, the on-demand algorithm is a simplification of the eager algorithm, hence in this thesis
we focus only on the latter.

Foundation. We express phases in terms of BarrierAG, which we sketch in Figure 4.25.
A dependency rule k.x ≺ k.y on attr-blocks of N is syntactic sugar for rule k.lhs.x ≺ k.lhs.y
in each production of N. For each phase ρ of nonterminal N, we introduce two barrier-
attributes beginρ and endρ . The attributes of the phase are enclosed by these barriers. There
is one master phase N for each nonterminal N where all attributes and phases are enclosed by
via dependencies on its barriers.

The lexical nesting of phases and rules induces additional order constraints, as sketched by
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attr N inh beginN barrier -- begin master phase for N
syn endN barrier -- end master phase for N

attr N inh beginρ barrier -- begin barrier for each phase ρ of N
syn endρ barrier -- end barrier for each phase ρ of N

attr N inh.beginρ ≺ syn.endρ -- begin before end for each phase ρ

inh.beginN ≺ inh.beginρ -- begin ρ after begin master phase
syn.endρ ≺ syn.endN -- end ρ before end master phase

attr N inh.beginρ ≺ k.y -- for each attribute k.y of phase ρ

k.z ≺ syn.endρ -- for each attribute k.y of phase ρ

inh.beginρ ≺ inh.beginρ ′ -- for each nested phase ρ ′

syn.endρ ′ ≺ syn.endρ -- for each nested phase ρ ′

inh.beginN ≺ k.y -- for each attribute k.y not in a phase
k.z ≺ syn.endN -- for each attribute k.y not in a phase

Figure 4.25: Sketch of a translation of phases to BarrierAG.

master

translateanalyze

name tpcheck

Figure 4.26: Phase nesting visualized as a tree.

the following example:

sem N r1 -- inh.lhs.beginN ≺ r1
phase ρ1 -- inh.lhs.beginN ≺ inh.lhs.beginρ1

r2 -- inh.lhs.beginρ1
≺ r1

phase ρ2 -- inh.lhs.beginρ1
≺ inh.lhs.beginρ2

r3 -- inh.lhs.beginρ2
≺ r3

With order-dependencies, and with syntax as demonstrated in Chapter 3, more dependencies
between phases may be specified.

Further, we take the union of all constraints on phases of nonterminal N from each child
with nonterminal N, and integrate these in the NDG of N. The PDGs must remain acyclic,
otherwise the constraints on phases are inconsistent, which is considered a static error.

Phase nesting. A phase may be contained inside another phase. The parent of a node can
invoke the contained phase of the node as part of the evaluation of the containing phase. This
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model introduces levels of granularity that allow for more concise specifications. We can
visualize this model as a tree, which we show in Figure 4.26.

Definition (Nesting tree). A nesting tree describes the nesting of phase declarations.

In a nesting tree, the nodes are phases. When a node ρ2 is a child of a node ρ1, ρ1 is a
nested phase of ρ2. The above exemplary tree corresponds to the following phase interface:

itf Expr -- defines the siblings for the root (master phase)
phase analyze -- nested phase in master phase

phase name -- nested phase in phase name
phase tpcheck -- nested phase in phase tpcheck

phase translate -- nested phase in master phase

The above phase interface describes that during the evaluation of the analyze phase of a child,
the name phase of that child is invoked. Different strategies may be specified for the name
phase than for the analyze phase.

The nesting tree can be inferred from the NDG. Given a nonterminal N, N’s phase ρ1 is a
child of N’s phase ρ2, if either:

• inh.beginρ2
←+ inh.beginρ1

and syn.endρ1 ←+ syn.endρ2 . In this case, ρ1 is fully
enclosed by ρ2.

• there exists a ρ3 so that ρ3 is a child of ρ1, and ρ3 is a child of ρ2, with in the NDG
inh.beginρ2

←+ inh.beginρ1
or syn.endρ1←+ syn.endρ2 . In this case, ρ3 is both a child

of ρ1 and ρ2, which we resolve by making ρ1 a child of ρ2.

The constraints form a directed graph per nonterminal, and can be solved with a fixpoint
computation. If the resulting graph is not a tree, then either the constraints are inconsistent, or
too few constraints were specified. Such a nesting tree leads to additional edges between the
barriers of the NDG. If the PDGs become cyclic due to these additional edges, the constraints
on phases were inconsistent. This approach infers a single nesting tree per nonterminal.

The inference of the nesting tree has the advantage that it becomes easier to compose
phases. On the other hand, the nesting of phases is typically limited, and has a purpose, so it
is only a slight burden to specify the nesting fully.

Overlap prevention. Sibling phases may not overlap, otherwise it is unclear which eval-
uation of a node corresponds to which phase. Two phases overlap if either inh.x.beginρ2

←+

inh.x.beginρ1
and syn.x.endρ2 ←+ syn.x.endρ1 , or the other way around. However, the de-

pendencies on barriers do not guarantee this property. Given two sibling phases ρ1 and ρ2,
we wish to express that either end ρ1 ≺ begin ρ2 or end ρ2 ≺ begin ρ1. Since siblings are
not ordered, we do not know which of the two to take.

Attribute scheduling is actually a reduction of the ordering of phases. If we define phases
such that each attribute is declared in a unique phase, then determining the order of phases is
attribute scheduling. The order of phases may thus be dependent on context. Therefore, we
take a similar approach as Section 4.5 and define the phases graph.
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phases graph. The phases graph of a nonterminal is the phases graph of the master phase
of the nonterminal. A phases graph is a DAG where each represents a phase, and an edge
from a to b means that a comes before b in the sequence. A vertex is labelled with the phases
graph of its children:

g ::=phase ρ g e -- phases graph of phase ρ (initially the master phase)
e ::=g→ g -- edges connect phases subgraphs

Such a graph g may have several sources and sinks. However, each path from source to
sink must contain precisely all sibling phases, because each path corresponds to an ordered
sequence of siblings in the nesting tree of the nonterminal.

Similar as the visits graph, the phases graph contains all consistent ways to interleave
phases. An interleaving is consistent when it satisfies the partial order of the phases. In
practice, there are only a few phases per nonterminal, with relatively dense constraints, thus
the actual required portion of the graph contains little variety. Also, the problem is slightly
easier compared to Section 4.5 because each path from source to sink is equally long, and the
number of vertices on such a path is known beforehand.

We take a slightly different representation of the phases graph to stress the similarity with
the visits graph. The vertices s of the phases graph represent an ordered sequence of the avail-
able inh.beginρ attributes. An edge is annotated with the attribute that has become available:

s ::=a -- state of a vertex in the phases graph
e ::= s

→
a s -- edge in the phases graph

Note that we can construct the nesting tree from such a sequence.
The purpose of the phases graph is to determine a small number of totally ordered nesting

trees for a nonterminal. In a similar way as with visits, we determine a total order on the
phases of children of a production given the total order on the phases of the production. For
this analysis, we do not add visit-vertices to the PDGs. Instead, we add dependencies between
attributes syn.x.endρ1 and inh.x.beginρ2

for children x and phases ρ1 and ρ2.
Recall that a vertex in a PDG is available when all its dependencies are available. In

this situation, for a begin barrier to be ready, it must have been connected to an end barrier.
Figure 4.27 gives the definition. Further, an end-barrier is required when the begin-barriers
of the phase and its children are available. Sufficient child-edges must be added so that the
(indirect) dependencies of a required end-barrier are available.

Definition (Selectable). A begin-barrier is selectable when the following conditions are met.

• Its dependencies are available. This implies that the begin-barrier of its parent is avail-
able.

• If a begin-barrier of a sibling is available, then so is the end-barrier of that sibling. This
ensures that the phases do not overlap.

Options for child-edges can thus be determined by taking the intersection between se-
lectable and required begin-barriers. If this intersection is empty, then the dependencies on
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avail a g d = all (avail a g) (deps g d) ∧ except a g d
except a g 〈 inh.lhs.y 〉 | ¬ isBegin inh.lhs.y ∨ inh.y ∈ a
except a g 〈 inh.x.y 〉 | ¬ isBegin inh.x.y ∨ (d ∈ deps g 〈 inh.x.y〉 ∧ isEnd d)
except a g 〈 syn.c.y 〉 | True
except a g 〈 rule x 〉 | True
except a g 〈 child x 〉 | True
except a g 〈visit x i 〉 | True
isBegin 〈 k.x.beginρ 〉
isEnd 〈 k.x.endρ 〉

Figure 4.27: The relation avail with begin and end barriers.

phases are inconsistent, i.e. forcing the barriers to overlap. If there are multiple options
available, we prioritize based on some stable order, such as the order of appearance.

As initial solution, we start with only the begin-barrier of the master phase available for
each nonterminal. For the root nonterminals, we construct as initial solution a full path by
determining a last-as-possible order given the dependencies of the NDG, and prioritizing
based on the stable order mentioned earlier.

Attribute scheduling. The set of paths from sink to source is in practice small in the
phases graph. The amount of paths is the price to pay for not specifying a total order on
phases. For each path in the phases graph, we determine the accompanying nesting tree.
The set of these trees form the phase-interfaces of a nonterminal. For each child, we specify
which phase-interface to use, using a type index for the child-rule.

With each phase-interface corresponds a specialized version of the NDG and PDGs. We
also construct a separate visits graph per phase interface. Due to the additional dependencies
imposed by the phases-interface, variability in the visits graph is reduced.

Moreover, on each nesting-tree, we can perform additional attribute scheduling. The at-
tributes are restricted by a partial order, and this order may be strengthened if it does not lead
to cycles in the NDG of the nesting tree. For example, we may schedule attributes to the latest
possible phase, or avoid scheduling attributes to certain phases. Such heuristics are similar to
those discussed for rule scheduling in Section 3.5.2.

Remarks. The generalization to phases ensures that our approach is a conservative exten-
sion of ordered attribute grammars. A conventional attribute grammar can be expressed by
associating all attributes with one phase.

The inference of the phases graph is similar to the inference of the visits graph. It may be
possible to combine the inference of both graphs. However, it is not immediately clear how
to express heuristics, such as the avoidance of certain phases, in a combined approach.
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attr Tree thr unq :: Int -- declaration of threaded attribute
sem Root
| Root root.unq = 1 -- initial value of threaded attribute

loc.final = root.unq -- final value of threaded attribute
sem Tree -- modifications to the threaded attribute
| Leaf (loc.myId, lhs.unq) = (lhs.unq, lhs.unq+1) lhs.unq� lhs.unq
| Bin l.unq = lhs.unq lhs.unq� l.unq

r.unq = l.unq l.unq � r.unq
lhs.unq = r.unq r.unq � lhs.unq

Figure 4.28: Example of commuting rules.

4.9 Commuting Rules

In this section, we present AGs with commuting rules, which are chained rules that can be
reordered. These commuting rules provide an abstraction for the use of references in Sec-
tion 4.3. Given an explicit ordering of rules, the composition of two rules is commutative
when the two rules are commutable, which means that the rules may be swapped in the com-
position. Rule composition is a conditionally commutative operator. Commutable rules rep-
resent commutable operations. The swapping of rules models side effects, and commutativity
facilitates reasoning about the safe use of side effects.

Syntax. We assume some conventional AG to start with, and show later how to encode the
commutable rules in BarrierAG. Firstly, we introduce threaded attributes, which are a special
form of chained attributes. Secondly, we introduce commuting rules, which specify a set h of
commutable chains the rule participates in:

k ::= ... -- attribute forms (e.g. inh and syn)
| thr -- threaded attribute

r ::= ... -- rules
| x : p z1 = f z2 h -- rule x that commutes over h

h ::= z1 � z2 -- rule commutes with rules of z1 and z2

The syntax z1 � z2 specifies that the rule connects chains of z1 and z2. Attribute z1 must be on
an input position, and z2 on an output position. Also, both must be threaded attributes, and
their types must be the same.

The example in Figure 4.28 uses a threaded counter to demonstrate the commuting rules.
Each value of loc.myId is unique, although it is not guaranteed that a right-sibling of a node
has a higher loc.myId value. This would be the case if the rules were not commutable.

The example shows as the first rule of Root how to provide the initial value of a threaded
attribute. This is a rule that defines a threaded attribute, but does not commute over it. Also,
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sem N | P -- k is a child of production P of nonterminal N
loc.krefx :: IORef τ -- local attribute declarations with type
loc.kwrx barrier -- local barrier declaration
loc.krdx barrier -- local barrier declaration

k.xref• = loc.krefx
• -- copy as reference for child

k.xwr ≺ loc.kwrx -- restrain read barrier of child
krdx ≺ k.xrd -- restrain write barrier of child

Figure 4.29: Sketch of the encoding of commuting rules in BarrierAG.

the example shows as the second rule of Root how to obtain the final value of a threaded
attribute, which is a rule that refers to the value of a threaded attribute, but does not commute
over it. Finally, the rules of Tree are commutable rules.

As additional requirement, a rule that defines a threaded attribute lhs.y must mention lhs.y
in its set of commuting chains h. This restriction ensures that the threaded attribute can be
represented as an inherited attribute.

The commuting chains h specifies in which chains a rule participates:

uses h = {z1 | 〈 z1 � z2〉 ∈ h}
defs h = {z2 | 〈 z1 � z2〉 ∈ h}

A rule with h connects uses h to defs h.

BarrierAG encoding. We use a BarrierAG encoding as a means to specify the implemen-
tation of commuting rules. We represent each threaded attribute thr x ::τ with three attributes
in BarrierAG:

inh xref :: IORef τ -- reference to the mutable state
syn xwr barrier -- all commutable updates before this barrier
inh xrd barrier -- all non-commutable updates after this barrier

Thus, a threaded attribute is a reference to a mutable state. We ensure in the encoding that
rules only depend on the reference, which permits the reordering. As invariant, the write
barrier of the child depends on all commuting rules of the child (and its subtree) that update
the reference. All non-commuting rules that refer to the reference depend on the read barrier.

For each threaded attribute thr y :: τ of a child k, we introduce three local attributes, and
rules to connect the local attributes with the attributes of the child. Figure 4.29 gives a sketch.
Note that krefx is the name of the attribute. The name of the child k is part of the name of the
attribute.

When a rule refers to the threaded attribute of k, we actually let it refer to the local at-
tributes, as we show below. For notational convenience, we also introduce these local at-
tributes for threaded attributes of lhs:
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lhs.unqref lhs.unqrd lhs.unqwr

loc.lhsrefunq loc.lhsrdunq loc.lhswrunq

loc.lrefunq loc.lrdunq loc.lwrunq

l.unqref l.unqrd l.unqwr

loc.rrefunq loc.rrdunq loc.rwrunq

r.unqref r.unqrd r.unqwr

r1 r2 r3r◦1

r◦2

ref

wr

rd

Figure 4.30: Attributes encoding the commutative rules of the production Bin.

loc.lhsrefx
•
= lhs.xref• -- copy as reference

loc.lhswrx ≺ lhs.xwr -- restrain read barrier
k.lhsrd ≺ lhsrdx -- restrain write barrier

These rules for lhs are the contravariant version of the rules for children.
Non-commuting write. When a rule x with commuting chains h defines a threaded attribute

thr.k.y, but thr.k.y 6∈ defs h, rule x serves as initializer for the threaded attribute. In the encod-
ing, the defining occurrence thr.k.y in the left-hand side of rule x is replaced with loc.krefy

×.
Moreover, we add the following dependency rule:

loc.kwry ≺ loc.krdy -- orders writes before reads

Since k is the start of the chain, and given the invariants on the read and write barriers, this
dependency rule ensures that commutable writes take place before non-commutable reads.

Non-commuting read. When a rule x with commuting chains h refers to a threaded attribute
thr.c.y, but thr.c.y 6∈ uses h, rule x reads the final value of the threaded attribute. Thus, we
replace the occurrence thr.c.y in the right-hand side of rule x with crefy

◦, and add the following
dependency:

loc.crdy ≺ rule x -- the read depends on the read barrier

The identifier c is either a child k or lhs.
Commuting read and write. When a rule x with commuting chains h refers to a threaded

attribute thr.c.y, and thr.c.y ∈ defs h, we replace the defining occurrence in the left-hand
side of x with crefy

◦. When thr.c.y ∈ uses h, we replace the occurrence in the righthand side
of x with crefy

◦. Moreover, we insert a rule x◦ for each commuting chain, which copies the
reference and thus links the chain. Also, we connect the read and write barriers:
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x◦ : id k.y2
• = id c.y1

• -- for each c.y1 � k.y2 ∈ h (copies the reference)
rule x ≺ loc.cwry -- for each attribute y in h (rule before write barrier)
loc.cwry2

≺ loc.kwry1
-- for each c.y1 � k.y2 ∈ h (connect write barriers)

loc.crdy1
≺ loc.krdy2

-- for each c.y1 � k.y2 ∈ h (connect read barriers)

When lhs.y ∈ defs h, the read and write barrier are not connected, as it would create a cycle.
Also, note the contravariant behavior between the read and write barrier.

The barrier attributes and dependency rules enforce the proper ordering of rules that use
threaded attributes. Figure 4.30 demonstrates the encoding for the Bin-production. The boxes
represent attributes. The circles represent the relevant rules. The barriers and their dependen-
cies are not part of the generated code, and thus do not have a runtime overhead. As a
consequence, we actually transformed a chained attribute into an inherited attribute with a
reference to a mutable state.

Referential transparency. Referencial transparency is important for equational reason-
ing. For AGs, it is also important to ensure that the order of evaluation does not affect the
result. In BarrierAG, rules that use updatable attributes break referential transparency. How-
ever, with commutable rules, we can establish a weaker version of referential transparency.
When two rules commute, the actual values for the attributes that these rules define may be
different, but in the context where these rules are defined, the final result, which abstracts
from the values of the attributes, may still be equivalent to any ordering of the commutable
rules.

The composition of rules, and the context of rules can be made explicit with arrow nota-
tion. A commuting rule r1 : (x1,y1) = f (x0,y0), x0 � x1 and a commuting rule r2 : (x2,z1) =
g (x1,z0), x1 � x2 correspond respectively to the arrows (x1,y1)← f ≺ (x0,y0) and (x2,z1)←
g ≺ (x1,z0). Section 1.3.9 shows that the composition of these rules can be expressed as an
arrow:

proc (x0,y0,z0)→ do
(x1,y1)← f ≺ (x0,y0)
(x2,z1)← g≺ (x1,z0)
returnA (x2,y1,z1)

Alternatively, when we reorder f and g, and rename the attributes, we obtain the following
arrow:

proc (x0,y0,z0)→ do
(x1,z1)← g≺ (x0,z0)
(x2,y1)← f ≺ (x1,y0)
returnA (x2,y1,z1)

This notion can straightforwardly be generalized to rules that commute over many attributes,
or define and use many other attributes.
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These two rules are commutable over attributes of x0,x1 and x1,x2 if their compositions are
equivalent for a given rule context h, and r1 6≺ r2:

h


proc (x0,y0,z0)→ do
(x1,y1)← f ≺ (x0,y0)
(x2,z1)← g≺ (x1,z0)
returnA (x2,y1,z1)

 ≡ h


proc (x0,y0,z0)→ do
(x1,z1)← g≺ (x0,z0)
(x2,y1)← f ≺ (x1,y0)
returnA (x2,y1,z1)


If there exists directly or indirectly a dependency between r1 and r2 then the rules may not
commute. This is for example the case when r1 defines a (non-threaded) attribute that is used
by r2, or because of a dependency rule.

The rule context h is an abstraction of the composition in which the composition of f and
g is contained. For example, h can represent the composition of the rules of the entire tree,
and thus the rule states that the end result of the computation is not affected. In practice, we
take a more abstract notion of h. For example, the property that all loc.myId attributes have a
unique value. In Section 2.2 we give some examples of the function h.

Remarks. To reason with commutable rules, we may need to make assumptions about the
order of evaluation. This is, for example, the case when the values of the attributes are trace
monoids [Diekert and Métivier, 1997]. Phases can be used for this purpose.

The identification of commuting rules may be relevant for the parallel and incremental
evaluation of attribute grammars. Chained attributes sequentialize code, whereas commuting
rules allow more interleaving. Similarly, during incremental evaluation, changes in a subtree
that appears earlier in the evaluation may be lifted over a later subtree if these changes are
visible in a threaded attribute.

Commutable rules can also be used to collect statistics or other runtime properties about
the evaluation process, such that the attribute-dependencies of the collecting rules have only
a minor influence on the evaluation process. For example, a count of the nodes of the tree
traversed so far may be an indication of how much work has been done.

In case of type inference, substitutions may be represented as a threaded attribute, so that
the threading of the substitution does not influence the order of evaluation. Traditionally,
unification is only a commutable operation when all unifications succeed. By encoding the
substitution as a graph structure, it is possible to make unification a commutable operation
also in the case of a type conflict [Heeren, 2005].

4.10 Related Work

The ability to compose attribute grammars is an important benefit that attribute grammars
offer. In fact, AGs are so easily composed that the compositions may accidentally become
inconsistent, i.e. have attributes with a cyclic definition. Knuth [1968] proves that an AG
is well-defined if and only if the dependency graphs of productions are cycle-free according
to his refined algorithm (Knuth-2). When the dependency graphs are cycle-free according
to Knuth’s original algorithm (Knuth-1) then the AG is well-defined, but not necessarily
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the other way around. These are static properties of AGs that provide guarantees that the
evaluation of an AG terminates.

Knuth-2 uses a dependency graph per production/child production combination, in contrast
to a single dependency graph per production as the Knuth-1 approach uses. Knuth-2 leads to
an approximate number of dependency graphs per production in the order (pb), where p is the
number of productions of the child nonterminals, and b is the number of children. In practice,
e.g. for the let-production of a lambda calculus, p is rather large (p> 10), but b is typically
small (b 6 2). However, we usually define a fine granularity of nonterminals so that distinct
dependency graphs per production/child production combination does not offer an advantage
over a single graph per production.

In our experience, AGs are either necessarily cyclic, or are cycle-free in both Knuth-1 and
Knuth-2. If the AG is not cycle-free with Knuth-1, then this is an indication that the AST does
not have sufficient structure, which is not likely in strongly typed languages. In the first case,
on-demand evaluation may still yield results for attributes, although it is the responsibility
of the programmer to ensure this. In the second case, we know that an evaluation order
exists, and can use a statically ordered evaluation algorithm. A statically ordered evaluation
algorithm is likely to exhibit better time and space behavior, and actually permits minor
assumptions about the evaluation order to be made.

Kastens [1980] presented an approach to infer a visit interface per nonterminal. Unfor-
tunately, when using the Kastens approach, we often encounter cycles that are induced by
the scheduling as resulting from Kastens’ scheduling algorithm. These induced cycles ham-
per compositionality, because as remedy, we need to add artificial dependencies between
attributes to the AG to control the scheduling. Also, the effect of scheduling is not visible
in the original rules of the grammar, which makes such cycles very hard to understand and
resolve.

The approach by Kennedy and Warren [1976] can find a solution, but may possibly result in
an exponentially large solution. In practice the solution is not so large: In our experience, this
approach works very well for small AGs. For large AGs, however, the exponential behavior
may show up. To counter this behavior, we provide sufficient mechanisms to restrict the set
of solutions.

4.11 Conclusion

This chapter demonstrates one of the great strengths of attribute grammars: the ability to
statically analyse the grammar with abstract interpretations. As one of the main contributions
of this chapter, we reformulated the approach of Kennedy and Warren [1976] so that it can be
used to generate code for a strongly typed, purely functional host language. For absolutely
non-circular AGs, this approach finds a way to order the rules statically.

By using such an approach, it is not needed to explicitly schedule attributes and rules,
unless these need to be given special properties. We introduce the notion of phases for this.
Since the ordering of attributes and rules can be inferred, we may omit such details from our
specification. Consequently, the specification becomes more concise and easier to compose,
which is beneficial from an engineering point of view.
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4 AGs with Commuting Rules

The price that we pay is that such an analysis can only give an answer per context, such as
a context dependent phase or visit interface, and a nonterminal may be in exponentially many
contexts. A programmer typically has some evaluation order in mind, thus is usually able to
specify a single order that works in all contexts, which may reduce the size of the generated
code, compile time, and the execution time. On the other hand, if there is not a single order
that works in all contexts, then a programmer is not likely to be able to keep track of all the
possibilities manually. We presented phases as a means to specify knowledge about the order
of evaluation, without going into the fine details, as in Chapter 3.

Also, for some problems, the order imposed by attribute dependencies may be too restric-
tive. We presented commuting rules as a means to loosen some restrictions. Commuting rules
can be used when a number of rules form a chain, and the individual ordering of the rules
is not relevant for the result. A typical example is a sequence of rules that provides unique
numbers to nodes in the tree. When the requirement is only that each number is unique, the
actual order in which numbers are handed out is does not invalidate that requirement.

As future work, more quantitative insight is needed about the effects of dependency anal-
ysis on the performance of the generated code. In earlier experiments, the impact seemed
negligible, although the results differed from one AG to another. Also, we need more insight
which heuristics have impact on the size of the visits graph. For example, it appeared that
our approach in which we only compute what is needed resulted in less paths in the visits
graph than the approach where we compute as much as possible. However, more quantitative
evidence is required to draw such conclusions.

Another direction of future work is an extension of the Kennedy-Warren approach with
support for cyclic AGs. Given a collection of cyclic PDGs, we can determine which attributes
of the NDGs are mutually dependent. By grouping these attributes in a separate phase that
uses lazy evaluation (for example) as evaluation algorithm, we can support a combination of
a cyclic and non-cyclic AGs.
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5 Derivation Tree Construction

Type inference on a program is the gradual process of constructing a typing derivation, which
is a proof that relates the program to a type. During this process, inference algorithms analyze
the intermediate states of the typing derivation to direct the construction of the proof.

Since a typing derivation is a decorated tree, we aim to use attribute grammars to implement
type inference. In their present form, it is hard to express type inference in attribute grammars,
because attributes are defined in terms of the final state of the decorated tree.

We present the language RulerCore, a conservative extension to ordered, higher-order at-
tribute grammars, that permits both the structure and attributes of the tree to be defined based
on intermediate states of the tree. We show that both iteration-based and constraint-based
inference algorithms can be expressed straightforwardly in RulerCore.

5.1 Introduction

Attribute grammars (AGs) are traditionally used to specify the static semantics of program-
ming languages [Knuth, 1968]. Moreover, when semantic rules of an AG are written in a gen-
eral purpose programming language, the AG can be compiled into an (efficient) multi-visit
tree walk algorithm that implements the specification [Kennedy and Warren, 1976, Kastens,
1980].

We implemented a substantial part of the Utrecht Haskell Compiler (UHC) [Dijkstra and
Swierstra, 2004, Fokker and Swierstra, 2009] with attribute grammars using the UUAG sys-
tem [Löh et al., 1998]. Haskell [Hudak et al., 1992] is a purely functional programming lan-
guage, with an elaborate and expressive type system. We also compile our attribute grammars
to Haskell. The ideas presented in this chapter, however, are not restricted to any particular
language.

Attribute grammars benefit the implementation of a compiler for several reasons. Firstly,
the evaluation order of semantic rules is determined automatically, unrelated to the order of
appearance. Rules may be written separately from each other, and grouped by aspect, which
makes attribute grammars highly composable [Viera et al., 2009, Saraiva, 2002]. Secondly,
semantic rules for idiomatic tree traversals (such as: topdown, bottom-up, and in-order) can
be inferred automatically, thus allowing for concise specifications. These advantages play an
important role in the UHC project [Dijkstra et al., 2009].

Two essential components of UHC’s type inferencer, polymorphic unification and context
reduction, would benefit from an AG-based implementation. For example, when polymorphic
unification is defined as an AG, many of its required attributes can be automatically provided
by the AGs of expressions and declarations. However, we implemented these components
directly in Haskell, because it is not obvious how to express these as an attribute grammar.
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These two components present two challenges to attribute grammars. Firstly, the grammar
needs to produce typing derivations. The structure of such a derivation depends on what is
known about types, and this information gradually becomes available during inference, typ-
ically as a result of unifications. This requires a mixture of tree construction and attribute
evaluation, which are normally separate tasks if one takes an AG view. Secondly, the con-
struction of a proof of a subgoal may need to be postponed when it depends on a type that is
not known yet. After more of the structure of the proof is determined, the type may become
known and the postponed construction can continue.

An evaluator for an attribute grammar starts from a given tree (usually constructed by the
parser), and evaluates the attributes using a fixed algorithm. We present AG extensions to
customize the algorithms, without loosing the advantages that AGs offer. More precisely, our
contributions are:

• We present the language RulerCore, a conservative extension of ordered attribute gram-
mars. It has three concepts to deal with the above challenges:

– We exploit the notion of visits to the tree. In each visit, some attributes are com-
puted, as we explained in Chapter 3. Visits can be done iteratively. The number
of iterations can be specified based on the values of attributes.

– We define abstract grammars on the structure of typing derivations. Productions
are chosen based on the values of attributes. Moreover, we present clauses, which
allows the choice of a production to be refined per visit.

– Derivation trees are first class values in RulerCore. They can be passed around as
attributes, and can be inspected by visiting them.

In Section 5.3, we define a denotational semantics for RulerCore via a translation to
Haskell.

• In Chapter 3, we gave an introduction to RulerCore. In this chapter, we show how
RulerCore can be used to express type inference. Section 5.2 presents an extensive
example that motivates the design of RulerCore.

• An implementation of RulerCore is available at: https://svn.science.uu.nl/

repos/project.ruler.papers/archive/ruler-core-1.0.tar.gz. It includes
several examples. The implementation supports both statically ordered and demand
driven evaluation of attributes.

• We compare our approach with other attribute grammar approaches (Section 5.4) as a
further motivation for the need for RulerCore’s extensions.

5.2 Motivation

In this section, we show how to implement a small compiler for an example language we
named SHADOW, written with attribute grammars using RulerCore. The implementation of
SHADOW poses exactly those challenges mentioned in the previous section, while being small
enough to fit in this chapter.
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5.2 Motivation

5.2.1 Example: the Shadow-language

We take for SHADOW the simply-typed lambda calculus, with two small modifications: we
annotate bindings with a unique label u (i.e. λxu.), and allow identifiers to refer to shadowed
bindings. For example, in the term λxu1 .λxu2 .f x, the expression x normally refers to the
binding annotated with u2. However, if the expression cannot be typed with that binding,
we allow x to refer to the shadowed binding annotated with u1 instead, if this interpretation
would be well-typed1. The interpretation of this expression is thus by default λu1.λu2.f u2,
but under some conditions (defined more precisely further below) it may be λu1.λu2.f u1.

The compiler for SHADOW takes an expression (of type ExprS), type checks it with respect
to the environment Env, and maps it to an expression (of type ExprT) in the simply-typed
lambda calculus. It is realized as a function compile :: Env→ ExprS→ ExprT:

-- concrete syntax and its abstract syntax in Haskell
eS ::= x | eS eS | data ExprS = VarS Ident | AppS ExprS ExprS

λxu.eS | LamS Ident Ident ExprS
eT ::=u | eT eT | data ExprT = VarT Ident | AppT ExprT ExprT

λu.eT | LamT Ident ExprT
τ ::=α | Int | τ → τ data Ty = TyVar Var | TyInt | TyArr Ty Ty

Before delving into the actual implementation, we first give a specification of the type system,
together with translation rules.

Γ ` eS : τ  eT

innermost xu of all:
xu : τ ∈ Γ

Γ ` x : τ  u
VAR

Γ ` f : τ1→ τ2 f ′

Γ ` a : τ1 a′

Γ ` f a : τ2 f ′ a′
APP

Γ,xu : τ1 ` e : τ2 e′

Γ ` λxu.e : τ1→ τ2 λu.e′
LAM

Each lambda is assumed to be annotated with a unique identifier u. Rule VAR is rather infor-
mal2. Of all the bindings for x with the right type τ , the innermost one is to be chosen. Its
annotation u is used as name in the translation. The rule APP is standard. In rule LAM, the
type of a binding is appended to the environment. The annotation of the binding is used as
the name of the binding in the translation.

Given an (empty) environment, a SHADOW expression, and optionally a type, we can man-
ually construct a derivation tree using these translation rules. The lookup of a binding poses
a challenge due to context sensitivity. For example, for λxu1 .λxu2 .f x, the choice between
translations λu1.λu2.f u1 and λu1.λu2.f u2 depends on what the program, where this expres-
sion occurs in, states about the type of f and the type of the entire expression by itself. When

1 The language SHADOW can be used to model typed disambiguation of duplicately imported identifiers from
modules. However, SHADOW is only an example. Its design rationale is out of the scope of this section.

2 Actually, the specification itself is incomplete and informal. We stress that our goal is not to rigorously discuss
and prove properties about SHADOW. Instead, we show RulerCore and its concepts. The translation for SHADOW
acts as illustration.
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the context imposes insufficient restrictions to find a unique solution, the VAR states that we
should default to the innermost possibility3.

5.2.2 Relation to Attribute Grammars

We focus on writing an implementation for the above translation rules with attribute gram-
mars using RulerCore. For each relation in the above specification, we introduce a nonter-
minal in the RulerCore code. The parameters of the relations become attributes of these
nonterminals, thus also the expression part which is normally implicit in an AG based de-
scription. Derivation rules become productions, and their contents we map to semantic rules.
The productions do not contain terminals: only the values of attributes determine the struc-
ture of the derivation tree. Thus, the grammar defines the language of derivation trees for
the translation rules. Note that this differs from the standard AG approach, where a single
specific parameter of the relations fully determines the shape of the derivation tree.

Operationally, the algorithm, which specifies the construction of the derivation tree, picks
a production, recursively builds the derivations for the children of the production, computes
attributes, and if there is a mismatch between the value of an attribute and what is expected
of it, backtracks to the next production.

We treat productions a bit differently in order to capture the gradual process of type infer-
ence. Final decisions about what productions are chosen to make up the derivation tree cannot
be made until sufficient information is available. Therefore, we construct the derivation tree
in one or more sequential passes called visits.

As key feature of RulerCore, the grammar may contain productions per visit of a non-
terminal. To make the distinction clearer, we call these productions clauses. During the
construction of the part of a derivation for a visit, we try to apply the available clauses to
build the portion of the derivation tree for that visit. When successful, we finalize the choice
for that clause (similar to the cut in Prolog). The next visit can thus assume that those parts of
the derivation tree constructed in previous visits is final. Moreover, we often wish to repeat a
visit when type information was discovered that sheds new light upon decisions taken earlier
during the visit. The upcoming example code shows this behavior several times.

In a conventional AG, each node in the AST is associated with exactly one production. In
RulerCore, however, we may at each visit refine the production that is associated with the
node. So, we can regard our approach as having our productions organized as the leafs of a
tree of clauses, and at each next visit we specialize the choice by going down one of the paths
in the tree. Paths in this tree determine actual productions.

A RulerCore program is a Haskell program augmented with attribute grammar code. We
generate plain Haskell code from such a program. For each production of RulerCore we gen-
erate a coroutine in Haskell. These coroutines are encoded as continuations. The following
is a code snippet of a RulerCore program. We explain the syntax further below:

module MyCompiler where
data ExprS = ... -- Haskell data declaration

3 This example has a strong connection to context reduction in Haskell. The inference rules are type-directed. Such
rules may be overlapping, and the choice of which rule to apply in a typing derivation may be ambiguous.
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itf TransExpr ... -- RulerCore nonterminal and attribute declaration
itf TransExpr ... -- additional attribute declarations for nonterminal
ones = 1 : ones -- Haskell binding
translate = sem transExpr :: TransExpr -- embedded production

... rules ... -- rules of RulerCore
sem transExpr ... rules ... -- additional rules for production
sem transExpr ... rules ... -- even more rules

With an itf-block, we define a nonterminal and its attributes. With a sem-block, we we
define a production, and its clauses and rules, inside a Haskell expression. The sem-block is
substituted with the coroutine that is generated for transExpr. This coroutine is thus a Haskell
expression that, and is bound to the Haskell identifier translate. Additional clauses and rules
can be given in separate toplevel sem-blocks.

The coroutines that we generate from productions are known as visit functions [Swierstra
and Alcocer, 1998]. Inputs to and outputs of the coroutine represent inherited and synthesized
attributes respectively. Clauses are mapped to function alternatives of the coroutine. The
internal state of the coroutine represents the derivation tree. This state contains instances of
coroutines (their closures) that represent the children. An invocation of such a visit function
corresponds to a visit in the attribute grammar description. An invocation of a visit function
of a root nonterminal thus corresponds to the partial construction of the root node of the
derivation tree. Section 5.3 shows the translation to Haskell.

In RulerCore, a production is the root of a tree of clauses. Thus, we can represent a pro-
duction of a conventional grammar as a production in RulerCore. Alternative, as we do in
the example, we can also introduce only one production per nonterminal, and use clauses to
represent productions of a conventional grammar. The distinction is mainly technical: pro-
ductions can be used when the tree is determined before attribute evaluation (the productions
form an algebra), whereas clauses can be used to determine the structure of the tree based on
attribute values.

5.2.3 Typing Expressions

Figure 5.1 gives a rudimentary sketch of a derivation tree and some of the nonterminals and
productions that we introduce. The root node corresponds to production wrapper of non-
terminal Compile. It has a child which is related to production transExpr of nonterminal
TransExpr. Production transExpr consists of clauses exprVar, exprLam, etc. for the various
forms of syntax of SHADOW. In locating an identifier in the environment, three nontermi-
nals play a role. Clause lookupTy of nonterminal Lookup has a list of children, each with
nonterminal LookupMany. Each child is associated with a clause lookupLam of nonterminal
LookupOne, and represent a choice for a binding. The dotted line points to that binding. At
the end of inference, at most one of these choices remains per child with nonterminal Lookup.

We declare a type TransExpr for the production transExpr, which describes the interface
of a nonterminal. The interface declares the visits and attributes of a nonterminal:

itf TransExpr -- declaration of nonterminal TransExpr
inh env :: Env -- inherited attr (belongs to some visit)
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Compile.wrapper

TransExpr.exprLam

TransExpr.exprLam

TransExpr.exprVar

Lookup.lookupTy

LookupMany.lkCons

LookupMany.lkCons

LookupMany.lkNil

LookupOne.lookupLam

LookupOne.lookupLam

u2
u1

Figure 5.1: Sketch of a derivation tree for λxu1 .λxu2 .x

visit dispatch -- declares a visit
inh expr :: ExprS -- inherited attr (belongs to visit dispatch)

type Env = Map Ident [LookupOne] -- shown further below

In this case, a production of a nonterminal TransExpr has a single visit named dispatch, and
two inherited attributes. The attribute expr contains the expression to translate. We define
more attributes and visits on TransExpr below.

The visits are totally ordered based on value-dependencies between attributes that are de-
rived from the clauses in the whole program. This order is constructable when the attribute
dependencies are acyclic. Chapter 3 explains how to derive this order, and Chapter 4 general-
izes that approach. Attribute expr is declared explicitly for visit dispatch (note the indenting).
The env attribute is not declared for a particular visit. The latest visit it can be allocated to is
determined automatically.

From the interface of a nonterminal, a Haskell type for the coroutines is generated. Also,
wrapper functions (Section 1.3.1) to invoke the coroutines and access or provide values for
attributes from the Haskell code are generated from the interface.

We introduce a production transExpr with nonterminal TransExpr using a sem-block, em-
bedded in Haskell code. This sem-block is translated to a coroutine in plain Haskell:

-- embedded toplevel Haskell code:
translate = sem transExpr :: TransExpr

We bind it to the Haskell name translate, such that we can refer to it from the Haskell code.
The nonterminal name transExpr is global to the entire program. The Haskell name translate
follows Haskell’s scoping rules.

If we visit a transExpr-node for the first time, we have to see what kind of expression we
have at hand. We do so by defining a number of alternative ways to deal with the node by
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introducing a couple of named clauses. For each of the clauses, we subsequently introduce
further sem-rules to determine what has to be done. Unlike most of the other code that we
give in this section, the order of appearance is relevant for clauses. Operationally, clauses are
tried in that order:

sem transExpr -- production with clauses
clause exprVar of dispatch -- typical name of first visit
clause exprApp of dispatch
clause exprLam of dispatch

sem exprVar -- clause with rules (or clause of next visit)
-- semantic rule (i.e. to match against attributes)
-- semantic rule (i.e. to define a child)
-- perhaps clause of next visit (in scope of this clause)

Clauses provide a means of scoping. For example, we typically declare clauses of the next
visit in the scope of the parent clause (i.e. clause taken at the previous visit). These inherit all
the attributes and children in scope of that clause. Otherwise, they only inherit the common
attributes and children. This enforces as well that the embedded clause takes place after the
enclosing clause.

With a clause, we associate a couple of semantic rules, all of which may fail and cause
backtracking, may have an effect on the derivation tree we are constructing, or lead to a
runtime error.

• match pattern = code -- match-rule
match (VarS loc.nm) = lhs.expr -- example

The Haskell pattern pattern must match the value of the right hand side. Evaluation of
the rule requires the full pattern match to take place, or causes a backtrack to the next
clause.

Variables in the pattern refer to attributes, and have the form childname.attrname. The
child name lhs is reserved to refer to the attributes of the current node. Furthermore,
child name loc is a virtual child that conveniently stores local attributes, analogously
to local variables. In the example, lhs.expr thus refers to the inherited attribute expr of
the current node.

• pattern = code -- assert-rule (not prefixed with a keyword)

The meaning of an assert-rule is similar to the match-rule, except that the match is
expected to succeed. If not, its evaluation aborts with a runtime error.

• child name :: I = code -- child-rule
child fun :: TransExpr = translate -- example

In contrast to a conventional attribute grammar, we construct the tree during attribute
evaluation. The rule above creates a child with the given name, described by a non-
terminal with interface I, and defined by the coroutine code. For example, code could
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be the expression translate, or a more complex expression. Further below, we show an
example where the code for a child is provided by an attribute. Evaluation of the child
rule creates a fresh instance of this coroutine. This child will thus have its own set of
attributes defined by I.

• default name [= f ] -- default rule

Provides a default definition for all synthesized attributes named name of the produc-
tion and all inherited attributes of the children that are in scope. This default definition
applies only to an attribute if no explicit definition is given. We come back to this rule
further below.

We introduce more forms of rules further below.
The evaluation order of rules is determined automatically based on their dependencies

on attributes. Rules may refer to attributes defined by previous rules, including rules of
clauses of previous visits. Similarly, attributes are mapped automatically to visits based on
requirements by rules. Cyclic dependencies are considered to be a static error. The rules may
be scheduled to a later visit, except for match-rules. These are scheduled in the visit of the
clause they appear in. Visits to children are determined automatically based on dependencies
of attributes of the children. If a visit to a child fails, which is the case when none of the
children’s clauses applies, the complete clause backtracks as well.

The following sem-block defines rules for clause exprVar. It states that the value of at-
tribute lhs.expr must match the VarS constructor:

sem exprVar -- clause exprVar of nonterminal TransExpr
match (VarS loc.nm) = lhs.expr -- if succesful, defines loc.nm

An attribute grammar distinguishes two categories of attributes: inherited and synthesized.
The names of attributes within the same category need to be distinct. Attribute variables in
patterns refer to synthesized attributes of lhs, or inherited attributes of the children. Likewise,
attribute variables in the right-hand side of a match refer to inherited attributes of lhs or
synthesized attributes of the children. This ensures that attribute occurrences are uniquely
identifyable.

The following clause for exprApp demonstrates the use of child-rules. It introduces two
children f and a with interface TransExpr, represented as instances of the translate coroutine:

sem exprApp -- clause exprApp of nonterminal TransExpr
match (AppS loc.f loc.a) = lhs.expr -- test for AppS
child f :: TransExpr = translate -- recurses on f
child a :: TransExpr = translate -- recurses on a
f .expr = loc.f -- passes loc.f as expr-attribute
a.expr = loc.a -- passes loc.a as expr-attribute
f .env = lhs.env -- passes the environment topdown
a.env = lhs.env -- passes the environment topdown
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The last two lines express that the environment is passed down unchanged. We may omit
these rules, and write the rule default env instead. When a child has an inherited attribute
env, but no explicit rule has been given, and the production has lhs.env, then that value is
automatically passed on:

sem transExpr -- for all clauses of transExpr
default env

There are several variants of default-rules. We show further below a default rule for synthe-
sized attributes.

We skip the clause exprLam for now, and consider types and type inference first. As
usual with type inference, we introduce type variables for yet unknown types, and compute a
substitution that binds types to these variables:

itf TransExpr -- extends the interface of TransExpr
syn ty :: Ty -- synthesized attr in unspecified visit
chn subst1 :: Subst -- chained attr in unspecified visit

data Subst -- left implicit: a mapping from variables to types

The chained attribute subst1 stands for both an inherited and synthesized attribute with the
same name. We can see this as a substitution that goes in, and comes out again updated
with new type information that became available during the visit. We get automatic threading
of the attribute through all children that have a chained attribute with this name, using the
default-rule:

sem transExpr default subst1

To deal with types and substitutions, we define several helper nonterminals:

itf Lookup -- finds a pair (nm, ty′) ∈ env
inh nm :: Ident -- such that ty′ matches ty.
inh ty :: Ty
inh env :: Env

itf Unify -- computes a substitution s such
visit dispatch -- that s (ty1) equals s (ty2), if

inh ty1 :: Ty -- possible. Attributes for the
inh ty2 :: Ty -- substitution and errors added below.

itf Fresh -- produces a fresh type
syn ty :: Ty
chn subst :: Subst

lookup = sem lookupTy :: Lookup
unify = sem unifyTy :: Unify
fresh = sem freshTy :: Fresh

The implementation of fresh delegates to a library function varFresh on substitutions:
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sem freshTy
(lhs.subst, loc.var) = varFresh lhs.subst
lhs.ty = TyVar loc.var

We did not explicitly declare any visits for nonterminal Fresh. Therefore, it consists of a
single anonymous visit. When a production does not specify a visit-block, an anonymous
visit-block is implicitly defined. Similarly, when a production does not define clauses for a
production, an anonymous clause-block is implicitly defined.

We can wrap any Haskell function, including a data constructors, as a production, and
represent an application of this function as child of the production (Section 1.3.7). This
is convenient in case of fresh, because we use default rules to automatically deal with the
substitution attribute.

Both fresh and lookup are of use to refine the implementation of exprVar. With fresh we
get a fresh variable to use as the type of the expression. The Lookup-child then ensures that
at some point this fresh type is constrained in the substitution to the type of a binding for the
variable:

sem exprVar -- repeated sem-block: extends previous one
child fr :: Fresh = fresh
child lk :: Lookup = lookup
lk.nm = loc.nm -- pass loc.nm to lk (loc.nm matched earlier)
lk.ty = fr.ty -- pass the fresh type to lk
lhs.ty = fr.ty -- also pass it up

We pass the substitution to child fr, and pass the resulting substitution upwards to the parent
node:

sem exprVar
sem exprVar rename subst := subst1 of fr
fr.subst = lhs.subst1 -- pass down
lhs.subst1 = fr.subst -- pass up

Recall that subst1 is a chained attribute, hence there is an inherited lhs.subst1, and a synthe-
sized lhs.subst1. These names are not ambiguous: the right hand side of the rule refers to
the inherited attribute, the left hand side to the synthesized. With a rename-rule, we rename
attributes of children to choose a more convenient name, for example to benefit from default-
rules. The two explicit rules may actually be omitted, because of default-rule mentioned
earlier.

In the application clause, we use the Unify nonterminal to express that various types should
match:

sem exprApp
child fr :: Fresh = fresh
child u :: Unify = unify
u.ty1 = f .ty
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u.ty2 = TyArr a.ty fr.ty
lhs.ty = fr.ty
rename subst := subst1 of fr -- for default-rule

Rules for the substitution may be omitted. The default-rule threads it properly through the fr
and u children, which (after renaming) both have a subst1 chained attribute.

5.2.4 Unification

So far, the example can be implemented with most attribute grammar systems that operate
on a fixed abstract syntax tree [Dijkstra and Swierstra, 2004, 2006b]. In the above example,
the choice of productions solemnly depends on the expr inherited attribute. The attribute
grammar is directly based on the grammar of expressions. In the remainder of this section,
we move beyond such systems. For unification, we allow a selection of clauses based on two
inherited attributes: the attributes ty1 and ty2 of nonterminal Unify defined above.

The idea behind unification is to recursively compare these types. If one is a variable, then
the other type is bound to that variable in the substitution:

sem unifyTy
clause matchEqVars of dispatch -- the same variables
clause matchVarL of dispatch -- variable on the left
clause matchVarR of dispatch -- variable on the right
clause matchArr of dispatch -- both an arrow
clause matchBase of dispatch -- both the same constant
clause matchFail of dispatch -- failure

To implement these clauses, we need additional infrastructure to obtain the free variables of
a type, and bind a type in the substitution. We omit here the actual implementation, since the
implementation similar to other examples in this section:

itf Ftv inh ty :: Ty -- determines free vars of ty
inh subst :: Subst -- after applying the subst
syn vars :: [Var ]

itf Bind inh var :: Var -- appends to subst:
inh ty :: Ty -- [var := ty ]
chn subst :: Subst

ftv = sem ftv :: Ftv -- implemented with RulerCore
bind = sem bind :: Bind -- wrapper around library fun

We define several additional attributes on the Unify nonterminal. For the synthesized at-
tributes success and errs, we give a default definition of the form default attr = f . This
function f gets as its first parameter a list of values of attributes attr of the children that have
this attribute. If f is not given, we use the Haskell function last for f (Section 2.1):

itf Unify
visit dispatch
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chn subst1 :: Subst
syn success :: Bool -- True iff unification succeeds
syn changes :: Bool -- True iff any variables were bound

visit outcome
inh subst2 :: Subst -- take subst2 more recent as
syn errs :: Errs -- subst1 for better error messages

sem unifyTy
default success = and -- and [ ] = True
default changes = or -- or [ ] = False
default errors = concat
loc.ty1 = tyExpand lhs.subst1 lhs.ty1 -- apply subst one level
loc.ty2 = tyExpand lhs.subst1 lhs.ty2 -- apply subst one level

The inherited types need to be compared with what is known in the substitution to ensure that
we do not bind to a variable twice. Hence, we introduce attributes loc.ty1 and loc.ty2, which
are computed by applying the substitution to lhs.ty1 and lhs.ty2. Their values are shared
among all clauses and are computed only once. We match on these values to select a clause:

sem matchEqVars -- applies if we get two equal vars
match True = same lhs.ty1 lhs.ty2 ∨ same loc.ty1 loc.ty2

-- embedded Haskell code:
same (TyVar v1) (TyVar v2) | v1 ≡ v2 = True
same = False
sem matchVarL -- a yet unknown type left

match (TyVar loc.var) = loc.ty1
loc.ty = loc.ty2

sem matchVarR -- a yet unknown type right
match (TyVar loc.var) = loc.ty2
loc.ty = loc.ty1

sem matchVarL matchVarR -- common part of above
child fr :: Ftv = ftv -- determine free fr.vars
fr.ty = loc.ty -- of loc.ty
child b :: Bind = bind -- add substitution
b.var = loc.var -- [loc.var := loc.ty ]
b.ty = loc.ty
rename subst := subst1 of fr b
loc.occurs = loc.var ∈ fr.vars -- occur check
lhs.subst1 = if loc.occurs then lhs.subst1 else b.subst1
lhs.success = ¬ loc.occurs
lhs.changes = ¬ loc.occurs
lhs.errs = if loc.occurs

then [CyclErr lhs.subst2 loc.var loc.ty ]
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else [ ]

sem matchArr -- t1→ t2 left and t3→ t4 right
match (TyArr t1 t2) = loc.ty1
match (TyArr t3 t4) = loc.ty2

child l :: Unify = unify -- recurse with argument types
child r :: Unify = unify -- recurse with result types
l.ty1 = t1 ; l.ty2 = t3 ; r.ty1 = t2 ; r.ty2 = t4

sem matchBase -- applies when e.g. both are TyInt
match True = loc.ty1 ≡ loc.ty2

sem matchFail -- mismatch between types
lhs.success = False
lhs.errs = [UnifyErr lhs.subst2 lhs.ty1 lhs.ty2 ]

The clauses of unifyTy are total, thus there is always one that applies, with matchFail as
fallback. The visits to unification thus always succeed. Potential problems that arose during
unification can be inspected through attributes success and errs.

We now have the mechanisms ready to deal with the case of a lambda expression. For the
type of the binding, we introduce a fresh type fr.ty, and add this type together with the name
to the environment:

sem exprLam
match (LamS loc.nm loc.u loc.b) = lhs.expr
child b :: TransExpr = translate -- recurse
child fr :: Fresh = fresh
rename subst := subst1 of fr
b.expr = loc.b
b.env = insertWith (++) loc.nm [loc.lk ] env -- append
lhs.ty = TyArr fr.ty b.ty -- result type is fr.ty→ b.ty
loc.lk = sem lookupLam :: LookupOne -- see below

Environments are treated in an unconventional way. Instead of transporting the information
needed to construct the lookup-derivation tree in exprVar, the environment transports a corou-
tine loc.lk defined in exprLam. We define the production lookupLam locally in exprLam, such
that the rules of lookupLam have access to the attributes of exprLam:

itf LookupOne -- nonterminal of nested production lookupLam
visit dispatch inh ty :: Ty

The idea is that we instantiate this coroutine at the exprVar, then pass it the expected type of
the expression, and determine if the expected type matches the inferred type of the binding.
The rules for this nested production (shown further below) have access to the local state (i.e.
attributes) of the enclosing production. At the binding-site, we have information such as the
type and annotation of the binding, which we need to construct the derivation.
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5.2.5 Lookups in the Environment

At exprVar, the goal is to prove that there is a binding in the environment with the right type.
The overall idea is that we construct all possible derivations of bindings for an identifier,
using the lookupLam nonterminal mentioned earlier.

When there is only one possibility, we incorporate it in the substitution, and repeat the
visits. The extra type information may rule out other derivations, and result in new type
information, etc. Eventually a fixpoint is reached. From all the remaining ambiguous deriva-
tions, we pick the deepest ones, and default to those, by incorporating their changes into the
substitution. We then repeat the process from the beginning, until no ambiguities remain.
We run this process on the expression as a whole. In more complex examples that have a let-
binding, this process could be repeated per binding group. In the purely functional RulerCore
language, we encode this necessarily imperative process using repeated invocation of visits
combined with a chained substitution.

We show the implementation of the above algorithm in a step by step fashion. Recall
Figure 5.1. Three nonterminals play an essential role: Lookup is invoked from the exprVar
clause and delegates to LookupMany to create all derivations possible. To create one deriva-
tion, LookupMany creates LookupOne derivations, one for each nested production lookupLam
that was put for that identifier into the environment at exprLam:

sem lookupTy -- invoked from exprVar
child forest :: LookupMany = lookupMany
forest.lks = find [ ] lhs.nm lhs.env -- all LookupOnes
forest.ty = lhs.ty -- inherited attr of Lookup

The lks attribute is a list of coroutines. The coroutine lookupMany instantiates each of them,
and passes on the ty attribute to each:

itf LookupMany
visit dispatch inh lks :: [LookupOne]

inh ty :: Ty
lookupMany = sem lkMany :: LookupMany
sem lkMany

clause lkNil of dispatch -- when lhs.lks is empty
clause lkCons of dispatch -- when it has an element

sem lkNil
match [ ] = lhs.lks -- reached end of the list

sem lkCons
match (loc.hd : loc.tl) = lhs.lks
child hd :: LookupOne = loc.hd -- taken from list
child tl :: LookupMany = lookupMany -- recurse
tl.lks = loc.tl -- remainder of the lookups
default ty -- passes the types by default downwards to hd and tl

If all the matching lookupsOnes are reduced to one, we pick that one and return its substi-
tution. Otherwise, we return the substitution belonging to the innermost binding (which has
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highest depth):

itf Lookup LookupOne LookupMany
visit resolve -- hunt for a derivation

chn subst :: Subst
syn status :: Status -- outcome of the visit
syn depth :: Int -- depth of the binding

visit resolved -- invoked afterward
data Status = Fails | Succeeds {amb :: Bool,change :: Bool}
isAmbiguous (Succeeds True ) = True
isAmbiguous = False

Every visit is invoked at least once, unless it is declared to be hidden for a child. We intend
to invoke the resolve visit multiple times. We show further below how this is done.

The depth information is easily determined at the binding-site for lambda expressions, with
an inherited attribute depth, starting with 0 at the top, and incrementing it with each lambda:

itf TransExpr inh depth :: Int
sem transExpr default depth = 0
sem exprLam b.depth = 1+ lhs.depth

The default-rule for an inherited attribute optionally takes a Haskell expression (0 in this
case), which is only used when there is no parent attribute with the same name.

The rules for lookupLam demonstrate the use of the hide-rule:

sem lookupLam -- defined inside exprLam above
child m :: Unify = unify -- try match of binding type
rename subst1 := subst of m -- to use-site type lhs.ty
hide outcome of m -- declare not to visit outcome
m.ty1 = outer.fr.ty -- of enclosing exprLam
m.ty2 = lhs.ty
lhs.status = if m.success then Succeeds False m.changes else Fails
lhs.depth = outer.lhs.depth -- of enclosing exprLam

With hide, we state not to invoke a visit and the visits that follow. Referencing to attributes
of such a visit is considered a static error.

The rules of the lkCons clause represent a choice. If from the attributes of the children
can be concluded that one derivation remains, it delivers that one’s substitution as result.
Otherwise, it indicates that an ambiguous choice remains. The lookup with the highest depth
is by construction at the beginning of the list:

sem lkNil
lhs.depth = 0 -- lowest depth
lhs.subst = lhs.subst -- no change to subst
lhs.status = Fails
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sem lkCons
hd.subst = lhs.subst -- passed down to
tl.subst = lhs.subst -- both
(loc.pick, lhs.status, lhs.depth, lhs.subst)

= case hd.status of
Fails→ (False, tl.status, tl.depth, tl.subst)
Success hdc→

let status′ = case tl.status of
Fails → hd.status
Success tlc→ Success True (hdc ∨ tlc)

in (True,status′,hd.depth,hd.subst)

When a visit is invoked again, we typically want to access some results of a previous
invocation. To retain state between multiple invocations of a visits, we allow visits to take
visit-local chained attributes. For example, an attribute decided for visit resolve:

sem lookupTy visit.resolve.decided = False -- initial value

From inside the visit, we can match on these attributes to select a clause. Furthermore, there
is an implicit default rule for them:

sem lookupTy
clause lkRunning of resolve -- no final choice yet,

match False = visit.decided -- try again
visit.decided = isAmbiguous lk.status
default status depth subst -- just pass on

clause lkFinished of resolve -- made final choice
match True = visit.decided
lhs.status = Success False False -- no change
lhs.depth = 0
default subst

The states of child nodes that are introduced by a previous visit are properly maintained if
their visits are also repeated. However, child nodes that are created in a visit are not retained
when the visit is repeated. To prevent a created node from being discarded, it is possible
to store a node in an attribute. Recall that children are derivations, which are instances of
a coroutine, and these are first class values. The detach-rule can exactly be used for this
purpose:

attr = detach visitname of childname 〉

Evaluation of a detach-rule takes the child childname that is evaluated up to but not including
visit visitname, and stores it in an attribute attr.

A detached child can be attached with an attach-rule:

attach visitname of childname = expr
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The Haskell expression expr represents a tree in a state prior to visit visitname. If childname
already exists as child, the attach-rule overrules the visits starting from visitname.

The resolve visits on lookupTy are invoked from resolve visits of transExpr. In map
deflMap, we maintain the substitutions of ambiguous lookups per depth. These have not been
incorporated in subst2 yet. Applying the deepest of those substitutions defaults the choice for
the corresponding bindings:

itf TransExpr
visit! resolve

chn subst2 :: Subst
syn changes :: Bool -- True iff subst2 was affected
syn deflMap :: IntMap [Subst ] -- defaulting subst/depth

The bang at the resolve visit indicates that all attributes must be scheduled explicitly to this
visit. No attribute is automatically assigned to this visit. This gives the visit a predictable
interface, which is convenient when invoking the visit explicitly, as we do further below:

sem transExpr
default changes = or
default deflMap = unionsWith (++)
default subst2

For ambiguous lookups in the exprVar, we add to deflMap:

sem exprVar
clause varLkAmb of resolve -- put lk.subst in deflMap

match (Success True ) = f .status
lhs.deflMap = singleton lk.depth [lk.subst ]
lhs.subst2 = lhs.subst2 -- bypass lk.subst

clause varLkOther of resolve -- default rules only

To drive the iterations, we introduce a production iterInner, which invokes visit resolve
one or more times. The iterate-rule denotes the repeated invocation of a visit of a child:

iterate visitname of childname = expr

The expression expr represents the coroutine of a special production (iterNext, explained
further below) that computes the inherited attributes for the visit of the next iteration from
synthesized attributes of the previous iteration. The iterations stop when this special produc-
tion does not have an applicable clause:

iterInner = sem iterInner :: ExprTrans
sem iterInner

child e :: ExprTrans = translate -- iterInner is an extra node
e.expr = lhs.expr -- on top of the derivation tree
default ... -- omitted: same defaults as transExpr
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iterate resolve of e = next -- until e.changed is False
lhs.subst2 = let pairs = toAscList e.deflMap++[(0, [e.subst2 ])]

substs = head pairs -- deepest substitutions
in foldl substMerge e.subst2 substs -- apply them

lhs.changes = ¬ (null e.deflMap)

This special production has as interface the contravariant interface of the visit resolve of
ExprTrans, i.e. the inherited attributes turn to synthesized attributes, and vice versa. The
triple instead of dual colons indicate this difference:

next = sem iterNext ::: ExprTrans.resolve -- one anonymous clause
match True = lhs.changes -- stops when there are no changes
default subst2 -- pass prev subst2 into the next iter

Finally, we introduce a production wrapper, which forms the root of the derivation tree and
invokes the visits on the derivation for expressions, including again an iteration of the inner
loop:

itf Compile inh expr :: ExprS
inh env :: Env
syn subst :: Subst
syn ty :: Ty

compile = sem wrapper :: Compile
sem wrapper

child e :: TransExpr = iterInner
default env expr ty
iterate resolve of e = next -- repeat the inner loop
lhs.subst = e.subst2

5.2.6 Translation to the Target Expression

The code so far computes the information needed to translate the source expression. The
shape of the derivation is determined, and after iterations, subst2 contains the substitution for
the types. We wrap up with generating the target expression as attribute trans and collecting
the errors:

itf ExprTrans visit generate
inh subst3 :: Subst
syn trans :: ExprT
syn errs :: Errs

sem exprVar lhs.trans = VarT lk.nm′ -- lk delivers the name
sem exprApp lhs.trans = AppT f .trans a.trans
sem exprLam lhs.trans = LamT loc.u b.trans
sem exprDeriv default errs = concat
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itf Compile syn trans :: ExprT
sem wrapper default trans

e.subst3 = e.subst2

The lookupTy nonterminal delivers the name for a variable. The alternatives were con-
structed in iterations of the resolve visits, and stored in the loc.mbDeriv attribute. We take it
out and continue from there. From the derivations of nonterminal lkMany, we pick the name
for the first one that has loc.pick equal to True:

itf Lookup visit resolved
syn nm′ :: Ident
syn errs :: Errs

sem lookupTy
lhs.errs = maybe [Err unresolved lhs.nm ] (const [ ]) lk.mbNm
lhs.nm′ = maybe lhs.nm id lk.mbNm

itf LookupMany
syn mbNm :: Maybe Ident

sem lkNil lhs.mbNm = Nothing
sem lkCons lhs.mbNm = if loc.pick then Just hd.nm′ else tl.mbNm
itf LookupOne syn nm′ :: Ident -- use u as name
sem lookupLam lhs.nm′ = outer.loc.u -- defined in exprLam

The remaining code of the compiler invokes the coroutine generated from the compile
production. It provides the ExprS expressions, and obtains the type and an ExprT back. We
omit these details.

5.2.7 Discussion

Performance. Clauses introduce backtracking. In the worst case, this leads to a number
of traversals that are exponential in the size of the (longest intermediate) tree. In practice,
clause selection is typically a function of some inherited attributes (i.e. deterministic), which
only requires a constant number of traversals over the tree. For example, this is the case
for RulerCore programs expressible in UUAG. We verified that programs generated from
RulerCore exhibit the same time and memory behavior as programs generated from UUAG.

Expressiveness. With attributes, we conveniently compute information in one part of the
tree, and transport the information to other parts, which allows context-dependent decisions
to be made. The notion of visits gives us sufficient control to steer the inference process.

On the other hand, it is not possible to simply plug a type system in RulerCore and auto-
matically obtain an inference algorithm. We provide the building blocks to write inference
algorithms for many type systems, but it is up to the programmer to ensure that the result is
sound and complete.

Soundness of a RulerCore program is typically easy to prove. Completeness, however,
is a different issue. That largely depends on decisions made about unknown types. With
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RulerCore, we make explicit when choices are made, and when visits are repeated. We
believe this helps when reasoning about completeness.

Constraint-based inference. We establish the following relation to constraint-based in-
ference: a detached derivation can be seen as a constraint, can be collected in an attribute
and solved elsewhere. Solving constraints corresponds invoking visits (such as resolve in
Section 5.2.5) on the derivation, potentially multiple times.

Solving a constraint may result in more constraints. We store these either in a node’s state,
or collect them in attributes.

A constraint is typically parametrized with information from the context that created it. We
provide access to this context via nested nonterminals, which have access to the attributes of
their outer nonterminals.

5.3 Semantics

We define RulerBack, a small core language for Attribute Grammars. We translate a Ruler-
Core program in two steps to Haskell. We first desugar RulerCore. This gives us a Ruler-
Back program. We then translate the latter to Haskell. The separately defined attributes of
RulerCore are grouped together in RulerBack, visits are ordered, attributes allocated to vis-
its, covariant interfaces translated to normal interfaces, rules ordered based on their attribute
dependencies, and rules augmented with default rules. We omit description of this transla-
tion, as it is similar to the frontend of UUAG [Löh et al., 1998]. Instead, we focus on the
translation to Haskell, which precisely defines the semantics of RulerBack, and thus forms
the underlying semantics of RulerCore.

5.3.1 Syntax

The RulerBack language is Haskell extended with additional syntax for toplevel interface dec-
larations, semantic expressions, and attribute occurrence expressions. The following gram-
mar lists these syntax extensions:

i ::= itf I v -- interface decl, with visits v
v ::=visit x inh a1 syn a2 -- visit decl, with atributes a1 and a2
a ::= x :: τ -- attribute decl, with Haskell type τ

s ::= sem x :: I t -- semantics expr, defines production x
t ::=visit x1 chn x2 r c -- visit def, with common rules r
| � -- end of the visit sequence

c ::= clause x r t -- clause definition, with next visit t
r ::=p← e -- assert-rule, evaluates monadic e
| match p← e -- match-rule, backtracking variant
| invoke x of c← e -- invoke-rule, invokes x on c, while e
| attach x of c :: I← e -- attach-rule, attaches a partially evaluated child
| p = detach x of c -- detach-rule, stores a child in an attr
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o ::= x.x -- expression, attribute occurrence
x, I,p,e -- identifiers, patterns, expressions respectively

There are some differences in comparison with the examples of the previous section. Invo-
cations of visits to children are made explicit through the invoke-rule, which also represents
the iterate-rule. Similarly, the attach rule also takes care of introducing children. A visit
definition declares number of visit-local chained attributes y, and has a number of rules to be
evaluated prior to the evaluation of clauses. A clause defines the next visit, if any.

The order of appearance of rules determines the evaluation order, which allows them to be
monadic. Non-monadic expressions are lifted with return. The implementation is parametriz-
able over any backtracking monad. In this chapter, we use IO as example.

5.3.2 Example

The following example is taken from Section 3.3. It demonstrates how to to compute the sum
of a list of integers in two visits in RulerBack. In the first visit, the attribute l is inspected to
obtain the elements in the list. In the second visit, the elements are summed up:

itf S visit v1 inh l :: [Int ] syn /0 -- decompose list l down
visit v2 inh /0 syn s :: Int -- compute sum s up

sum′ = sem sum :: S
visit v1 chn /0 /0

clause sumNil1 -- when list is empty
match [ ]← return lhs.l -- match [ ] = l
visit v2 chn /0 /0 -- no visit-local attrs

clause sumNil2
lhs.s← return 0 -- empty list, zero sum
� -- no next visit

clause sumCons1 -- when list non-empty
match (loc.x : loc.xs)← return lhs.l -- match (x : xs) = l
attach v1 of tl :: S← return sum -- recursive call
tl.l← return loc.xs -- l param of call
invoke v1 of tl← noIterationS -- visit it to pass l
visit v2 chn /0 /0

clause sumCons2
invoke v2 of tl← noIterationS -- visit it to get the sum
lhs.s← return (loc.x+ tl.x) -- sum of hd and the tl
� -- no next visit

We translate a RulerBack production to a coroutine, in the form of continuations. From the
interface, we generate a type signature for these coroutines:

type S = S v1
newtype S v1 = S v1 ([Int ]→ IO ((),(S v1,S v2)))
newtype S v2 = S v2 (()→ IO (Int,(S v2,�)))
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Inherited attributes become parameters, and synthesized attributes are returned as a tuple of
results. Each visit also returns two continuations of type S v1 and S v2 respectively. The first
continuation represents the current visit itself (which may be re-invoked with updated internal
state), the second continuation represents the next visit, or � if there is no subsequent visit.
Since no inherited attributes have been declared for the second visit, the continuation of type
S v2 can actually be represented as a value:

newtype S v2 = S v2 (IO (Int,(S v2,�)))

The coroutine sum′ has S as type. Attributes are encoded as a variable childIattr or
childOattr, depending on whether the attribute is an input or output of the clause. Clause
selection relies on backtracking in the monad. When a match-statement doesn’t match, a
failure is generated in the monad, which we catch to switch to the next clause.

sum′ = S v1 vis v1 where -- the initial state
vis v1 lhsI l = ( -- first clause of visit v1

do [ ]← return lhsI l -- match on lhs.l
let r = S v1 vis v1 -- repetition cont.

k = S v2 vis v2 where -- next visit cont.
vis v2 = ( -- clause of visit v2

do lhsOs← return 0 -- lhs.s computation
let r = S v2 vis v2 -- repetition

k =� -- no next visit
return (lhsOs,(r,k)) -- deliver result v2

) ‘catch‘ (\ →⊥) -- no other clause for v2
return ((),(r,k)) -- deliver result of visit v1

) ‘catch‘ (\ → -- second clause
do (locLx : locLxs)← return lhsI l -- match on lhs.l

tlOl ← return locLxs -- inherited attr tl.l
(S v1 vis tl v1)← return sum′ -- attach child tl
((),( ,S v2 vis tl v2))← vis tl v1 tlOl -- first visit on tl
let r = S v1 vis v1 -- repetition cont.

k = S v2 vis v2 where -- next visit cont.
vis v2 = ( -- clause of visit v2

do (tlIs,( , ))← vis tl v2 -- second visit on tl
lhsOs← return (locLx+ tlIs) -- lhs.s
let r = S v2 vis v2 -- repetition

k =� -- no next visit
return (lhsOs,(r,k)) -- deliver result v2

) ‘catch‘ (\ →⊥) -- no other clause for v2
return ((),(r,k))) -- deliver result of visit v1

The above code is slightly simplified. Below, we show the general translation.
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5.3.3 Translation

We use the following naming conventions from RulerCore names to Haskell names. The
right-hand sides of these definitions consist of string concatenations:

outp "loc" x = "locL" x inp "loc" x = "locL" x
outp "lhs" x = "lhsS" x inp "lhs" x = "lhsI" x
outp c x = c "I" x inp c x = c "S" x
outp y = "visitS" y inp y = "visitI" y
vis c x = "vis_" c "_" x prod x = "sem_" x
vis x = "vis_" x ity I x = I "_" x
s I x i I x -- respectively, inh and syn attrs of x of I

Note that an attribute c.x for some child x at an output position represents the inherited at-
tribute x of c, and vice versa for attributes at input positions.

The types of the coroutines are generated from an interface declaration:

Jitf I vK  type JIK= Jity I x′K;JvKI -- x′ next visit,
Jvisit x inh a syn bKI  newtype Jity I xK= -- otherwise ()

Jity I xK (JaK→ IO (JbK,(Jity I xK,Jity I x′K)))

From these interfaces, we actually also generate wrappers to interface with the coroutines
from Haskell code. The translations for them bear a close resemblance to the translation of
the attach and invoke rules below.

The clauses of a visit are translated to a function Jvis xK that tries the clauses one by one.
This function takes as parameters the coroutines (JchldsK) of the children in scope prior to
invoking the visit, the visit-local attributes y, and the inherited attributes:

Jsem x :: I tK  let Jprod xK= JtKI inJprod xK
J()KI  ()
Jvisit x chn y r cKI  

let Jvis xK JchldsK Jinp yK Jinp lhs (i I x)K
= catch (do {JrK;JcKI,x,y})⊥ inJity I xK Jvis xK

The clauses themselves translate to a sequence of statements, consisting of the translated
statements of the semantic rules, and the construction of the two continuations. We partially
parametrize both continuations with the updated children:

J[ ]KI,v,y  error "no clause applies"

Jclause x r t : csKI,v,y  
catch (do {JrK; let {Jinp x y = outp yK}

; let {r = Jity I xK Jvis xK JchldsK Joutp x yK
;k = JtKI,chlds}

;return (Joutp lhs (s I x)K,(r,k))})
(\ → JcsKI,v,y)
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J()KI,ks  ()
Jvisit x chn y r cKI,ks Jvisit x chn y r cKI JksK Joutp x yK

Semantic rules translate to monadic statements. For the assert-rule, we match using a let-
statement, which ensures that a pattern match failure is considered a runtime error, instead of
cause backtracking in the monad:

Jmatch p← eK  JpK← JeK
Jp← eK  x← JeK; let {JpK= x} -- x fresh
Jattach x of c :: I← eK (Jity I xK Jvis c xK)← JeK
Jp = detach x of cK  let {JpK= Jity I xK Jvis c xK}

Invoke invokes a visit x (named f in the translation) on child c once, then repeats invoking
it, as long as e (named g) succeeds in feeding it new input:

Jinvoke x of c← eK 
(Jinp c (s Ic x)K,( ,k))
← let iter f Joutp c (i Ic x)K= do

{(JcoIty Ic xK g)← JeK
; z@(Jinp c (s Ic x)K,(Jity Ic xK f ′, ))
← f Joutp c (i Ic x)K

; catch (do {(Joutp c (i Ic x)K, )← g Jinp c (s Ic x)K
; iter f ′ Joutp c (i Ic x)K})

(\ → return z)}
in iter Jvis c xK (outp c (i Ic x))

; let (Jity Ic x′K Jvis c x′K) = k -- x′ is next visit, or line omitted

Finally, we add bangs around patterns to enforce evaluation, and replace attribute occur-
rences with their Haskell names:

JC pK  !(C JpK)
J(p, . . ,q)K !(JpK, ...,JqK)
Jc.xK  !Jinp c xK
JeK  e [c.x := Joutp c xK]

The translation exhibits a number of properties. If the RulerCore or RulerBack program
is well typed, then so is the generated Haskell program, and vice versa. Furthermore, the
translation is not limited to Haskell. A translation similar to above can be given for any
language that supports closures.

5.4 Related Work

Attribute grammars as defined by Knuth [1968] are extensions of context free grammars.
Typically, an attribute grammar is defined in terms of a context-free abstract grammar of the
language to analyze or compile. The attribute evaluator computes attributes of the abstract
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syntax tree that is determined apriori by a parser. In case of type inference, when the typing
relations are not directed by syntax, the derivation tree is not known beforehand. Thus, the
derivation tree cannot be expressed directly in terms of attribute grammars, unless higher-
order attributes are used [Vogt et al., 1989].

Tree manipulations. There are many extensions to attribute grammars to facilitate chang-
ing the tree during attribute evaluation. Silver [Wyk et al., 2008], JastAdd [Ekman and Hedin,
2007] and UUAG [Löh et al., 1998] support higher-order attributes. These grammars allow
the tree to be extended with subtrees that are computed from attributes, and subsequently
decorated. The responsibility of selecting a production of a higher-order child lies with the
parent of that child, and the choice is final. In RulerCore, a child itself selects a clause to
make a choice, and a choice can be made per visit.

JastAdd and Aster [Kats et al., 2009], support conditional rewrite rules, which allows rig-
orous changes to be made to the tree. Coordination between rewriting and attribute evaluation
is difficult to express due to mutual influence, especially if the transformations are not con-
fluent. To limit interplay, JastAdd’s rewriting of a tree is limited to the first access of that
tree.

Many type inference algorithms, especially for type and effect systems, iteratively tra-
verse the tree. Some algorithms construct additional subtrees during this process. Circular
Attribute Grammars [Jones, 1990], supported by JastAdd and Aster, iteratively compute cir-
cular attributes until a fixpoint is reached. UUAG and Silver can deal with circularity via lazy
evaluation with streams. CAGs, however, do not support changes to the tree during these
iterations. Stratego’s rewrite mechanism that underlies Aster, however, is more general and
can change the tree. In RulerCore, a visit may be iterated several times. Each node in the
derivation tree can maintain a per-visit state to keep track of newly constructed parts of the
tree.

Non-deterministic trees. The attribute grammar systems above have in common that
they massage a tree until it has the right form. Alternatively, a tree can be constructed non-
deterministically, using e.g. logic programming languages. The grammar produces only the
empty string, and the semantic rules disambiguate the choice of productions. Arbab [1986]
show how to translate attribute grammars to Prolog. However, this approach does not allow
the inspection of partial LookupOne derivations of Section 5.2.5, nor the defaulting, to be
implemented easily. With RulerCore, we offer alternative constructions of the tree per visit
in combination with backtracking. The notion of a visit provides an intuitive alternative for
the cut operator.

Prolog-like approaches also offer unification mechanisms to deal with non-determinism
in attribute computations. In contrast, we require the programmer to either program unifi-
cations and substitutions manually, or use a logic monad combined with a unification in the
translation of Section 5.3.

Engelfriet and Filé [1989] show the expressiveness of classes of attribute grammars. Un-
surprisingly, deterministic AG evaluators have lower computational complexity bounds com-
pared to non-deterministic ones. With RulerCore, we target large compilers (i.e. UHC), that
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processes large abstract syntax trees, thus we need the control on the exploration of alterna-
tives that visits offer.

Related attribute grammar techniques. Several attribute grammar techniques are im-
portant to our work. Kastens [1980] introduces ordered attribute grammars. In OAGs, the
evaluation order of attribute computations as well as attribute lifetime can be determined
statically, allowing severe optimizations.

Boyland [1996] introduces conditional attribute grammars. In such a grammar, semantic
rules may be guarded. Our clauses-per-visit model also provide guarded rules, but in addition
also allow children to be conditionally defined.

Saraiva and Swierstra [1999, chap. 3] describe multi-traversal functions in a functional
language (or visit functions [Swierstra and Alcocer, 1998]). These visit functions are one-
shot continuations, or coroutines without looping. We improved upon this mechanism to
support iterative invocation of visits, thus encoding coroutines with loops.

5.5 Conclusion

We presented the extensions that RulerCore, a conservative extension of ordered attribute
grammars, provides to describe type inference algorithms. We explained RulerCore with an
extensive example in Section 5.2 and described its semantics in Section 5.3.

RulerCore has several distinct features. Firstly, in contrast to most attribute grammar sys-
tems, construction of a derivation tree and the evaluation of its attributes is intertwined in
RulerCore. This allows us to define a grammar for the language of derivations of some typ-
ing relations, instead of being limited to the grammar of expressions or types.

Secondly, we use the notion of explicit visits to capture the gradual, effectful nature of type
inference. Each visit corresponds to a state transition of the derivation tree under construction.
These visits may be repeated to form fixpoint iterations.

Thirdly, many inference algorithms reason about what part of the derivation is known, or
is still pending, e.g. by means of constraints. In RulerCore, derivation trees are first class
and can be inspected by visiting them, which facilitates such reasoning in terms of attributed
trees.

218



6 Case Study with GADTs

Generalized Algebraic Data Types are a generalization of Algebraic Data Types with addi-
tional type equality constraints. These found their use in many functional programs, including
the development of embedded domain specific programming languages and generic program-
ming.

Recently, several authors published novel inference algorithms and corresponding type
system specifications. These approaches tend to be more algorithmic than declarative in
nature, and tied to a given compiler infrastructure. This results in complex specifications.
For a language implementor, adopting such a complex approach is hard due to conflicting
infrastructure and language features. Similarly, type inference is difficult to comprehend for
a programmer when the specification is complex.

To make the integration of GADTs in languages easier, we thus need a more orthogonal
specification. We present an orthogonal specification for GADTs: the language System F∼,
consisting of System F augmented with first-class equality proofs. This specification ex-
ploits the Church encoding of data types to describe GADT matches in terms of conventional
lambda abstractions.

6.1 Introduction

Generalized Algebraic Data Types (GADTs) allow for additional equalities to hold between
types of a data constructor. These equalities must hold when constructing a value with this
data constructor. When a match against this constructor succeeds in a pattern match, these
equalities hold between the types of the constructor, and may be used to coerce the type of an
expression to an equivalent type.

This particular feature found many application areas. Many Haskell-related projects make
use of GADTs, such as a diversity of generic programming approaches [Jeuring et al., 2008],
and transformations on typed abstract syntax for the implementation of domain-specific lan-
guages [Baars et al., 2009]. Therefore, we added support for GADTs in UHC [Dijkstra et al.,
2009], the Haskell compiler that we develop at Universiteit Utrecht.

Dijkstra [2005] describes the implementation of UHC as a combination of many specifi-
cations. Similarly, we wanted to add GADTs to UHC by taking a specification as guidance.
However, it was not straightforward to match existing specifications to UHC’s infrastructure,
for the following reasons:

• GADT pattern matching is defined in terms of case-expressions. In a programming
language such as Haskell, there are several other ways to pattern match, such as in let-
bindings and list-comprehensions. Furthermore, Haskell has a concept of lazy pattern
matching (irrefutable patterns). It is not directly clear if GADT matching is allowed in
these situations, and what the side conditions are.
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• For many approaches, it turns out that the effectiveness of inference for GADTs de-
pends on what type information can be derived a priori from type annotations given
by the programmer (Section 6.6). Specifications for inference of GADTs use a variety
of techniques such as shape inference to describe that process. The implementation
of such techniques crosscut the type inference implementation of the compiler, thus
we are reluctant to incorporate them, unless absolutely necessary. Additionally, UHC
already analyzes a program to derive type information from type signatures. Since the
above techniques are intertwined with the specifications, it is not directly clear how to
compare our infrastructure with the infrastructure used in the aforementioned specifi-
cations.

In this chapter, we present a specification for GADT inference that addresses the above
points, and has the following distinguishing features:

• We introduce a variant of System F, named System F∼ (System F-Equality), extended
with equality assumptions. In contrast to other GADT specifications, System F∼ does
not have syntax for data types or case expressions. These are redundant in our specifi-
cation, because we exploit the folklore Church encoding of data types as conventional
lambda expressions. The result is an abstract and concise description without the re-
dundant syntax, while it is on the other hand more general, because it (necessarily)
answers how to treat arbitrary pattern matching, including let-bindings and irrefutable
patterns.

• Our specification is orthogonal to type inference infrastructure. Like System F, System
F∼ is explicitly typed. These explicit types represent the type information that can
be derived using analysis on type signatures and conventional type inference. Our
specification thus focusses in isolation on how to infer type coercions.

We thus claim that our specification is lean: it is concise because it does not require the notion
of data types and case expressions, and abstract because it is orthogonal to infrastructure
(in particular regarding type annotation analysis). However, our specification only specifies
when explicit type information is needed, not when type annotations may be omitted, which
depends largely on the effectiveness of the algorithms we abstracted from.

In an earlier version of this chapter [Middelkoop et al., 2008], we presented this work in
terms of an extension of System FA [Sulzmann et al., 2007], using explicit syntax for data
types and case expressions. The encoding in System F∼ is significantly less complex.

Roadmap. We introduce GADTs in Section 6.2, and motivate the design choices for our
specification in Section 6.3. We formally define System F∼ and its type system in Section 6.4.
In Section 6.5, we define the semantics of System F∼ via a translation to a subset of System
FC, which is a System F -like language with explicit type coercions, defined by Sulzmann
et al. [2007]. The relation to various other approaches, we discuss in Section 6.6. Finally, in
Section 6.7, we briefly mention our experiences with the integration of GADTs in the UHC.
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6.2 Introduction to GADTs

We start this section with an introduction to GADTs. GADTs, combined with the Haskell
class system, form an essential ingredient for many Haskell libraries. In this section, we
picked two simplified examples as illustration.

6.2.1 Typed Abstract Syntax

One popular use of GADTs is related to the embedding of domain-specific languages in such
a way that Haskell’s type system can be used to type check the domain-specific language.

A typical implementation of an embedded domain specific language consists of some com-
binators to construct an abstract syntax tree, and some functionality in the host language to
manipulate this abstract syntax tree. After analysis and transformation, the abstract syntax
tree is translated to some denotation in the host language in order to use it.

For example, assume that we use Haskell as a host language and embed an expression
language containing only tuples and numbers, using the following abstract syntax:

data Expr
= Num Int
| Tup Expr Expr

The following straightforward translation of the expression to a tuple in the host language
does not type check, because the inferred types for the case alternatives are not the same:

eval e = case e of
Num i → i -- expected: Int
Tup p q→ (eval p,eval q) -- expected: (a,b)

We bypass this restriction imposed by the Haskell type system with typed abstract syntax
and encode a proof that the generated tuples are type correct. For that, we add a type param-
eter t to the abstract syntax, which represents the type of the expression, and embed in the
constructors a proof (with type Equal t t′) that states that this t is equal to the real type t′ of
this specific expression (an Int for a Num and some tuple type for a Tup):

data Expr t
= Num (Equal t Int) Int
| ∀a b . Tup (Equal t (a,b)) (Expr a) (Expr b)

Baars and Swierstra [2002] give a definition of this Equal data type and some operations,
including a function coerce that converts the type to a proved equivalent type, and some
combinators to construct equality proofs:

coerce :: Equal a b→ a→ b
sym :: Equal a b→ Equal b a
refl :: Equal a a
trans :: Equal a b→ Equal b c→ Equal a c
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congr :: Equal a b→ Equal (f a) (f b) -- has a more general signature
subsum :: Equal (f a) (f b)→ Equal a b -- than written here

A non-bottom value with the type Equal τ1 τ2 is a proof that the types τ1 and τ2 are equal.
The coerce function applied to such a proof is technically the identity function.

As a hypothetical example, consider the proof p1 out of assumptions a1 and a2:

a1 :: Equal v1 (Int,v2)
a2 :: Equal v1 (v3,v4)

p1 :: Equal (Int,v2) (v3,v4)
p1 = trans (sym a1) a2

p2 :: Equal (Int,v4) (v3,v2)
p2 = . . .congr . . .subsum . . .

We continue with the running example in this section and modify the eval function such
that the case alternatives have the same type, namely the t in Expr t:

eval :: Expr t→ t
eval e = case e of

Num ass i → coerce (sym ass) i
Tup ass p q→ coerce (sym ass) (eval p,eval q)

The assumptions used by eval need to be proved when constructing values of type Expr t,
which we achieve by using refl:

Tup refl (Num refl 4) (Num refl 2) :: Expr (Int, Int)

The important observation to make at this point is that the proofs are a static property of
the program. Hence, the goal is to construct these proofs automatically.

GHC, the mainstream compiler for Haskell, has built-in support for GADTs. It offers two
ways of writing GADTs. One can use qualified type notation, which resembles the example
above. Instead of an additional field of the type Equal, we write an equality constraint:

data Expr t
= (t∼Int) ⇒ Num Int
| ∀a b.(t∼(a,b))⇒ Tup (Expr a) (Expr b)

Aternatively, one can use special notation for GADTs:

data Expr t where
Num :: Int→ Expr Int
Tup :: Expr a→ Expr b→ Expr (a,b)

These two forms of notation are interchangeable. To convert from the above qualified-type
notation to GADT notation, turn each equality constraint into a substitution and apply it
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exhaustively to the type signature of the constructor. The other way around, given a type
siganture of the constructor, take the result type as written (e.g. Expr (a,b)), and match it
against the actual result type (Expr t).

Proofs do not have to be written manually. These are automatically constructed by GHC.
The eval function can simply be written using either function alternatives or a case expression:

eval :: Expr t→ t
eval (Num i) = i
eval (Tup p q) = (eval p,eval q)

GHC (version 6.12.1) requires the type signature to be given. We discuss in Section 6.3.2 if
this type signature could be inferred and if it is desirable to do so.

6.2.2 Generic Programming

Cheney and Hinze [2003] show how GADTs, called Phantom Types in their work, can be
used to implement generic functions that work for many data types. The idea is to have a rep-
resentation of types as a first class value, then use this representation to navigate generically
over a particular value:

data Rep t where
RInt :: Rep Int
RChar :: Rep Char
RList :: Rep a→ Rep [a ]
RTup :: Rep a→ Rep b→ Rep (a,b)

x :: [(Int,Char)] r :: Rep [(Int,Char)]
x = [(3,’4’)] r = RList (RTup RInt RChar)

In this example, x is a value of some type, and r is a value of a representation of that type.
The following function, for example, traverses a value of any type for which we have a

representation, and increments all integers with one:

replace :: Rep t→ t→ t
replace RInt x = x+1
replace RChar c = c
replace (RList r) xs = map (replace r) xs
replace (RTup a b) (p,q) = (replace a p,replace b q)

Values of Rep t can typically be obtained automatically at replace’s call site using Haskell’s
class system.

Cheney and Hinze [2003] continue from here, and define a data type for the sum of prod-
ucts representation of data types, and use this representation to define combinators to express
generic traversals over arbitrary data types for which there is a representation.
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6.3 Design Rationale

In this section, we discuss the design decisions of System F∼. We are liberal concerning syn-
tax in this section, without loss of generality. In Section 6.4.1, we treat System F∼ formally.

6.3.1 Church Encoding of Data Types

In other GADT specifications and algorithms, GADT matches are described in combination
with case-expressions. In many type system descriptions, however, data types and case ex-
pressions are not part of the language, because these are implied by using a Church encoding
or Mogensen-Scott encoding [Mogensen, 1992] of the data types. In our specification, we
take a similar approach and consider a Church encoding of GADTs.

Church encoding of ADTs. As a prelude, we informally sketch the Church encoding of
algebraic data types.

The easiest example to start with are Church booleans. The constructors True and False can
be represented as functions that take two continuation-expressions as parameters and return
the appropriate one:

type Bool′ = ∀α.α → α → α

mkTrue,mkFalse :: Bool′

mkTrue t f = t
mkFalse t f = f

The functions mkTrue and mkFalse can be used instead of the original constructors. To pattern
match against such a constructor, we give it the continuations. For example, the following
function:

ifThenElse :: Bool→ a→ a→ a
ifThenElse b f g

= case b of
True → f
False→ g

can be encoded as:

ifThenElse :: Bool′→ a→ a→ a
ifThenElse b f g = b f g

In general, the Church encoding of a data constructor is a function that takes (Church
encoded) values for each of its fields, and several continuation functions, one for each con-
structor. The values are passed on to the appropriate continuation function. For example,
given the following data type:

data D
= C1 Int
| C2 D
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We introduce a (recursive) type D′ for Church-encoded Ds, and constructor functions mkC1
and mkC2:

type D′ = ∀r.(Int→ r)→ (D′→ r)→ r
mkC1 :: Int→ D′

mkC1 x f1 = f1 x
mkC2 :: D′→ D′

mlC2 r f2 = f2 r

In this example, we assume that built-in types are not encoded. As a technical detail, we
require a number of built-in types in order to map recursive types to System F [Urzyczyn,
1996].

When we pattern match in a case-expression, we get a value of type D′, and parameterize
it with functions that deal with each of the cases. For example, given the following case
expression:

case x of
C1 y → y+1
C2 →⊥

In the Church encoding, this corresponds to:

x (λy.y+1) (\ .⊥)

Likewise, we can look at encodings of other forms of pattern matching. A let-binding can
be encoded by means of a lambda and application:

let (C1 y) = x in y+1

The pattern match takes place when y is evaluated. We can encode such a let-expression as a
lambda, if we assume that patterns in a lambda match lazily:

(λy.y+1) ((λ (C1 y).y) x)

As continuation functions we take ⊥, except for the continuation corresponding to the data
constructor matched on.

(λy.y+1) ((λd.d (λy.y)⊥) x)

If a let-binding involves multiple variables, we use the Church encoding of tuples.
Haskell has irrefutable (or, lazy) patterns. A match against such pattern always succeeds,

and is actually only performed when values of variables that are bound by the pattern are
needed. In the following example, the pattern match against C1 is only performed when the
value of y is needed:

case x of
∼(C1 y)→ y+1
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We can write the irrefutable pattern with a let-binding.

case x of
z→ let (C1 y) = z

in y+1

This expression can be encoded again in a similar way as above.

Church encoding of GADTs. The above approach has as advantage that we only need
to consider lambda applications in our specification, and from it, the behavior for case-
expressions, let-bindings, etc. can be derived.

In the previous section, we showed that the mechanism underlying GADTs is the construc-
tion and application of equality proofs. These proofs are constructed and stored as fields in
the constructor, such that they can be taken out when the match succeeds. In the Church
encoding, a field has become a lambda. We thus introduce two new forms of expressions.
An expression τ ∼ σ that builds a proof of the equality between τ and σ , and an expression
λ (τ ∼ σ).e that matches against such a proof and allows it to be used for coercions in e.

For example, for a GADT (written using qualified-type notation):

data Rep a
= (a∼ Int)⇒ RInt

The encoding for RInt takes an equality proof, and passes it on to the continuation:

type Rep′ a = ∀r.((a∼ Int)→ r)→ r
mkRInt :: (a∼ Int)→ Rep′ a
mkRInt = λ (a∼ Int).λ f .f (a∼ Int)

In order to construct a value of Rep′ a using mkRInt, we first need to pass a proof that a∼ Int.

Lazy equalities. We choose the equality-lambda to bind lazily. The following example
gives an explanation. The pattern occurs in a let-expression and does not define any variables,
which essentially means that it will never be evaluated.

f :: Rep a→ a→ Int
f x y = let RInt = x

in 3

In the encoding, x is only evaluated if its equality proof is needed when equalities bind lazily:

λ (x :: Rep a).λ (y :: a).(λ (a∼ Int).3 :: Int) (x (λ (a∼ Int).(a∼ Int)))

However, if we replace the 3 by y, the equality proof is needed to coerce the type a to Int.
This subsequently leads to evaluation of x.

It is, however, undesirable that the construction of an equality proof influences the eval-
uation of the program. With our encoding, we have a model to reason about these effects.
For example, it is straightforward to verify that the encoding of GADT matches in a case
expression, and the encoding of GADT matches in a lambda, do not influence the evaluation
of the program.
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6.3.2 Type Inference

Above, we gave type signatures to all expressions involving GADTs. Several authors showed
that there are situations where coercions can be inferred without an accompanying type anno-
tation. So far, such approaches are not predictable: it is not intuitive when an annotation may
be omitted or when it is obligatory. Several examples in this section illustrate the difficulties
regarding inference. We therefore decided to allow coercions only when directed to via a type
annotation, and describe how this shows up in the specification.

The main problem regarding GADT inference is that without a type annotation, it is not
clear whether or not to coerce a type. In the following example, the pattern match on Num
brings an equality on Int in scope, which may be applied to coerce the type of 3:

data Expr t where
Num :: Int→ Expr Int
Tuple :: Expr a→ Expr b→ Expr (a,b)

eval (Num x) = x

There are several types possible for eval:

(1) eval ::∀ t . Expr t→ t
(2) eval :: Expr Int→ Int
(3) eval ::∀ t . Expr t→ Int

The second type seems appropriate in this case. However, the first type is more general than
the second, and the first and third are incomparable. We cannot choose between the first and
third type, unless we know precisely how eval is to be used. Many inference approaches
analyze the usages of such a function to make a choice. When usage of such a function
changes due to modifications of the programmer, this may affect the choice, and cause type
errors in other parts of the program. This leads to an unpredictable type inference. We choose
only to apply equalities when directed to via a type annotation. In the above case, no type
annotation is present, we do not apply the equality, which results in type (3).

In the above example, the usage of x in the body seems to suggest a relation to type t
in Expr t. However, the following example demonstrates that this is not a good criterium,
because there are also expressions that have a coercible type, aside from variables occurring
in the pattern:

flex True (Num x) = x
flex False (Num x) = 3

Multiple pattern matches pose additional challenges. In the following example, there are two
possible equalities on Int to choose from:

choose (Num x) (Num y) = 3

There are now many alternative types possible, including:
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choose ::∀ t s . Expr t→ Expr s→ t
choose ::∀ t s . Expr t→ Expr s→ s
choose ::∀ t s . Expr t→ Expr s→ Int

During inference of the body of choose, the problem boils down to making a choice between
either coercion to a Skolem constant such as s or t, or not coerce types at all. Again, we
refrain from applying an equality unless directed to by a type annotation, and thus end up
with the last type.

When there are multiple function or case alternatives, there is often no choice. The equali-
ties have to be applied to have branches with equal types.

eval (Num x) = x
eval (Tup a b) = (a,b)

We still require a type annotation. The design rationale is here that adding additional cases to
a function without changing the existing cases, should only make a type less specific. In the
above case, adding the Tup alternative causes the type of eval to change to an incomparable
type, which again makes type inference hard to predict from the perspective of the program-
mer. Also, we point out that in the situation that multiple function or case alternatives are
written, the overhead of the annotation (expressed for example in terms of lines of code)
decreases.

In our specification, we abstract from the type inference algorithm. Moreover, we require
type inference to be completed before the inference of coercions. The language System F∼,
based on System F, is explicitly typed. These explicit types represent the types derived from
type annotations and those inferred. This makes it unambiguous where to find the locations
where a coercion is needed: at those locations where the actual type does not match the
expected type (Section 6.4.5). What remains is to specify how coercions are inferred, and
that we make explicit in the specification.

6.4 Specification

In this section, we present our specification for GADT inference. We start with the language
System F∼ in Section 6.4.1, present System F∼’s typing rules in Section 6.4.2, and show how
to deal with equality proofs in Section 6.4.3.

6.4.1 System F-Equal

Figure 6.1 lists the syntax of System F∼, which consists of System F with the addition of
equality proofs. These additions consist of:

• The abstraction λ (τ ∼ σ).e matches against an equality proof for τ ∼ σ , and brings it
in scope by adding it to the environment. The equalities in scope are called equality
assumptions, and can be used in equality proofs. The process of constructing a proof
is fully automatic.
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6.4 Specification

e, f ,g,a ∈ Expr τ,ρ,ρ,σ ∈ Type
::= x (E.VAR) ::=α (T.VAR)

| τ ∼ σ (E.EQ) | σ → τ (T.ARR)

| λx.e (E.LAM.ABS) | ∀α.τ (T.FORALL)

| λα.e (E.UNIV.ABS) | τ ∼ σ (T.EQS)

| λ (τ ∼ σ).e (E.EQ.ABS)

| f e (E.APP.EXPR) Γ ∈ Env
| f τ (E.APP.UNIV) ::=Γ,x :: τ, (E.TY)

| Γ,α (E.VAR)

x,y ∈ Ident
α,β ∈ TyIdent

Figure 6.1: Syntax of System F∼

• The proof expression (τ ∼ σ) constructs an equality τ ∼ σ .

• The type language contains a type for equality proofs. Furthermore, we assume a
number of primitive types to be present in the type language, such as Int.

Environments record Skolem constants introduced by type abstraction, and types for iden-
tifiers. Since we present equality proofs as conventional types, these can be stored in the
environment as well, when we give them a name.

As illustration, we encode the following fragment of a program that generically increments
integers in data types:

data Rep α where
RInt :: Rep Int

inc :: Rep α → α → Int
inc = λ r.λx.case r of

RInt→ x+1
z :: Int
z = inc RInt 3

As an intermediate step, we write:

type Rep′ α = ∀β .((α ∼ Int)→ β )→ β

mkRInt :: α ∼ Int→ Rep′ α
mkRInt = λeq.λ f .f eq
inc :: Rep′ α → α → Int
inc = λ r.λx.r (λ (α ∼ Int).x+1))
z :: Int
z = inc (mkRInt (Int ∼ Int)) 3
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Finally, expressed in System F∼:

-- mkRInt
Λα.λ (eq :: α ∼ Int)

.λ (f ::∀β .((α ∼ Int)→ β )→ β )

.f α eq
-- inc

Λα.λ (r ::∀β .((α ∼ Int)→ β )→ β )
.λ (x :: α)
.r Int (λ (α ∼ Int).(+) x 1)

-- z
inc Int (mkRInt Int (Int ∼ Int)) 3

Note that the type of x in inc is α , and is required to have type Int. In System F, this expression
is not correctly typed. It has a valid type in System F∼’s type system, which we discuss below.

6.4.2 Type Rules

The typing relation (rules in Figure 6.2) states that in environment Γ, the expression e has
type τ . These rules are syntax directed, except for rule COERCE. The idea is that the shape
of the expression determines which rules to apply, and we resort to rule COERCE when there
is a mismatch between the types. We illustrate this process briefly with inference for the inc
example of the previous section, then explain the rules in more detail.

Γ ` e : τ

x :: τ ∈ Γ

Γ ` x : τ
VAR

Γ ` e : σ

Γ 
 σ ∼ τ

ftv τ ⊆ ftv Γ

Γ ` e : τ
COERCE

Γ 
 τ ∼ σ

ftv τ ⊆ ftv Γ

ftv σ ⊆ ftv Γ

Γ ` τ ∼ σ : τ ∼ σ
EQ

Γ ` f : σ → τ

Γ ` e : σ

Γ ` f e : τ
APP.EXPR

Γ ` f : σ → τ

ftv σ ⊆ ftv Γ

Γ ` f σ : τ
APP.TY

Γ,x :: σ ` e : τ

Γ ` λ (x :: σ).e : σ → τ
LAM.EXPR

Γ,α ` e : τ

α 6∈ ftv Γ

Γ ` Λα.e :∀α.τ
LAM.TY

Γ,x :: ρ ∼ σ ` e : τ

x 6∈ Γ

Γ ` λ (ρ ∼ σ).e : (ρ ∼ σ)→ τ
LAM.EQ

Figure 6.2: Expression type rules
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Example. To type the inc expression (see Figure 6.3), we apply first rule LAM.TY, then
rule LAM.EXPR twice. The former administers the Skolem constant α in the environment, the
second two the types of r and x. The type of r, we extract again using the rule VAR, then use
rule APP.TY to instantiate the universally quantified β of the type of r to the result type Int.

Γ1 ` r :∀β .(((α ∼ β )→ β )→ β )

Γ1 ` r Int : ((α ∼ Int)→ Int)→ Int Γ1 ` λ (α ∼ Int).(+) x 1 : . . .
Γ1 ` r Int (λ (α ∼ Int).(+) x 1) : Int

. . . ` λx.r Int (λ (α ∼ Int).(+) x 1) : . . .→ Int
. . . ` λ r.λx.r Int (λ (α ∼ Int).(+) x 1) : . . .→ . . .→ Int

/0 ` Λα.λ r.λx.r Int (λ (α ∼ Int).(+) x 1) :∀α. . . .→ . . .→ Int

Γ2 ` (+) : . . .
Γ2 ` x : α Γ2 
 α∼Int

Γ2 ` x : Int
Γ2 ` (+) x : Int→ Int Γ2 ` 1 : Int

Γ2 ` (+) x 1 : Int
Γ1 ` λ (α ∼ Int).(+) x 1 : (α ∼ Int)→ Int

Γ0 = /0,1 :: Int,(+) :: Int→ Int→ Int
Γ1 = Γ0,α,r ::∀β .(((α ∼ β )→ β )→ β ,x :: α

Γ2 = Γ1,e :: α ∼ β

Figure 6.3: Typing Derivation of inc

To type the subexpression (λ (α ∼ Int).(+) x 1), we use rule LAM.EQ to introduce the equal-
ity into the environment, bound to a fresh name (not important for now). The subexpression
(+) x 1 must have type Int. Assuming that (+) :: Int→ Int→ Int is in the environment, this
means that x must have type Int. However, the type we get for x by applying the VAR-rule
is α . So, we apply the COERCE-rule to convert the type α to Int. This requires us to prove
that Γ 
 α ∼ Int, for which we give the rules later. This is in this case not difficult, because
exactly this equality we added just before into the environment.

Type rules overview. Most of the rules are vanilla System F rules.
Via the ftv relation, we state that the types chosen in rules COERCE, EQ, and APP.TY are

closed (and well-formed). The ftv relation is defined as:

ftv α = {α }
ftv (τ → σ) = ftv τ ∪ftv σ

ftv (∀α.τ) = ftv τ−{α }
ftv (τ ∼ σ) = ftv τ ∪ftv σ
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We overload ftv to work on environments as well:

ftv /0 = /0
ftv (Γ,α) = ftv Γ∪{α }
ftv (Γ,x :: τ) = ftv Γ∪ftv τ

Rules COERCE and EQ specify the construction of equality proofs. In the former, the equal-
ity proof is used to coerce a type, in the latter to pass it on as a first-class value.

In rules LAM.EXPR, LAM.TY, and LAM.EQ, we extend the environment. Extension of an
environment with a binding shadows a possible previous binding with the same name. In rule
LAM.EQ, we introduce an equality in the environment, using a fresh name x. This name is of
consequence for the next section, but has no meaning in this section.

Γ 
 τ1 ∼ τ2

Γ 
 τ ∼ τ REFL

Γ 
 σ ∼ τ

Γ 
 τ ∼ σ
SYM

Γ 
 τ ∼ ρ

Γ 
 ρ ∼ σ

Γ 
 τ ∼ σ
TRANS

x :: τ ∼ σ ∈ Γ

Γ 
 τ ∼ σ
ASSUM

Γ 
 σ ∼ τ

Γ 
 ρ ∼ ρ

Γ 
 τ → ρ ∼ σ → ρ
CON.ARR

Γ,β 
 τ [α :=β ]∼ σ

β 6∈ ftv τ ∪ftv Γ

Γ 
 ∀α.τ ∼ σ
CON.UNIV.LEFT

Γ 
 τ ∼ σ [β :=α ]
β ∈ ftv Γ

α 6∈ ftv σ

Γ 
 τ ∼ ∀α.σ
CON.UNIV.RIGHT

x :: (τ3 ∼ (∀α.τ4)) ∈ Γ

y :: (τ5 ∼ (∀α.τ6)) ∈ Γ

Γ 
 τ3 ∼ τ5
x′ :: τ4 ∼ τ6 
 τ1 ∼ τ2

x′ 6∈ Γ

Γ 
 τ1 ∼ τ2
SUB.UNIV

x :: (τ3 ∼ (τ4→ τ5)) ∈ Γ

y :: (τ6 ∼ (τ7→ τ8)) ∈ Γ

Γ 
 τ3 ∼ τ6
x′ :: τ4 ∼ τ7,y′ :: τ5 ∼ τ8 
 τ1 ∼ τ2

x′,y′ 6∈ Γ

Γ 
 τ1 ∼ τ2
SUB.ARR

Figure 6.4: Equality proof inference rules
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6.4.3 Type Conversions

Figure 6.4 lists the inference rules for equality proofs. The rules REFL, SYM and TRANS corre-
spond to the conventional rules of an equality theory. An equality assumption can be applied
through rule ASSUM.

In the example of the beginning of this section, we need to prove Γ 
 Int ∼ Int (by means
of the REFL-rule), and Γ 
 a ∼ Int (with the ASSUM-rule). In Section 6.2.1 we showed some
examples using more involved equality proofs. Simply put, proving an equality is a matter of
exhaustively applying all the rules.

To be able to apply coercions deeper into types, we have congruence and subsumption
rules for each member of the type language that has a substructure. In our case, for arrows
and universal quantification. We do not need nor allow coercions on equality proofs.

With congruence rules, if two types share a common structure, we only need to prove the
equality between the components that differ. The other way around, with subsumption rules,
we lift a proof on smaller type into a proof on bigger types.

In other specifications Schrijvers et al. [2009], Sulzmann et al. [2007], the subsumption
rules e.g. on arrows are typically specified as:

Γ 
 τ → ρ ∼ σ → ρ

Γ 
 τ ∼ σ
SUB.L

Γ 
 τ → ρ ∼ σ → ρ

Γ 
 τ ∼ σ
SUB.R

These rules appear simpler than the rule in our specification. However, we have objections
against these rules:

• For any environment Γ, the other rules have a finite number of unique instantiations.
However, when we include the above subsumption rule, arbitrary big types can be
constructed. Thus the search space can be infinite. In practice, we only need to consider
a finite portion of the search space to prove or disprove the equality of two types, but
this rule does not force us to.

• The subsumption rule does not give us an intuition when to actually apply this rule.
To construct an equality proof, one first decomposes the equality to prove using the
congruence rules, then apply subsumption rules to work up to assumptions in the envi-
ronment. We thus restrict the subsumption rule to assumptions in the environment.

Our rule simply expresses that if there are two equalities in the environment, and these
equalities can be shown equal on one side, then we may assume that each pairwise
subtype on the other side is equal as well.

6.4.4 Multiple Derivations

There may be more than one possible way to complete an inference. If there are multiple
derivations possible, the equality relation has the nice property that any of them satisfies.
Also, if one can be completed, then all of them can be completed.
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6.4.5 Algorithm

The specification of this section has a straightforward implementation, even combined with
type inference. We first infer types of a program in the conventional way, but for each type
conflict, we generate a coercion constraint. At the end of type inference for e.g. a binding
group, we try to solve these coercion constraints, using an exhaustive application of the above
equality rules. For those constraints that cannot be solved we generate a type error. For those
we can, we generate a coercion. In the next section, we show how to generate these coercions.

6.5 Semantics

We define the semantics of System F∼ in terms of System FC Sulzmann et al. [2007]. We
introduction to System FC, then show the important parts of the translation.

6.5.1 System F-Coercion

System FC (System F-Coercion) extends System F with equality coercions. It has a built-in
syntax to represent values of the Equal data type mentioned in the Section 6.2.1.

γ ∈ Coercion ê ∈ Expr
::= x (C.VAR) | e. γ (E.APP.COE)

| γ1 γ2 (C.APP) | case ê of p→ ê (E.CASE)

| τ (C.REFL)

| sym γ (C.SYM) p ∈ Pat
| γ1 ◦ γ2 (C.TRANS) |C γ : τ∼σ α :? x : ρ (P.CON)

| right γ (C.RIGHT)

| left γ (C.LEFT) d ∈ Decl
| ∀α . γ (C.UNIV) | data D a | C τ∼σ α :? ρ

| γ@ρ (C.INST)

Figure 6.5: Subset of syntax of System FC

We limit our explanation to a simplified fragment of System FC, which contains what
we need: System F (lambda abstraction, etc.), data types, case expressions, and coercions.
Figure 6.5 lists the extensions to System F. A data constructor C consists of three components:
equality coercions, existentials, and fields, respectively, hence it is a representation of the
qualified-type style of GADT constructors.

A coercion γ can be applied to an (System FC) expression ê, denoted as ê.γ , which changes
the type of ê according to coercion. A coercion γ of type τ1∼τ2 represents a proof of the
equality of τ1 and τ2. Figure 6.6 lists the typing rules of coercion terms. See Sulzmann et al.
[2007] for the full listing.
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Γ ` γ : τ1∼τ2

x :: τ1∼τ2 ∈ Γ

Γ ` x : τ1∼τ2
VAR

Γ ` γ1 : τ1∼τ3 Γ ` γ2 : τ2∼τ4

Γ ` γ1 γ2 : τ1 τ2∼τ3 τ4
APP

Γ ` τ : τ∼τ REFL

Γ ` γ : τ2∼τ1

Γ ` sym γ : τ1∼τ2
SYM

Γ ` γ1 : τ1∼τ2 Γ ` γ2 : τ2∼τ3

Γ ` γ1 ◦ γ2 : τ1∼τ3
TRANS

Γ ` γ : τ1 τ2∼τ3 τ4

Γ ` left γ : τ1∼τ3
LEFT

Γ ` γ : τ1 τ2∼τ3 τ4

Γ ` right γ : τ2∼τ4
RIGHT

Γ ` γ : τ1∼τ2 α 6∈ ftv Γ

Γ ` ∀α . γ :∀α . τ1∼∀α . τ2
FORALL

Γ ` γ :∀α . τ1∼∀β . τ2

Γ ` γ@ρ : τ1 [α :=ρ ]∼τ2 [β :=ρ ]
INST

Figure 6.6: Coercion type rules

Coercion application γ1 γ2 builds a coercion that applies γ1 to the function part f and γ2 to
the argument part a of a type application f a. With transitivity γ2 ◦ γ1, the second coercion is
applied to the result of applying the first coercion. The right-coercion extracts the coercion
of the arguments from a coercion on a type application f a.

6.5.2 Translation Overview

We use a type-directed translation. The typing relations have the form:

Γ ` e : τ  ê -- System FC-expr ê is the translation of System F∼-expr e.
Γ 
 τ1 ∼ τ2 γ -- γ is a System FC-coercion term of type τ1∼τ2.

The translation consists of two challenges: we need to represent System F∼’s equality
proofs in System FC, and need to associate with each equality-proof rule of the previous
section a well-typed System FC-coercion term.

6.5.3 System F-Equality Expressions

The first-class equality proofs in System F∼ have no direct counterpart in System FC. How-
ever, in System FC, equality proofs may be stored in a data constructor. For example, for an
equality proof of type α ∼ β → Int, we can associate a data type:

data D α β = C (α ∼ β → Int)

In general, we associate a data type Dkey (τ,σ)α with a System F∼ proof of type τ ∼ σ (α =
ftv τ ∪ftv σ ), as well as a constructor Ckey (τ,σ) storing the System FC-coercion. We denote
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Γ ` e : τ  ê

x :: τ ∈ Γ

Γ ` x : τ  x
VAR

Γ ` e : σ  ê
Γ 
 σ ∼ τ  γ

ftv τ ⊆ ftv Γ

Γ ` e : τ  ê. γ
COERCE

Γ 
 τ ∼ σ  γ

ftv τ ⊆ ftv Γ

ftv σ ⊆ ftv Γ

Γ ` τ ∼ σ : τ ∼ σ  Jτ ∼ σK γ
EQ

Γ ` f : σ → τ  f̂
Γ ` e : σ  ê

Γ ` f e : τ  f̂ ê
APP.EXPR

Γ ` f : σ → τ  f̂
ftv σ ⊆ ftv Γ

Γ ` f σ : τ  f̂ JσK
APP.TY

Γ,x :: σ ` e : τ  ê
Γ ` λ (x :: σ).e : σ → τ  λ (x :: JσK).ê

LAM.EXPR

Γ,α ` e : τ  ê
α 6∈ ftv Γ

Γ ` Λα.e :∀α.τ  Λα.ê
LAM.TY

Γ,x :: ρ ∼ σ ` e : τ  ê x,y 6∈ Γ

Γ ` λ (ρ ∼ σ).e : (ρ ∼ σ)→ τ  λy.case y ofJρ ∼ σK (x : JρK∼ JσK)→ ê
LAM.EQ

Figure 6.7: System F∼-expr translation rules

Γ 
 τ1 ∼ τ2 γ

Γ 
 τ ∼ τ  JτK REFL

Γ 
 τ
r ∼ τ

l γ

Γ 
 τ
l ∼ τ

r sym γ
SYM

Γ 
 τ1 ∼ τ2 γ1
Γ 
 τ2 ∼ τ3 γ2

Γ 
 τ1 ∼ τ3 γ2 ◦ γ1
TRANS

x : τ1 ∼ τ2 ∈ Γ

Γ 
 τ1 ∼ τ  x
ASSUM

Γ 
 σ ∼ τ  γ1
Γ 
 ρ ∼ ρ  γ2

Γ 
 τ → ρ ∼ σ → ρ  γ1→ γ2
CON.ARR

γ1 :: (τ3 ∼ (τ4→ τ5)) ∈ Γ γ2 :: (τ6 ∼ (τ7→ τ8)) ∈ Γ

Γ 
 τ3 ∼ (τ6 γ3)
γ5 = right (sym γ1 ◦ γ3 ◦ γ2) γ6 = right (right (sym γ1 ◦ γ3 ◦ γ2))

γ5 :: τ4 ∼ τ7,γ6 :: τ5 ∼ τ8 
 τ1 ∼ τ2 γ4
γ1,γ2 6∈ Γ

Γ 
 τ1 ∼ τ2 γ4
SUB.ARR

Figure 6.8: Equality proof translation rules
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with Jτ ∼ σK the conversion from a System F∼-proof type to a System FC data type, or data
constructor according to the above procedure. Similarly, JσK denotes the translation of a
System F∼ type to a System FC type, by recursively mapping each coercion type τ ∼ σ to
Dkey (τ,σ)α .

Figure 6.7 shows the translation rules, which are the type rules of the previous section
extended with the resulting ê expression.

6.5.4 Translation of Proofs

Figure 6.8 shows how to produce coercion terms from the equality proof. We omitted the
rules for universal quantification: these are analogous. The rules REFL, SYM, TRANS, and
ASSUM have a direct mapping to a coercion-term.

Each individual rule is a solution to a small puzzle. For a proof of τ ∼ σ , we combine co-
ercions γ until they have exactly the same type according to coercion type rules in Figure 6.6.
For example, we can verify that rule SUB.ARR constructs a coercion with the right type as
follows:

γ1 :: τ3 ∼ (τ4→ τ5)
γ2 :: τ6 ∼ (τ7→ τ8)
γ3 :: τ3 ∼ τ6
sym γ1 ◦ γ3 ◦ γ2 :: (τ4→ τ5)∼ (τ7→ τ8)
right (sym γ1 ◦ γ3 ◦ γ2) :: τ4 ∼ τ7
right (right (sym γ1 ◦ γ3 ◦ γ2)) :: τ5 ∼ τ8

6.5.5 Correctness

It is easy to show that a well-typed equality-proof is translated to a well-typed coercion term
(see above). It is also easy to show that a System F∼ expression is translated to a well-typed
System FC expression. Because System FC has type soundness, we thus obtain that System
F∼ also has type soundness.

6.6 Related Work

Several approaches propose limitations to make inference for GADTs tractable. Many speci-
fications and algorithms for GADTs consist of two components: a type information propaga-
tion component and a type conversion component. A type information propagation strategy
determines what is known type information based on user-supplied type signatures, and what
is inferred type information. A type conversion strategy deals with the construction of coer-
cion terms.

6.6.1 Restricting Expressiveness for Tractable Inference

Sulzmann et al. [2006a] show that inference for GADTs is undecidable without a helping
hand from the programmer in the form of type annotations, and show that principal typing
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is lost. They present an inference algorithm that generates implication constraints, and apply
a technique called Herbrand abduction [Maher, 2005] to solve these constraints. A solution
to these constraints is a normalized constraint that implies the generated constraints. The
authors define a notion of a sensible solution; under these conditions the resulting type is
principal. These conditions are specified in terms of the algorithm.

We are reluctant to adopt such an approach, because it requires programmers to think in
terms of an algorithm. To discover why their program is (not) accepted by the type inferencer,
the steps of the algorithm have to be performed by hand.

Schrijvers et al. [2009] recently presented two type systems for GADTs, and the infer-
ence algorithm OutsideIn. The first type system is relatively simple, but inference for it is
undecidable. The latter is more restricted, but has OutsideIn as a sound and complete infer-
ence algorithm. Both specification and inference algorithm are given in terms of implication
constraints.

When type inference is combined with coercion inference, additionally a coercion τ1 ∼ τ2
may be constructed when τ1 unifies with τ2 (the result then corresponds to the REFL rule). The
main idea of OutsideIn is that binding of variables during such a unification is not allowed
on variables that are free in the environment (of the enclosing let-expression or case-branch).
These are called the “untouchable” unification variables. Type checking proceeds as normal,
except that a unification of a Skolem constant or with an untouchable requires a coercion
to be constructed. The actual construction of these coercions is done after type checking is
complete.

The approach is presented as a general solution to inference for GADTs. Although this
approach is sound and complete with respect to their specification, their specification still
requires type annotations for most functions with GADT patterns. For example, with Out-
sideIn, a type signature is needed for the following code that uses GADTs in the typical way:

data D a where
C1 :: Int→ D Int
C2 :: Bool→ D Bool
-- needs: f :: D α → α

f x = case x of
C1 y→ y
C2 z→ z

The reason is that α is free in the environment, and thus not unified.
This approach still lacks a good specification: it introduces “suspended judgments” to

encode a two-phase typing of an expression, which is actually harder to comprehend than the
algorithm itself. A problem here is that the untouchable variables do not appear explicitly
in conventional type system specifications. They might be eliminated by unification during
conventional type inference, and are notationally equal to the type the variable is unified with.
Thus, such a specification requires a programmer to know how the algorithm is distributing
its type variables over the program.

Lin and Sheard [2010] propose the Pointwise GADT type system. The notion pointwise
comes from the correspondence between the range-type of a constructor and the type of the
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scrutinee in a GADT case expression. During inference in case branches, type information
flows from and to such types. The authors identify two typical usage-patterns for GADTs, and
make a case to restrict the use of GADTs to these patterns. Parametric instantiation entails
that each case branch assumes the same specific instance of a polymorphic data type. Type
indexing entails that each case branch assumes a different instance of a polymorphic data type.
The authors propose a unification technique to restrict this bidirectional information flow.
From an implementation point-of-view, this approach is promising: the authors performed
several case studies of typical uses of GADTs and presented a mechanism that types many
typical usages of GADT programs without explicit type annotations. However, it is not clear
how this approach relates to the challenges we pointed out in Section 6.3.2. Furthermore, the
approach lacks a specification to serve as an explanation to the programmer.

6.6.2 Type Annotation Propagation Strategies

Pottier and Régis-Gianas [2006] use shape inference. A shape represents known type infor-
mation based on user-supplied signatures. These shapes are spread throughout the syntax tree
in order to locate possible coercions. Their approach uses complex algorithms to spread the
shapes as far as possible, iteratively. More iterations give rise to a better spread of annota-
tions, at a cost of performance. The essential part concerning GADTs is that incompatible
shapes are normalized with respect to some equation system, which is not made explicit in
their work. From an implementer’s point of view, this description is a concrete description of
the equation system, and it requires infrastructure for spreading shapes.

Similarly, Peyton Jones et al. [2006, 2004] define a notion of wobbly types to combine
type checking and type inference, which is based on earlier work on boxy types [Vytiniotis
et al., 2006]. A rigid type represents known type information based on user-supplied type in-
formation, whereas a wobbly type is based on inferred information. The idea is then that type
conversions are only applied on rigid types, for reasons of predictability and most-general
typing. Aside from wobbly types, the authors use concepts such as “fresh most general uni-
fiers” and lexically scoped type variables in their presentation. It is hard to distinguish which
of these concepts are really required, and which of these concepts are actually related to other
language features that are covered by their approach (such as type families). We incorporated
a notion of wobbly and rigid types in our specification: in an explicitly typed System F -
variant, the skolemnized type constants are rigid types, and we only allow type conversions
on those.

The exact choice of propagation strategy is an orthogonal issue. By allowing type con-
versions only on known type information, a better propagation strategy just means that less
explicit types have to be given by the programmer. This is the reason why we have chosen
an explicitly typed source language in the first place. In fact, for our own implementation of
this specification, we piggybacked on the infrastructure of the implementation of a higher-
ranked impredicate type system. It has two propagation strategies, of which the advanced
one has a concept of hard and soft type context, which can be compared to rigid and boxy
types [Dijkstra, 2005].
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6.6.3 Type Conversion Strategies

Peyton Jones et al. [2006, 2004] use a unification-based strategy, where type conversion is
called type refinement. A fixpoint substitution is constructed that, for each type equation
introduced by pattern matching, contains a mapping for each (non-wobbly) type component
of the left hand side of an equation, to the corresponding type component on the right hand
side of an equation. The substitution is then used to normalize the types under consideration.
The presentation is intertwined with the type propagation strategy, which makes it hard to
separate these concepts.

Wazny [2006] uses a constraint-based strategy. The GADT aspect of this strategy is cov-
ered separately by Sulzmann et al. [2006b], Stuckey and Sulzmann [2005]. They also for-
mulate the typing problems in terms of solving constraints with CHRs. The difference is
that we restrict ourselves to equality constraints, and do not need the machinery required to
solve implication constraints. Their typing/translation rules do not mention how to deal with
existential data types, which may be transparent to the given approach, but is of interest to
a reader because GADT examples often use them. In contrast to Peyton Jones et al. [2006],
restrictions on type conversions are not mentioned.

6.7 Conclusion

We presented a specification for GADT inference in terms of the language System F∼. This
language deviates from System F in three ways: it has syntax to request an equality proof, a
lambda to take an equality proof as argument and bring it in scope, and automatic coercions
based on equality proofs in scope. In this language, we can express GADTs using the folklore
Church encoding for data types.

Compared to other approaches, our specification is a small extension of a bare System F,
which allows us to treat data types and case expressions as syntactic sugar. Furthermore,
our specification describes what to do with other forms of pattern matching and binding,
exploiting encodings as conventional System F terms.

As future work, it may be worthwhile to investigate if algorithms such as OutsideIn [Schri-
jvers et al., 2009] can be specified in a simpler way by taking an implicitly typed variant of
System F∼ as a basis.
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Attribute Grammars are a powerful formalism to specify and implement the semantics of
programming languages (e.g. as in a compiler), in particular when the semantics are syntax
directed. Advanced type systems, however, have declarative specifications that encode deci-
sions that are independent of syntax. The implementation of such decisions is hard to express
algorithmically using conventional attribute evaluation.

This chapter presents Stepwise Attribute Grammars (SAGs). In a SAG, nondeterministic
choices can be expressed in a natural way in conjunction with unambiguous resolution strate-
gies based on attribute values. SAGs preserve the functional relationships between attributes
and support on-demand evaluation. The exploration of alternatives are encoded as a choice
between the semantic results of children. Evaluation of a child can be performed in a stepwise
fashion: it is paused after each step and yields a progress report with intermediate results, un-
til the child is reduced to its semantic value. This facilitates a breadth-first exploration of
choices, until choices can be resolved based on the progress reports.

7.1 Introduction

Attribute Grammars (AGs) [Knuth, 1968] are a formalism that is particularly suited for the
concise implementations for semantics of programming languages (e.g. static, operational,
denotational), in the form of a compiler or interpreter. Hereby, attributes play a crucial role:
properties of Abstract Syntax Trees (ASTs) can easily be expressed as attributes, and com-
bined to form more complex properties. These attributes can be shared and additional at-
tributes can be added on demand. For example, attributes related to name analysis and type
checking can be used in a later stage for code generation or the collection of error mes-
sages. We used AGs for many small, but also several large projects, including the Utrecht
Haskell Compiler (UHC) [Dijkstra et al., 2009], the Helium compiler for learning Haskell,
the Generic Haskell Compiler, and the editor Proxima. AGs, and corresponding tool support,
proved to be essential for these projects.

Modern programming languages allow a compiler to take some of the implementation ef-
fort away from the programmer. In C#, local type inference is employed, such that an abun-
dance of type signatures can be omitted. Many typed OO languages have an auto-boxing
feature to automatically wrap primitive values into objects. Such features save programmers
from tedious tasks. To specify this freedom, programming language specification are declar-
ative, and impose sufficient restrictions such that a deterministic algorithm exists.

Unfortunately, it is hard to deal with declarative type systems using conventional AGs.
For example, it is not immediately obvious how to express Haskell’s overloading for UHC
using an AG. In fact, we currently rely on a constraint solver external to UHC’s AGs. A lot
of boilerplate code is required to interface with such a solver, and it introduces an artificial
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phase distinction (which hampers on-demand evaluation). Consequently, it increases code
complexity severely. The goal of this chapter is therefore to extend AGs such that inference
algorithms for declarative type systems can be expressed in a natural way.

Since an AG is both a functional specification and implementation, our challenge is to
describe algorithms that resolve declarative aspects. The declarative aspects in a semantics
occurs in two forms: attributes with a non-functional definition (e.g. fresh types), and pro-
ductions that are not syntax-directed, but where their applicability depends on values of at-
tributes. These two aspects are mutually expressible (Appendix 7.G). As we prefer attributes
to be functionally defined, we focus on the second notion. Typically, we can deal with declar-
ative aspects using a unification-based approach, which integrates well with AGs [Dijkstra
and Swierstra, 2004]. However, some applications require a more powerful approach, with
an algorithm that actively tries out alternatives at choice points. For example, in a Haskell
compiler, to search for an equality proof for GADTs, and to resolve overloading in the pres-
ence of undecidable instances. Unfortunately, exploration of alternatives does not fit AGs
straightforwardly.

Such explorations do not fit out of the box, because productions are selected based on the
syntax (e.g. the parsed AST), and not on the values of attributes. To lift this restriction, there
are approaches that generate Prolog [Walsteijn and Kuiper, 1986, Arbab, 1986]. However,
we have several additional demands:

1. The approach needs to be compatible with any general purpose host language. From a
theoretical perspective: to allow the extension we propose to be integrated in other AG
systems as well; from a practical perspective: we have a large Haskell code base, thus
want to use Haskell as a host language.

2. We need a breadth-first evaluation with online results to deal with potential infinite
ASTs. Online results are also needed for integration with conventional on-demand
evaluation.

3. We need complex disambiguation strategies. In general, for deterministic results and
error reporting; in particular, to deal with some extensions to type classes that UHC
offers [Dijkstra et al., 2007b].

In this chapter, we present an approach that adds exploration of alternatives to AGs and meets
the above demands.

Our approach consists of following three key ideas:

1. We encode declarative aspects and their resolution as a choice function between chil-
dren of a production. Overall, attributes are evaluated using conventional on-demand
evaluation. Attributes of children participating in a choice, however, are evaluated
strictly.

2. We annotate productions such that they yield user-defined progress reports that contain
intermediate results upon strict attribute evaluation. After yielding a progress report,
evaluation for a child pauses. This allows the choice function to evaluate its children
in a step-by-step fashion until it has observed sufficient progress reports to commit to
one of the children. It may yield progress reports itself in the mean time.
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3. As implementation strategy, we map each production to a special form of coroutine that
can both be run greedily until it yields the next progress report, and be run to comple-
tion directly but with a lazy result. This implementation facilitates a hybrid evaluation
model between stepwise and on-demand evaluation, and is therefore compatible with
other AG techniques that depend on the conventional on-demand evaluation.

We motivate these ideas via an example in Section 7.2.
These ideas are inspired by a parsing technique by Swierstra [2009], Hughes and Swier-

stra [2003] to explore alternatives based on progress information reported by parsers. The
approach in this chapter is not directly related to parsing, but ultimately has its roots in the
above technique (for a detailed comparison, cf. Section 7.7).

In the text, we refer to appendices published in an accompanying technical report [Middel-
koop et al., 2010e] where certain topics are explored in more detail. The main contributions
of this chapter are:

• We define SAGs, a language extension to Attribute Grammars that copes with declara-
tive aspects in a semantics, while keeping the AG purely functional. We explain SAGs
in Section 7.2, and show how to translate them to Haskell as a host language in in
Section 7.3. We implemented this extension in the UUAG system [Löh et al., 1998].

• We introduce lazy coroutines, or stepwise computations, for which we provide an ref-
erence implementation (Section 7.4). In this chapter, we focus on the main ideas. The
Haskell library1 shows and explains many additional features that are useful in practice
(see also Section 7.6). The library may also be used by Haskell programs that need
powerful exploration capabilities, but are not related to AGs.

• As a proof of concept that these techniques are portable to other languages as well, we
also provide an implementation of the example in Section 7.2 in Java (Section 7.5).

7.2 Example of a Stepwise AG for a Predicate
Language

In this section, we take as running example an operational semantics2 for a Boolean predicate
language Pred. We show how to write Pred’s semantics as an AG using the notation as
supported by the UUAG system. The semantics is executable: its implementation yields an
interpreter in Haskell for Pred. Initially, the example is a functional specification, such that
we can resort to a conventional AG and explain the notation involved [Löh et al., 1998]. Next
we show that the semantics has an efficiency problem which we can solve by making the
specification more declarative. With a Stepwise AG we then deal with it.

1 Stepwise monad: https://svn.science.uu.nl/repos/project.ruler.papers/archive/

stepwise-1.0.2.tar.gz
2 For an example related to type systems, see Appendix 7.F.
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7.2.1 Syntax of the Predicate Language

Consider the following grammar for the abstract syntax of Pred:

data Pred -- Grammar for nonterm Pred as algebraic data type.
| Var nm :: String -- Variable with value in Env.
| Let nm :: String -- Binds (non-recursively) a

expr :: Pred -- name to the value of expr,
body :: Pred -- in scope of body.

| And left :: Pred -- The logical ∧ of two preds.
right :: Pred

| Or left :: Pred -- The logical ∨ of two preds.
right :: Pred

type Env = Map String Bool -- Environment that maps names to Booleans.

The data declaration introduces a nonterminal Pred, and a number of productions Var,
Let, etc. The fields of the production comprise the symbols of the RHS of the production,
consisting of a name nm, expr, etc. and a type. Some built-in types such as Bool and String
specify that the symbol is a terminal, otherwise the symbol is a nonterminal.

From the grammar, we generate constructor functions sem Var, sem Let, etc. which are
used to build attributed ASTs. Given an initial environment {"f"→ False,"t"→ True},
which binds a truth value to the free variables in the predicates, we turn a predicate into a
proposition. For example:

taut = sem Or (sem Var "t") (sem Var "f") -- True
contr = sem And (sem Var "t") (sem Var "f") -- False
alias = sem Let "a" (sem Var "t") (sem Var "a") -- True
big1 = sem And (sem Var "f") big1 -- False
big2 = sem And big2 (sem Var "f") -- False

Informally speaking, the Boolean value of taut is True and of contr is False. The big1 and
big2 predicates are large sequences of False that are combined with ands. In fact, these se-
quences are infinitely long, although we only use that for emphasis. Their truth value is False.
Formally, however, we have to define an operational semantics to make such statements.

7.2.2 Deterministic Operational Semantics

An operational semantics for a predicate takes an environment and provides a truth value.
We model these two aspects as attributes, which correspond to values attached to the nodes
of an AST: an inherited attribute env that represents the environment for the subtree, and a
synthesized attribute val that denotes the value of the subtree (for the given environment):

attr Pred inh env :: Env syn val :: Bool -- Typed attributes for nonterm Pred.

The obligation to define an inherited attribute for a node in the AST lies with the parent,
for a synthesized attribute it lies with a child. Via a sem-block, we define for each production,
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the production’s synthesized attributes, and the inherited attributes of its children using rules
written in the AG’s host language (in our case: Haskell expressions). These rules may refer
to the inherited attributes of the production and the synthesized attributes of the children. We
refer to an attribute using chld.atname notation. To refer to the attributes of the production
itself, we use the special name lhs. We refer to terminals by their name. Thus, we define the
semantics for predicates as:

sem Pred -- Specifies rules for productions of nonterm Pred.
| Var lhs.val = lookup nm lhs.env
| Let lhs.val = body.val -- Takes val from child body.

body.env = insert nm expr.val lhs.env
| And lhs.val = left.val ∧ right.val

left.env = lhs.env -- Copies down env to the left.
right.env = lhs.env -- Copies down env to the right.

| Or lhs.val = left.val ∨ right.val
left.env = lhs.env
right.env = lhs.env

Thus, we simply pass down the environment from top to bottom. For a variable, we lookup the
associated value in the environment. For a let-binding, we insert the value in the environment.
Finally, for the And and Or, we take the Haskell (short-circuiting) (∧) and (∨) on Boolean
values of the children.

From this AG, the UUAG compiler generates an interpreter that takes a predicate, defines
the root’s env attribute, and demands a value for root’s val attribute. On-demand evaluation
proceeds to compute those attributes when their values are needed during the computation
of the val attribute. In a purely functional language such as Haskell, we can represent a
decorated tree as a function from inherited to synthesized attributes [Saraiva and Swierstra,
1999]. More precisely, for each production (e.g. Var, And), we generate a function (sem Var,
sem And, respectively) that, given the functions corresponding to its children, represents a
Haskell function takes values for inherited attributes as parameter, and returns a product with
values for the synthesized attributes (Section 7.3).

When we run the interpreter on the examples given earlier, it gives the expected outcomes,
with a single exception: the computation for big2 diverges. The reason is that both (∨) and
(∧) start with the left argument first. This may involve a lot of computation (e.g. in case of
big2) that could be avoided by looking at the second argument first. Then, however, big1’s
evaluation would diverge. If big2 would be a long but finite sequence, then its evaluation
would not diverge but take a long time to produce an answer.

7.2.3 Declarative Operational Semantics

The ∧ and ∨ operators do not distribute evaluation over their operands well. To give more
freedom with respect to the evaluation order, we could add non-determinism to the spec-
ification, for example via multiple (conditional) interpretations of a production, using the
following (fictional) notation:
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sem Pred -- Productions with conditional alternatives.
| And1 lhs.val = left.val when left.val = False
| And2 lhs.val = right.val when right.val = False
| And3 lhs.val = left.val when otherwise
| Or1 lhs.val = left.val when left.val = True
| Or2 lhs.val = right.val when right.val = True
| Or3 lhs.val = left.val when otherwise

In this specification, there is freedom in the alternative to apply. A clever AG evaluator could
use a breadth-first exploration of alternatives combined with prioritizing those attributes that
are closer to the root and thus provide a more balanced evaluation strategy.

However, we want to be precise in this strategy. When both left.val and right.val are True,
the choice between Or1 and Or2 is ambiguous. For predictability reasons (and referential
transparency), it must be clear which one should be taken; also, we may prefer one over the
other based on some other available information. In some cases we may want to be biased
towards a particular subtree, potentially based on results computed at runtime. Hence, as
mentioned in Section 7.1, we want to be able to define this strategy ourselves.

7.2.4 Stepwise Operational Semantics

To define such a strategy, we take a less ad-hoc solution. In particular, we encode alternatives
as a choice between children instead of productions. We do not loose expressiveness (Ap-
pendix 7.E), and gain the ability to define strategies in terms of the evaluation of children.
In the remainder of this chapter, we focus on Or-predicates only, and leave the strategies for
And-predicates to the reader. For the Or-predicate, if we know that one of the children’s val
attribute evaluates to True, we can commit the choice to that child. We express this as follows,
using a function chooseor (to be defined later):

sem Pred | Or -- Rules for production Or of nonterm Pred.
left.env = lhs.env -- Copies down env to the left.
right.env = lhs.env -- Copies down env to the right.
merge left right as res = chooseor -- Creates child res using chooseor to merge.
lhs.val = res.val -- Pass val up from child res.

The merge-rule transforms children left and right into a single virtual child res. We may refer
to the synthesized attributes of res, but not to those of left and right. Similarly, we need to
define the inherited attributes of left and right, but may not define those of res.

The function chooseor takes the synthesized attributes of left and right as arguments, and
is required to provide values for the synthesized results for res3. As initial attempt, we define
chooseor as:

chooseor :: Bool→ Bool→ Bool
chooseor left val right val -- Synthesized attributes of left and right as parameter.

3Due to Haskell’s laziness, on-demand evaluation starts as soon as we scrutinize a value of an attribute.
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| left val = left val -- Takes the left value, or
| right val = right val -- takes right value, or
| otherwise = left val -- otherwise takes the left value.

With this function, we unambiguously specify what kind of solution we want. However, in
terms of evaluation we are back where we started: we evaluate the entire left child first, thus
evaluation is still left biased.

Scrutinizing the value of a synthesized attribute leaves us little control over the scheduling
of the evaluation4. In the example, we cannot return a result until we make the choice, but in
order to do so, we need to inspect the result, which causes one of the children to evaluate fully
before we have a chance to inspect the other one. Instead, we want the scheduling decisions to
be based on explicitly indicated intermediate results. On-demand evaluation does not help us
here, and therefore we propose a different evaluation scheme to choose between alternatives.

This leads us to the second idea of this chapter: we evaluate a child under a choice strictly
(instead of on-demand), thus computing attributes of children in a fixed order5. Instead of
completely evaluating all synthesized attributes of such child, however, we evaluate it just
far enough to yield a progress report. It then suspends to be resumed later. We explain later
how to emit such progress reports during evaluation. To explore or merge two children both
gradually and simultaneously, as well as report intermediate results to the parent, we take
their progress reports alternatively, and intertwine them (explained below).

In our example, we wish to prioritize evaluation to the child that we estimate has performed
the least amount of work, to balance out evaluation. For that, the progress reports need to give
an indication that some work has been done. Hence, we define a type for progress reports
(e.g. Info), with a plain constructor Work as possible value:

data Info = Work -- Application-specific type defined by programmer.

The value for a child that is passed to the chooseor function is not just the value of the
synthesized attribute, but now a stepwise computation of the type Stepwise Info Bool, where
Info is the type of the progress reports, Bool is the type of the synthesized attribute. The type
of chooseor changes to:

chooseor :: Stepwise Info Bool→ Stepwise Info Bool
→ Stepwise Info Bool

A computation of the type Stepwise Info Bool can be manipulated with a simple monadic API
(Section 7.4):

emit :: i→ Stepwise i () -- Type i equals Info here.
smallStep :: Stepwise i α → Report i α -- Evaluates to next report.

4 We can use Haskell’s lazy evaluation to return lazy approximations of the final values as result. This, however,
complicates the AG severely, as rules must be manually lifted to operate on approximations.

5In this chapter, we take the order of appearance of children in a production as strict evaluation order. UUAGC
actually supports Ordered Attribute Grammars (OAGs) [Kastens, 1980] that takes attribute dependencies into
account, and ensures that all attributes are well-defined (non-cyclic). Using OAGs, the order of appearance is
not important.
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data Report i α = Done α | Step i (Stepwise i α) -- Result of smallStep.
return :: α → Stepwise i α

(>>) :: Stepwise i α → Stepwise i beta → Stepwise i α

(>>=) :: Stepwise i α → (α → Stepwise i α)→ Stepwise i α

Function emit yields a progress report, and smallStep evaluates the computation until it is
Done (with attribute values) or yields a Step (with continuation). Computations are compos-
able via monadic operators. The monadic sequence (m1 >>m2) performs m1, throws away
its result, then performs m2 and delivers m2’s result. The monadic bind m>>= f performs f
parameterized with the result of m.

Using the above API, we now redefine chooseor as:

chooseor left right = choose′ (smallStep left) (smallStep right) where
choose′ (Done v) = if v then left else right -- Choose.
choose′ (Done v) = if v then right else left -- Choose.
choose′ (Step Work left′) (Step Work right′) -- Both yielded a Work.

= emit Work>> chooseor left′ right′ -- Pass on the report.

Both children perform a step. When one of them evaluates to Done, we inspect its attribute
and make a choice. By replacing the expression with either left or right, we eliminate the
other choice. Otherwise, we emit a step that a bit of work has been done (for the current node),
and retain the choice between the continuations of the children. This strategy effectively
encodes a breadth-first exploration of the children.

We emit a Work progress report for each Var node. To inject such reports, we extend the
Var production with a special built-in nonterminal Progress67. This nonterminal has a sin-
gle inherited attribute named info, and no synthesized attributes. Since it has no synthesized
attributes, a child of this nonterminal is never evaluated during on-demand evaluation. Dur-
ing strict evaluation, however, each child is evaluated. In that case, the implementation of
Progress yields the progress report that it took as parameter8. This is exactly the behavior
that we want. We are not interested in progress reports during on-demand evaluation, but the
more we are interested in them during strict evaluation.

data Pred | Var report : Progress -- Additional child of production Var.
sem Pred | Var report.info = Work -- Defines its inherited attribute.

The info attribute is defined by a conventional rule, thus as right-hand side, we have access to
any intermediate result (not needed for this example).

6 Alternatively, the additional child can be specified as a higher-order attribute using Higher-Order AGs [Vogt et al.,
1989] (supported by UUAG), which does not require us to change the production.

7 Actually, the Progress nonterminal can be implemented using a merge-rule (Appendix 7.A).
8 Visits to children may be omitted if the synthesized attributes of that child are not used. This is undesirable

when the child may emit a progress report. In Appendix 7.A, we explain that progress reports themselves can
be considered to be a hidden attribute. Hence, visits to children that emit progress reports can never be omitted
during stepwise evaluation. Also, referential transparency is preserved.
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7.2.5 Hybrid On-demand and Stepwise Evaluation

The attribute rules are oblivious towards stepwise evaluation. They are still pure functions
between attribute values, which is important to reason with AGs. Access to progress re-
ports is only possible in merge functions. Additionally, this allows stepwise and on-demand
evaluation to coexist.

Stepwise evaluation is strict, therefore it cannot deal with attributes defined in a cyclic way.
However, we only need stepwise evaluation while making a choice: once only one alternative
is left, we can continue with on-demand evaluation. For that purpose, we provide a function:

lazyEval :: Stepwise i α → α -- Runs computation lazily, returns syn attributes.

It takes a partially reduced child as parameter, ignores progress reports, and returns the at-
tributes (α is instantiated to a product of the attribute types) on which we may perform con-
ventional on-demand evaluation. Further details for lazyEval can be found in Section 7.4.

The global picture is that we start with lazyEval at the root of the AST. When lazyEval
needs an attribute value of a merged child, it asks for the result of the merge function (e.g.
chooseor). Consequently, chooseor invokes smallStep on its children, gradually reducing
the candidate children, and ultimately returns one of the residual children (e.g. left). Then
lazyEval proceeds with this child.

To implement these ideas, we arrive at the third idea of this chapter: The AG is compiled to
a special form of coroutines (Section 7.3). A coroutine is a function that may yield an inter-
mediate result and then suspends. Its caller receives that result, and can reinvoke the coroutine
again to resume its execution. This gives us the behavior of smallStep. For lazyEval, we need
some special behavior: in that case, a coroutine resumes and runs immediately towards its
end. It constructs only the administration needed to perform the remaining computations in
an on-demand fashion. We give an implementation for these special coroutines in Section 7.4.

7.3 SAG Translation

A SAG is a conservative extension of an AG that adds the merge rule. We sketched its
static semantics in the previous section. In this section, we sketch its denotational semantics:
we describe how to map a SAG to a monadic Haskell program (Translation scheme in Ap-
pendix 7.B). The monad is defined in Section 7.4. The SAG translation is largely based on a
conventional translation to Haskell, as implemented in UUAG [Saraiva and Swierstra, 1999].

To translate a SAG, we translate each production to a coroutine (e.g. sem And), imple-
mented as a monad. With the coroutines we build an attributed tree (e.g. taut and big1 in
Section 7.2.1). This tree is represented as a function from the inherited attributes to a product
of the synthesized attributes (and, as mentioned in the previous section, lifted in the step-
wise monad). We call this tree the semantic value or simply the semantics (of the associated
nonterminal/production). Thus, a coroutine is a function that takes the semantic values (or,
simply: semantics) of its children as parameter, and returns its own semantics. For example,
in case of nonterminal Pred, the type of its semantics (named I Pred) and the signature of
sem And are:
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type I Pred = Env→ Stepwise Info Bool -- Function type for attributed tree.
sem And :: I Pred→ I Pred→ I Pred -- Coroutine for And production.

We first discuss a translation of conventional AGs (sem And does not use merge). Corou-
tine sem And takes the semantics of its children as parameter. It must return its own se-
mantics, which is a function from its single inherited attribute env to its single synthesized
attribute val lifted in the stepwise monad. We use the encoding childXattr to unambiguously
refer to an attribute, where X equals I for an inherited attribute and S for a synthesized at-
tribute. The function body—the monad—comprises the plan for a production: it consists of
the calls to the children, and definitions of the attributes. At a function call to a child, we
pass its inherited attributes, then we obtain a monadic value with the synthesized attributes,
which we can match against. Recursive do-notation [Erkök and Launchbury, 2000] allows us
to write such plans concisely.

sem And left right = λ lhsIenv→ do rec -- Takes inh attr env.
leftSval ← left leftIenv -- Calls left child.
rightSval← right rightIenv -- Calls right child.
let leftIenv = lhsIenv
let rightIenv = lhsIenv
let lhsSval = leftSval ∧ rightSval
return lhsSval

>>=

>>=

parent f1

parent f2

active m pending

pending

Under the hood, the do-notation reorders the statements to produce a linearized plan as a
sequence of monadic binds9, e.g. (let-bindings omitted, replaced by dots):

left leftIenv>>=(λ ...→ right rightIenv>>=(λ ...→ return lhsSval))

A monadic bind m>>= f , expresses that the remainder of the plan f is parametrized with the
results of plan m (see the figure above). Strict evaluation goes from left to right, thus reducing
a plan gradually.

To translate the merge rule, consider the translation for sem Or. The calls to the involved
children are not made part of the plan: we do not match against their results. Instead, chooseor
takes the plans (stepwise computations) of its input children, and as result, must provide a
plan (computation) for its output child. Subsequently, we match against the output child to
obtain the synthesized attribute res.val of merged child res:

sem Or left right = λ lhsIenv→ do rec -- Function from lhs.env to lhs.val.
resSval← chooseor (left leftIenv) (right rightIenv) -- Translation for merge.
let leftIenv = lhsIenv -- Defines env for left.
let rightIenv = lhsIenv -- Defines env for right.
let lhsSval = resSval -- Takes val attribute from res child.
return lhsSval -- Returns result for Or production.

9 In general, also calls to mfix are inserted to deal with cyclic definitions. We provide a definition for mfix in the
library associated to this chapter. In practice, with UUAG, we use Ordered Attribute Grammars, that result in a
more sophisticated translation that only needs non-recursive do-notation, without mfix.
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SAGs are thus only a modest extension to the conventional translation. Most of the addi-
tional complexity is hidden in the implementation of the coroutine (Section 7.4).

7.4 Lazy Coroutines and the Stepwise Monad

We use a coroutine to represent the residual attributed tree after strict evaluations. We either
transform this coroutine to its lazy result via lazyEval, or run it greedily using smallStep to to
the point where it yields the next progress report. The data type Stepwise i a represents such
a coroutine. It exposes the following structure:

data Stepwise i a where -- Stepwise is a ‘defunctionalized’ monad.
Yield :: i→ Stepwise i a→ Stepwise i a -- Paused computation
Fail :: String → Stepwise i a -- Aborted computation
Return :: a → Stepwise i a -- Finished computation
Pending :: Stepwise i b→ Parents i b a→ Stepwise i a

data Parents i a b where -- Parent stack (root of type b, active child a).
None :: Parents i a a -- Bottom of the stack.
Bind :: (a→ Stepwise i z)→ Parents i z b→ Parents i a b

Yield means that the coroutine paused to yield a progress report of the type i. The second
component represents the continuation. Fail represents an aborted computation, and Return
means it succeeded, providing a value of type a.

During strict evaluation, reduction of a child starts only when its preceding sibling is fully
reduced (linear execution of the plans in Section 7.3). Hence, every node has at most one
child active, and a continuation of what to do after that child is finished. A Pending value
encodes this: the first component is the deepest child awaiting further evaluation. The second
component is the stack of parent-continuations. The GADT Parents i a b represents the parent
nodes that await a value of type a, to ultimately compute a value of type b. When we match
None, we reached the bottom of the stack, where we ensure that b equals a.

We can now give a Monad instance for Stepwise. The bind m>>= f is encoded as active
child m with single pending parent f :

instance Monad (Stepwise i) where -- Via the monad combinators, we
return = Return -- thus build a Stepwise-value, and
fail = Fail -- reduce this value via
m>>= f = Pending m (Bind f None) -- smallStep or lazyEval.

emit i = Yield i (return ())

Given a coroutine, we can run it immediately to its lazy result value. This process describes
how we transform a residual tree into a tree on which we can perform on-demand evaluation.
We step over any progress reports it may yield in the process. When we encounter a Pending,
we apply lazyEval to get a lazy result of the child, and use evalPending to provide it to its
parent, which in turn passes it to its parent, until we reach the root:
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lazyEval :: Stepwise i a→ a -- Interprets computation lazily.
lazyEval (Yield m) = lazyEval m -- Skips progress report.
lazyEval (Fail s) = error s -- Interpreted as ⊥.
lazyEval (Return v) = v
lazyEval (Pending m p) = evalPending p (lazyEval m)

evalPending :: Parents i a b→ a→ b -- lazyEval on chain of parents.
evalPending None a = a -- Reached the root.
evalPending (Bind f r) a = evalPending r (lazyEval (f a))

Given a coroutine, we can also run it greedily until it yields the next progress report. Either
it fails, is finished, or is paused with the yielded information i and the continuation to resume
it with:

data Report i a where -- Outcome of smallStep.
Failed :: String → Report i a -- Aborted with message.
Done :: a → Report i a -- Finished with value.
Step :: i→ Stepwise i a→ Report i a -- Paused with user report.

The function smallStep performs a strict reduction. Once it encounters a Yield it can stop
and return a Step:

smallStep :: Stepwise i a→ Report i a -- Evaluate until next report.
smallStep (Yield i m) = Step i m -- Pause after a yield.
smallStep (Fail s) = Failed s
smallStep (Return v) = Done v
smallStep (Pending m p) = reduce m p -- Continues with m, and possibly p.

For a Pending, its result depends on the reduction of the active child. If it finishes without
yielding a progress report, we pass the result to its parent and continue reducing the parent.
If the active child itself turns out to be a Pending, we push its stack on the stack we already
have, and continue reduction:

reduce :: Stepwise i a→ Parents i a b→ Report i b
reduce (Yield i m) r = Step i (Pending m r) -- Keeps residual parents.
reduce (Fail s) = Failed s
reduce m None = smallStep m -- No parents left.
reduce (Return v) (Bind f r) = reduce (f v) r -- Proceeds with parent f .
reduce (Pending m r′) r = reduce m $ push r′ r -- Concatenates stacks.
push :: Parents i a b→ Parents i b c→ Parents i a c
push None r = r -- Appends to the bottom.
push (Bind f r′) r = Bind f (push r′ r) -- Walk towards the bottom.

The merging of the parent stacks is important. The stack represents a whole subtree, with
the active child on top, and the root of the subtree on the bottom. When we want to reduce this
subtree one step, we can thus immediately reduce the active child without having to traverse
through the parents.
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We provide the API that we discussed in this section as a Haskell library. Its implementa-
tion satisfies the monad laws (Appendix 7.H) for both lazyEval and smallStep evaluation.
Furthermore, if it holds that smallStep∗ m = Done v then also lazyEval yields this value
lazyEval m = v. The converse is not necessarily true: lazyEval (⊥>>return ()) = (), whereas
smallStep∗ (⊥>>= return ()) = ⊥. However, when the AG is ordered, and each rule well-
founded, then also the converse holds.

7.5 Imperative Implementation

The reference implementation that we presented in the previous section relies on several
Haskell features, such as lazy evaluation, monads and GADTs. Despite that, the approach
is portable to imperative languages and AG systems for these languages. As a proof of con-
cept, we ported the example of Section 7.2 to Java (Appendix 7.J), and implemented a small
Stepwise support library10.

We encode demand-driven AGs as conventional for object oriented languages. AST nodes
are represented by objects, using subclasses for productions. Attributes are encoded as fields
on such nodes using getters and setters together with lazy initialization. We map each rule to
a Runnable object. A rule is associated with one or more attributes. When the value of an
attribute is not yet defined, the associated rule is executed, and the rule defines these attributes
using side effect. A rule may refer to the values of other attributes, thus driving on-demand
evaluation. Executing a rule twice has no effect.

Additionally, a node exposes a visit method that encodes the coroutine for strict evaluation.
The visit method may be invoked multiple times, and returns either with progress information,
or a pointer to a child node to evaluate first, or indicates that evaluation is done for the subtree.
With each execution, the visit method executes some of the rules. Nodes can thus be evaluated
strictly via the visit method, and on-demand by accessing the attributes directly.

As discussed in Section 7.3, children of a production come in two fashions: conventional
children and merged children. Conventional children are conventional AST nodes, which
expose inherited attributes. Merged children do not expose inherited attributes. To start
evaluation and access the synthesized attributes from both types of children, a stepwise com-
putation can be requested from a child. A stepwise computation is a coroutine-object that
supports the lazyEval and smallStep operations of Section 7.4. It represents the evaluation of
the subtree rooted by the child.

The stepwise computation obtained from a conventional child x represents the stack of
nodes under strict evaluation. A node on the stack has been partially evaluated strictly and is
waiting for strict evaluation of nodes above it to complete before proceeding with strict eval-
uation. The child x is on the bottom of the stack. The active child is the top of the stack. For
the lazyEval operation, the stepwise computation obtained from a conventional child directly
returns x. This corresponds to the evalPending operation, except that in contrast to the func-
tional implementation, we do not have to thread the lazy outcomes around because these are
represented by pointers and side effect in the imperative implementation. For smallStep, strict

10 Stepwise Java example: https://svn.science.uu.nl/repos/project.ruler.papers/archive/

jstepwise.jar
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evaluation proceeds with the active node. If it yields progress info, then these are returned as
the report for smallStep, and the evaluation is effectively paused again. If evaluation of the
active node is finished, the node is popped from the stack and evaluation continues with its
parent. If an active node requests evaluation of a child first, these are pushed on the stack.

The stepwise computation obtained from a merged child is an object with a visit method
that has access to the stepwise computation of the children that are being merged. With each
visit, it must return a progress report. In particular, it can report that the computation is to be
replaced with a computation of the children, thereby resolving the choice. Essentially, such a
computation is an imperative version of the monadic chooseor.

The imperative implementation closely resembles the functional implementation, although
more verbosely. A language with native support for coroutines would simplify the implemen-
tation slightly.

7.6 Remarks

7.6.1 Extensions

We used SAGs to rapidly prototype a type-directed transformation. It required a small ex-
tension of the presented ideas: semantic lookahead (Appendix 7.C). Often, a choice for a
subtree has consequences at another location in tree. We thus (may) need to investigate po-
tential alternatives beyond the evaluation of the subtree. To this end, we added a mechanism
to obtain the continuation, and investigate the steps coming out of the continuation.

To combine progress reports of different types, and allow them to depend on the result type
of the computation itself, we implemented transcoding (Appendix 7.D). It can also be used
to replace multiple reports by a single report (compression) to trade interleaving granularity
with fewer reports to examine.

Finally, we offer explicit sharing via references. We use this mechanism to deal with the
MonadFix instance required for recursive do-notation, and also to offer memoization (to turn
the AG under user-defineable conditions into a graph).

7.6.2 Benchmarks

We benchmarked our approach (Appendix 7.I) on a standard MacBook 2.1 with a 2 GHz dual-
core processor, 2 GB of main memory, and GHC 6.12.1. We compared the execution time of
code generated the conventional way by UUAG against code that uses stepwise evaluation,
and meassured the runtime overhead. The throughput of stepwise binds is about thirty times
slower than the bind of the identity monad. The overhead is constant for nextStep, and is a bit
more erratic for lazyEval (but comparable). On the other hand, the overhead is negligible in
practice. We compared the compilation speeds of UHC, which makes heavy use of AGs (for
both large and small tasks). The compilation time only marginally increased, and stays under
random noise induced by garbage collection.
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7.7 Related Work

This chapter is heavily inspired by uu-parsinglib [Swierstra, 2009, Hughes and Swierstra,
2003]. The parsing library supports both context-free and monadic grammars, and offers
online results as well as error correction. It offers a data-type similar to our Stepwise. The
essential difference is that uuparsing-lib’s bind cannot yield a result until the LHS of the
bind is fully step-wise evaluated11. Instead, required for the hybrid evaluation model, our
implementation can yield a result when the RHS can do so (when using lazyEval). Also,
uuparsing-lib’s implementation manually manages stacks with semantic values computed so
far (the outcome of the history parser), or semantic values still to come (the outcome of the
future parser). Instead, in our implementation, these values are implicitly represented as local
variables in closures.

Our work is related to various disambiguation strategies. Some approaches allow ambigu-
ous ASTs and impose syntactic restrictions to resolve these, e.g. by conditionally rejecting
certain productions based on the AST structure, or prioritizing some productions over oth-
ers [van den Brand et al., 2002]. Other approaches generate a parse forest and filter later,
potentially using semantic information [Bravenboer et al., 2005]. In contrast, our approach
does not require all alternatives to be available a priori, and works for also in case of infinite
trees and in combination with nonterminal attributes.

AGs are traditionally considered to select productions deterministically based on the syntax
of a language. Conditional Attribute Grammars [Boyland, 1996], as supported by the FNC-2
system [Jourdan and Parigot, 1991] and our experimental Ruler system [Middelkoop et al.,
2010a], allow multiple definitions for a productions guarded by conditions. These conditions
need to be evaluated first, thus offer limited control over the exploration of alternatives.

There are AG evaluators that generate Prolog code [Walsteijn and Kuiper, 1986, Paakki,
1991]. Such an approach that depends on a logic language is unacceptable for us, as it does
not mix well with our existing Haskell code. In contrast, our approach can be implemented in
an arbitrary general purpose host language. The lazy evaluation our Haskell implementation
relies on, actually just represents on-demand evaluation that other AG approaches provide.
Moreover, as sketched by Section 7.2.5, our approach is compatible with circular and remote
AGs [Magnusson and Hedin, 2007].

There are several different techniques to deal with declarative aspects in the specifications
of programming languages. We classify declarative sources in increasing complexity:

• Deterministic. Both the production selection and the value of attributes are purely
functional. A problem in this class trivially fits an AG. For example, auto-boxing and
implicit coercions fall in this category.

• k pass. A priori unknown values (type variables) and derivations (deferred judgments)
are replaced with place holders. Nodes in the AST are traversed at most k times. A

11 Formally: we can write a conventional AG as a lazy applicative functor. Monads are more expressive, hence we
require the following equality to hold, which is not the case for uu-parsinglib:

p?q ≡ p>>=λ f → q>>=a→ return (f a)
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decision about a place holder must be taken during one of these traversals. Typically,
information about place holders is maintained in a substitution (concrete assignments
to variables) or constraints (symbolic representation of a deferred judgment). For ex-
ample, Hindley-Damas-Milner type inference (algorithm W) has k = 1. After one
traversal, a type variable either got assigned a concrete type, or it is fixed by a skolem
constant (and generalized later). Haskell 98 overloading resolving is an example of
k = 2. In the first pass, type equalities are resolved and class-constraints are collected.
In the second pass, the class-constraints are resolved. Such problems can be dealt with
in AGs using additional attributes for substitutions and constraints.

• ω pass. Declarative aspects that are resolved by fixpoint iteration falls in this class.
This includes the class of type and effect systems. Also, resolution of Haskell’s over-
loading in combination with functional dependencies falls in this class. AGs with cir-
cular references can be used to encode such problems [Magnusson and Hedin, 2007,
Jones, 1990], or AGs that can express iteration [Middelkoop et al., 2010a].

• Exploration of alternatives. In the previous classes, declarative aspects are resolved
by sufficiently constraining a value, where the constraints are a pure function of the
(attributed) AST. In the exploration class, declarative aspects are resolved by explor-
ing assignments to place holders. This requires instantiations for place holders to be
enumerable. Haskell’s overloading combined with overlapping instances, and the con-
struction of equality coercions for GADTs fall in this class. This chapter positions
itself in this class.

• Undecidable. Inference for some declarative aspects is undecidable. For example, a
polymorphic type can in general not be inferred for an argument of a recursive function.

Haskell offers several library approaches for backtracking, via folklore Maybe and list
monads to more advanced monads [Hinze, 2000, Kiselyov et al., 2005, Fischer et al., 2009]
that deal with nondeterminism and lazyness. Alternatives are only explored for a value when
this value is required. However, the order of appearance of alternatives affect memory retain-
ment and how online the results are. See the discussion in Swierstra [2009, Section 4.1].

Coroutines were considered for many compilation tasks [Marlin, 1980]. Nowadays, they
are mostly used to implement producer-consumer patterns. Kastens [1980] showed how to
compile multi-visit AGs to coroutines. In this chapter we apply coroutines in a different
fashion. We use coroutines to expose explicitly indicated parts of the internal state of an AG
evaluation, in order to describe exploration strategies.

There are several approaches for monadic coroutines in Haskell. These implementations
have their roots in the folklore CPS monad to pause, abort and merge computations. Kise-
lyov’s Iteratees [Kiselyov, 2008] come close to our implementation. However, technical
differences aside, there is a conceptual difference. Typical coroutine implementations allow
invocations to take additional arguments. Since the result may depend on the value of such
a parameter, a lazy result cannot be given until the last invocation. Therefore, the hybrid
evaluation model that we presented cannot be implemented with such coroutines.
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7.8 Conclusion

We presented SAGs, a powerful language extension to Attribute Grammars to cope with
declarative aspects in the semantics of programming languages. We stated our requirements
in Section 7.1, and showed how our approach meets these demands by example in Section 7.2,
and sketched the implementation in Section 7.3 and Section 7.4. We implemented SAGs in
the UUAG system.

The idea central to our approach is to encode alternatives as a choice between children of
a production, and resolve this based on stepwise inspection of intermediate results of these
children in the form of progress reports.

As future work, we intend to replace the overloading mechanism as currently implemented
in UHC using the new AG features as presented in this paper. Also, a remaining question is if
the stepwise monad is powerful enough to simplify the implementation of uu-parsinglib.

In Appendix 7.A, Appendix 7.E, and Appendix 7.B we go into more detail of the AG part of
the story. Appendix 7.C and Appendix 7.D show improvements of the stepwise monad. Ap-
pendix 7.F gives an example that makes use of the additional improvements. Appendix 7.G
shows how various declarative aspects can be expressed in terms of each other. Proofs for
some of our claims related to the monad laws can be found in Appendix 7.H, and benchmark
results in Appendix 7.I. Finally, we show a translation to Java in Appendix 7.J. The thesis
contains appendices A-D. The extended edition contains the remaining appendices.

7.A Progress Reports and their Emission

As we mentioned in Section 7.2, we annotate productions with the built-in nonterminal
Progress to yield progress reports. Actually, this built-in nonterminal is only a notational
convenience: it is definable in terms of the merge-syntax that we presented before. In this
section, we show the implementation.

The data type Progress, as mentioned in this chapter, can be implemented as follows:

data Progress | Progress
attr Progress inh info :: a
sem Progress | Progress

merge as res : Progress = emit lhs.info>> return ()

It has a single inherited attribute, and a single production. This production has a single child
res, merged out of an empty set of children. To define the semantics of this child, we thus do
not get any semantics of children as parameter. Since Progress does not have any synthesized
attributes, defining a semantics for res is straightforward: we return the empty tuple ().

It is not immediately clear why this implementation would work: nonterminals without
any synthesized attributes never need to be visited. Referential transparency tells us that we
may replace a child with a product of its synthesized attributes, and attribute references with
the corresponding values. A child without synthesized attributes may never be evaluated, and
the progress report never yielded.
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The essential realization here is that there is that a hidden attribute plays a role: the
progress reports themselves are a purely functional attribute. Hence, during strict evaluation
via smallStep, we still visit children without any explicitly declared synthesized attributes in
order to get the progress reports. In contrast, during on-demand evaluation via lazyEval, we
ignore progress reports, hence do not evaluate children without synthesized attributes.

7.B Translation Scheme

In this section, we formalize SAGs. We first define a small core language sagcore, consisting
of Haskell extended with embedded AG blocks, obtained by desugering AG descriptions.
The following grammar lists the syntax of these embedded AG blocks:

i ::=attr I inh a1 syn a2 -- attribute delcs
a ::= x :: hty -- attribute decl, with Haskell type hty
s ::= sem I r -- semantics expr, defines production for I
r ::=p = e -- binds to p to pure e
| child c :: I = e -- declares child
| merge c as c :: I = e -- declares merged child

o ::= x.x -- expression, attribute occurrence
x, I,p,e -- identifiers, patterns, expressions respectively

Attribute declarations i declares all attributes (name and type) of a nonterminal I. A semantics
block defines a single production for a nonterminal I, and gives its rules r. Productions in
sagcore are nameless: we use a Haskell declaration to give it a name. Furthermore, we declare
its children through rules. Rules either define attributes, or declare children: we introduce all
children as higher-order attributes (Appendix 7.E). The expressions e are Haskell expressions,
with possible attribute occurrences o. Patterns p are Haskell patterns, also with possible
attribute occurrences o.

For example, we show how the production Or as mentioned in Section 7.2 is encoded
in sagcore. In UUAG-notation, we declare a production Or, declare the attributes of the
corresponding nonterminal, and give the rules for the attributes:

data Pred | Or left,right :: Pred
attr Pred inh e :: Env syn b :: Bool
sem Pred | Or

left.e = lhs.e
right.e = lhs.e
merge left right as res :: Pred = chooseor
lhs.b = res.b

In sagcore, we declare the attributes of the nonterminal, then use a Haskell function to repre-
sent the production: it takes the semantics of the children as parameter, then uses an embed-
ded semantics block to define the semantics for the production itself:
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attr Pred inh e :: Env syn b :: Bool
sem Pred And l r =

sem Pred
child left :: Pred = l
child right :: Pred = r
merge left right as res :: Pred = chooseor

left.e = lhs.e
right.e = lhs.e
lhs.b = res.b

We thus keep the rules, yet express the grammar directly as Haskell functions:

data N | C c :: I  sem N C c = sem N
sem N | C r child c :: I = c;r

With such a function that represents a production, we can construct attributed trees. Each
node in the tree has its own set of inherited and synthesized attributes: the associated nonter-
minal specifies their name and their types. The rules of the production define the attributes of
the production, and declare what attributes the children have. The production must define its
synthesized attributes, and the inherited attributes of its children exactly once (with a correct
type). Attribute references in the expressions may refer to the inherited attributes of the pro-
duction, or the synthesized attributes of the children. There is one exception: the inherited
attributes of the merged child (e.g. res) may not be defined, and the synthesized attributes of
the merging children (e.g. left and right) may not be referred to.

We define a translation to Haskell (denotational semantics) that gives both a static and
operational semantics to SAGs. If the generated Haskell program is type correct then so is
the sagcore program. The execution of the generated Haskell functions shows how the rules
are used to construct the attributed trees.

As mentioned in Section 7.3, we translate a semantics-block to an execution plan of the
production. We use a naming conventional to translate AG names to Haskell names. At-
tributes are referred to by an identifier cXa. In this notation, c and a are the name of the child
and the name of the attribute respectively. X is a subscript I for an inherited attribute, and
S for a synthesized attribute. Merging children are prefixed with an underscore (we assume
that names of children do not start with an underscore).

Each rule corresponds to an instruction in the execution plan. In the end, we return a tuple
with values for the synthesized attributes:

Jsem I rK  λ lhsI ins1 ... lhsI insn→ do rec
{JrK;return (lhsSout1, ..., lhsSoutm)}

Jchild c :: I = eK, conventional (cSout1, ...,cSoutm)← e cI ins1 ... cI insn
Jchild c :: I = eK, merged  let c = e cI ins1 ... cI insn

Jp = eK  let JpK= JeK
Jmerge cs as c : N = eK  (cSout1, ...,cSoutm)← JeK c1 ... ck

The indices m and n range over the inherited and synthesized attributes of nonterminal I.
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In previous work [Middelkoop et al., 2010a], we described different (more sophisticated)
translations of (Ordered) Attribute Grammars to execution plans (in Haskell). The merge-
syntax is fully compatible with those translations.

7.C Semantic Lookahead

In this section, we show how to deal with a choice that has a potential global effect on at-
tributes of the tree. For example, suppose that we deal with a type inferencer that needs to
choose between int and double for the type of a numerical constant. This choice may have
a global effect: a wrong choice potentially causes a typing error in the remainder of the pro-
gram to type. To explore such a choice, we want to look at the steps of a child and the steps
that the remaining computation gives if we would choose that child. In terms of the monad:
if k is the continuation after the choice, i.e. choose l r>>= k, then we want to lift the choice
to choose (l>>= k) (r>>= k).

We provide a monadic operation Ahead (explained below) to access the continuation k.
This operations comes at a price: since the continuation is not known until runtime, so we
wish our choose-function to work for arbitrary continuations. In particular, we refrain from
making static assumptions on the type of the result the continuation computes.

data Stepwise i a where
Ahead :: (forall b.(a→ Stepwise i b)→ Stepwise i b)→ Stepwise i a

Ahead takes as argument a function f that takes the continuation k as argument. To use Ahead,
we provide this function f . The continuation takes the result that we are supposed to compute,
and returns a computation of some existential type b. The computation passed to ahead thus
wraps around the computation: it specifies an input for the continuation, and allows us to
modify the result of the continuation. Thus, this lifted the choice to toplevel, as mentioned in
the previous paragraph. Also, modifying the result of the continuation instead of building an
input for the continuation based on trying out the continuation is what makes this approach
different from Continuation Passing Style’s call/cc.

As an example, a computation m is equivalent to Ahead (λk → m >>= k). As another
example, a global choice can be made using:

Ahead (λk→ choose (l>>= k) (r>>= k))

Although we cannot make an assumption about the type of the result of k, we can make an
assumption on the type of progress reports, and thus use the contents of the progress reports
to direct the exploration between the two choices (depending on the search strategy).

When we encounter an Ahead f in lazyEval, the question is what continuation we pass in.
The function f is required to get the computation that resembles the remaining continuation.
However, since we are in lazyEval, the continuation cannot return any progress reports, and
cannot observably fail. Thus we simply pass in Return, which succeeds immediately, and
gives us the result that f passes to its continuation:

lazyEval (Ahead f ) = f Return
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When we encounter an Ahead f in smallStep without parents on the parent stack, we pause
the computation. The evaluation can only continue if the caller specifies how the computation
proceeds (possibly by calling Ahead itself):

data Report i a where
Lookahead :: (forall b.(a→ Stepwise i b)→ Stepwise i b)→ Report i a

smallStep (Ahead f ) = Lookahead f

If there are parents on the parent stack, however, we continue to reduce f . The continuation
to pass to f are the remaining parents on the parent stack:

reduce (Ahead f ) (Bind g r) = smallStep $ f $ λa→ Pending (g a) r

The use of Ahead has an interesting interplay with the hybrid evaluation model. On-
demand evaluation skips progress reports, and passes a Return as continuation. If a parent of a
child that uses lookahead is evaluated on-demand, then the lookahead of the child does not ob-
serve the skipped progress reports. So, lookahead does not see beyond on-demand evaluated
AST nodes. So, if a progress report contains information essential to a choice using looka-
head, we need to take sufficient smallSteps at a common ancestor node such that the looka-
head observed the report. For example, we can emit a progress report e.g. DoneGreedy when
a choice using lookahead inspected the progress reports it was interested in, take smallSteps
at the root of the tree (or a common ancestor), until we encounter DoneGreedy, then switch
to lazyEval.

Also, Ahead has an interplay with multi-visit AGs (deriveable from Ordered Attribute
Grammars). Without Ahead, stepwise evaluation yields a Done for a child when the first visit
is finished. When using Ahead, however, yields a Done when the continuation finished with
its last visit. Again, the progress report mechanism can be used to limit the exploration to
certain visits, or yield the outcome of a visit as intermediate result.

It is advisable to ensure that all choices can be made based on results of the first visit. If
it requires a progress report that is emitted in a second visit, this requires the first visit to
finish completely, which is likely already a full exploration of the tree (for that choice). It
is possible to make the approach more flexible and offer just on-demand evaluation for first
visits, and (hybrid) stepwise evaluation for later visits. That would allow exploration in a
later visit based on (lazily) computed results in earlier visits. This requires visits to be made
explicit in the AG specification (Chapter 3 and Chapter 5).

7.D Watchers

With the approach described so far, the type i of a progress is fixed: given an m>>= k, both
m and the computation returned by k must have the same i type. This limitation affects
the compositionality of stepwise computations. Also, sometimes we wish to return progress
reports of the same type as the result of the computation12. On the other hand, since the type
12 See Example 7 of Examples.hs in the cabal package at https://svn.science.uu.nl/repos/project.

ruler.papers/archive/stepwise-1.0.2.tar.gz
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i is fixed, we know that a continuation has this type, thus when using Ahead (Appendix 7.C)
we can inspect the progress reports of the continuation. This we cannot do without knowing
i.

To get the best of both ways, we parametrize the type i with a type w that functions as an
index, the watcher. A computation has the type Stepwise i w a, which returns progress reports
with values of the type i w. When w is an existential type, e.g. when using Ahead, we can
still scrutinize on all values not dependent on w. If w is a concrete type, we can scrutinize the
depending values as well.

To embed a computation with a different watcher type, we provide a transcoding operation:

data Stepwise i w a where
Transcode :: (i v→ [i w ])→ Stepwise i v a→ Stepwise i w a

It takes a progress report of type i v and converts it to zero or more progress reports of type
i w. For example, smallStep (Transcode (const [ ]) m) does not return any progress reports. In
the actual implementation, we maintain composed transcoders on the parent stack, such that
we can immediately apply them without having to traverse the stack.

In practice, we also allow the transcoding function to store a local state, such that it can
remember a number of progress reports and combine them into a single progress report (com-
pression). If paths in the tree are long, and many nodes are inspecting and passing on progress
reports, then each node gets many reports to process (especially near the root). With the
transcoding mechanism, we can trade evaluation granularity for the number of reports.

7.E Additional Tree Structure

In the example in Section 7.2, the children to choose from are part of the original AST,
and reduced my the merge-rule to a single virtual child. This is not always the case, as the
example in this section shows.

Suppose that for a simply-typed lambda calculus, we want to specify two alternative pro-
ductions for an application-expression: one alternative represents strict application, the other
lazy application. As an optimization, we may choose a strict application when all functions
that can occur as left-hand side are strict in their respective argument. To encode this choice
between productions, we need to encode these choices as additional children that are not
present in the original AST. One option is to transform the tree on-demand, prior to attribute
evaluation. As alternative and more elegant approach, we can use a Higher-order Attribute
Grammar and use nonterminal attributes (or: higher-order attributes). In this section, we
demonstrate how.

We sketch a design pattern for multiple alternative productions by example, using several
UUAG features. The goal is to be able to define multiple semantics for a production, without
affecting the original context-free grammar. We start with the context-free grammar of the
example:

data Expr
| ... -- Some lambda calculus.
| App f :: Expr a :: Expr -- Conventional application.
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We concern ourselves only with the App production, which has two children, f and a respec-
tively.

We introduce additional nonterminals to represent the choices: a nonterminal AppDispatch
with production Dispatch that has a child for each alternative production. In particular, the
semantics of Dispatch deals with the choice—dispatch—between the alternatives. Further-
more, we introduce a nonterminal AppAlt, containing the alternative productions. Their struc-
ture is a clone of the App production. Being separate productions, we can give each its own
distict semantics:

data AppDispatch | Dispatch -- Introduces two children of nonterm AppAlt.
strict :: AppAlt lazy :: AppAlt

data AppAlt -- Productions for the above children.
| Strict f :: Expr a :: Expr -- Intended for child strict.
| Lazy f :: Expr a :: Expr -- Intended for child lazy.

sem AppDispatch | Dispatch -- Merges the children.
merge strict lazy as res :: AppAlt = chooseapp

sem AppAlt ... -- give some semantics to Strict and Lazy.

With these additional nonterminals and productions, we encode the semantics of App, such
that it literally encodes the choices as additional tree nodes. Below, we sketch the original
AST structure for App, and the intended structure. The nodes are displayed as a circle. The
nonterminal corresponding to a node is displayed above it, the production to the left, and the
name to the right. The merge is displayed as a square. The dotted arrows represent a transfer
of the semantics of a node to a different location in the tree.

Expr

Expr Expr

App

f a

Expr

Remap Remap AppDispatch

AppAlt

AppAlt AppAlt

Expr ExprExpr Expr

f a d

merge res

strict lazy

f a f a

App

Remap Remap Dispatch

Strict Lazy

We encode the semantics of
App, such that it resembles the
structure below.

To establish the the intended structure, we need to accomplish two tasks. Since we deal with
the actual semantics of App in the productions Strict and Lazy, it is actually inconvenient to
have f and a as children of App: we wish to take these children away, and attach them instead
below the strict and lazy nodes. Furthermore, we wish to construct a child d that dispatches
to strict or lazy.
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For the first task, we replace the semantics of f and a (nonterminal Expr) with a nonter-
minal Remap I Expr that provides the original semantics as a synthesized attribute, and is
described by:

data Remap a | Remap s :: a -- Terminal s stores semantics of type a.
attr Remap syn s :: a -- Attribute s provides it to parent.
sem Remap | Remap lhs.s = s -- Rule for s

To replace f and a’s semantics, we declare two nonterminal attributes f and a for App that
clash with the names of the original children f and a. The value for the nonterminal attribute
must be a semantics transformer: a function that takes the original semantics (I Expr) and
provides the transformed semantics (Remap I Expr), denoted as follows13:

sem Expr | App
child f :: Remap = λorigSem→ sem Remap origSem -- Transforms f .
child a :: Remap = λorigSem→ sem Remap origSem -- Transforms a.

The original semantics of f and a is passed as argument, thus we use it to store it as terminal
in the Remap node. Since f and a effectively now are of nonterminal Remap, it means we can
use attributes f .s and a.s to obtain the original semantics of f and a and use it to construct
child d.

For the second task, we construct d, again using a nonterminal attribute14:

sem Expr | App
child d :: AppDispatch = Dispatch (Strict f .s a.s) (Lazy f .s a.s)

The right-hand side is a proper semantics for AppDispatch, and describes the tree for d as we
visualized above.

Via these nonterminal attributes, we managed to tweak the tree structure, such that it con-
veniently encodes the choices that need to be made. The additional nodes still lack attributes:
they need at least the same attributes of Expr, and perhaps more if we want to. To prevent
having to write the attributes of Expr twice, we use UUAG’s nonterminal sets to define for
example an inherited environment attribute:

set AllExpr = Expr AppDispatch AppAlt -- Defines a set of nonterminals
attr AllExpr inh env :: Env -- Declares env for the three nonterms.

13 UUAG’s actual syntax for higher-order attributes differs slightly:

sem Expr | App
inst.f :: Remap {T Expr} -- type signature
inst.f = λorigSem→ sem Remap origSem -- conventional rule

14 For nonterminal attribute d, we do not get the original semantics of d as parameter by absence of a conventional
child d. The syntax for a nonterminal attribute thus adds or replaces depending on the existence of a conventional
child. Also, there may not be duplicate nonterminal attributes to prevent ordering issues.
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There is no need to define rules for the attributes of AppDispatch and App: these are auto-
matically provided by the copy-rule mechanism. Inherited and synthesized are respectively
passed topdown or bottom up when no explicit rules are specified.

In summary, we can easily encode a choice between productions as a choice between chil-
dren. In particular, using UUAG’s higher-order extensions and copy rules, this transformation
has a very concise and orthogonal implementation.

7.F Inference Rules and AGs

In this section we show an example that is closer related to type systems compared to Sec-
tion 7.2. Consequently, it is also more complicated. The example is an equality inferencer,
implemented with AGs. Given two objects (o1 and o2 respectively), and a set of equality
assumptions Γ, we wish to obtain a derivation Γ ` o1 ≡ o2 using the following conventional
reflection, symmetry and transitivity inference rules:

Γ ` o≡ o REFL

Γ ` o2 ≡ o1

Γ ` o1 ≡ o2
SYM

Γ ` o1 ≡ o2
Γ ` o2 ≡ o3

Γ ` o1 ≡ o3
TRANS

(o1,o2) ∈ Γ

Γ ` o1 ≡ o2
ASSUM

Clearly, these rules are not syntax directed: a derivation with these rules depends on both
objects. The rules are ambiguous. For example, we can apply SYM twice and end up where
we started. To disambiguate, we search for a derivation with minimal depth, in a fixed but
unimportant order. Also, in rule TRANS, o2 is not known a priori and needs to be guessed. To
simplify the example, we assume that the objects are finitely orderable, such that simply try
values for o2, instead of having to resort to variables and unification.

We start with a grammar E for equality derivations, and attributes that represent the param-
eters of the equality relation. As output, we define an attribute pp that is a string representation
of the derivation:

data E | Any | Refl | Sym | Trans | Assum
attr E inh l,r :: Obj env :: Env syn pp :: String
type Env = Set (Obj,Obj)

The productions are all empty. We define per production nonterminals for each premise,
using higher-order attributes. For example, the production Any makes a choice between any
of the other productions:

sem E | Any
child refl : E = sem Refl
child sym : E = sem Sym
child trans : E = sem Trans
child assum : E = sem Assum
merge refl sym trans assum as prf : E = λe1 e2 e3 e4→

memo (lhs.l, lhs.r)$ info Work>>one localChoice [e1,e2,e3,e4 ]
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lhs.pp = prf .pp
one = foldl f (fail "")

A child-rule introduces a nonterminal where the semantics is defined by the RHS of the child
rule (Appendix 7.E). We assume that if a rule for an inherited attribute of a child is omitted,
the value is taken from an equally named attribute of lhs instead. Note that prf does not have
any inherited attributes, because it’s a merged child.

One of the four alternative children is selected by one. It takes the first child to succeed,
or the last one to fail (left biased) and calls it prf . By adding a progress report in front of the
selected choice, the number of progress reports stands for the depth of the derivation. Later
we see a variant of localChoice, which can look ahead beyond the child to see if evaluation
after we pick a certain candidate succeeds.

Instead of a derivation tree, we build a derivation graph via memorization. It remembers
the outcome using as key (lhs.l, lhs.r). If it encounters the same key while actually defining
itself, it causes a backtrack (prevents cycles). Also, lookaheads cannot see beyond memo.

To implement SYM, we search for a derivation with the inputs swapped:

sem E | Sym
child prf : E = sem Any
prf .l = lhs.r
prf .r = lhs.l
lhs.pp = "sym"++prf .pp

To implement REFL, we need to check that the left and right sides are equal. Similarly,
for ASSUM, we check that the equality occurs as assumption in the environment. For that,
we introduce an additional nonterminal, C. It takes a Boolean value as inherited attribute. If
this value is True, if defines the pp attribute, otherwise it fails the evaluation. We encode this
behavior using a merge with an empty set of children:

data C | Check
attr C inh guard :: Bool syn pp :: Doc
sem C | Check

merge as res : C = if lhs.guard then pp "check" else fail "guard"
lhs.pp = res.pp

sem E | Refl
child c : C = sem Check
c.guard = lhs.l≡ lhs.r
lhs.pp = "refl"++ c.pp

sem E | Assum
child c : C = sem Check
c.guard = (lhs.l, lhs.r) ∈ lhs.env
lhs.pp = "assum"++ c.pp

Finally, TRANS. We use a nonterminal G to guess the intermediate term. For that, we enu-
merate objects, and select one of them, using lookahead via globalChoice. This lookahead
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is essential, because we need to pick an intermediate term that works with both premises of
TRANS:

data G | Guess
attr G syn obj :: Obj
sem G | Guess

merge as res : G = one globalChoice $ map return enumerate
lhs.obj = res.obj

sem E | Trans
child g : G = sem Guess
child prf 1 : E = sem Any
child prf 2 : E = sem Any
prf 1.l = lhs.l
prf 1.r = g.obj
prf 2.l = g.obj
prf 2.r = lhs.r
lhs.pp = "trans"++prf 1.pp++prf 2.pp

The inference rules look rather innocent, but an inferencer for them is far from trivial. With
our AG extension, we can now relatively easily deal with such inference rules.

7.G Mutual Expressibility of Declarative Aspects in
Rules and Productions

We hinted in Section 7.1 that declarative aspects in rules and productions are mutually ex-
pressible, and can both be encoded as a choice between children. We showed the latter for
productions in Appendix 7.E. For declarative aspects in rules we actually need to qualify our
statement: it works for finite and inductively defined data types15. We give an example in this
section.

Suppose that types are inductively defined as follows:

data Ty = Int | Arrow Ty Ty

In an AG for a type inferencer, we wish to define a semantics for the lambda production that
infers the type of the argument. When we assume that we can obtain somehow a nondeter-
ministic value fresh, we could write the semantics for a lambda expression as follows:

attr Expr inh env :: [(String,Ty)] syn ty :: Ty
sem Expr | Lam

loc.argTy = fresh

15 Technically speaking, the statement holds for any value represented by a finite number of bits (which is the case
for any value in practice).
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body.env = x : loc.argTy, lhs.env
lhs.ty = Arrow loc.argTy body.ty

We nondeterministically get a type for the argument, and use this in the environment for
the body of the lambda, and for its type. Note that the definition for loc.argTy clashes with
referential transparency: fresh is not associated with a single unique value. Also note that
there may be infinitely many values possible for argTy: for predictability reasons, we want to
make explicit what value is chosen here.

We can encode the above declarative aspect in a functional way: we define a tree that repre-
sents all possible values of type Ty, and use the choice function globalChoice (Appendix 7.F)
to choose to smallest Ty that results in a successful inference.

First, we introduce a nonterminal attribute of nonterminal FreshDispatch (defined later)
that provides us with a synthesized attribute ty that holds the fresh type:

sem Expr | Lam
child fr :: FreshDispatch = mkFresh
loc.argTy = fr.ty

Then, mkFresh builds such an infinite tree of fresh possibilities for a type. We follow the
pattern described in Appendix 7.E: FreshDispatch corresponds to a dispatcher node that has
a child (respectively, int and arrow) for each alternative type:

mkFresh = FreshDispatch FreshInt (FreshArrow mkFresh mkFresh)
data FreshDispatch | Dispatch int :: FreshAlt arrow :: FreshAlt
data FreshAlt
| FreshInt
| FreshArrow arg :: FreshDispatch res :: FreshDispatch

attr FreshDispatch FreshAlt syn ty :: Ty

The semantics of Dispatch defines that (with a preference for int) the child that makes the
evaluation succeed (for a notion of success defined by the other code of the inferencer) is
chosen:

sem FreshDispatch | Dispatch
merge int arrow as res = globalChoice

sem FreshAlt
| FreshInt lhs.ty = Int
| FreshArrow lhs.ty = Arrow arg.ty res.ty

These declarative forms are thus indeed mutually expressible. In practice, however, we typ-
ically deal with declaratively defined attributes in a different way: we use a unification-based
approach together with an additional substitution attribute, which does not need an explo-
ration of alternatives. While we can encode the declarative aspect via such an exploration,
there may be more efficient ways to resolve it.
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7.H Proofs

In this section, we present proofs of some important properties of the stepwise monad. For
simplicity, we take the implementation of Section 7.4, without the extensions mentioned in
Section 7.6. We prove that the monad laws hold. This is important, because the desugaring of
monad notation makes use of them. Also, it is a sanity check that gives additional confidence
in the correctness of the implementation. We need to prove that:

Left identity: return a>>= f ≡ f a
Right identity: m>>= return≡ m
Associativity: (m>>= f )>>=g≡ m>>=(λx→ f x>>=g)

In our case, we have to prove the monad laws twice, because we have two interpretations of
the monad: lazyEval and smallStep.

7.H.1 Monad Laws for Lazy Evaluation

These proofs are straightforward equivalence proofs that exploit Haskell’s referential trans-
parency to reduce the LHS and RHS to a common term:

lazyEval (return a>>= k)
≡ lazyEval (Pending (Return a) (Bind k None))
≡ evalPending (Bind k None) (lazyEval (Return a))
≡ evalPending None (lazyEval (k a))
≡ lazyEval (k a)

lazyEval (m>>= return)
≡ lazyEval (Pending m (Bind Return None))
≡ evalPending (Bind Return None) (lazyEval m)
≡ evalPending None $ lazyEval $ Return $ lazyEval m
≡ lazyEval m

In case of the associativity law, we reduce both sides to a chain of lazyEval calls. This is
the intuition behind evalPending: for each parent on the pending stack, it passes to the parent
the lazyEval of its child:

lazyEval (m>>=(λx→ k x>>=h))
≡ lazyEval (Pending m (Bind (λx→ Pending (k x) (Bind h None)) None))
≡ evalPending (Bind (λx→ Pending (k x) (Bind h None)) None) (lazyEval m)
≡ lazyEval $ (λx→ Pending (k x) (Bind h None))$ lazyEval m
≡ lazyEval $ Pending (k (lazyEval m)) (Bind h None)
≡ lazyEval $ h $ lazyEval $ k $ lazyEval m
≡ lazyEval $ h $ evalPending (Bind k None)$ lazyEval m
≡ lazyEval $ h $ lazyEval (Pending m (Bind k None))
≡ evalPending (Bind h None) (lazyEval (Pending m (Bind k None)))
≡ lazyEval (Pending (Pending m (Bind k None)) (Bind h None))
≡ lazyEval ((m>>= k)>>=h)
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7.H.2 Monad Laws for Stepwise Evaluation

The proof for left-identity is still a straightforward equivalence proof:

smallStep (return a>>= k)
≡ smallStep (Pending (Return a) (Bind k None))
≡ reduce (Return a) (Bind k None)
≡ reduce (k a) None
≡ smallStep (k a)

The remaining proofs are more complicated. We quickly run into the problem that we
cannot rewrite any further because we do not know some of the variables, e.g. m:

smallStep (m>>= return)
≡ reduce m (Bind Return None)
...
≡ smallStep m

To proceed, we use structural induction and case distinction on all possible values of m,
which means that we use induction over the sequence of progress reports yielded by m. First
the inductive case:

case m of
Yield i n→ reduce (Yield i n) (Bind Return None)

≡ Step i (Pending n (Bind Return None))
≡ Step i (n>>= return) -- induction hypothesis
≡ Step i n
≡ smallStep (Yield i n)

In contrast to many inductive proofs, actually the base case is the interesting part. We finish
off most cases via trivial equality rewrites. Unfortunately, when m is a Pending-value, we are
again stuck:

case m of
Yield i n →⊥ -- Falsum: no progress report
Fail s → reduce (Fail s) (Bind Return None)

≡ Failed s
≡ smallStep (Fail s)

Return v → reduce (Return v) (Bind Return None)
≡ reduce (Return v) None
≡ smallStep (Return v)

Pending n p→ reduce (Pending n p) (Bind Return None)
≡ reduce n (push p (Bind Return None))
...
≡ reduce n p
≡ smallStep (Pending n p)
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We proceed with structural induction on n and p, such that we may continue to unfold
reduce. The cases for Yield, Fail and Pending for n are similar to cases above. Of interest are
the two cases with None and Bind for p. We may apply this induction hypothesis, as well as
the earlier one above:

case p of
None→ reduce n (push None (Bind Return None))

≡ reduce n (Bind Return None) -- I.H (above)
≡ smallStep n
≡ reduce n None

Bind f q→ reduce n (push (Bind f q) (Bind Return None))
≡ reduce n (Bind f (push q (Bind Return None))) -- I.H.
≡ reduce n (Bind f q)

The proof for the associativity law proceeds in a similar way.

7.I Benchmarks

Regarding asymptotic complexity, it is easy to show that in the worst case the performance is
exponential in the number of choice points. For small inputs, this may not be a problem, and
in general it is up to the programmer to keep alternatives to a limit. A remaining question,
however, is how much overhead the stepwise evaluation induces. This overhead should be
constant, and we experimentally validated that this is indeed the case.

For this purpose, we compared the evaluation of a sequences of binds, using both the
stepwise monad and the identity monad16. Benchmark id uses the identity monad, lazy
uses lazyEval, and step uses full stepwise evaluation. We tested both nested binds, and long
sequences of binds, via the following benchmark:

bindbench length depth = tree depth where
runner 0 n = n ‘seq‘ return ()
runner m n = tree n>>=λ ()→ runner (m−1) n
tree 0 = return ()
tree n = runner length (n−1)

We ran the benchmarks on a standard MacBook 2.1 (2 GB RAM, 2 GHz Core 2 Duo) with
GHC 6.12.1 and GCC 4.2.1. The outcome was measured via the criterion package (ver-
sion 0.5.05). It executed the benchmarks hundreds of times. We used +RTS -H512M as
commandline parameter to minimize the effect of garbage collection. The variance of the
measured results was less than a percent.

16 See https://svn.science.uu.nl/repos/project.ruler.papers/archive/StepBenchmarks.hs.
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depth length id (ms) lazy (ms) step (ms)
1 10,000 0.0555 1.40 1.42
1 100,000 0.554 20.2 14.4
1 1,000,000 5.56 259 144
5 2 0.000540 0.0102 0.0137
7 2 0.00230 0.0415 0.0564
9 2 0.00905 0.166 0.231
5 3 0.00214 0.0585 0.0809
3 50 0.712 18.2 26.0
4 10 0.0680 1.63 2.35

Indeed, both the evaluation via the identity monad and full stepwise evaluation show a con-
stant amount of overhead per bind, with about a factor 30 throughput difference. Lazy eval-
uation shows a more erratic behavior. With an earlier and simpler version of our library –
essentially the implementation of Section 7.4 – we measured a factor 10 throughput differ-
ence. The additional complexity discussed in Section 7.6 thus has its cost. However, this
benchmark does not show us what to expect in a real application.

To measure actual performance in practice, we compiled UHC (repository version 2226,
04 dec 2010) with both the conventional AG translation (using the --optimize flag) and the
stepwise AG translation. For the latter, we added the Control.Monad.Stepwise.AG mod-
ule to the export list of UHC’s Common.chs. Furthermore, we added the commandline option
--with-uuagc-options="--breadthfirst" to the call to UHC’s configure. Since the
AGs of UHC are orderable, we can fully evaluate them stepwise, without requiring lazyEval.
Three insignificant AGs were not orderable: for these we used the conventional translation.
We believe that the UHC is a good benchmark to validate AG performance in practice: it
uses hundreds of AGs for its implementation, such as AGs that work on large data struc-
tures (the ASTs of various Haskell programs), but also on thousands on small data structures
(for example, to compute the free variables of a type). The AGs also vary on the number of
productions, and the number of rules.

We measured the time that it took for UHC to compile programs from the nofib bench-
mark suite. Additionally, we verified that the outcome and performance of the compiled
Haskell programs are not affected by the difference in implementation of UHC. The outcome
of these benchmarks, combined with the proofs of Section 7.H and the strong typing disci-
pline imposed on the monad, gives us confidence in the correctness of the implementation.
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benchmark (name) conventional (sec.) stepwise (sec.)
imag/bernouilli 4.51 4.95
imag/binarytrees 4.35 4.40
imag/digits-of-e1 4.14 4.16
imag/digits-of-e2 3.85 3.88
imag/exp3_8 4.33 4.29
imag/gen-regexps 4.26 4.38
imag/integrate 4.29 4.34
imag/loop 3.76 3.81
imag/nsieve 1.11 1.10
imag/paraffins 5.55 5.62
imag/partial-sums 4.40 4.48
imag/pidigits 4.60 4.29
imag/primes 3.77 3.72
imag/queens 3.74 3.81
imag/recursive 4.37 4.37
real/infer 11.9 11.8

The difference in performance is very small. On average, the performance using stepwise
computations is marginally worse. However, with such small differences, the garbage collec-
tor has more impact on performance, as the cases for imag/nsieve and real/infer seem
to suggest. With these results, we dare to say that our implementation is ready to be used in
practice.

7.J Java Implementation

In Section 7.5, we gave a short overview of an imperative implementation of the work as
described in this chapter. In this section, we work out the example of Section 7.2 using Java
instead of Haskell. We derive the code for the example in a systematic way. We thus describe
implicitly how to translate AGs to Java. In comparison to AG systems such as JastAdd [Ek-
man and Hedin, 2007], our approach offers lazy and strict evaluation, higher-order attributes,
and the stepwise features of this chapter. Furthermore, there is a clear correspondence be-
tween the Java implementation and the reference implementation in Haskell.

As conventional in object-oriented languages with class-based inheritance, we introduce
an abstract class for each nonterminal and a subclass for each production. Nodes of the AST
are instances of these subclasses. A child of a production has the abstract class as its static
type, and one of the subclasses as its runtime type. The abstract class contains the inherited
and synthesized attributes of the nonterminal as fields. A subclass contains the rules of the
production (and possibly local attributes). For the example, we thus introduce a abstract class
Pred, and a subclass for each production:

public final class PredConst extends Pred /* implemented later */

public final class PredVar extends Pred /* implemented later */

public final class PredLet extends Pred /* implemented later */

public final class PredOr extends Pred /* implemented later */

public final class PredAnd extends Pred /* implemented later */
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The constructors of the subclasses take values for the symbols of the associated production
as parameter. For example, we can construct the predicate p3 that represents ‘x or false’:

Pred p1 = new PredVar("x");

Pred p2 = new PredConst(false);

Pred p3 = new PredOr(p1, p2);

We show later how to pass values for inherited attributes to such a node, and how to extract
values for synthesized attributes. We first show how attributes, rules and attribute evaluation
are represented.

The abstract class Pred contains inherited and synthesized attributes in the respective fields
inhs of type PredInh and syns of type PredSyn. The inherited attributes are publicly acces-

sible via the getter method inhs. The synthesized attributes may only be accessed directly
by the node itself. We show later that a parent node uses the method lazyEval on a child
(inherited from the class Node) to access the child’s synthesized attributes. The Node type is
parameterized with tree types: the type of the object containing the synthesized attributes, the
type of the information messages that may be yielded during strict evaluation, and the types
of failures it may generate.

public abstract class Pred extends Node<PredSyn, Info, BacktrackException> {

private PredInh _inhs;

private PredSyn _syns;

public Pred() {

_inhs = new PredInh();

_syns = new PredSyn(); }

protected PredSyn syns() {

return _syns; }

public PredInh inhs() {

return _inhs; }}

public class PredInh {

private Attr<HashMap<String, Boolean>> _env;

public PredInh() {

_env = new Attr<HashMap<String, Boolean>>(); }

public Attr<HashMap<String, Boolean>> env() {

return _env; }}

public class PredSyn {

private Attr<Boolean> _value;

public PredSyn() {

_value = new Attr<Boolean>(); }

public Attr<Boolean> value() {
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return _value; }}

Attributes are parameterized by the type of values that they store. Initially, an attribute is
initialized to null. An attribute can be assigned a value in two ways. Either a value can
be explicitly set via the attribute’s set method, or a rule can be associated via the method
dependsOn. In the latter case, when the value of the attribute is requested via the get method
and the attribute is not yet defined, the associated rule is run. The rule calls the set method to
assign a value to the attribute. Therefore, we require rules to be encoded as objects, such that
they can be passed around as first-class citizens.

public final class Attr<T> {

private T _value;

private Runnable _rule;

public Attr() {

_value = null;

_rule = null; }

public T get() {

if (_value == null && _rule != null)

_rule.run();

return _value; }

public void set(final T value) {

_value = value; }

public void dependsOn(final Runnable rule) {

_rule = rule; }}

The Node class from which all AST nodes inherit exposes the synthesized attributes only to
subclasses of Node. The intended usage protocol is that after creation of a child node, its
parent first assigns rules to the node’s inherited attributes. Subsequently, the parent may issue
a call to the begin method to obtain a stepwise computation. A stepwise computation of a
child represents the computations for the subtree rooted by that child (captured by the class
Parents that we discuss later). A stepwise computation can be manipulated in two ways. It
can be lazily evaluated via lazyEval, such that it returns the node’s synthesized attributes,
or it can perform one evaluation step, and return a progress report (the class Report that we
discuss later).

public abstract class Node<X, I, E> extends CoroutineBase<I, E> {

public Node() {}

abstract protected X syns();

public Stepwise<X, I, E> begin() {

return new Parents<X, I, E>(this, syns()); }}

public abstract class CoroutineBase<I, E> implements Coroutine<I, E> {
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/* implemented later */ }

public interface Stepwise<X,I,E> extends Coroutine<I,E> {

X lazyEval(); }

public interface Coroutine<I,E> {

Report<I,E> nextStep(); }

Both the node and the stepwise computations are coroutines. We can invoke a coroutine such
that it runs until it yields a report. The stepwise computations orchestrate nextStep calls on
the nodes, as we see later.

Along similar lines as the protocol that we described above, we construct the AST, assign
values for the root’s inherited attributes, use begin on the root to get its stepwise computation,
then finally invoke lazyEval to get the synthesized attributes.

public final class Main {

public static void main(final String[] args) {

// build tree

Pred p1 = new PredVar("x");

Pred p2 = new PredVar("y");

Pred p3 = new PredOr(p1, p2);

// set inherited attributes of the root

p3.inhs().env().set(new HashMap<String, Boolean>());

p3.inhs().env().get().put("x", false);

p3.inhs().env().get().put("y", true);

// start on-demand evaluation

Stepwise<PredSyn, Info, BacktrackException> outcome = p3.begin();

boolean result = outcome.lazyEval().value().get();

System.out.println("result: " + result); }}

Since Java does not have native support for coroutines, we encode it as an object that has a
nextStep method that can be invoked multiple times. During each invocation it may perform
some computations and yield a progress report. It may keep track of its local state via private
fields of the encapsulating object.

To ease the implementation of coroutines, the CoroutineBase class provides boilerplate
code. Such a coroutine must implement the method visit. This method encodes a sequence
of computations indexed by a parameter state. This parameter is incremented after each
invocation, such that the visit method can invoke the next sequence of computations. The
visit method does not directly return a progress report, but may call API functions to enqueue
one or more progress reports. The nextStep method invokes the visit method until there is at
least one element in the queue, and subsequently returns this report.

public abstract class CoroutineBase<I, E> implements Coroutine<I, E> {

private LinkedList<Report<I, E>> _actions;

private int _state;

public CoroutineBase() {
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_state = 0;

_actions = new LinkedList<Report<I, E>>(); }

public Report<I, E> nextStep() {

Report<I, E> rep = null;

while (true) {

rep = _actions.poll();

if (rep == null) {

visit(_state);

++_state; }

else

return rep; }}

protected abstract void visit(final int state);

protected void emit(final I info) {

_actions.add(new ReportInfo<I, E>(info)); }

protected void resumeAfter(final Stepwise<?, I, E> child) {

_actions.add(new ReportChild<I, E>(child)); }

protected void abort(final E failure) {

_actions.add(new ReportFail<I, E>(failure)); }

protected void done() {

_actions.add(new ReportDone<I, E>()); }

protected void commit(final Stepwise<?, I, E> comp) {

_actions.add(new ReportReplace<I, E>(comp)); }}

The method emit enqueues a ReportInfo report that provides user-specified progress informa-
tion. The method resumeAfter enqueues a ReportChild report. It demands that the nextVisit
method is only called again after strict evaluation of the provided stepwise computation (pre-
sumably a child of the current computation) is run to completion first. The methods abort
and done enqueue failure and completion reports respectively. Finally, the method commit
enqueues a ReportReplace report. It specifies that the current stepwise computation should
be replaced by the provided computation. We use this report later to be able to replace a
choice between stepwise computations by one of the choices.

public interface Report<I, E> {}

public class ReportReplace<I,E> implements Report<I,E> {

private Stepwise<?,I,E> _comp;

public ReportReplace(final Stepwise<?,I,E> comp) {

_comp = comp; }

public Stepwise<?,I,E> get() {
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return _comp; }}

public class ReportInfo<I,E> implements Report<I,E> {

private I _info;

public ReportInfo(final I info) {

_info = info; }

public I get() {

return _info; }}

public class ReportFail<I,E> implements Report<I,E> {

private E _failure;

public ReportFail(final E failure) {

_failure = failure; }

public E get() {

return _failure; }}

public class ReportDone<I,E> implements Report<I,E> {

public ReportDone() {}}

public class ReportChild<I,E> implements Report<I,E> {

private Stepwise<?,I,E> _child;

public ReportChild(final Stepwise<?,I,E> child) {

_child = child; }

public Stepwise<?,I,E> get() {

return _child; }}

In contrast to the Haskell implementation does a ReportDone not provide the resulting values
for synthesized attributes. This turns out to be more convenient for the Java implementation,
because we then don’t have to concern ourselves with the type X of the stepwise computa-
tions. We hide this type via existentials in the ReportReplace and ReportChild reports. After
strict evaluation is done for a node, we may call lazyEval on the stepwise computation and
get immediate access to the already evaluated attributes.

The visit methods of nodes invoke rules in a fixed order. Alternatively, when accessing
attributes, rules may be invoked on-demand. To prevent double calculations and side effect,
Rules must implement the execute method, which is only called from the run method when it
has not been run yet.

public abstract class Rule implements Runnable {

private boolean _hasRun;

public Rule() {

_hasRun = false; }
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public void run() {

if (!_hasRun) {

_hasRun = true;

execute(); }}

protected abstract void execute(); }

For each production, we generate a subclass of the abstract class of its nonterminal. An
object of this subclass contains values of the terminal and nonterminal symbols as private
fields. These values must be provided as parameters to the constructor. The constructor
creates the rules for the production, and connects rules to the synthesized and local attributes.
The attributes are constructed by the constructor of the Pred base class. A rule may refer to
other attributes. If such an attribute has not been evaluated, the dereference causes its on-
demand evaluation. When a rule is called via strict evaluation, it is actually guaranteed that
the attributes where the rule depends on are already evaluated.

public final class PredVar extends Pred {

private final String _name; // symbols

private final Rule _rule1; // rules of the node

public PredVar(final String name) {

_name = name;

// construct rules

_rule1 = new Rule() {

public void execute() {

boolean b = inhs().env().get().get(_name);

syns().value().set(b); }}

// setup dependencies of synthesized and local attributes

syns().value().dependsOn(_rule1); }

protected void visit(final int state) {

switch (state) {

case 0:

_rule1.run(); // compute syn attr

emit(new InfoWork());

break;

default:

done();

break; }}}

The visit method executes rules in a fixed order, such that values are already computed before
they are needed (strict evaluation).

Nodes are either constructed by a rule, or available as private field. A node, however, is not
the same concept as a child. A child is represented by two attributes: one attribute containing
a reference to the associated node, and an attribute containing the stepwise computation of
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a child. Virtual children are only represented by the attribute containing the stepwise com-
putation. The former attribute is used to associate rules to the child’s inherited attributes (or
assign concrete values from these rules). The latter attribute is used to obtain the stepwise
computation in order to access the child’s synthesized attributes. Children are defined by
rules (i.e. via a child-rule in the formalization). With this scheme, we support both nodes that
are created up-front and nodes that can be constructed on-the-fly. For the production PredLet
of the example, we have two nodes expr and body. Rules rule4 and rule5 turn these nodes
into children e and b (represented by attributes eIn, eOut, bIn, and bOut respectively).

public final class PredLet extends Pred {

// symbols

private final String _name;

private final Pred _expr;

private final Pred _body;

// local attributes

private final Attr<Pred> _eIn;

private final Attr<Pred> _bIn;

private final Attr<Stepwise<PredSyn, Info, BacktrackException>> _eOut;

private final Attr<Stepwise<PredSyn, Info, BacktrackException>> _bOut;

private final Rule _rule1, _rule2, _rule3, _rule4, _rule5, _rule6, _rule7;

public PredLet(final String name, final Pred expr, final Pred body) {

_name = name;

_expr = expr;

_body = body;

_eIn = new Attr<Pred>();

_bIn = new Attr<Pred>();

_eOut = new Attr<Stepwise<PredSyn, Info, BacktrackException>>();

_bOut = new Attr<Stepwise<PredSyn, Info, BacktrackException>>();

// construct rules

_rule1 = new Rule() {

public void execute() {

HashMap<String, Boolean> env = inhs().env().get();

_eIn.get().inhs().env().set(env); }}

_rule2 = new Rule() {

public void execute() {

boolean val = _eOut.get().lazyEval().value().get();

HashMap<String, Boolean> env = (HashMap<String, Boolean>) inhs()

.env().get().clone();

env.put(_name, val);

_bIn.get().inhs().env().set(env); }}

_rule3 = new Rule() {
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public void execute() {

boolean val = _eOut.get().lazyEval().value().get();

syns().value().set(val); }}

_rule4 = new Rule() {

public void execute() {

_eIn.set(_expr);

_eIn.get().inhs().env().dependsOn(_rule1); }}

_rule5 = new Rule() {

public void execute() {

_bIn.set(_body);

_bIn.get().inhs().env().dependsOn(_rule2); }}

_rule6 = new Rule() {

public void execute() {

_eOut.set(_eIn.get().begin()); }}

_rule7 = new Rule() {

public void execute() {

_bOut.set(_bIn.get().begin()); }}

// setup dependencies of synthesized and local attributes

syns().value().dependsOn(_rule3);

_eIn.dependsOn(_rule4);

_bIn.dependsOn(_rule5);

_eOut.dependsOn(_rule6);

_bOut.dependsOn(_rule7); }

protected void visit(final int state) {

switch (state) {

case 0:

_rule4.run(); // create expr child

_rule1.run(); // assign its inh attr

_rule6.run(); // prepare it

resumeAfter(_eOut.get());

break;

case 1:

_rule5.run(); // create body child

_rule2.run(); // assign its inh attr

_rule7.run(); // prepare it

resumeAfter(_bOut.get());

break;

case 2:

_rule3.run(); // assign syn attr

done();

break;

default:
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done();

break; }}}

In the above code, rule4 actually constructs the child e from the node stored in the private
field, and associates rules to the child’s inherited attributes. The visit method specifies the
code to run until the evaluation of the first child, the code to run until the evaluation of the
second child, and finally the code to run in the end. By using resumeAfter on a child, it ensures
that the visit method is only invoked again after strict evaluation of that child is finished.

In the PredOr production, the choice between the two children is captured by the virtual
child res. It is represented by an attribute that contains a stepwise computation ChooseOr
that corresponds to this choice.

public final class PredOr extends Pred {

// symbols

private final Pred _left;

private final Pred _right;

// local attributes

private final Attr<Pred> _leftIn;

private final Attr<Pred> _rightIn;

private final Attr<Stepwise<PredSyn, Info, BacktrackException>> _resOut;

private final Rule _rule1, _rule2, _rule3, _rule4, _rule5, _rule6

public PredOr(final Pred left, final Pred right) {

_left = left;

_right = right;

_leftIn = new Attr<Pred>();

_rightIn = new Attr<Pred>();

_resOut = new Attr<Stepwise<Pred, Info, BacktrackException>>();

// construct rules

_rule1 = new Rule() {

public void execute() {

_leftIn.get().inhs().env().set(inhs().env().get()); }}

_rule2 = new Rule() {

public void execute() {

_rightIn.get().inhs().env().set(inhs().env().get()); }}

_rule3 = new Rule() {

public void execute() {

boolean b = _resOut.get().lazyEval().value().get();

syns().value().set(b); }}

_rule4 = new Rule() {

public void execute() {
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_leftIn.set(_left);

_leftIn.get().inhs().env().dependsOn(_rule1); }}

_rule5 = new Rule() {

public void execute() {

_rightIn.set(_right);

_rightIn.get().inhs().env().dependsOn(_rule2); }}

_rule6 = new Rule() {

public void execute() {

ChooseOr choice = new ChooseOr(_leftIn.get().begin(), _rightIn

.get().begin());

_resOut.set(choice); }}

// setup dependencies of synthesized and local attributes

syns().value().dependsOn(_rule3);

_leftIn.dependsOn(_rule4);

_rightIn.dependsOn(_rule5);

_resOut.dependsOn(_rule6); }}

protected void visit(final int state) {

switch (state) {

case 0:

_rule4.run(); // create left child

_rule5.run(); // create right child

_rule1.run(); // assign left’s inh attr

_rule2.run(); // assign right’s inh attr

_rule6.run(); // prepare it

resumeAfter(_resOut.get());

break;

case 1:

_rule3.run(); // assign syn attr

done();

default:

done();

break; }}}

Rule rule6 initializes the child by constructing a MergeOr computation that takes the step-
wise computations of the two children as parameter. Also note that rule6 is assigned as
dependency to resOut attribute. If rule6 is not invoked via strict evaluation, then on-demand
evaluation invokes it when an attribute of child res is needed.

The choice between children proceeds by taking steps from both children and inspecting
the progress reports. If evaluation for one of the children is finished, a choice can be made.
Otherwise the choice itself emits a progress report. A choice is made via the commit method,
which yields a ReportReplace report.

public class ChooseOr extends Merge<Pred, Info, BacktrackException> {

protected final Stepwise<X,I,E> _left;
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protected final Stepwise<X,I,E> _right;

public ChooseOr(final Stepwise<Pred, Info, BacktrackException> left,

final Stepwise<Pred, Info, BacktrackException> right) {

_left = left;

_right = right; }

protected void visit() {

Report<Info, BacktrackException> r1 = _left.nextStep();

Report<Info, BacktrackException> r2 = _right.nextStep();

if (r1 instanceof ReportDone)

commit(_left.lazyEval().syns().value().get() ? _left : _right);

else if (r2 instanceof ReportDone)

commit(_right.lazyEval().syns().value().get() ? _right : _left);

else if (r1 instanceof ReportFail)

commit(_right);

else if (r2 instanceof ReportFail)

commit(_left);

else if (r1 instanceof ReportInfo && r2 instanceof ReportInfo)

emit(new InfoWork()); }}

The class Merge is a stepwise computation. It implements lazy evaluation by taking steps
until the choice has been resolved. Then it proceeds with lazy evaluation on the selected
child.

public abstract class Merge<X, I, E> extends CoroutineBase<I, E> implements

Stepwise<X, I, E> {

public Merge() {}

public X lazyEval() {

while (true) {

Report<I, E> rep = nextStep();

if (rep instanceof ReportReplace) {

ReportReplace<I, E> repl = (ReportReplace<I, E>) rep;

Stepwise<X, I, E> comp = (Stepwise<X, I, E>) repl.get();

return comp.lazyEval(); }

else if (rep instanceof ReportFail) {

throw new RuntimeException(

"all alternatives fail."); }}}}

Note the cooperation between stepwise and on-demand evaluation. Lazy evaluation never
has to redo the work already done due to stepwise evaluations.

Finally, we show the stepwise computation that can be obtained from a node. The Parents
class drives the stepwise evaluation of a subtree. It represents the intermediate stages of strict
evaluation on this subtree. The subtree is represented by a stack. The active node is at the top
of the parents stack. The bottom of the stack is the root of the subtree. Lazy evaluation returns
the synthesized attributes of the root. Depending on how much strict evaluation took place,
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attributes may already have been computed. The nextStep method delegates invocations to
the deepest nodes of subtrees (e.g. the top of the stack) until a progress report can be yielded.
Evaluation of such a node may cause new children to be pushed on the stack (as reaction
on a ReportChild report), nodes to be replaced (as reaction of a ReportReplace report), and
children to be popped off (when evaluation for a child is complete).

public final class Parents<X,I,E> implements Stepwise<X,I,E> {

private X _syns;

private LinkedList<Coroutine<I,E>> _stack;

public Parents(final Node<X,I,E> node, final X syns) {

_stack = new LinkedList<Coroutine<I,E>>();

_stack.add(node);

_syns = syns; }

public X lazyEval() {

_stack.clear();

return _syns; }

public Report<I,E> nextStep() {

while(true) {

Coroutine<I,E> head = _stack.poll();

if (head == null)

return new ReportDone<I,E>(); // stack empty, we are done

if (head instanceof Parents) { // merge stacks

Parents<?,I,E> other = (Parents<?,I,E>) head;

_stack.addAll(0, other._stack);

continue; }

Report<I,E> rep = head.nextStep();

if (rep instanceof ReportReplace) {

ReportReplace<I, E> repl = (ReportReplace<I, E>) rep;

Coroutine<I, E> comp = (Coroutine<I, E>) repl.get();

_stack.addFirst(comp);

continue; }

else if (rep instanceof ReportFail)

return rep;

else if (rep instanceof ReportChild) {

ReportChild<I, E> child = (ReportChild<I, E>) rep;

Coroutine<I, E> comp = (Coroutine<I, E>) child.get();

_stack.addFirst(head);

_stack.addFirst(comp);

continue; }

else if (rep instanceof ReportDone)

continue;

else if (rep instanceof ReportInfo) {

_stack.addFirst(head);
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return rep; }}}}

The implementation can be improved a bit further, because we do not actively remove ref-
erences to children that are not needed anymore, thus retain memory longer than strictly
necessary. Furthermore, lazyEval can be improved by returning either the values of the syn-
thesized attributes, or a replacement computation. When a rule needs a synthesized attribute,
it should (via some helper object) iterate lazyEval until it eliminated all intermediate Merge
nodes. The memory usage of the bookkeeping is linear in the number of nodes of the tree plus
the maximum number of progress reports that can be yielded by a node. The computations
needed for the bookkeeping run in time linear in the number of nodes plus for each merge
node in time linear to the maximum number of progress reports.

We showed a translation to Java. In a similar way a translation to C# can be made. An
advantage of C# over Java is that local attributes without a type signature can be supported
using untyped fields. In principle, the approach of this chapter is not restricted to a particular
programming language. However, care has to be taken in combination with side effect. When
a node is shared (i.e. as in remote reference AGs [Magnusson and Hedin, 2007]), a progress
report is only received by one the parents. This behavior may be desirable; many search
algorithms work on graphs instead of trees.
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Given a type system that is written as a collection of type rules, we investigate the automatic
derivation of inference algorithms from these rules. A minor challenge are the side effects of
a rule, which need to be expressed algorithmically. A major challenge are non-deterministic
aspects of rules that cannot be directly mapped to an algorithm.

We present Ruler, a language for type inferencers, to meet these challenges. An inferencer
is written as a collection of rules with side conditions explicitly expressed in Haskell, and
with annotations for the scheduling of the rules.

This chapter includes an extensive case study of an inferencer for the “First Class Poly-
morphism for Haskell” type system [Vytiniotis et al., 2008].

8.1 Introduction

A type system is “a tractable syntactic method for proving the absence of certain program be-
haviors by classifying phrases according to the kinds of value they compute” [Pierce, 2002].
Given a type system, it is often not immediately clear whether there exists an algorithm that
can automatically infer a valid type for a (type correct) program. More specifically, if the
type system has principal types, is there an algorithm that can infer the most general type of
each expression?

Most type systems have a declarative specification in the form of a collection of type rules.
How to effectively and efficiently use these rules for building type correctness proofs is a
separate issue, and having a systematic way in building such type inferencers from such a
collection of rules is still an open issue. The benefits of having such a method are:

Consistency. A strong coupling between formal description and implementation makes it
easier to show how certain properties proved for the type system carry over to the
inferencer.

Rapid prototyping. Experimenting with an implementation of a type systems leads to a
deeper understanding of the meaning of the rules and their complexity. However, lan-
guage developers are currently discouraged to do so as it is cumbersome to write in-
ferencers from scratch. A framework will relieve programmers from this burden and
hence support rapid prototyping.

Abstraction. Interacting language features obscure and complicate language semantics. In
many inference algorithms, the unification procedure makes the essential decisions
about non-deterministic aspects. This requires context-information to be carried to and
into the place where unification is performed, and complicates the inferencer. Instead,
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we would like to be able to deal with the decision making process at the places where
the non-deterministic aspects occur in the type rules.

Documentation. In comparison with the type rules, the type inference algorithms are often
not completely documented and explained. Often they are specified by a concrete (and
sometimes obscure) implementation.

This chapter shows that it is possible to semi-automatically obtain inference algorithms
from type rules. We do not get them entirely for free. A major problem is that type rules
generally contain non-deterministic aspects. For example, more than a single rule may be
applicable at the same time. Even when the rules are syntax directed, they may state demands
in the form of side conditions about a type (or other value), of which concrete information is
not easily available from the context.

A solution to this challenge are annotations which control the scheduling of the resolution
of non-deterministic aspects by manipulating guesses. A guess is an opaque value repre-
senting a derivation that has not been constructed yet. It also serves as a place holder for a
concrete value. We can pass such guesses around, observe them, and impose requirements
on them. When a sufficient number of requirements have been accumulated, the actual value
of the guess is revealed and we can attempt to construct the derivation.

Therefore, we contribute the following:

• We present a typed domain specific language for type inferencers called Ruler. One of
its distinguishing features is the possibility to provide annotation for type rules. Also,
side expressions are expressed using conventional Haskell code.

• We give examples of increasing complexity of inferencers for type systems with non-
deterministic aspects, and show how manipulating guesses leads to their resolution
(Section 8.2). We demonstrate the power of these annotations by providing an infer-
encer for the type system of FPH [Vytiniotis et al., 2008] that is directly based on
FPH’s collection of declarative type rules (Section 8.2.4).

• We formalize the notation (Section 8.4), the operational semantics (Section 8.5) and
the static semantics (Section 8.7) of Ruler.

• We discuss the rationale of our design compared to prior work on the construction of
type inferencers (Section 8.3).

• We have a proof-of-concept, Haskell-based implementation for a meta-typed front-end
in which inferencer rules with custom syntax can be encoded. Furthermore we pro-
vide an executable version of the operational semantics which interprets the inference
rules and produces a derivation in terms of the original type rules for all expressions it
manages to type.

The reason that we have chosen Haskell as the target language for our generated inferencers
are:

• We can use the expressiveness of Haskell for writing the semantics of side conditions
in type rules.
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• There are many libraries available for Haskell that provide efficient data structures and
external constraint solvers.

• We can integrate the inferencer with other Haskell projects, in particular the Utrecht
Haskell Compiler [Dijkstra et al., 2007a]. We have compiler technology readily avail-
able (parsers, tree-walk generators, pretty printers, etc.) to facilitate rapid prototyping.

8.2 Examples

In this section we show how to use Ruler in describing a series of type inferencers of in-
creasing complexity. We took the examples such that each example builds on the previous
one. We start from an inferencer for the explicitly typed lambda calculus in Section 8.2.1.
Admittedly, the inferencer in this case does only type checking, but we use it to informally
introduce the Ruler inferencer language (formally in Section 8.4) and informally describe its
evaluation model (formally in Section 8.5). Then, in Section 8.2.2, we move on to an infer-
encer for implicitly typed System F, in which several cases of non-determinism arise. Finally,
we show the inferencer for FPH in Section 8.2.4, which demonstrates the expressive power
of the annotations.

For each example we show the type rules and the actual inferencer code. As they have a
tight resemblance, be warned not to confuse the two!

Syntax:
e = x | f a | λ (x :: τ). e | let x = e in b | fix f
τ = α | τ1→ τ2

Rules:

(x,τ) ∈ Γ

Γ ` x : τ
VAR

Γ ` f : τ f Γ ` a : τa
τ f ≡ τa→ τr

Γ ` f a : τr
APP

x :: τx,Γ ` e : τ

Γ ` λ (x :: τx).e : τx→ τ
LAM.EXPL

Γ ` e : τx
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
LET

Γ ` f : τ f τ f ≡ τ → τ

Γ ` fix f : τ
FIX

Figure 8.1: Type system for explicitly typed lambda calculus.

8.2.1 Explicitly Typed Lambda Calculus

Figure 8.1 gives the type system for the explicitly typed lambda calculus [Church, 1940,
Pierce, 2002]. The rules define a relation between an environment Γ, expression e, and type
τ .
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8 Residuation

For the inferencer, this corresponds to a function (we call it a scheme) that takes an en-
vironment Γ and expression e as inputs and produces a valid type τ , if there exist such a
type according to the rules. The Ruler code of the inferencer of this type system is given in
Figure 8.2. We discuss each part further below.

Scheme declarations. To obtain an inferencer in Haskell, we actually want a Haskell
function tc with the type: Map String Ty→Expr→ I Ty where I is some monad encapsulating
failure and state. Thus, concerning the meta variables, we need to know whether they serve
as inputs or outputs, and what their meta type is. This information is given in the scheme
declaration. It defines the name of the function (i.e. tc), the syntax of the function call in the
inferencer rules (scheme instantiation), the names and types of the meta variables, whether
a meta variable is an input (C) or an output (B), and a optional property d or u of a meta
variable. In this case, the d-property requires that we supply an instance of Deferrable for the
Haskell type Ty, and allows us to use the defer statement on types (to be explained later).

Inferencer rules. The inferencer rules provide the actual definition of the scheme. They
consist of an ordered sequence of statements, related to the premises of the type rules, and a
concluding statement. Such a statement can be:

• A scheme invocation, i.e. (x,τ) ∈ Γ, which executes the corresponding function with
the given parameters when evaluated.

• Haskell code in the I monad. This code is used to express side-conditions of type
rules as statements in the inferencer rules. For example, the type system in Figure 8.2
implicitly mentions a lookup-relation in the VAR rule. This is explicitly defined in our
inferencer code by means of some Haskell code in the LOOKUP rule.

• An equality statement, i.e. τ f ≡ τa → τr, stating that its two inputs will be the same
after type inference has finished.

• Non-determinism annotations, such as defer (explained later).

The rules represent the actual definition of cases for functions tc, lk, and fr. For example,
the APP, LOOKUP, and FRESH inferencer rules are projected to concrete Haskell code as
follows:

tc app Γ e lk lookup x Γ

= do let (EApp f a) = e = do v← lookup x Γ

τ f ← tc Γ f return v
τa ← tc Γ a lk = lk lookup
τr ← fr fr fresh = do (v,())← defer f
unif τ f (TArr τa τr) return v
return τr where f v′ = return ()

tc = tc var⊕ tc app⊕ ... fr = fr fresh
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Scheme declarations:

tc : (ΓCMap String Ty) ` (eCExpr) : (τBd Ty)
fr : ∀α. (vBd α) fresh
lk : ∀αβ . ( (kCα) , (vBβ ) ) ∈ (ΓCMap α β )

Inferencer rules:

(x,τ) ∈ Γ

Γ ` x : τ
VAR

v← lookup x Γ

(x,v) ∈ Γ
LOOKUP

Γ ` f : τ f Γ ` a : τa
τr fresh τ f ≡ τa→ τr

Γ ` f a : τr
APP

deferv [ /0 ]
v fresh

FRESH
x :: τx,Γ ` e : τ

Γ ` λ (x :: τx).e : τx→ τ
LAM.EXPL

Γ ` e : τx
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
LET

τ fresh
Γ ` f : τ f τ f ≡ τ → τ

Γ ` fix f : τ
FIX

Syntax and semantics:

data Ty = TGuess GuessVar data Expr = EVar String
| TConst GuessVar | EApp Expr Expr
| TArr Ty Ty | ...

instance Container Ty where
appSubst rec (TArr f a) = rec f � rec a
deferVars (TConst ) = empty
deferVars (TGuess v) = single v
deferVars (TArr a r) = deferVars a ‘union‘ deferVars r

instance Unifyable Ty where
unify rec (TArr f a) (TArr g b) = rec f g� rec a b
unify = fail "type error"

instance Deferrable Ty where
mkDeferValue = TGuess
mkFixedValue = TConst
matchDeferValue (TGuess v) = Just v
matchFixedValue (TConst v) = Just v

pattern Map String Ty where x :: τ,Γ input insert x τ Γ

pattern Expr where λx . e output ELam x e
-- other patterns omitted.

Figure 8.2: Inferencer for explicitly typed lambda calculus.
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The equivalence statement gets translated to a monadic expression unif which is an API
function provided by Ruler.

The statements are executed in the order of appearance. Each statement may fail, causing
the entire rule to fail. Rules that fail due to pattern matches or equality statements at the
very beginning of the statement sequence allow other applicable rules to be applied (offering
a limited form of backtracking). Otherwise, the failure is turned into an abort of the entire
inference, with a type error as result.

Non-determinism. Not all relations that occur in a type rule are functions. Sometimes a
meta variable is required to be both an input and an output. For example, in the inferencer
rule APP, the value τr needs to be produced before it can be passed to the equality statement.
It is also an output of the rule, not an input. This means that there is no indication how to
obtain it. Therefore, we conceptually guess the value of τr. This value is kept hidden behind
an opaque guess-value, and is only revealed when we actually discover what the value must
be. The fr-scheme gives a function that produces these values.

Ruler accomplishes this as follows. The rule FRESH has a defer-statement, which is a non-
determinism annotation. It is parametrized with a list of statement sequences, and produces
a guess v. The statement sequences are not executed immediately, but a closure is created for
them which is triggered once we discover concrete information about guess v. At that point,
one of the statement sequences is required to execute successfully with v as an input and
the current knowledge about guesses. The defer-statement in FRESH has only one statement
sequence, the empty sequence, which always succeeds. In later examples we have non-trivial
sequences of statements that allow us to defer and control decision making.

So, a guess needs to get produced for v. Ruler requires help in the form of a Deferrable
instance on the type of v to construct this guess. Operationally, defer produces an opaque
guess variable, which is wrapped into the domain of v by means of mkDeferValue. This
guess is thus first class, and can be passed around and end up in other data structures. Ruler
maintains information about these guess variables, such as the closures produced by defer.
When a concrete value is discovered about a guess, all occurrences of this guess are replaced
with this concrete value (thus revealing the guess). Again, Ruler requires help by means of a
Container instance in order to deal with values holding guesses. Furthermore, the inferencer
rules may check if certain values are still opaque variables and act on that. This is also
something we exploit later.

Concrete values for a guess are discovered by executing equality statements. When com-
paring the two input values, if one value contains a guess and the other a concrete value, then
we commit that concrete value to the guess. This leads to the execution of the deferrable
statements. We call this commit because it is an irreversible action: a guess can be opaque
for a while, a commit conceptually only uncovers it. If both values are guesses, the guesses
are merged. In case both values are concrete values, Ruler requires help in the form of a
Unifyable instance, of which unify is required to traverse one level through the values and
check that their heads are the same. Another requirement on guesses is that the value com-
mitted to a guess may not contain the guess itself (the infamous occur check). Therefore, the
function deferVars needs to be defined to tell Ruler which guesses are contained in a value.
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Data semantics. The last part of the Ruler code consists of a definition of the data struc-
tures involved. One may also define custom syntax to be used in the rules, for which trans-
lations to either Haskell patterns (for inputs) or Haskell expressions (for outputs) need to be
given. This custom syntax may be ambiguous as long as it can be resolved based on the meta
types of the meta variables. Finally, we remark that these instances for data types are likely
to be automatically generated from the structure of the data types, or readily available in a
library with support code.

Before we continue, consider the addition of an extra rule to the inferencer:

τx fresh x :: τx,Γ ` e : τ

Γ ` λx.e : τx→ τ
LAM.IMPL

With this addition, we obtain an inferencer for the simply typed lambda calculus. However,
with this rule, there can be unresolved guesses remaining after we finish inferencing. For
example, consider inferring the type of the expression λx . x. We obtain τ → τ , where τ

is a guess. However, at the end of the inference, Ruler forces all remaining guesses to get
evaluated. Those guesses that remain are mapped to a fixed value. A fixed value is an opaque
value like a guess (created with mkFixedValue), except that it is only equal to itself and cannot
be committed on.

8.2.2 Implicitly Typed System F

We give a sound but incomplete inferencer for implicitly typed System F [Reynolds, 1974],
using a relaxation of Milner’s algorithm [Milner, 1978] and exploiting type annotations to
deal with higher-ranked types. Compilers such as GHC and UHC utilize inference algo-
rithms based on this type system, which makes it an interesting case study. The inferencer
algorithm described here is clearly inferior versus other algorithms in terms of completeness
and predictability, but is powerful and simple enough to serve as a basis for the inference
algorithm of the next section.

Extra syntax:
τ = . . . | ∀α. τ

Extra rules:

Γ ` e : ∀α. τ2

Γ ` e : [α := τ1] τ2
INST

Γ ` e : τ1 α 6∈ ftv Γ

Γ ` e : ∀α. τ1
GEN

Figure 8.3: Type system of implicitly typed System F.

Implicitly typed System F (or polymorphic lambda calculus) extends the simply typed
lambda calculus with two rules, and a more expressive type language (Figure 8.4). This
change adds a lot of expressive power. Consider the following expressions (assuming for the
moment that we have Ints in the type language):
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f = λ (k :: (Int→ Int)→ Int) . k (λx . x)
g = λ (k ::∀α . (α → α)→ Int) . k (λx . x)

The definition of f can be typed within the simply typed lambda calculus, but g cannot. In
g’s case, the GEN rule is needed after typing λx . x.

There is no simple way to translate these rules to the type inferencer rules. The problem
lies in the decision when to apply these rules, because this is not specified by the syntax.
They could be applied any time, even an arbitrary number of times. However, we choose to
only apply instantiation once directly after the VAR rule, and generalization once for each let-
binding, and once for the argument of each application. Figure 8.4 lists the inferencer rules.
We partitioned the rules such that they belong either to scheme `, `x, `g, or `l , and adapted
the recursive invocations accordingly. This solves the problem of when to apply the rules.
Also note that we have two versions of the GEN rule, one for the let-binding (GEN.LET), and
one for the argument of an application (GEN.LAZY).

Inferencer rules:

(x,τ) ∈ Γ

Γ `x x : τ
VAR

Γ `x x : ∀α. τ2 τ1 fresh
Γ ` x : [α := τ1] τ2

INST.V

Γ ` e : τ1 deferτ2 [[ let (∀α.τ ′2) = τ2, τ1 ≡ τ
′
2, α 6∈ ftv Γ ]]

Γ `g e : τ2
GEN.LAZY

τr fresh
Γ ` f : τ f Γ `g a : τa

τ f ≡ τa→ τr

Γ ` f a : τr
APP

fixateτ [ Γ ` e : τ ]
let α = ftv τ− ftv Γ

Γ `l e : ∀α. τ
GEN.LET

Γ `l e : τx
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
LET

Syntax and semantics:

data Ty = ... | TAll [GuessVar ] Ty

ftv (TConst v) = single v ftv (TArr a r) = ftv a ‘union‘ ftv r
ftv (TGuess ) = empty ftv (TAll vs t) = ftv t ‘difference‘ vs

Figure 8.4: Inferencer for implicitly typed System F.

However, this leads us back to the non-determinism problems that we encountered before.
The INST.V rule requires us to choose which bound variables to instantiate, and what type to
instantiate them to. Similarly, for both GEN rules, a decision needs to be made what variables
to generalize over. These are all examples of non-deterministic aspects. We use the following
tricks to resolve them:

• Instantiation (rule INST.V) is greedy and instantiates all bound variables that are know

294



8.2 Examples

at the time when instantiation is applied. We use the fr-relation to guess the types to
which they are instantiated.

• Generalization of the argument of an application (rule GEN.LAZY) is done on-demand.
The result type τ2 is guessed. At some point the head (or more) of τ2 is discovered. In
case of our example: for f we discover at some point that τ2 is Int→ Int, and for g that
it is ∀α.α → α . At that moment the deferred statements are triggered.

When these statements trigger, the requirement is that enough information about the
outermost quantifiers of τ2 is known. Furthermore, with the greedy assumption about
instantiation, assume that τ1 does not have any outermost quantifiers. With this knowl-
edge in mind, consider the GEN type rule again in Figure 8.3. The type rule tells us
to take the portion of τ1 without outermost quantifiers, which should then be equal to
τ2. This relation is kept until the end of the inference. In that case, the variables α are
not allowed to be in the environment. This is exactly what the deferred statements of
GEN.LAZY establish.

• Generalization just before the let-binding is also greedy. It generalizes over all unbound
variables in the type that are not in the environment. However, since a guess can
represent an arbitrary type, we cannot generalize over them. Therefore, we introduce
the fixate-statement. It is parametrized with a sequence of statements, and executes
those. The guesses which are introduced during the execution and remain are forced
to be evaluated. Those for which no concrete value is discovered are mapped to fixed
types (TConst values). The order of this forcing is undefined. These TConst values are
real type variables and can be generalized over (if free in the environment).

q,τx fresh

fixate

[
defer [τx ≡ pick q]
(x,τx,q),Γ ` e : τ

]
Γ ` λx.e : τx→ τ

(x,τ1,q) ∈ Γ

deferτ2 [q
′ fresh,commit(last q) (τ2,q′)]

deferτ ′1
[ τ
′
1 6 τ2 ] τ1 ≡ τ

′
1

Γ ` x : τ2

We defer the instantiation 6 until we have more information about all the types we want to instantiate
the left-hand side to. Queue q is a nested product, where each left component is a type, and each right
component is a queue. This queue is terminated with a guess. The queue stores all encountered values
for the type of the lambda parameter. Each time such a value is encountered, it gets appended to the
queue. When fixating the lambda term, the deferred statement executes that traverses the queue and
picks out the most general type, and matches it with the type of the lambda parameter. This causes all
deferred instantiations 6 to execute. The 6 relation is not affected by this complex scheduling.

Figure 8.5: Complex example: queuing all expected types.

Many variants of the above rules are possible that result in a more complete inference algo-
rithm (although no complete inference algorithm exists). For example, making instantiation
also happen on demand, or queuing up all guesses of the type of lambda parameters (see Fig-
ure 8.5) before making a final choice, thus emulating type propagation algorithms [Peyton
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Types with boxes:
τ = . . . | τ

Type rules:

Γ ` x : ∀α. τ2
τ1 unboxed iff mono
Γ ` x : [α := τ1] τ2

INST

Γ ` e : τ1
τ1 �v τ2

Γ ` e : τ2
SUBS

Γ ` f : τ f Γ ` a : τa
bτac ≡ bτ ′ac τ f ≡ τ

′
a→ τr

Γ ` f a : τr
APP

Γ ` e : τ1
bτ1c ≡ τ2

Γ ` (e :: τ2) : τ2
ANN

mono τx
x :: τx,Γ ` e : τ

Γ ` λx.e : τx→ τ
LAM.IMPL

x :: τx,Γ ` e : τ

Γ ` λ (x :: τx).e : τx→ τ
LAM.EXPL

Γ ` e : τx noBoxes τx x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
LET

Boxy instantiation rules:

∀α.τ1 � [α := τ2]τ1 BI τ � τ BR

Protected unboxing rules:

mono τ

τ v τ
TBOX

τ v τ REFL

τ1 v τ2
unboxed α τ1
unboxed α τ2

∀α.τ1 v ∀α.τ2
POLY

τ1 v τ3 τ2 v τ4

τ1 → τ2 v τ3→ τ4
CONBOX

τ1 v τ3 τ2 v τ4

τ1→ τ2 v τ3→ τ4
CONG

Figure 8.6: The FPH type system.

Jones et al., 2007, Dijkstra and Swierstra, 2006a]. Such algorithms are normally very hard to
implement, because with conventional approaches the unification algorithm has to deal with
it all. However, with Ruler, such algorithms can now be easily described , and locally at the
places in the rules where full context-information is available, with only minimal effects on
modularity.

8.2.3 Summary

We have seen several examples of non-determinism that are problematic when writing an
inference algorithm. In the end, these problems boil down to deferring decisions and con-
trolling the decision process. We have seen and will see the following annotations to resolve
them:

defer introduces a guess with the promise that a sequence of statements will be executed
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when the guess is revealed.

fixate introduces a scope for guesses and forces all guesses introduced in this scope to be
resolved when leaving the scope.

commit unveils the guess, causing the deferred statements to run.

force is syntactic sugar for a commit with a fresh guess, followed by a commit with a fixed
value if the result was still a guess.

The driving force behind propagating the type information that slowly comes available are
the equality statements (≡).

8.2.4 Example: FPH

The FPH type system [Vytiniotis et al., 2008] is a restriction of implicitly typed System F,
such that there exist a principle type for each binding, and a complete inference algorithm
that finds these types. In this section, we give an alternative inference algorithm. Comparing
FPH’s declarative rules (Figure 8.6) with the inference algorithm (Figure 8.7 and Figure 8.7)
shows how close the resemblance is.

Consider the following example where choose is instantiated predicatively and impredica-
tively:

f = choose id
f ::∀α . (α → α)→ (α → α) -- predicative inst
f :: (∀α . α → α)→ (∀α . α → α) -- impredicative inst

The observation underlying FPH is that impredicative instantiation may result in more than
one incomparable most general System F type for a binding. This is undesired for reasons of
modularity and predictability. FPH dictates that impredicative instantiation is forbidden if it
has influence on the type of a binding.

To formalize this difference, FPH introduces the concept of a box. When a bound variable
is instantiated with a polymorphic type in FPH, it is enclosed within a box. A box expresses
that the type it encloses may have been obtained through impredicative instantiation. FPH
forbids the type of a binding to have a box in the type, thus ensuring that these possible
undesired effects have no influence on the type. This absence of boxes can arise due to two
reasons:

• The type with the box is simply not part of the type of the binding.

• There is an unboxing relation (�v) that allows shrinking of boxes over the monomor-
phic spine of a type. When we discover that the type in the box cannot influence the
type of the result, we can remove the box.

• The programmer can give an explicit type signature, which does not have boxes.
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A particular invariant maintained by FPH is that there may not be a box within a box (the
“monomorphic substitution” operator := takes care of this).

The type rules for FPH contain many non-deterministic aspects, especially due to the in-
teraction between types and boxes. Both the structure of the types, and the demands on the
boxes become only gradually available. In some cases, we may discover that the type is not
allowed to have any boxes before the actual type becomes known. Alternatively, in case of
box-stripping (b·c), we may know portions of the type structure, but nothing about the boxes
yet.

Boxy types:

type Ty = (Ty′,Box)
data Box = BYes | BNo | BVar GuessVar
data Ty′ = TArr Ty′ Ty′ | TGuess GuessVar | ...

Scheme declarations:

(τ1Cd Ty) v (τ2Bd Ty) (τ1Cd Ty) v′ (τ2Cd Ty)
(τ1Cd Ty) � (τ2Bd Ty) (τ1Cd Ty) �′ (τ2Bd Ty)

Inferencer rules:

Γ `x x : ∀α. τ2 τ̃1 fresh

deferbi

[ JvK = b, commitv BYes ],
[ b = BNo, mono τ̃ ],
[ b = BYes ]

Γ ` x : [α := τ̃1 b] τ2
INST.V

Γ ` e : τ1
τ1 �v τ2

Γ `s e : τ2
SUBS

Γ `s e : τ1
. . .

Γ `g e : τ2
GEN.LAZY

Γ `s f : τ f Γ `g a : τa
bτac ≡ bτ ′ac τ f ≡ τ

′
a→ τr

Γ ` f a : τr
APP

Γ `g e : τ1
bτ1c ≡ τ2

Γ ` (e :: τ2) : τ2
ANN

fixateb [ Γ `l e : τx, noBoxes τx ]
x :: τx,Γ ` b : τ

Γ ` let x = e in b : τ
LET

Boxy instantiation rules:

b2 fresh deferτ̃2 [ b1 ≡ b2, force b1, τ̃1 b1
�′ τ, τ ≡ τ̃2 b2

]

τ̃1 b1
� τ̃2 b2

BOXY.INST

τ2 fresh

∀α.τ1 �′ [α := τ2]τ1
BI

τ̃ �′ τ̃ BR

Figure 8.7: Inferencer for FPH (part 1).
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Idea. We choose here to be able to guess the type independent of the boxes. Each alter-
native of a type gets a box annotation. Types τ are of the form τ̃ b, where τ̃ is a regular
type with types τ as components, and b a box annotation. A box annotation is either con-
crete (BYes or BNo), or a guess. Types in the environment have box-annotations BNo, and
box-annotations BYes are introduced by instantiation. The unboxing rules then relate boxes
to types, and eliminate boxes as soon as more type information becomes available. This un-
boxing (see subscript s and SUBS) is done for each sub-expression. For an application, only
the instantiation of the function type can cause boxes to appear in the result type. Possible
boxes in the type of the argument are stripped away (these would otherwise cause boxes in-
side boxes). Also, annotations are considered safe and causes boxes to disappear. Finally, at
a let-binding, we first generalize and fixate the guesses in the types, and only then fixate the
boxes. This ensures that when fixating the boxes, we know that choices of the boxes do not
influence the types in the local scope anymore.

Protected unboxing rules:

τ̃2 fresh bτ̃1c ≡ bτ̃2c deferb2

[ let J K = b2, b1 ≡ b2, force b2, τ̃1 b1
v′ τ̃2 b2

],
[ let JvK = b1, commitv b2, τ̃1 b1

v′ τ̃2 b2
],

[ τ̃1 b1
v′ τ̃2 b2

]

τ̃1 b1
v τ̃2 b2

let JvK = τ̃1
deferτ̃ ′1

[ τ̃1 b v
′
τ2]

τ̃1 ≡ τ̃
′
1

τ̃1 b v
′
τ2

UNBOX.TY.DEFER
mono τ̃

τ̃ v′ τ̃
TBOX

∀α.τ b v′ ∀α.τ b REFL

τ1 6≡ τ2 τ1 v τ
′
2 τ

′
2 ≡ τ2

unboxed α τ1 unboxed α τ2

∀α.τ1 v′ ∀α.τ2
POLY

τ̃1 v τ3 τ3 ≡ τ
′
3

τ̃2 v τ4 τ4 ≡ τ
′
4

τ̃1 → τ̃2 v′ τ ′3→ τ
′
4

CONBOX

τ̃1 v τ3 τ3 ≡ τ
′
3

τ̃2 v τ4 τ4 ≡ τ
′
4

τ̃1→ τ̃2 v′ τ ′3→ τ
′
4

CONG

Semantics:

instance Unifyable Box where ...
instance Deferrable Box where ...mkFixedValue = const BNo

Figure 8.8: Inferencer for FPH (part 2).

Note the following notation. A JvK represents a guess containing variable v (produced or
obtained by means of mkDeferValue or matchDeferValue respectively). A type τ̃ (Ty′) at a
place where a τ (Ty) is expected represents a pair of τ̃ with a box annotation of BNo. A type
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8 Residuation

τ̃ represents a pair of τ̃ with a box annotation of BYes.
The boxy-instantiation rules allows instantiation inside an outermost box. The application

of these rules is controlled by BOXY.INST, as follows. Decisions are delayed until more is
known about the result type. Then we force the decisions to have been made about a potential
box surrounding it. We then know which one the two actual instantiation rules is applicable.
Note that we are not afraid of instantiation: the rule GEN.LAZY generalizes again if needed.

For protected unboxing, rule UNBOX controls how the rules are applied. It ensures that
the input and output type are matched together, disregarding boxes such that this information
flow is independent of the information flow about boxes. Then, applying the actual rules is
deferred until the two box-annotations have been resolved. In case b2 is still unknown, we
default it. If b2 is known, but b1 is not, we apparently have freedom in the choice and choose
b2 for b1. Finally, if we are in the situation that we know the annotations but not the type, we
delay resolving the unboxing until we know the type by means of UNBOX.TY.DEFER.

The monadic Haskell expressions used in the premises of the inferencer rules are given
in Figure 8.9. noBoxes forces the absence of boxes everywhere in the type, and unBoxed
only on the spine to each occurrence of type variable a. The most involving, however, is
box-stripping. It produces a type with all boxes removed, without affecting the original box
annotations. The difficulty is that the type may not be fully known yet. Fortunately, we can
use defer, equal and commit in monadic expressions too. In fact, we can write higher-order
functions to factor out some patterns. For example, dwrap (Figure 8.10) factors out all the
non-determinism of a recursive function where the input is equal to the output modulo some
guesses.

Other type systems. The syntax of the defer-statement is actually a bit more general
than we presented in these examples. In the examples, the deferred statements did not have
outputs, only inputs. We allow the deferred statements to have outputs. For example, another
type system for first class polymorphism, HML [Leijen, 2009], requires deferred statements
that produce a prefix Q (denoted with deferQ

τ [. . .]).
Although our examples were about inferencers for type systems dealing with polymor-

phism, we stress that these were chosen in order to pave the way to a complex example, and
that we are not limited to such type systems.

8.3 Related Work

We present an extension of our previous work on the Ruler system [Dijkstra and Swierstra,
2006b]. In this system, type rules are required to be written as deterministic functions, and
both a type-setted LATEX document and an efficient Attribute-Grammar based inferencer are
derived from them. One of the goals of this system is to close the gap between formal descrip-
tion and implementation. However, non-deterministic aspects cannot be directly described in
this system, and are omitted (to be solved externally). This left a gap that we attempted to
close in this paper.
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Box operations:

noBoxes :: Ty→ I ()
noBoxes (t,b) = do unif b BNo

traverse noBoxes t

unboxed :: GuessVar→ Ty→ I ()
unboxed a (t,b) | a ∈ ftv t = do unif b BNo

traverse (unboxed a)
| otherwise = return ()

bτc= strip τ

strip :: Ty→ Ty
strip (t, ) = do t′← dtraverse strip t;return (t′,BNo)

dtraverse f = dwrap (traverse f )
traverse f (TArr t1 t2) = do t3← f t1; t4← f t2

return (TArr t3 t4)
traverse f (TAll vs t1) = do t2← f t1;return (TAll vs t2)
traverse f t = return t

mono t = unif t (dcheck t)
dcheck = dwrap check
check (TArr t1 t2) = check′ t1� check′ t2
check (TAll ) = fail "not a mono type"

check = return ()
check′ (t, ) = dcheck t

Figure 8.9: FPH monadic Haskell premises

dwrap ::∀α . Deferrable α ⇒ (α → I α)→ α → I α

dwrap f t = do (tout,())← defer (λ tin →
do unifOne t tin

t′← f t
unif tout t′

return tout

Figure 8.10: Example of evaluation control abstraction.
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Functional Logic Programming. The essential problem with non-deterministic aspects
is that the function to resolve it needs to make decisions, but is unable to do so based on
what is known about the inputs at that point. Therefore, the idea is to delay execution until
we know more about the output, and let expected output play a role in the decision process.
Therefore, at specific places, we turn functions into relations, which has a close resemblance
to Functional Logic Programming [Hanus, 1994].

With FLP, non-deterministic functions can be written as normal functions. The possible
alternatives that these functions can take depends not only on the inputs, but also on scrutiniz-
ing the result. With evaluation strategies such as narrowing [Antoy, 1997], the search space
is explored in a demand-driven way. Knowledge of context is pushed inwards, reducing
possible alternatives, and causing evaluation to occur that refines the context even more.

With the defer and commit, we offer a poor man’s mechanism to FLP. The delaying of
choice and the scrutinizing of the choice is explicit. A commit is required to reduce the choice
to at most one possibility. Yet, we have good reasons not to support the full generality of FLP.
We want to integrate the inferencers specified in our language into mainstream compilers.
Our approach makes only little demands on infrastructure. If it can cope with Algorithm
W [Milner, 1978], then the proposed mechanisms of this chapter fit. Furthermore, we want
to be able to use constraint solvers in some foreign language, or arbitrary Haskell libraries in
our inference rules. This gives rise to problems with narrowing.

A difference with respect to FLP is our fixation and inspection of guesses. Consider an
expression like const x y. For such an expression, the type of y is irrelevant and will not be
scrutinized. However, we have several reasons to do so. We produce derivations, so we need
a derivation of y. Decisions about the inference of y need to be made, even when the context
does not make strong demands about which one. To make such a decision, we need to inspect
which values are still guesses. As a consequence, more type information may be discovered,
or even type errors that would otherwise go unnoticed, or which only arise much later (say,
when generating code). Also, to deal with rules such as generalization properly, we need to
know the difference between an unresolved guess and some fixed but unconstrained informa-
tion. Furthermore, unresolved guesses retain memory which causes severe memory problems
when growing unchecked in mainstream compilers, and when integrating with foreign code,
we need invariants about which parts of values are resolved. Finally, examples such as in
Figure 8.5 really require the guessing to be explicit and first class.

Logic Programming In a similar way as with FLP, our approach has strong ties with Logic
Programming. One particular difference is that we disallow backtracking and of all possible
rules demands that only one rule can succeed. Again, the reasons are related to efficiency and
integration. However, there is an even more important reason: to be able to produce sensible
type errors, and to prevent infinite searches in the presence of type errors.

Inferencer Frameworks. There are inferencer frameworks such as HM (X) [Sulzmann
and Stuckey, 2008], which is based on a fixed set of type rules parametrized over some
relation X, for which an inference algorithm needs to be given to obtain an inferencer for
the full language. Such a framework is in fact orthogonal to Ruler, and Ruler can be used
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to construct the algorithm for X. In fact, the precise relation of Ruler to other constraint-
based inference frameworks is that a Ruler specification can be seen as both a specification
of constraints, annotated with the algorithm to solve them.

Type rule tools. The tool OTT [Sewell et al., 2007] generates code for proof assistants.
SASyLF [Aldrich et al., 2008a] is such a proof assistant, and is tailored to proving properties
about type systems, as is Twelf [Harper and Licata, 2007].

Tinkertype [Levin and Pierce, 2003] is a system that can also generate inference algorithms
from type rules. However, the inference algorithms are not derived from the type rules.
Instead, it depends on a repository with code for each relation to compose the inferencer.

8.4 Type Inferencer Syntax

8.4.1 Core Syntax

The syntax of the type inferencer language (named RulerCore) is given in Figure 8.11. A type
inferencer is a triple (Σ∗,r∗,Hλ ) of schemes Σ∗, rules r∗, and some Haskell support code in
the form of data-type declarations, some instances for them, and utility functions. A scheme
Σ represents a function named s with inputs declared by environment Γin, and outputs by
environment Γout. A scheme can be parametrized over some types α , which provides for a
limited form of polymorphism for the inferencer rules. The inferencer rules in r∗ with scheme
name s define the function s. Each rule r consists of a (possibly empty) sequence of premises
(c), and a conclusion (cs).

It is important to realize that we are not defining type rules here. Schemes are not arbitrary
relations, but are functions. The premises are statements, not predicates. Also, the order
of the premises matter. Values for all inputs need to be available before a scheme can be
instantiated. The rules and statements have a certain operational behavior. A rule evaluates
successfully if and only evaluation of all its premises succeeds, and for each statement we
give a brief description below. We make this more precise later.

The conclusion rs of an inferencer rule defines to what names the actual parameters of the
scheme s are bound in the context of the rule, and which local results are the outputs of the
scheme. Expressed with bindings ∆in and ∆out respectively, where bindings are a mapping
from formal names to the actual name.

Statements for premises come in different forms. There are a couple of statements that
allow algorithms to be described:

• Evaluation of statement cs instantiates a scheme, which means applying the scheme
function to the inputs, and obtaining the outputs if this application is successful. For
the input values, the values bound to the actual names are taken for the formal names
(specified by bindings ∆in). Similarly, the values bound to the formal name of the
scheme are made available under the actual name (specified by bindings ∆out).

• The unification statement attempts to unify the values bound to the names n1 and n2. A
unification algorithm based on structural equality needs to be available for the values
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to which these two types are bound. Successful unification results in a substitution that
makes the two values equal. This substitution is implicit and can be assumed to be
applied everywhere.

• The execution statement allows monadic Haskell code to be executed. This code is a
function taking the values bound to names n∗ as parameter and returns a monadic value
containing values for outputs m∗. We consider this expression language in more detail
later. The purpose of these execution statements is to perform the actual computations
needed to produce the values for the inputs of a scheme instantiation, and to inspect the
outputs of it by means of pattern matching.

• The fixpoint statement repeatedly instantiates s, as long as the values bound to identi-
fiers n∗ change. The bindings ∆ specify how the outputs are mapped back to the inputs
after each iteration.

The statements that allow us to algorithmically deal with non-deterministic aspects:

• The defer statement represents one of the sequence of statements c∗i , except that eval-
uation of it takes place at a later time. In the meantime, a guess (encoded as a fresh
variable) for the output n is produced, and bottom-values for outputs n∗. For each
guessable data type, we require that we can encode a variable as a value of this data
type (denoted as JvK). These guesses can be passed around as normal values.

• A commit statement refines a guess bound to v with the value bound to identifier n, and
runs deferred statements, which may lead to other refinements of guesses.

• The fixate statement executes statements c∗. All guesses of type τ that were not com-
mitted during this execution are resolved by executing the deferred statements. Any
remaining guesses are marked as fixed. These now represent opaque values that cannot
be refined anymore.

Expressions in an exec-statement are Haskell functions in monad I that get the inputs
passed as arguments and are obliged to return a product with the results. Hence the type
of an expression e:

e :: τn1 → . . .τnk → I(τm1 , . . . ,τml )

The I monad contains a hidden state, and support failure. In particular, the following
operations are available:

commit :: Deferrable α ⇒ α → α → I ()
defer :: (Deferrable α,Prod β )⇒ (α → I β )→ I (α,β )
unif :: Unifyable α ⇒ α → α → I ()
unifOne :: Unifyable α ⇒ α → α → I ()
update :: Container α ⇒ α → I α

fail :: String→ I ()

We create a deferrable computation with Defer. It takes a monadic function that is only exe-
cuted when a commit is performed on alpha. This monadic function produces the values for

304



8.4 Type Inferencer Syntax

Σ∗ = Σ1, . . . ,Σk (schemes)
Σ = ∀α. Γin `s Γout (scheme)
r∗ = rs1 , . . . ,rsk (rules)
rs = c∗ ; cs (rule)
c∗ = c1, . . . ,ck (statements)
c = cs (instantiate)

| n1 ≡ n2 (unification)
| exec e :: n∗→ m∗ (execution)
| fixpointn∗

∆ cs (fixpoint)
| deferm∗

n c∗1, . . . ,c
∗
k (defer)

| commitvτ
n (commit)

| fixateτ c∗ (fixate)
cs = ∆in `s ∆out (scheme instance)
Γ = n1 ::ρ τ1, . . . ,nk ::ρ τk (environment)
∆ = n1 7→ m1, . . . ,nk 7→ mk (bindings)
ρ = d (deferrable)

| u (unifyable)
| /0 (none)

With scheme names s, identifiers n, m, and v, collection of identifiers n∗ and m∗, Haskell types
τ , and expressions e.

Figure 8.11: Syntax of RulerCore.

the product β . Until this actually happened, the contents of the product may not be touched.
The unif operation enforces structural equality between values α . In case of unifOne, only
structural equality on the heads of the values. Finally, update brings all guesses in α up to
date, and fail causes the inference to fail with a type error.

8.4.2 Syntactic Sugar

The previous section gave the core syntax for the type inferencer. For practical and didactic
purposes, the examples in the previous section where given in a somewhat more convenient
syntax that can be translated to the core syntax.

First of all, we assume a series of notational conventions involving sequences (lists), envi-
ronments (maps), or sets:

• A sequence of, for example, statements is denoted by c∗ = ci = c1 . . .ck, where i (1 6
i 6 k) is some index, and k is left implicit as it is clear from the context, i.e. when i
ranges also over some list.

• A list of identifiers is denoted by n∗ = ni = n1, . . . ,nk.

• The empty map, empty list, or empty set is written as /0.
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Σ∗ = Σ1, . . . ,Σk (schemes)
Σ = ∀α. s : d1, . . . ,dk (scheme signature)
d = kw (keyword decl)

| nCρ τ (input decl)
| nBρ τ (output decl)

r∗ = rs1 , . . . ,rsk (rules)

rs =
c1 . . .ck

cs
(rule)

c = cs (instantiate)
| mHλ ,1 ≡ mHλ ,2 (unification)
| let pHλ

= eHλ
(pure)

| pHλ
← mHλ

(monadic bind)
| mHλ

(monadic exec)
| fixpointn∗

∆ cs (fixpoint)
| deferm∗

n c∗1, . . . ,c
∗
k (defer)

| commitvτ
eHλ

(commit)
| fixateτ c∗ (fixate)
| force mHλ

(force)
cs = s : i1, . . . , ik (scheme instance)
i = kw (keyword)

| pHλ
(value deconstruction)

| eHλ
(value construction)

With keywords kw, Haskell patterns pHλ
, Haskell expressions eHλ

, and monadic Haskell
expressions mHλ

.

Figure 8.12: Syntax of RulerBase.
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The syntactic sugar is given in Figure 8.12. A scheme declaration Σ for a scheme named
s, now consists of a sequence of either an input or output declaration, or a keyword. For
example, the scheme declaration for a scheme tp expr:

tp expr : (ΓCEnv) ` (eCExpr) : (τBd Type)

defines two inputs Γ and e with types Env and Expr respectively, and an output named τ with
type Type (and the deferrable-property). To instantiate this scheme, the statement has the
form: tp expr : . . . ` . . . : . . ., where at the places of the dots there is a Haskell pattern for an
output, and a pure Haskell expression for an input (the reverse for the conclusion statement).
The identifiers of a pattern can be referenced by expressions of subsequent statements of a
rule. In the examples of Section 8.2, we left out the scheme names, because it is clear from
the context.

The essential differences between Figure 8.11 and Figure 8.12 are:

• The syntactic sugar allows for Haskell expressions and patterns at places where orig-
inally only identifiers were expected. This syntactic sugar is translated to execution-
statements with the appropriate inputs and outputs. Pattern match failures are translated
to fail-expressions. We will also assume that pure Haskell expressions are automati-
cally lifted into a monadic expression when needed. Also, an identifier occurring at
multiple input-locations is replaced with unique identifiers with the necessary equiv-
statements added to the front of the statement sequence.

• No special rules about the structure of monadic functions. These are normal Haskell
monadic expressions in some monad I, and the commit, unify, and update-operations
are functions that act in this monad.

• For the core language, only one deferred statement-sequence is allowed to succeed
when triggered to evaluate. Here, we assume that more than one is allowed to succeed,
but the first one from the left is taken.

• force is syntactic sugar for executing f mHλ
. If the result is a guess, then a commit is

done with a fresh value as parameter. If the result is still this fresh value, a commit is
done with a fixed value. Otherwise, the result is ignored.

Identifiers occurring in expressions are brought up-to-date with respect to guesses just before
evaluating the expressions.

Finally, we assume a number of pattern declarations, of which an example is given in
Figure 8.13. These define special syntax for Haskell expressions (indicated with input) and
patterns (indicated with output) for certain specific types, and the translation to Haskell. To
disambiguate, the types of identifiers play a role. The pattern x can stand for the identifier x
(say, if the type is String), or for the expression EVar x if type is Expr.

8.5 Operational Semantics

In this section we give a big-step operational semantics of the inferencer language introduced
in Section 8.4. We first discuss some notation, then explain the evaluation rules. Evaluation
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pattern Map String Ty where
x :: τ,Γ input insert x τ Γ

pattern Expr where
x output EVar x
f a output EApp f a
λx . e output ELam x e

pattern Ty where
[α := τ1 ] τ2 output singleSubst α τ1 Z⇒ ty

pattern Ty where
t b input (t,b)
t input (t,BYes)
t input (t,BNo)

Figure 8.13: Examples of pattern declarations.

of the inferencer rules involves data manipulation. Some demands are made about the data in
question. In particular, we require structural equality to be defined for data types. We finish
this section with a discussion of these demands.

8.5.1 Notation

For the operational semantics, heaps H, substitutions θ and derivations π are used for book-
keeping. Their syntax is given in Figure 8.14. Heaps are a mapping of locations (in our case,
plain identifiers) to Haskell values. Substitutions keep track of information about guesses
(identified by a variable v). Either a guess is resolved and represents some concrete value w
of type τ , or will be resolved through a commit on another variable and is for the moment
mapped to⊥, or represents a closure of the deferred statements. In the latter case, we store in
a heapH entries for each identifier referenced by the deferred statements, store a scope iden-
tifier ζ representing the deepest scope in which the deferred statement is introduced (encoded
as a number equal to the nesting-depth), and a rule identifier r. Each defer-statement intro-
duces a unique rule identifier, which is a placeholder for a derivation. Derivations represents
a partial derivation in an abstract way. The conclusions of each rule make up the nodes of the
derivation-tree (with the values of their instantiation in heap H). Statements that cannot be
represented by this are represented with an opaque-leaf �. These derivations may be partial
and refer to sub-derivations named ι with !ι .

Substitutions satisfy the usual substitution properties. Juxtaposition of substitutions θ1θ2
represents the left-biased union of the two substitutions, with θ1 applied to all entries q of θ2.
Applying a substitution θ1 to a value w, denoted with θw, replaces each guess JvK with either
w if v 7→wτ ∈ θ or itself otherwise. Application to a⊥-entry is the identity, and to a deferred-
entry means applying it to the heap. Substitution application is lifted to environments, heaps,
and derivations as well.
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H = n1 := w1,τ1 , . . . ,nk := wk,τk (heap)
θ = v1 7→ q1, . . . ,vk 7→ qk (substitution)
q = wτ (subst value)

| ⊥ (subst bot)
| deferredζ ,ι

H c∗1, . . . ,c
∗
k (deferred)

π =
π

H ` cs
(node)

| !ι (reference)
| � (opaque)
| π1 π2 (and-cons)

Π = ι1 7→ π1, . . . , ιk 7→ πk (named derivations)

With Haskell value w, rule identifier ι , and scope identifier ζ .
Figure 8.14: Syntax of heaps, substitutions, and derivations.

We also use some notation concerning heaps and bindings. The lookup of a value for an
identifier is written as H(n). With bindings we can take and rename entries in a heap: H(∆)
is a heap which for each binding n 7→ n′ has the value wτ for n taken from H as n′, i.e.
H(∆)(n) =H(n′). We also use the reverse: ∆(H)(n′) =H(n). Juxtaposition of heaps stands
for the left-biased union of the two.

8.5.2 Evaluation Rules

Overview. We can now give the evaluation rules of our big-step operational semantics.
Figure 8.15 lists the structure of the evaluation rules. Given a statement c, the reduction
relation gives a transition from a substitution θ0 and heap H0 with values for the inputs of
c, to an heap H1 containing values for the outputs of c and an updated substitution θ1. The
transition is labeled with a derivation π which can be considered a trace of the steps that
were taken in order to make the transition. Similarly, Π contains (at least) a binding for each
reference in derivation π and any reference of any derivation in Π itself. There are some
variants of this reduction relation on the level of statements and rules. An important invariant
is that the resulting heap is up to date with respect to the resulting substitution.

The semantics of substitution refinement by defaulting the guesses of a certain scope, starts
with an initial substitution θ0, and the current scope identifier ζ , and ends in a state θ1. The
purpose of this relation is to force the evaluation of deferred statements created in ζ of type
τ , such that none of these remain in θ1.

For the evaluation of (monadic) Haskell expressions, we construct an expression e and
evaluate it in an execution environment Hλ , containing data type definitions, Haskell support
code, augmented with bindings for inputs to the expression, including the substitution.

Given a type inferencer, a triple (Σ∗,r∗,Hλ ), and an instantiation of scheme Σ by means
of statement cs with a heap H0, evaluation of this statement with the inferencer rules is the
transition

/0 ;H0 ; 0 ; fixate∗ cs →Π
π H1 ; θ1
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θ0 ;H0 ; ζ ; c →Π
π H1 ; θ1 (statement reduction)

θ0 ;H0 ; ζ ; c1, . . . ,ck →Π
π H1 ; θ1 (statements reduction)

θ0 ;H0 ; ζ ; rs →Π
π H1 ; θ1 (rule reduction)

τ ; θ0 ; ζ →Π
∗ θ1 (scope defaulting)

Hλ ` eHλ
→ w (Haskell evaluation)

Figure 8.15: Structure of the evaluation rules.

according to the smallest reduction relations satisfying the evaluation rules of Figure 8.16,
Figure 8.17, Figure 8.18, and Figure 8.19. We explain these rules in more detail. Furthermore,
we assume that the components of the inferencer-triple are available in the rules as a constant.

rs ∈ r∗ Hin′ =Hin(∆in)
Hout = ∆out(Hout′) θ ;Hin′ ; ζ ; rs →Π

π Hout′ ; θ
′

θ1 ;Hin ; ζ ; ∆in `s ∆out →Π
π Hout ; θ

′ SCHEME

θ
′ = fst (run (unifH(n1)H(n2)) θ ζ )

θ ;H ; ζ ; n1 ≡ n2 → /0
� /0 ; θ

′ UNIFY

Hλ ` run (eH(n1) . . .H(nk)) θ ζ → (θ ′,(w1, . . . ,wl))
H′ = m1 7→ w1, . . .mk 7→ wk

θ ;H ; ζ ; exece :: n1, . . . ,nk→ m1, . . . ,ml → /0
� H′ ; θ

′ EXEC

rs ∈ r∗ θ1 ;H1 ; ζ ; rs →Π
π H2 ; θ2

H1(n∗) 6=H2(n∗) θ2 ;H2(∆)H2 ; ζ ; fixpointn∗
∆ cs →Π

π ′ H3 ; θ3

θ1 ;H1 ; ζ ; fixpointn∗
∆ cs →Π

π π ′ H3 ; θ3
FIXSTEP

θ ;H ; ζ ; fixpointn∗
∆ cs →Π

π H(∆)H ; θ FIXSKIP

Figure 8.16: Evaluation rules for conventional statements.

Conventional statements. In Figure 8.17 are the rule for what we call the conventional
statements. These are the statements in which type checking algorithms can be expressed.
Type inference is not possible with these rules yet since this requires guessing.

The Scheme-rule represents instantiation of a scheme named s. An inferencer rule rs is
chosen and evaluated. The bindings dictate which values to take from the heap to use as inputs
to the rule. Similarly, the bindings dictate under which name the outputs after evaluation are
to be stored. These inferencer rules must be syntax directed. There should be only one rs that
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can be applied.
For the unify-rule, the values bound to n1 and n2 are checked for equality with the unify

function defined on the type of these values. When the types involve guesses, this may lead
to discovery of more type information about guesses and an updated substitution.

In the exec-rule, the monadic code is executed with the values of n1, . . . ,nk as parameter.
The monadic code may update the substitution, or cause the statement to fail. If the execution
succeeds, the returned product of the monadic code contains the values for in the output-heap.

Finally, with the fixpoint-rule a scheme-statement can be repeatedly executed as long as it
causes one of the values of n∗ to change. For each repetition, the bindings ∆ dictate which
outputs are the inputs of the next iteration. In this case there may be more than one applicable
rule rs. However, to make a step, evaluation of the inferencer rule must cause a change of
value n.

θin ; ∆in(Hin) ; ζ ; c1, . . . ,ck →Π
π1,...,πk

H′ ; θout

π =
π1 . . .πk

H′ ` (∆in `s ∆out)
Hout =H′(∆out)

θin ;Hin ; ζ ; c1, . . . ,ck;∆in `s ∆out →Π
π Hout ; θout

RULE

θi ; (θiHi . . .H1) ; ζ ; ci →Π
πi
Hi+1 ; θi+1, 16 i6 k

θ1 ;H1 ; ζ ; c1, . . . ,ck →Π
π1...πk

θk+1Hk+1 . . .H1 ; θk+1
STATEMENTS

Figure 8.17: The apply rules.

In Figure 8.17 are evaluation rules for a chosen inferencer rule rs. The bindings of the
conclusion specifies under what names the inputs to the rule need to be presented to the
statements. Likewise, the bindings also specify under what names the values of the outputs
of the rule are available. Successful evaluation of a rule means that a derivation π has been
produced, of which the current rule forms the root, and the derivations of the premises are its
immediate children.

Evaluation of a sequence of statements causes the heap to accumulate the outputs of the
statements already executed so far. The outputs of predecessors of a statement in this se-
quence are also available as input to the statement. Since each evaluation of a statement
potentially causes more information to be known about guesses in such outputs, the most
recent substitution is applied to these predecessor-outputs first.

Non-deterministic statements To deal with guesses, there are the statements that deal
with non-determinism, which we will call the non-deterministic statements. Their semantics
is made precise in Figure 8.18.

For a Defer-statement, guesses are produced as outputs for n,m1, . . . ,ml . A closure for
the statements c1, . . . ,ck is stored as substitution for the guess of n as closure. A commit on
this guess leads to the execution of these statements, and to the production of values for the
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v,v1, . . . ,vl , ι fresh H= n 7→ JvK,m1 7→ Jv1K, . . . ,ml 7→ JvlK Hout =HHin
θ1 = v1 7→ ⊥, . . . ,vl 7→ ⊥ θ2 = v 7→ deferredζ ,ι

Hout
c∗1, . . . ,c

∗
k

θ ;Hin ; ζ ; deferm1,...,ml
n c∗1, . . . ,c

∗
k → /0

!ι Hout ; θ1θ2θ
DEFER

v 7→ deferredζ ,ι
H c∗∗ ∈ θ c1, . . . ,ck ∈ c∗∗

θ1 = v 7→ Hin(n),θin θ1 ; θ1H ; ζ ; c1, . . . ,ck →Π
π H′ ; θ2

θout =
{

v 7→ w | n 7→ JvK ∈H,n 7→ w ∈H′
}
,θ2 ι 7→ π ∈Π

θin ;Hin ; ζ ; commitvτ
n →Π

♦ /0 ; θout
COMMITVAR

v 7→ w ∈ θ

n′ fresh H= n′ 7→ w,n 7→ Hin(n) θin ;H ; ζ ; n′ ≡ n →Π
♦ H′ ; θout

θin ;Hin ; ζ ; commitvτ
n →Π

♦ /0 ; θout
COMMITVAL

θin ;Hin ; ζ ; c∗ →Π
π Hout ; θ1

τ ; θ1 ; ζ →Π
∗ θout deferred(ζ ,θout) = /0

θin ;Hin ; ζ −1 ; fixateτ c∗ →Π
π θoutHout ; θout

FIXATE

Figure 8.18: Evaluation rules for non-determinism annotations.

guesses m1, . . . ,ml . Committing on these latter guesses is not possible, since the substitution
for these guesses is mapped to⊥. This closure is introduced in scope ζ and contains a unique
identifier ι which is the name of the derivation that is produced later. A reference to this
derivation is returned as the derivation of the Defer-statement.

Evaluation of the Commit-statement leads to the evaluation of the deferred statements. The
heap stored in the closure is updated to the current substitution, and the substitution reflects
the newly found information about the guess. Then, one of the sequences of statements is
chosen and evaluated. The evaluation has caused outputs to be produced for values that were
before represented as a guess to a ⊥-substitution. Subsequently, the substitution is updated
such that these substitutions do not map to ⊥ anymore, but to their newly produced value.

Finally, there is the Fixate-statement. Its statement is evaluated in a subscope ζ . After
evaluation, the remaining guesses are defaulted such that no deferred statement is left for
scope ζ . The rules for defaulting are specified in Figure 8.19.

A deferred guess is committed to with either a flexible guess as value, or with a fixed
unknown value. In both cases, of the deferred statement-sequences must be able to evaluate
with this newly found information. In the first case, such deferred statement observes a guess
as value for its input, and is allowed to refine it. In the later case, the value may not be
touched.

Since committing to a flexible guess results in the introduction of a guess in the scope, in
order to end up with no guesses in the scope in the end, each commit to a flexible guess must
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n,v′ fresh vτ ∈ dom(θin) H= n 7→ Jv′K
θ = v′ 7→ deferredζ ,ι

/0 { /0} θθin ;H ; ζ ; commitvτ
n →Π

♦ H′ ; θout
τ ; θin ; ζ →Π

∗ θout
FLEX

n fresh vτ ∈ dom(θin)
H= n 7→ JvKF θθin ;H ; ζ ; commitvτ

n →Π
♦ H′ ; θout

τ ; θin ; ζ →Π
∗ θout

RIGID

τ ; θin ; ζ →Π
∗ θ τ ; θ ; ζ →Π

∗ θout
τ ; θin ; ζ →Π

∗ θout
TRANS

τ ; θ ; ζ →Π
∗ θ FINISH

Figure 8.19: Defaulting rules.

lead to refinements of guesses. All guesses that are essentially unconstrained will then end
up with fixed unknowns.

type I α = ErrorT Err (State (θ ,ζ )) α

run :: I α → θ → ζ → (θ ,α)

Figure 8.20: The run function.

Haskell semantics. We use Haskell to specify the monadic functions. The type of the
monad is given in Figure 8.20. It is a conventional combination between the error monad
and the state monad. The run function is the interface between the semantic world and the
monad world. If the monadic evaluation is successful, the premise with run succeeds and
there has been a state transition into the monad and back. If the evaluation results in an Err,
the premise with run does not hold.

8.5.3 Data-type Semantics

The semantics of the previous section makes some assumptions about the types of identifiers
occurring in de inferencer rules. This functionality needs to be available in terms of instances
for the type classes listed in Figure 8.21. This functionality does not have to be available for
all types. Most of this functionality can be generically derived from the structure of the types.

A Container instance is required to be defined for all types containing guesses. Substitu-
tion application θ Z⇒ w replaces all occurrences of guess JvK with w′, given v 7→ w′τ ∈ θ . It
generically handles the substitution of guesses, and uses appSubst to traverse the type.
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8 Residuation

class Container α where
appSubst :: (∀β . Container β ⇒ β → β )→ α → α

class Unifyable α where
unify :: (∀β . Unifyable β ⇒ β → β → I ())

→ α → α → I ()
class Deferrable α where

deferVars :: α →{GuessVar}
mkDeferValue :: GuessVar→ α

mkFixedValue :: GuessVar→ α

matchDeferValue :: α →Maybe GuessVar
matchFixedValue :: α →Maybe GuessVar

Figure 8.21: Semantics on data.

unif w1 w2 = unif ′ unif w1 w2
unifOne w1 w2 = unif ′ (\ → return ()) w1 w2

unif ′ r w1 w2 = do w3← update w1;w4← update w2
unif ′′ r w1 w2

unif ′′ w1 w2 | w1 ≡ w2 = return ()
unif ′′ Jv1K Jv2K = compose v1 v2
unif ′′ JvK w | v 6∈ deferVars w = commit v w

| otherwise = fail "occur check"

unif ′′ w JvK | v 6∈ deferVars w = commit v w
| otherwise = fail "occur check"

unif ′′ r w1 w2 = unify r w1 w2

Figure 8.22: Unification and guess specialization.
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8.6 Conclusion

For the type of the identifiers of the unification rule a Unifyable instance needs to be de-
fined, which asks for a definitely of the unify function. Its sole purpose is to succeed if and
only if the heads of the two inputs are structurally equal. For the rest, it should delegate to
its recursion parameter. This function does not have to deal with guesses, since those are
handled generically by the unif function (Figure 8.22).

The unif function deals with guesses by committing concrete type information to the guess,
unless both values are guesses. In that case, it takes the composition of the two. This means
that the two guesses are substituted with a single guess, such that when information is com-
mitted to this single guess (in the minimal scope of the two), the deferred statements of the
original guesses are sequenced after each other. Since we require confluence with respect to
the order information about guesses is found, the execution order of these guesses is allowed
to be arbitrary. Also note that not all Unifyable types have to be Deferrable, depending on the
properties of the type. We omitted this detail here, as it is only a minor detail, and the code
for unif would be considerably more complicated.

8.6 Conclusion

Type rules of declarative type systems contain non-deterministic aspects. These aspects
are problematic when writing an inference algorithm. We presented a domain specific lan-
guage for inferencers that has special syntax to formulate algorithms to resolve these non-
deterministic aspects. The main concept is a first-class guess, which acts as a remote control
to a deferred derivation. By manipulating guesses, the deferred derivations can be sched-
uled such that decisions are made at the moment sufficient information has become available.
The result is that we can write inference algorithms by means of annotating the declarative
rules of a type system, describing the global scheduling locally, without breaking the relative
isolation of the type rules, and without breaking soundness with respect to the original rules.

Future Work We intend to formalize the type system of UHC [Dijkstra et al., 2007a], and
generate portions of the inference algorithm from this description. We made design decisions
that the generated algorithm to be reasonably efficient. Although we conceptually explained
semantics of the language in monadic terms, we actually generate code for multi-pass higher-
order attribute grammars. An open question is still if we can keep the complexity of some of
UHC’s efficient data structures hidden from the type rules.

8.7 Static Semantics

In this section we define the static semantics of the type inference language. This semantics
expresses when a type inferencer (Σ∗,r∗,Hλ ) is correctly typed. Concretely, this means that
all identifiers are defined before used, all used schemes are defined, identifiers participating
in equality, defer and commit statements have the required properties defined for their types,
and Haskell fragments have a type corresponding to the type of its inputs and outputs. When
this is the case, then compiling the inferencer rules to an algorithm in Haskell gives a type
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8 Residuation

correct Haskell program, and during the evaluation of the inferencer rules according to the
operational semantics of Section 8.5, the values in the heap have the type of the identifiers if
this was the case for the initial heap.

` rs (rule judgment)
α ; Γin ` c : Γout (statement judgment)
Hλ ` e : τ (Haskell judgment)

Figure 8.23: Structure of static semantics judgments.

The structure of the typing judgments is given in Figure 8.23. The rules may refer to the
set of schemes Σ∗, which is assumed as a constant. All schemes are explicitly typed. Local
identifiers of an inferencer rule have implicit types which are directly related to the explicit
types of schemes due to bindings, or to a type of a Haskell fragment due to inputs and outputs.

We give type rules for two typing judgments, one for a rule and one for a statement. The
other judgments are rather trivial and left out. For the validity of schemes we want to remark
that the names of identifiers in the input environment must be disjoined to those of the output
environment, and that all types in the schemes must have a correct kind with respect to the
types in Hλ . About the typing judgment for statements, we remark that it mentions types α .
These are the types over which the scheme, rule, and statements are polymorphic. Techni-
cally, the types of identifiers in the environments may have free variables, but only if their
explicitly occur in α . Also, the output environment contains exactly the types for the outputs
of the premise, whereas the input environment contains at least the types for the identifiers
that are input to the premise.

∀α. Γin `s Γout ∈ Σ
∗(s) dom(Γin) = dom(∆in) dom(Γout) = dom(∆out)

α ; Γin(∆in) Γ
′
j<i ` ci : Γ

′
i, 16 i6 k Γout(∆out)⊆ Γin(∆in) Γ

′
j6k

` c1, . . . ,ck;(∆in `s ∆out)
RULE

Figure 8.24: Rule typing rule.

To type check an inferencer rule, we check that a scheme has been defined for it, and
verify the define-before-use requirement on the premises. Outputs of these premises are
accumulated, and the next premise in the sequence may use any of these outputs. The local
identifiers that are connected to the types of the scheme due to bindings, must have types that
agree with the types of the scheme.

The typing rules for statements are listed in Figure 8.25. The typing judgement states that
given some types α , and an environment Γin stating which identifiers are in scope and what
type and properties these have, that the statement produces outputs with types Γout. We now
focus at some aspects of these rules.

316



8.7 Static Semantics

∀β . Γ
′
in `s Γ

′
out ∈ Σ

∗(s) [β := τ]Γ′in ⊆ Γin(∆in)

α ; Γin ` (∆in ` ∆out) : ∆out([β := τ]Γ′out)
SCHEME

n1 ::ρ1 τ ∈ Γ n2 ::ρ2 τ ∈ Γ ρ1 6= /0 ρ2 6= /0
α ; Γ ` n1 ≡ n2 : /0

UNIFY

τin = Γin(n1)→ . . .→ Γin(nk) τout = (τ1,ρ1 , . . . ,τl,ρl )
Hλ ` e : ∀α. τin→ I τout Γout = m1 ::ρ1 τ1, . . . ,ml ::ρl τl

α ; Γin ` exece :: (n1 . . .nk)→ (m1 . . .ml) : Γout
EXECUTION

α ; Γin ` cs : Γout
Γin(mi) = Γout(m

′
i), 16 i6 k n∗ ⊆ dom(Γin) n∗ ⊆ dom(Γout)

α ; Γin ` fixpointn∗
m1 7→m′1,...,mk 7→m′k

cs : Γout
FIXPOINT

Γin Γ
′
j<i ` ci : Γ

′
i, 16 i6 k Γout = Γ

′
j6k {n,m∗} n ::d τ ∈ Γout

α ; Γin ` deferm∗
n c∗1, . . . ,c

∗
k : Γout

DEFER

n ::d τ ∈ Γin
α ; Γin ` commitvτ

n : /0
COMMIT

α ; Env′j<i,Γin ` ci : Γ
′
i, 16 i6 k

α ; Γin ` fixateτ c1, . . . ,ck : Env′j6k
FIXATE

Figure 8.25: Statement typing rule.
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Polymorphism. A limited form of polymorphism is allowed for the types of the inferencer
rules, by allowing the types to be parametrized over type variables α . This is useful when in
order to be able to reuse some of the inferencer rules, or when the syntax of the language we
are writing an inferencer for is itself polymorphic (for example, parametrized over the types
of variables). In fact, we will silently also allow ad-hoc polymorphism by having a set of
type class constraints over these variables α , for example to be able to show values of such a
polymorphic type, to test for equality, or to use such values in maps.

This polymorphism is visible at two places. In the scheme-rule, when instantiating a
scheme polymorphic in β , we can choose the types for these variables. And in the execution-
rule, the type of the monadic function must be polymorphic over the variables the scheme
itself is polymorphic.

Haskell. To type monadic functions, we use Haskell’s typing relation with an initial envi-
ronment Hλ (containing several utility functions, data types, etc.). The monadic function is a
function of taking some of the inputs of the execution-statement, and returning the outputs in
monad I.

Properties. Some statements can require additional semantics defines on the values they
operate on. For example, in order to test two values for equality in the unify-rule, we require a
Unify-instance to be defined on the type. This is encoded in the language as a property ρ of an
identifier. There are three properties: none, unifyable, and deferrable. When an identifier has
the deferrable property, there are instances of both Unifyable as Deferrable for its type. The
commit and defer statements require this deferrable property to be defined for the identifiers
they act on.

8.8 Soundness Almost For Free

In general, it is hard to prove that a concrete type inference algorithm is sound with respect
to the type system it is based on. Formally this means that if the inferencer manages to
infer a type for some program value, that this is indeed a correct type for the program value
according to the type system. However, when the inference algorithm is described with the
inferencer rules, we almost get the soundness almost for free.

Almost free. The almost-part is due to some assumptions that we need to make:

• The inferencer rules contains concrete algorithms in the form of Haskell fragments at
the places where type rules has (non-judgement) premises. For example, when a type
rule has a premise α # Γ, the the type inferencer rule has a premise

let α = ftv ty− ftv Γ

. In the first case, we only state a demand on α , in the later case we precisely define
what α is. For soundness, we need the guarantee that the code fragment ensures that
the constraint on α is satisfied.
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• The inferencer rules may be more fine-grained than the type rules in order to deal with
syntax-directness and explicit scheduling or pipelining of certain rules. For example,
for the HML type system, we have a master rule for instantiation with the sole purpose
to orchestrate the specific rules for instantiation. Therefore, we require an erasure
function b·c :: π → π that eliminates the extra structure from the derivation, such that
a derivation is left that matches the structure of the type rules.

Notation. Let DT (s,H) stand for the set of all derivations π that are valid according to
type system T for an instantiation of scheme s of T , with the bindings for the identifiers of
the scheme inH.

Let Π(π) stand for the substitution and merging of a derivations reference !ι in π with the
derivations named ι in Π. Let Π∗(π) stand for the fixpoint. If Π is complete, then there is no
reference left in the result.

Soundness.

Theorem 8.8.1. Suppose that (Σ∗,r∗,Hλ ) is an inferencer for some type system T , H0 and
H1 are some heap, and cs is an instantiation of one of the schemes of T . Now suppose that
there is some substitution θ such that:

/0 ;Hin ; 0 ; fixate cs →Π
π Hout ; θ

Then:
bΠ∗(π)c ∈ DT (s,HoutHin)

Proof. We give a sketch. First note that only fixate-statements introduce a scope, and also
guarantee that there are no deferred statements remaining in this scope. More concretely,
θ does not have any deferred statements. Derivations references are only introduced by a
deferred-statement, which also brings equally named deferred statements in scope. Since
these have all been resolved, it means that Π is complete, and thus Π∗(π) is a full derivation
without any references.

By taking the erasure of this derivation, we obtain a derivation π ′. In order to show that
π ′ ∈ DT (s,HoutHin), we need to prove for each node in π ′, the bindings in its heap H,
satisfy the premises of the rule in T corresponding with the node.

If there is no guessing involved, then we know that Haskell fragments have successfully
run and ensured that these premises did hold. Now, when guessing was involved, this means
that a certain order of evaluation was taken in order to produce the values. Some values where
inspected before the full values where known. We now need to show that the same values
would be observed when this evaluation would have occurred at the very end of the inference
process.

We use an important property: all values are constant up to the guesses. Once a commit has
been done on a guess, it is never rolled back. This has as consequence that once we observe
that a value has a certain structure, this value can be considered to always keep having this
structure. Therefore, a Haskell fragment executing too late does not matter, but what if it
executed too early, and thus saw only a partial value?
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There are two cases to consider. The first case is that enough of the value was known to
complete evaluation. These portions of the value cannot have changed until the end of the
inference process, and thus that evaluation would still be valid at a later time. In the second
case, not enough of the value was known, and some of the evaluation was deferred. In that
case, since all deferred statements have executed, this means that the evaluation was done
successfully at a later time.

Remarks. This section talked about soundness only. Dual to soundness is completeness.
Unfortunately, completeness cannot be proved in general, because we can encode type sys-
tems for which no inference algorithm exists (for example, implicitly typed System F). How-
ever, we can ask ourselves the question what constraints we need on the type system and the
Haskell fragments in the inferencer rules, in order to be able to prove completeness. As for
now, we do not have an answer to this, otherwise, interesting question. Also, we note that one
wants to experiment with inference algorithms. Soundness with respect to the type system is
immediately wanted, but completeness is something we expect only to achieve after playing
around sufficiently and making the right implementation decisions.

8.9 Future Work

Limitations. The inference algorithm has as property that refinements on a guess are never
undone. This eliminates the need for backtracking, which ensures that a fixed traversal over
the AST is sufficient to construct the derivation. We believe that this works for many kinds
of non-deterministic aspects of type rules. On the other hand, there are type rules that can-
not be mapped to a fixed traversal, but require a constraint-solving algorithm (for example,
Constraint Handling Rules). For example, type rules related to overloading in Haskell. One
particular question is if we can discover what non-deterministic aspect cannot be dealt with
by a single traversal, and map all rules that depend on it to CHR constraints.

Extensions

• Higher-order abstractions for type rules.

• Transformations of certain patterns. Automatic insertion of fresh when input is not
available yet. Automatic insertion of ≡ when putting an input at the place of an output

From interpreter to compiler. The practical intention of our research is to generate the
type inferencer code for the UHC. This requires compiling the inferencer rules instead of
interpreting them. Declarative aspects of type rules prevent a straightforward mapping to
attribute grammar code. The ideas that we presented in this chapter can serve as a basis for
an inference systems based on attribute grammars.
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Efficiency. We imposed some constraints, such as syntax-directed rules for the inference,
and disallowing backtracking, in order to have a system that can be implemented in terms of
proved conventional and reasonably efficient technology. This, however, only applies to the
evaluation process and scheduling of the rules. The actual computations are performed by
Haskell code, referenced by the rules, that manipulates the data structures such as environ-
ments and types.

Experience with the UHC shows that it is the efficiency of this code that matters in order
to scale up to typing real-world programs. For example, UHC uses a more complicated
data structure to represent an environment than a conventional map, in order to make some
operations cheaper and overall memory consumption lower. As a result, some extra invariants
need to be maintained which make the use of this data structure more complicated. Since the
inferencer rules are a higher-level abstraction, we expect that the conventional interface can
be provided to the rules, while we ensure that the extra work required for these special data
structures is handled by inserting special annotations at the appropriate places.
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9 AGs with Dependent Types

Attribute Grammars (AGs) are a domain-specific language for functional and composable
descriptions of tree traversals. Given such a description, it is not immediately clear how to
state and prove properties of AGs formally. To meet this challenge, we apply dependent types
to AGs. In a dependently typed AG, the type of an attribute may refer to values of attributes.
The type of an attribute is an invariant, the value of an attribute a proof for that invariant. Ad-
ditionally, when an AG is cycle-free, the composition of the attributes is logically consistent.
We present a lightweight approach using a preprocessor in combination with the dependently
typed language Agda.

9.1 Introduction

Functional programming languages are known to be convenient languages for implementing
a compiler [Appel, 1998]. As part of the compilation process, a compiler computes prop-
erties of Abstract Syntax Trees (ASTs), such as environments, types, error messages, and
code. In functional programming, these syntax-directed computations are typically written
as catamorphisms1. An algebra defines an inductive property in terms of each constructor of
the AST, and a catamorphism applies the algebra to the AST. Catamorphisms thus play an
important role in a functional implementation of a compiler.

Attribute Grammars (AGs) [Knuth, 1968] are a domain-specific language for composable
descriptions of catamorphisms. AGs facilitate the description of complex catamorphisms that
typically occur in complex compiler implementations.

An AG extends a context-free grammar by associating attributes with nonterminals. Func-
tional rules are associated with productions, and define values for the attributes that occur
in the nonterminals of associated productions. As AGs are typically embedded in a host
language, the rules are terms in the host language, which may additionally refer to attributes.
Attributes can easily be composed to form more complex properties. An AG can be compiled
to an efficient functional algorithm that computes the synthesized attributes of the root of the
AST, given the root’s inherited attributes.

It is not immediately clear how to formally specify and write proofs about programs im-
plemented with AGs. For example, it is common to prove that a type inferencer is a sound
and complete implementation of a type system, and that the meaning of a well typed source
program is preserved. Dependent types [Bove and Dybjer, 2009] provide a means to use

1 Catamorphisms are a generalization of folds to tree-like data structures. We consider catamorphisms from the
perspective of algebraic data types in functional programming instead of the equivalent notion in terms of func-
tors in category theory. A catamorphism cataτ (f1, ..., fn) replaces each occurrence of a constructor ci of τ in
a data structure with fi. The product (f1, ..., fn) is called an algebra. An element fi of the algebra is called a
semantic function.
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types to encode properties with the expressiveness of (higher-order) intuitionistic proposi-
tional logic, and terms to encode proofs. Such programs are called correct by construction,
because the program itself is a proof of its invariants. The goal of this chapter is therefore to
apply dependent types to AGs, in order to formally reason with AGs.

Vice versa, AGs also offer benefits to dependently typed programming. Because of the
Curry-Howard correspondence, dependently typed AGs are a domain-specific language to
write structurally inductive proofs in a composable, aspect-oriented fashion; each attribute
represents a separate aspect of the proof. Additionally, AGs alleviate the programmer from
the tedious orchestration of multi-pass traversals over data structures, and ensure that the
traversals are total: totality is required for dependently typed programs for reasons of logical
consistency and termination of type checking. Hence, the combination of dependent types
and AGs is mutually beneficial.

We make the following contributions in this chapter:

• We present the language AGDA (Section 9.3), a light-weight approach to facilitate
dependent types in AGs, and vice versa, AGs in the dependently typed language Agda.
AGDA is an embedding in Agda via a preprocessor.

In contrast to conventional AGs, we can encode invariants in terms of dependently
typed attributes, and proofs as values for attributes. This expressiveness comes at a
price: to be able to compile to a total Agda program, we restrict ourselves to the class
of ordered AGs, and demand the definitions of attributes to be total.

• We define a desugared version of AGDA programs (Section 9.4) and show how to
translate them to plain Agda programs (Section 9.5).

• Our approach supports a conditional attribution of nonterminals, so that we can give
total definitions of what would otherwise be partially defined attributes (Section 9.6).

In Section 9.2, we introduce the notation used in this chapter. However, we assume that the
reader is both familiar with AGs (see [Löh et al., 1998]) and dependently typed programming
in Agda (see [Norell, 2009]).

9.2 Preliminaries

In this warm-up section, we briefly touch upon the Agda and AG notation used throughout
this chapter. As an example, we implement the sum of a list of numbers with a catamorphism.
We give two implementations: first one that uses plain Agda, then another using AGDA.
This example does not yet use dependently typed attributes. These are introduced in the next
section.

In the following code snippet, the data type List represents a cons-list of natural numbers.
The type T ′List is the type of the value we compute (a number), and A′List is the type of an
algebra for List. Such an algebra contains a semantic function for each constructor of List,
which transforms a value of that constructor into the desired value (of type T ′List), assuming
that the transformation has been recursively applied to the fields of the constructor. The
catamorphism cataList performs the recursive application.
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data List : Set where -- represents a cons-list of natural numbers
nil : List -- constructor has no fields
cons :N→ List→ List -- constructor has a number and tail list as fields

T ′List = N -- defines a type alias T ′List : Set,
A′List = (T ′List,N→ T ′List→ T ′List) -- and A′List : Set
cataList : A′List→ List→ T ′List -- applies algebra to list
cataList (n, ) nil = n -- in case of nil, replaces nil with n
cataList alg l with alg | l -- otherwise, matches on alg and l
cataList alg l | ( ,c) | cons x xs with cataList alg xs -- recurses on xs
cataList alg l | ( ,c) | cons x xs | r = c x r -- replaces cons with c

In Agda, a function is defined by one or more equations. A with-construct facilitates pattern
matching against intermediate values. An equation that ends with with e1 | ... | en parame-
terizes the equations that follow with the values of e1, ...,en as additional arguments. Vertical
bars separate the patterns intended for the additional parameters.

The actual algebra itself simply takes 0 for the nil constructor, and + for the cons con-
structor. The function sumList shows how the algebra and catamorphism can be used.

semnil : T ′List -- semantic function for nil constructor
semnil = 0 -- T ′List = N (defined above)
semcons :N→ T ′List→ T ′List -- semantic function for cons constructor
semcons = + -- + :N→ N→ N (defined in library)
sumList : List→ T ′List -- transforms the List into the desired sum
sumList = cataList (semnil,semcons) -- algebra is semantic functions in a tuple

In the example, the sum is defined in a bottom-up fashion. By taking a function type for
T ′List, values can also be passed top-down. Multiple types can be combined by using prod-
ucts. Such algebras quickly become tedious to write. Fortunately, we can use AGs as a
domain-specific language for algebras. In the code below, we give an AG implementation:
we specify a grammar that describes the structure of the AST, declare attributes on produc-
tions, and give rules that define attributes.

We now give an implementation of the same example using AGDA. The code consists of
blocks of plain Agda code, and blocks of AG code. To ease the distinction, Agda’s keywords
are underlined, and keywords of AGDA are typeset in bold.

A grammar specification is a restricted form of a data declaration (for an AST): data con-
structors are called productions and their fields are explicitly marked as terminal or nontermi-
nal. A nonterminal field represents a child in the AST and has attributes, whereas a terminal
field only has a value. A plain Agda data-type declaration can be derived from a grammar
specification. In such a specification, nonterminal types must have a fully saturated, outer-
most type constructor that is explicitly introduced by a grammar declaration. Terminal types
may be arbitrary Agda types2.

2 In general, although not needed in this example, nonterminal types may be parametrized, production types may
refer to its field names, and field types may refer to preceding field names.
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grammar List : Set -- declares nonterminal List of type Set
prod nil : List -- production nil of type List (no fields)
prod cons : List -- production cons of type List (two fields)

term hd :N -- terminal field hd of type N
nonterm tl : List -- nonterminal field tl of type List

With an interface specification, we declare attributes for nonterminals. Attributes come in
two fashions: inherited attributes (used in a later example) must be defined by rules of the
parent, and synthesized attributes may be used by the parent. Names of inherited attributes are
distinct from names of synthesized attributes; an attribute of the same name and fashion may
only be declared once per nonterminal. We also partition the attributes in one or more visits.
These visits impose a partial order on attributes. Inherited attributes may not be defined in
terms of a synthesized attributes of the same visit or later. We use this order in Section 9.4 to
derive semantic functions that are total.

itf List -- interface for nonterminal List,
visit compute -- with a single visit that is named compute,

syn sum :N -- and a synthesized attribute named sum of type N

Finally, we define each of the production’s attributes. We may refer to an attribute using
child.attr notation. For each production, we give rules that define the inherited attributes of
the children and synthesized attributes of the production itself (with lhs as special name),
using inherited attributes of the production and synthesized attributes of the children. The
special name loc refers to the terminals, and to local attributes that we may associate with a
production.

datasem List -- defines attributes of List for constructors of List
prod nil lhs.sum = 0 -- rule for sum of production nil
prod cons lhs.sum = loc.hd+ tl.sum -- refers to terminal hd and attr tl.sum

The left-hand side of a rule is a plain Agda pattern, and the right-hand side is either a plain
Agda expression or with-construct (not shown in this example). Additionally, both the left
and right-hand sides may contain attribute references.

During attribute evaluation, visits are performed on children to obtain their associated syn-
thesized attributes. We do not have to explicitly specify when to visit these children, neither is
the order of appearance of rules relevant. However, an inherited attribute c.x may not depend
on a synthesized attribute c.y of the same visit or later (in the interface). This guarantees that
the attribute dependencies are acyclic, so that we can derive when children need to be visited
and in what order.

AGs are a domain-specific language to write algebras in terms of attributes. From the
grammar, we generate the data type and catamorphism. From the interface, we generate the
T ′List type. From the rules, we generate the semantic functions semnil and semcons. AGs pay
off when an algebra has many inherited and synthesized attributes. Also, there are many AG
extensions that offer abstractions over common usage patterns (not covered in this chapter).
In the next section we present AGs with dependent types, so that we can formulate properties
of attributes (and their proofs).
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9.3 Dependently Typed Example

In this section, we use AGDA to implement a mini-compiler that performs name checking
of a simple language Source, and translates it to target language Target if all used identifiers
are declared, or produces errors otherwise. A term in Source is a sequence of identifier
definitions and identifier uses, for example: def a�use b�use a. In this case, b is not defined,
thus the mini-compiler reports an error. Otherwise, it generates a Target term, which is a
clone of the Source term that additionally carries evidence that the term is free of naming
errors. Section 9.3.2 shows the definition of both Source and Target.

We show how to prove that the mini-compiler produces only correctly named Target terms
and errors messages that only mention undeclared identifiers. The proofs are part of the
implementation’s code. Name checking is only a minor task in a compiler. However, the
example shows many aspects of a more realistic compiler.

9.3.1 Support Code Dealing With Environments

We need some Agda support code to deal with environments. We show the relevant data
structures and type signatures for operations on them, but omit the actual implementation. See
Section 9.A for more details about the actual implementation. We represent the environment
as a cons-list of identifiers.

Ident = String -- Ident : Set
Env = List Ident -- Env : Set

In intuitionistic type theory, a data type represents a relation, its data constructors deduction
rules for such a relation, and values built using these constructors are proofs for instances of
the relation. We use some data types to reason with environments.

A value of type ι ∈ Γ is a proof that an identifier ι is member of an environment Γ. A value
here indicates that identifier is at the front of the environment. A value next means that the
identifier can be found in the tail of the environment, as described by the remainder of the
proof.

data ∈ : Ident→ Env→ Set where
here :{ι : Ident} {Γ : Env}→ ι ∈ (ι :: Γ)
next :{ι1 : Ident} {ι2 : Ident} {Γ : Env}→ ι1 ∈ Γ→ ι1 ∈ (ι2 :: Γ)

The type Γ1 v Γ2 represents a proof that an environment Γ1 is contained as a substring
(with each mapping as a symbol) of an environment Γ2. A value subLeft means that the
environment Γ1 is a prefix of Γ2, and subRight means that Γ1 is a suffix. With trans, we
transitively compose two proofs.

data v : Env→ Env→ Set where
subLeft :{Γ1 : Env} {Γ2 : Env}→ Γ1 v (Γ1 ++Γ2)
subRight :{Γ1 : Env} {Γ2 : Env}→ Γ2 v (Γ1 ++Γ2)
trans :{Γ1 : Env} {Γ2 : Env} {Γ3 : Env}→ Γ1 v Γ2→ Γ2 v Γ3→ Γ1 v Γ3
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The following functions operate on proofs. When an identifier occurs in an environment,
function inSubset produces a proof that the identifier is also in the superset of the environ-
ment. Given an identifier and an environment, ι ∈? Γ returns either a proof ι ∈ Γ that the
element is in the environment, or a proof that it is not.

inSubset :{ι : Ident} {Γ1 : Env} {Γ2 : Env}→ Γ1 v Γ2→ ι ∈ Γ1→ ι ∈ Γ2
∈? : (ι : Ident)→ (Γ : Env)→¬(ι ∈ Γ)] (ι ∈ Γ)

A value of the sum-type α ]β either consists of an α wrapped in a constructor inj1 or of a β

wrapped in inj2.

9.3.2 Grammar of the Source and Target Language

Below, we give a grammar for both the Source and Target language, such that we can analyze
their ASTs with AGs3. The Target language is a clone of the Source language, except that
terms that have identifiers carry a field proof that is evidence that the identifiers are properly
introduced.

grammar Root : Set -- start symbol of grammar and root of AST
prod root : Root nonterm top : Source -- top of the Source tree

grammar Source : Set -- grammar for nonterminal Source
prod use : Source -- ’result type’ of production

term ι : Ident -- terminals may have arbitrary Agda types
prod def : Source -- ’result type’ may be parametrized

term ι : Ident
prod � : Source -- represents sequencing of two Source terms

nonterm left : Source -- nonterminal fields must have a nonterm as
nonterm right : Source -- outermost type constructor.

grammar Target : Env→ Set -- grammar for nonterminal Target
prod def : Target Γ -- production type may refer to any field,

term? Γ : Env -- e.g. Γ. Agda feature: implicit terminal
term ι : Ident -- (inferred when building a def )
term φ : ι ∈ Γ -- field type may refer to preceding fields

prod use : Target Γ

term? Γ : Env -- a Target term carries evidence: a
term ι : Ident -- proof that the identifier is in the
term φ : ι ∈ Γ -- environment
� : Target Γ

term? Γ : Env
nonterm left : Target Γ -- nonterm fields introduce children that
nonterm right : Target Γ -- have attributes

data Err : Env→ Set where -- data type for errors in Agda notation

3 In our example, we could have defined the type Target using conventional Agda notation instead. However, the
grammar for Target serves as an example of a parameterized nonterminal.
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scope :{Γ : Env} (ι : Ident)→¬(ι ∈ Γ)→ Err Γ

Errs Γ = List (Err Γ) -- Errs : Env→ Set

As shown in Section 9.2, we generate Agda data-type definitions and catamorphisms from
this specification.

The concrete syntax of the source language Source and target language Target of the mini-
compiler is out of scope for this chapter; the grammar defines only the abstract syntax. Sim-
ilarly, we omit a formal operational semantics for Source and Target: it evaluates to unit if
there is an equally named def for every use, otherwise evaluation diverges.

9.3.3 Dependent Attributes

In this section, we define dependently typed attributes for Source. Such a type may contain
references to preceding4 attributes using inh.attrNm or syn.attrNm notation, which explicitly
distinguishes between inherited and synthesized attributes. The type specifies a property of
the attributes it references; an attribute with such a type represents a proof of this property.

In our mini-compiler, we compute bottom-up a synthesized attribute gathEnv that contains
identifiers defined by the Source term. At the root, the gathEnv attribute contains all the
defined identifiers. We output its value as the synthesized attribute finEnv (final environment)
at the root. Also, we pass its value top-down as the inherited attribute finEnv, such that we
can refer to this environment deeper down the AST. We also pass down an attribute gathInFin
that represents a proof that the final environment is a superset of the gathered environment.
When we know that an identifier is in the gathered environment, we can thus also find it in
the final environment. We pass up the attribute outcome, which consists either of errors, or of
a correct Target term.

itf Root -- attributes for the root of the AST
visit compile syn finEnv : Env

syn outcome : (Errs syn.finEnv)] (Target syn.finEnv)
itf Source -- attributes for Source

visit analyze syn gathEnv : Env -- attribute of first visit
visit translate inh finEnv : Env -- attributes of second visit

inh gathInFin : syn.gathEnvv inh.finEnv
syn outcome : (Errs inh.finEnv)] (Target inh.finEnv)

itf Target Γ -- interface for Target (parameterized) is not used in the example.

As we show later, at the root, we need the value of gathEnv to define finEnv. This re-
quires gathEnv to be placed in a strict earlier visit. Hence we define two visits, ordered by
appearance.

Attribute gathInFin has a dependent type: it specifies that gathEnv is a substring of finEnv.
A value of this attribute is a proof that essentially states that we did not forget any identifiers.

4 We may refer to an attribute that is declared earlier (in order of appearance) in the same interface. There is one
exception due to the translation to Agda (Section 9.5): in the type of an inherited attribute, we may not refer to
synthesized attributes of the same visit.
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Similarly, in order to construct Target terms, we need to prove that finEnv defines the iden-
tifiers that occur in the term. In the next section, we construct such proofs by applying data
constructors. We may use inherited attributes as assumptions and pattern matches against val-
ues of attributes as case distinctions. Thus, with a dependently typed AG we can formalize
and prove correctness properties of our implementation. Agda’s type checker validates such
proofs using symbolic evaluation driven by unification.

9.3.4 Semantics of Attributes

For each production, we give definitions for the declared attributes via rules. At the root, we
pass the gathered environment back down as final environment. Thus, these two attributes
are equal, and we can trivially prove that the final environment is a substring using either
subRight or subLeft.

datasem Root prod root -- rules for production root of nonterm Root
top.finEnv = top.gathEnv -- pass gathered environment down
top.gathInFin = subRight { [ ]} -- substring proof, using: [ ]++Γ4 ≡ Γ4
lhs.finEnv = top.gathEnv -- pass gathEnv up
lhs.outcome = top.outcome -- pass outcome up

For the use-production of Source, we check if the identifier (terminal loc.ι) is in the envi-
ronment. If it is, we produce a Target term as value for the outcome attribute, otherwise we
produce a scope error. For def , we introduce an identifier in the gathered environment. No
errors can arise, hence we always produce a Target term. We prove (loc.φ1) that the identifier
loc.ι is actually in the gathered environment, and prove (loc.φ2) using inSubset and attribute
lhs.gathInFin that it must also be in the final environment. For � , we pass finEnv down to
both children, concatenate their gathEnvs, and combine their outcomes.

datasem Source -- rules for productions of Source
prod use

lhs.gathEnv = [ ] -- no names introduced
lhs.outcome with loc.ι ∈? lhs.finEnv -- tests presence of ι

| inj1 notIn = inj1 [scope loc.ι notIn] -- when not in env
| inj2 isIn = inj2 (use loc.ι isIn) -- when in env

prod def
lhs.gathEnv = [loc.ι ] -- one name introduced
loc.φ1 = here {loc.ι } {syn.lhs.gathEnv} -- proof of ι in gathEnv
loc.φ2 = inSubset lhs.gathInFin loc.φ1 -- proof of ι in finEnv
lhs.outcome = inj2 (def loc.ι loc.φ2) -- never any errors

prod �
lhs.gathEnv = left.gathEnv++ right.gathEnv -- pass names up
left.finEnv = lhs.finEnv -- pass finEnv down
right.finEnv = lhs.finEnv -- pass finEnv down
left.gathInFin = trans subLeft lhs.gathInFin -- proof for left
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right.gathInFin = trans (subRight {syn.lhs.gathEnv} { lhs.finEnv})
lhs.gathInFin -- proof for right

lhs.outcome with left.outcome -- four alts.
| inj1 es with right.outcome
| inj1 es1 | inj1 es2 = inj1 (es1 ++ es2) -- 1: both in error
| inj1 es1 | inj2 = inj1 es1 -- 2: only left
| inj2 t1 with left.outcome
| inj2 t1 | inj1 es2 = inj1 es2 -- 3: only right
| inj2 t1 | inj2 t2 = inj2 (t1 � t2) -- 4: none in error

Out of the above code, we generate each production’s semantic function (and some wrapper
code), such that these together with a catamorphism form a function that translates Source
terms. The advantage of using AGs here is that we can easily add more attributes (and thus
more properties and proofs) and refer to them.

9.4 AG Descriptions and their Core Representation

In the previous sections, we presented AGDA (by example). To describe the dependently-
typed extension to AGs, we do so in terms of the core language AGX

DA (a subset of AGDA).
Implicit information in AG descriptions (notational conveniences, the order of rules, visits
to children) is made explicit in AGX

DA. We sketch the translation from AGDA to AGX
DA. In

previous work [Middelkoop et al., 2010c,a], we described the process in more detail (albeit
in a non-dependently typed setting).

AGX
DA contains interface declarations, but grammar declarations are absent and semantic

blocks encoded differently. Each production in AGDA is mapped to a semantic function in
AGX

DA: it is a domain-specific language for the contents of semantic functions. A terminal
x : τ of the production is mapped to a parameter loclx : τ . Implicit terminals are mapped
to implicit parameters. A nonterminal x : N τ is mapped to a parameter loccx : T ′N τ . The
body of the production consists of the rules for the production given in the original AGX

DA
description, plus a number of additional rules that declare children and their visits explicitly.

sem� : T ′Source→ T ′Source→ T ′Source -- derived from (non)terminal types
sem� loccleft loccright = -- semantic function for �

sem : Source -- AGX
DA semantics block

child left : Source = loccleft -- defines a child left
child right : Source = loccright -- defines a child right
invoke analyze of left -- rule requires visiting analyze on left
invoke analyze of right -- rule requires visiting analyze on right
invoke translate of left
invoke translate of right
lhs.gathEnv = left.gathEnv++ right.gathEnv -- the AGDA rules
... -- etc.
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e ::=AGDA [b ] -- embedded blocks b in AGDA

b ::= i | s | o -- AGX
DA blocks

o ::= inh.c.x | syn.c.x | loc.x -- embedded attribute reference
i ::= itf I x : τ v -- with first visit v, params x, and signature τ

v ::=visit x inh a syn a v -- visit declaration
| � -- terminator of visit decl. chain

a ::= x : e -- attribute decl, with Agda type e
s ::= sem : I e t -- semantics expr, uses interface I e
t ::=visit x r t -- visit definition, with next visit t
| � -- terminator of visit def. chain

r ::=p e′ -- evaluation rule
| invoke x of c -- invoke-rule, invokes x on child c
| child c : I = e -- child-rule, defines a child c, with interface I e

p ::=o -- attribute def
| .{e} -- Agda dot pattern
| x p -- constructor match

e′ ::=with e p′ e′? -- Agda with expression (e′ absent when p′ absurd)
| = e -- Agda = expression

p′ -- Agda LHS
x, I,c -- identifiers, interface names, children respectively
τ -- plain Agda type

Figure 9.1: Syntax of RULER-CORE

A child rule introduces a child with explicit semantics (a value of the type T ′Source). Other
rules may declare visits and refer to the attributes of the child. An invoke rule declares a visit
to a child, and brings the attributes of that visit in scope. Conventional rules define attributes,
and may refer to attributes. The dependencies between attributes induces a def-use (partial)
order.

Actually, there is one more step to go to end up with a AGX
DA description. A semantics

block consists of one of more visit-blocks (in the order specified by the interface), and the
rules are partitioned over the blocks. In a block, the lhs attributes of that and earlier visits
are in scope, as well as those brought in scope by preceding rules. Also, the synthesized
attributes of the visit must be defined in the block or in an earlier block. We assign rules to
the earliest block that satisfies the def-use order. We convert this partial order into a total
order by giving conventional rules precedence over child/invoke rules, and using the order of
appearance otherwise:

sem� : T ′Source→ T ′Source→ T ′Source -- signature derived from itf
sem� loccleft loccright = -- semantic function for �
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sem : Source -- AGX
DA block

visit analyze -- first visit
child left : Source = loccleft -- defines a child left
invoke analyze of left -- requires child to be defined
child right : Source = loccright -- defines a child right
invoke analyze of right -- requires child to be defined
syn.lhs.gathEnv = syn.left.gathEnv++ syn.right.gathEnv

visit translate -- second visit
inh.left.finEnv = inh.lhs.finEnv -- needs lhs.finEnv
inh.right.finEnv = inh.lhs.finEnv -- needs lhs.finEnv
inh.left.gathInFin = trans ... -- also needs lhs.gathEnv
inh.right.gathInFin = trans ... -- also needslhs.gathEnv
invoke translate of left -- needs def of inh attrs of left
invoke translate of right -- needs def of inh attrs of right
syn.lhs.outcome with ... -- needs translate attrs of children

It is a static error when such an order cannot be satisfied. Another interesting example is the
semantic function for the root: it has a child with an interface different from its own, and has
two invoke rules in the same visit.

sem root : T ′Source→ T ′Root -- semantic function for the root
sem root locStop = -- Source’s semantics as parameter

sem : Root visit compile -- only one visit
child top : Source = locctop -- defines a child top
invoke analyze of top -- invokes first visit of top
inh.top.finEnv = syn.top.gathEnv -- passes gathered environment back
invoke translate of top -- invokes second visit of top
syn.lhs.output = syn.top.gathEnv -- passes up the gathered env
syn.lhs.output = syn.top.outcome -- passes up the result

Figure 9.1 shows the syntax of AGX
DA. In general, interfaces may be parametrized. The

interface has a function type τ (equal to the type of the nonterminal declaration in AGDA)
that specifies the type of each parameter, and the kind of the interface (an upper bound of
the kinds of the parameters). For an evaluation rule, we either use a with-expression when
the value of the attribute is conditionally defined, or use a simple equation as RHS. In the
next section, we plug such an expression in a function defined via with-expressions; hence
we need knowledge about the with-structure of the RHS.

9.5 Translation to Agda

To explain the preprocessing of AGX
DA to Agda, we give a translation scheme in Figure 9.2

(explained via examples below). This translation scheme is a denotational semantics for
AGX

DA. Also, if the translation is correct Agda, then the original is correct AGX
DA.
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Jitf I x : τx→ τK v  Jiv vKx:τx
I,τ ; Jsig IK : JτK ; Jsig IK = Jsig I (name v)K

Jiv visit x inh a syn b vKg
I,τ  Jiv vKg++a++b

I,τ -- interface type for later visits
Jsig I xK : Jat g1K→ ...→ Jat gnK→ Jresultty τK
Jsig I xK Jan gK = Ja inh.a1K→ ...→ Ja inh.anK→

Jtyprod (syn.b) (sig I (name v))K

Jiv �Kg
I,τ  Jsig I �K =� -- terminator (some unit-value)

Ja x : eK  Jatname xK : JeK -- extract attribute name and type
Jat x : eK  JeK -- extract attribute type
Jan x : eK  Jatname xK -- extract attribute name

Jsem x : I e tK  Jvis lhs (name t)K where JevtKe, /0
I -- top of semfun

Jevvisit x r tKe,g
I  Jvis lhs xK : Jsig I xK JeK Jan gK -- type of visit fun

Jvis lhs xK Jinhs I xK = Jr rKJςK -- chain of rules
JςK = Jvalprod (syns I x) (vis lhs (name t))K

where JevtKg++a++b
I -- next visit

Jev�Ke,g
I  Jvis lhs�K : Jsig I �K JeK Jan gK ; Jvis lhs�K =�

Jr child c : I = eKk  with JeK ... | Jvis I (firstvisit I)K JkK -- k: remaining rules
Jr invoke x of cKk  with Jvis (itf c) xK Jinhs (itf c) xK -- pass inh values

... | (valprod (syns (itf c) x)) JkK -- match syn values
Jr p e′Kk  Jep e′Kk

p -- translation for attr def rule

Jep with e p e′Kk
p with e ... | JpK Jr p e′Kk -- rule RHS is with-constr

Jep = eKk
p  with e ... | JpK k -- rule RHS is expr

atref inh.c.x = cix atname inh.x = inhax -- naming conventions
atref syn.c.x = csx atname syn.x = synax -- atref : ref to attr value
atref loc.x = loclx atname x = x -- atname: ref to attr in type
vis I x = vis lhs x sig I = T ′I -- vis: name of visit function
vis c x = cvx sig I x = T ′I′x -- sig: itf types

Figure 9.2: Translation of AGX
DA to Agda.
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A semantics block in an AGX
DA program is actually an algorithm that makes precise how

to compute the attributes as specified by the interface: for each visit, the rules prescribe when
to compute an attribute and when to visit a child. The idea is that we map such a block
to an Agda function that takes values for its inherited attributes and delivers a dependent
product5 of synthesized attributes. However, such a function would be cyclic: in the presented
example, the result gathEnv would be needed for as input for finEnv. Fortunately, we can
bypass this problem: we map to a k-visit coroutine instead. A coroutine is a function that can
be invoked k times. We associate each invocation with a visit of the interface. Values for the
inherited attributes are inputs to the invocation. Values for the synthesized attributes are the
result of the invocation. In a pure functional language (like Agda), we can encode coroutines
as one-shot continuations (or visit functions [Saraiva and Swierstra, 1999]).

We generate types for coroutines and for the individual visit functions that make up such
a coroutine. These types are derived from the interface. For each visit (e.g. translate of
Source), we generate a type that represents a function type from the attribute types of the
inherited attributes for that visit, to a dependent product (Σ) of the types of the synthesized
attributes and the type of the next visit function. These types are parameterized with the
attributes of earlier visits (e.g. T ′Source′translate synagathEnv). The type of the coroutine
itself is the type of the first visit. The type of the last visit is a terminator �.

T ′Source = T ′Source′analyze
T ′Source′analyze = Σ Env T ′Source′translate

T ′Source′translate synagathEnv =
(inhafinEnv : Env) → (inhagathInFin : synagathEnvv inhafinEnv) →

Σ (Errs inhafinEnv]Target inhafinEnv)
(T ′Source′� synagathEnv inhafinEnv inhagathInFin)

T ′Source′� synagathEnv inhafinEnv inhagathInFin synaoutcome =�

The restrictions on attribute order in the interface ensure that referenced attributes are in
scope. This representation can be optimized a bit by passing only on those attributes that
are referenced in the remainder. The scheme for Jiv vKI

g,τ formalizes this translation, where
g is the list of preceding attribute declarations, and τ the type for I. The typrod function
mentioned in the scheme constructs a right-nested dependent product.

The coroutine itself consists of nested continuation functions (one for each visit). Each
continuation takes the visit’s inherited attributes as parameter, and consists of a tree of with-
constructs that represent intermediate computations for computations of attributes and invo-
cations of visits to children. Each leaf ends in a dependent product of the visit’s synthesized
attributes and the continuation function for the next visit6.

sem� : T ′Source→ T ′Source→ T ′Source -- example translation for �
sem� loccleft loccright = lhsvanalyze where -- delegates to first visit function

lhsvanalyze : T ′Source′analyze -- signature of first visit function
lhsvanalyze with ... -- computations for analyze here

5 A dependent product Σ τ f = (τ, f τ) parameterizes the RHS f with the LHS τ .
6 As a technical detail, a leaf of the with-tree may also be an absurd pattern. These are used in Agda to indicate an

alternative that is never satisfiable. A body for such an alternative cannot be given.
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...= (lhssgathEnv, lhsvtranslate) ahwere -- result of first visit function
lhsvtranslate : T ′Source′translate lhssgathEnv -- last visit function
lhsvtranslate lhsifinEnv lhsigathInFin with ... -- computations for translate here
...= (lhssoutcome, lhsv�) where -- result of second visit function

lhsv� : T ′Source′� lhssgathEnv lhsifinEnv lhsigathInFin lhssoutcome
lhsv�=� -- explicit terminator value

The scheme JevvKe,g
I formalizes this translation for a visit v of interface I, where e are type

arguments to the interface (empty in the example), and g are the attributes of previous visits.
The with-tree for a visit-function consists of the translation of child-rules, invoke-rules and

evaluation rules. Each rule plugs into this tree. For example, the translation for Jchild left :
Source = locsleftK is:

...with locsleft -- evaluate RHS to get first visit fun
... | leftvanalyze with ... -- give it a name + proceed with remainder

For Jinvoke translate of leftK the translation is:

...with leftvtranslate leftifinEnv leftigathInFin -- visit fun takes inh attrs
... | (leftsoutcome, leftvsentinel) with ... -- returns product of syn attrs

For Jlhs.gathEnv = left.gathEnv++ right.gathEnvK:

...with leftsgathEnv++ rightsgathEnv -- translation for RHS
... | lhssgathEnv with ... -- LHS + remainder

For Jlhs.outcome with...K (where the RHS is a with-construct), we duplicate the remaining
with-tree for each alternative of the RHS:

...with leftsoutcome -- translation for RHS
... | inj1 es with rightsoutcome
... | inj1 es1 | inj1 es2 with inj1 (es1 ++ es2) -- alternative one of four
... | inj1 es1 | inj1 es | lhssoutcome with ... -- LHS + remainder
... | inj1 es1 | inj2 with inj1 es1 -- alternative two of four
... | inj1 es1 | inj2 | lhssoutcome with ... -- LHS + remainder
... | inj2 ... -- remaining two alternatives

The scheme Jr rKk formalizes this translation, where r is a rule and k the translation of the
rules that follow r.

The size of the translated code may be exponential in the number of rules with with-
constructs as RHS. It is not obvious how to treat such rules otherwise. Agda does not allow
a with-construct as a subexpression. Neither can we easily factor out the RHS of a rule to
a separate function, because the conclusions drawn from the evaluation of preceding rules
are not in scope of this function. Fortunately, for rules that would otherwise cause a lot of
needless duplication, the programmer can perform this process manually.

When dependent pattern matching brings assumptions in scope that are needed across
rules, the code duplication is a necessity. To facilitate that pattern matching effects are visible
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across rules, we need to ensure that the rule that performs the match is ordered before a rule
that needs the assumption. Chapter 3 shows how such non-attribute dependencies can be
captured.

The translated code has attractive operational properties. Each attribute is only computed
once, and each node is at most traversed k times.

9.6 Partially Defined Attributes

A fine granularity of attributes is important to use an AG effectively. In the mini-compiler
of Section 9.3, we could replace the attribute outcome with an attribute code and a separate
attribute errors. This would be more convenient, since it would not require a pattern match
against the output attribute to collect errors. This is convenient in general, as a finer granular-
ity of attributes gives more opportunities to use default rules. However, we cannot produce a
target term in the presence of errors, thus code would not have a total definition. Therefore,
we were forced to combine these two aspects into a single attribute outcome. It is common
to use partially defined attributes in an AG. This holds especially when the attribute’s value
(e.g. errors) determines if another attribute is defined (e.g. code). We present a solution that
uses the partitioning of attributes over visits.

The idea is to make the availability of visits dependent on the value of a preceding attribute.
We split up the translate visit in a visit report and a visit generate. The visit report has errors
as synthesized attribute, and generate has code. Furthermore, we enforce that generate may
only be invoked (by the parent in the AST) when the list of errors reported in the previous
visit is empty. We accomplish this with an additional attribute noErrors on generate that gives
evidence that the list of errors is empty. With this evidence, we can give a total definition for
code.

itf Source -- Root’s visit needs to be split up in a similar way
visit report syn errors : Errs inh.finEnv -- parent can inspect errors
visit generate inh noErrors : syn.errors≡ [ ] -- enforces invariant

syn code : Target inh.finEnv -- only when errors is empty

datasem Source prod use -- example for production use
loc.testInEnv = loc.ι ∈? lhs.finEnv -- scheduled in visit report
lhs.code with loc.testIn | lhs.noErrors -- scheduled in visit generate
| inj1 | () -- cannot happen, hence an absurd pattern
| inj2 isIn | refl = use loc.ι isIn -- extract the evidence needed for the code term

datasem Source prod� -- leftNil : (α : Env)→ (β : Env)→ (α ++β ≡ [ ])→ (α ≡ [ ])
left.noErrors = leftNil left.errors right.errors lhs.noErrors -- right.noErrors similar
lhs.code = left.code� right.code -- scheduled in visit generate

For this approach to work, it is essential that visits are scheduled as late as possible, and only
those that are needed.

Another application of the above idea is related to proofs for special cases, i.e. when
we want to prove that with additional assumptions on inherited attributes, the synthesized
attributes meet additional criteria. These assumptions are modeled as additional inherited
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attributes. However, since we are required to pass values for inherited attributes, our AG
would only work for these special cases. For example, suppose that we want to prove that
an AG for a type inferencer is complete. To do so, we give a typing derivation as input, and
require a proof that the inferred type is more general than the type of the typing derivation.
To infer a type, we do not want to provide a typing derivation, and in the proof, we do not
want that the typing derivation would be defined in terms of the typing derivation. The typing
derivation assumption is thus partially defined: only needed for the proof. Hence, we define
the attributes for the proof in a separate visit.

itf Expr
visit infer inh env : Env syn self : Expr syn errs : Errs
visit typed inh φ1 : syn.errs≡ [ ] syn τ : Ty
visit proof -- special visit for proof

inh τ ′ : Ty
inh deriv : inh.env ` syn.self : inh.τ ′ -- description of typing derivation.
syn φ2 : syn.τ 6 inh.τ ′

We can generalize the presented approach (Section 9.B) by defining a fixed number of alter-
native sets of attributes for a visit, and use the value of a preceding attribute to select one of
these sets [Middelkoop et al., 2010d].

9.7 Related Work

Dependent types originate in Martin-Löf’s Type Theory. Several dependently-typed program-
ming languages increasingly gain popularity, including the languages Agda [Norell, 2009],
Epigram [McBride, 2004], and Coq [Bertot, 2008]. We present the ideas in this chapter with
Agda as host language, because it has a concept of a dependent pattern match, to which we
straightforwardly map the left-hand sides of AG rules. Also, in Coq and Epigram, a program
is written via interactive theorem proving with tactics or commands. The preprocessor-based
approach of this chapter, however, suits a declarative approach more.

Attribute grammars [Knuth, 1968] are considered to be a promising implementation for
compiler construction. Recently, many Attribute Grammar systems arose for mainstream
languages, such as the systems JastAdd [Ekman and Hedin, 2007] and Silver [Wyk et al.,
2008] for Java, and UUAG [Löh et al., 1998] for Haskell. These approaches may benefit
from the stronger type discipline as presented in this chapter; however, it would require an
encoding of dependent types in the host language.

In languages languages with meta-programming facilities, it is sometimes possible to im-
plement AGs without the need of a preprocessor. Viera et al. [2009] show how to implement
AGs into Haskell via type level programming. Each rule exposes in its type the attributes that
it needs and the attributes that it defines. The rules can be composed via combinators. At
one place in the program, the knit point, a proof is constructed that the set of used attributes
equals the defined attributes. This proof is subsequently mapped to a semantic function. A
combination of that paper with our work, would fit well in Agda, if Agda had a mechanism
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similar to Haskell’s class system. Alternatively, it may be possible to embed first-class AGs
in Agda, while using a preprocessor to generate boilerplate code.

AGs have a straightforward translation to cyclic functions in a lazy functional program-
ming language [Swierstra and Alcocer, 1998]. To prove that cyclic functions are total and
terminating is a non-trivial exercise. Kastens [Kastens, 1980] presented Ordered Attribute
Grammars (OAGs). In OAGs, the evaluation order of attribute computations as well as at-
tribute lifetime can be determined statically. Saraiva [Saraiva and Swierstra, 1999] described
how to generate (noncyclic) functional coroutines from OAGs. The coroutines we generate
are based on these ideas.

9.8 Conclusion

We presented AGDA, a language for ordered AGs with dependently typed attributes: the
type of an attribute may refer to the value of another attribute. This feature allows us to
conveniently encode invariants in the type of attributes, and pass proofs of these invariants
around as attributes. With a dependently typed AG, we write algebras for catamorphisms in a
dependently typed language in a composable way. Each attribute describes a separate aspect
of the catamorphism.

A particular advantage of composability is that attributes can easily be added and shared.
Moreover, via local attributes we can specify invariants and proofs at those places where the
data is. We prove for the example in Section 9.3 that the final environment must be equal to
the gathered environment at the root of the tree:

datasem Root prod root -- more rules for the root production
loc.eqEnvs : inh.top.finEnv≡ syn.top.gathEnv -- signature for local attr
loc.eqEnvs = refl -- proof of the equality

The approach we presented is lightweight, which means that we encode AGs as an embed-
ded language (via a preprocessor), such that type checking is deferred to the host language.
To facilitate termination checking, we translate the AG to a coroutine (Section 9.5) that en-
codes a terminating, multi-visit traversal, under the restriction that the AG is ordered and
definitions for attributes are total.

The preprocessor approach fits nicely with the interactive Emacs mode of Agda. Type er-
rors in the generated program are traceable back to the source: in a statically checked AGDA
program these can only occur in Agda blocks. These Agda blocks are literally preserved; due
to unicode, even attribute references can stay the same. Also, the Emacs mode implements
interactive features via markers, which are also preserved by the translation. The AG pre-
processor is merely an additional preprocessing step. Not all features integrate seamlessly,
however. Syntactical errors in Agda blocks, such as an omitted closing parenthesis, may
only be discovered during parsing of the generated code surrounding the block. This can be
remedied by validating the syntax of Agda blocks during the preprocessing. A complication
arises because the code of rules may occur multiple times in the generated code. Also, the
case splitting feature causes the generated program to be transformed, such that it scrutinizes
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on a variable chosen by the programmer. The additional equations generated by case split-
ting need to be transformed back to rules with a with-construct. Fortunately, these are not
fundamental problems.

With some generalizations, the work we have presented is a proposal for a more flexible
termination checker for Agda that accepts k-orderable cyclic functions, if the function can be
written as a non-cyclic k-visit coroutine.

As future work, it may be possible to exploit patterns in AG descriptions to generate boil-
erplate for proofs. For example, we can generate boilerplate code to express termination and
monotonicity properties of fixpoint iteration in AGs (Chapter 5), and generate boilerplate
code for standard environment lookup and extension patterns. Also, it may be possible to
generate proof and AG templates from a type system specification [Dijkstra and Swierstra,
2006b].

9.A Implementation of the Support Code

In this section, we give a definition of the support code mentioned briefly in Section 9.3. This
section also serves to give a bit more background information about Agda’s syntax.

In a dependently typed language, the interpretation of an algebraic data type in an intu-
itionistic logic is a relation between the type parameters of the data type. A data constructor
is an axiom for the relation. A type is a theorem; a value of that type is a proof that the
theorem holds.

We defined the following data types and data constructors to work with proofs for environ-
ments. We use the ∈ data type to prove that an identifier is in the environment, and v
to prove that an environment occurs as substring in an environment.

data ∈ : Ident→ Env→ Set where -- member of environment
here :{ι : Ident} {Γ : Env}→ ι ∈ (ι :: Γ)
next :{ι1 : Ident} {ι2 : Ident} {Γ : Env}→ ι1 ∈ Γ→ ι1 ∈ (ι2 :: Γ)

data v : Env→ Env→ Set where -- substring of environment
subLeft :{Γ1 : Env} {Γ2 : Env}→ Γ1 v (Γ1 ++Γ2)
subRight :{Γ1 : Env} {Γ2 : Env}→ Γ2 v (Γ1 ++Γ2)
trans :{Γ1 : Env} {Γ2 : Env} {Γ3 : Env}→ Γ1 v Γ2→ Γ2 v Γ3→ Γ1 v Γ3

A membership proof for an identifier in the environment states that either the identifier is at
the head of the environment, or there is a proof that it is in the tail of the environment. The
substring-proof gives prefixes and suffixes to the encapsulated environment that together give
the encapsulating environment. Note the use of curly braces here. These represent implicit
parameters, which are denoted with similar syntax as implicit parameters for Haskell. An
argument for an implicit parameter may be omitted if it can be derived from the context via
unifications.

The arrow type constructor can be interpreted as the logical implication. The parameters
of a function are assumptions, and the return type is the conclusion. A function thus takes
proofs for these assumption as parameter, and transforms these into a proof for the result.
The following functions operate on proofs of the above types. When an identifier exists in an
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environment, then append proves that it also exists in a suffixed version of that environment.
Similarly, prefix gives a prove for a prefixed environment. Function inSubset uses these two
to prove that when an identifier occurs in a substring of an environment, it also occurs in the
environment itself.

append :{ι : Ident} {Γ : Env}→ (ι ∈ Γ)→ (Γ′ : Env)→ (ι ∈ (Γ++Γ′))
append {ι } { .ι :: Γ} (here) Γ′ = here {ι } {Γ++Γ′}
append {ι } {nm′ :: Γ} (next inΓ) Γ′ = next (append {ι } {Γ} inΓ Γ′)
append { } { [ ]} ()

prefix :{ι : Ident} {Γ′ : Env}→ (ι ∈ Γ′)→ (Γ : Env)→ (ι ∈ (Γ++Γ′))
prefix inΓ′ [ ] = inΓ′

prefix inΓ′ (x :: Γ) = next (prefix inΓ′ Γ)

inSubset :{ι : Ident} {Γ : Env} {Γ′ : Env}→ (Γ′ v Γ)→ ι ∈ Γ′→ ι ∈ Γ

inSubset (subLeft { } {Γ′}) inΓ′ = append inΓ′ Γ′

inSubset (subRight {Γ}) inΓ′ = prefix inΓ′ Γ
inSubset (trans subL subR) inΓ′ = inSubset subR (inSubset subL inΓ′)

In case of append, the environment cannot be empty when we have a proof than an identifier
occurs in it. However, to satisfy the totality checker, we are required to give a function
definition for this case. Since a match against such a pattern cannot succeed, the match is
called absurd, and no function body has to be given.

The operator ∈? takes an identifier ι and an environment Γ, and either gives a prove that
the identifier is in the environment, or gives a proof that it is not in the environment. The
sum type ] (named Either in Haskell) provides constructors inj1 (Left in Haskell) and inj2
(Right in Haskell) for this purpose.

For the definition of ∈?, we use function notFirst to prove by contradiction that if an iden-
tifier does not occur in the tail of the environment, and is also not equal to the head of the
environment, that it is neither in the whole environment.

notFirst :{ι : Ident} {nm′ : Ident} {Γ : Env}→
¬(ι ≡ nm′)→¬(nm′ ∈ Γ)→¬(nm′ ∈ (ι :: Γ))

notFirst φ1 = λhere → φ2 refl
notFirst φ1 = λ (next φ2)→ φ1 φ2

Negation of a type (neg tau) is defined as a function τ → ⊥. The type ⊥ (falsum) does
not have any data constructors, so we cannot construct it explicitly, but can match against it
with an absurd pattern. If we can derive its value, we proved a contradiction between the
assumptions we made.

∈? : (ι : Ident)→ (Γ : Env)→¬(ι ∈ Γ)] (ι ∈ Γ)
nm′ ∈? [ ] = inj1λ ()
nm′ ∈? (ι :: Γ) with ι ≡? nm′

nm′ ∈? (.nm′ :: Γ) | yes refl = inj2 here
nm′ ∈? (ι :: Γ) | no φ ′ with nm′ ∈? Γ
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nm′ ∈? (ι :: Γ) | no φ ′ | inj2 φ = inj2 (next {nm′} {ι } φ)
nm′ ∈? (ι :: Γ) | no φ ′ | inj1 φ = inj1 (notFirst φ ′ φ)

When the environment is empty, the identifier is not in the environment. We thus use inj1
and need to construct a negation. This is a function, with an absurd pattern as first parameter,
since none of the data constructors of ∈ can be applied. The other cases apply when the
environment is not empty. Also note that patterns in Agda must be strictly linear: there may
only be one introduction of an identifier. If there are multiple locations, the identifier must be
prefixed with a dot.

In Section 9.6, we used the helper function leftNil. It is implemented by case distinction
on its first argument. When α is empty, the requested property trivially holds. When α is not
empty, normalization of α ++β gives another constructor than [ ], hence the absurd pattern.

leftNil : (α : Env)→ (β : Env)→ (α ++β ≡ [ ])→ (α ≡ [ ])
leftNil [ ] refl = refl
leftNil ( :: ) ()

9.A.1 Absurd Rules

There may be productions for which no semantics for a given interface exists. For example,
consider a grammar for a statically sized bit array.

grammar BitArray :N→ Set -- statically sized bit array
prod nil : BitArray 0 -- empty bit array
prod cons : BitArray (suc n) -- non-empty bit array

term? n :N -- length of the tail
term hd : Bool -- bit at the head of the array
nonterm tl : BitArray n -- tail of the bit array

We declare a synthesized attribute head that stands for the head bit of the array. We can
extract this bit when the array is not empty. Hence, we state this requirement as inherited
attribute.

itf BitArray n visit extract -- Interface to extract the head
inh prf : n>0 -- Proofs that the array is not empty
syn head : Bool -- Must return the head bit

If the array is empty, then we cannot give a value for lhs.head. Fortunately, the proof helps
us out. If the array would be empty, then we would not be able to give the proof. Indeed, we
can match with an absurd pattern against the proof, so that we do not have to give a definition
for lhs.head.

datasem BitArray
prod nil lhs.head with lhs.prf -- would be proof of suc 06 0

342



9.A Implementation of the Support Code

| () -- not inhabited
prod cons lhs.head = loc.hd -- trivial

Under these conditions, a semantics for nil cannot be given.
When the interface has multiple attributes, or even multiple visits, then the above code

would have to be duplicated for each synthesized attribute of the production, and each inher-
ited attribute of the children. To prevent such code duplication, we introduce an absurd-rule.
Its LHS p must be an absurd pattern that matches against the outcome of the RHS e.

r ::= absurd p = e -- absurd rule (with absurd p)

For example, we can use it to match against lhs.prf in the nil production.

datasem BitArray prod nil
absurd () = lhs.prf -- would be proof of suc 06 0

Attribute definitions and child declarations must be omitted if these would appear later than
the absurd-rule in the rule order. The translation is relatively straight-forward.

Jr absurd p = eKk  with e ... | JpK -- ends the current with-branch

Since each with-branch ends in an absurd pattern, the continuation k is not needed. Since
the follow-up rules on an absurd rule are not generated, we also demand that these are not
specified in the first place.

These absurd-rules have consequences for the rule scheduling algorithm. We want the
absurd-rules to be scheduled early, such that we can omit the rules that would follow. Also,
we want their scheduling to be predictable, such that we know which rules we can and must
omit. The scheduling algorithm consists of a number of phases.

• In the first phase, attributes are scheduled to visits of the interface. We assume that
this step is performed manually, although it can be automated to a large extend, as is
implemented in UUAGC [Löh et al., 1998].

• In the remaining phases, we can deal with each productions independently. For each
production we construct a DAG that captures the dependencies between rules (Chap-
ter 3). In this DAG, we identify the (indirect) predecessors of absurd-rules. These
predecessors, combined with the absurd-rules, we schedule as early as possible. The
partial order imposed by the DAG is turned into a total order by giving precedence first
to absurd-rules, then evaluation rules, invoke rules, and finally child rules.

• In the final phase, we schedule the remaining rules as late as possible. Superfluous
rules end up in the terminator visit.

If the DAG is non-cyclic, this algorithm properly schedules the rules. The DAG models the
def/use dependencies of the rules. Each subsequent pass preserves these dependencies. Thus,
the algorithm is sound. Also, if an absurd-rule r1 could be scheduled earlier than a non-absurd
rule r2, then r2 is not a predecessor of r1. However, then r1 would have been scheduled earlier
as absurd-rules take precedence.
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An absurd-rule thus forces the attributes its RHS refers to, to be scheduled as early as
possible. It preferably does not have too complex dependencies (i.e. transitively speaking,
only dependencies on inherited attributes and local attributes), so that it is clear when it is
scheduled.

9.B Dependent Nonterminal Attribution

In Section 9.6, we showed how to deal with an attribute p that is only defined when another
attribute q has a particular value v. The trick is to move p to a later visit than q, and add the
invariant to p’s visit that requires that it can only be invoked when q equals v. This invariant
is expressed as additional attribute, which can then also be used in the definition of p. This
is an example of a dependent attribution of nonterminals: depending on the value of q, the
remaining attributes were either all present, or none were present. This approach can be
generalized to allow a fixed number of different sets of attributes depending on the value of
preceding attributes.

The responsibility for choosing a set of attributes can be given to the caller or the callee.
The callee is the node that is a child of the caller. We divide responsibilities as follows.
The caller invokes a visit on the callee, and is responsible for selecting one of the alternative
interfaces that are offered by the callee. The callee is required to produce results for that
choice. The callee can encode restrictions on the available choices for the parent as inherited
attributes. The caller must provide values for the inherited attributes of the alternative inter-
face it chooses. With this choice, both the caller and callee can impose demands. The caller
imposes these demands by choosing an interface of the callee, and the callee imposes these
demands through inherited attributes.

We change the syntax of interfaces to cater for contexts. A visit consists of a set of explic-
itly named contexts z.

i ::= itf I x : τ v -- with first visit v, params x, and signature τ

v ::=visit x z -- visit declaration with a set of contexts (many z)
z ::= context x inh a syn a v -- context x for a visit

Notationally, layout becomes important. The contexts z must have the same indentation, and
visits and contexts occurring inside a context must have a deeper indentation. As syntactic
sugar, we assume that the context-keyword and name may be omitted if there is only one
context for a visit. The syntax for the terminator visit is not needed anymore. It can be
modeled as a visit with zero contexts. The names of contexts must be unique per interface.
It allows us to distinguish contexts of different visits from each other, which is needed in
AGDA because of its syntactical conveniences.

For example, we define two contexts for the generate visit of the earlier example. The
context errorfree contains the code attribute, but it may only be invoked when errors are
absent. The context haserrors provides a pretty attribute with a pretty print of the program. It
does not pose restrictions on the errors attribute.

itf Source
visit report syn errors : Errs inh.finEnv
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visit generate -- a visit may consist of one or more contexts
context errorfree -- a context has a name

inh noErrors : syn.errors≡ [ ]
syn code : Target inh.finEnv

context haserrors -- a context may also contain subsequent visits
syn pretty : Doc

The callee must provide rules for each context. We split a semantics-block t for a visit up
into a context u for each declared context of that visit in the corresponding interface. Such a
context defines the next visit. For visits with more than one context, the caller must explicitly
invoke them by means of an invoke rule.

t ::=visit x u -- visit definition, with next visit t
u ::= context x r t -- context with next visit t
r ::= invoke x1 of c context x2 -- modified invoke rule

Similarly to the notational conveniences above, we allow the context-keyword and name to
be omitted if there is only one context declared for a visit.

For example, for production �, we choose contexts of the children depending on the context
the visit itself is in. In this example, the context for the child is the same as the context of the
parent. This is not a requirement.

datasem Source prod�
lhs.errors = left.errors++ right.errors -- collect errors
context errorfree -- rules exclusive for errorfree

invoke generate of left context errorfree -- explicit invoke
invoke generate of right context errorfree -- explicit invoke
left.noErrors = leftNil left.errors right.errors lhs.noErrors
left.noErrors = rightNil left.errors right.errors lhs.noErrors
lhs.code = left.code� right.code

context haserrors -- rules exclusive for haserrors
invoke generate of left context haserrors -- explicit invoke
invoke generate of right context haserrors -- explicit invoke
lhs.pretty = left.pretty⊕ right.pretty -- collect pretty print

Ultimately, the choice for the context is made at the root. Either we make this choice external
to the AG in terms of the generated coroutine, or use another AG extension [Middelkoop
et al., 2010a]: clauses. A context may be split further into clauses. A clause may contain
special match-rules, which may contain failing pattern matches. When a pattern match fails,
execution backtracks to the next clause. The clauses are a means of case distinction on
multiple rules at once. This is needed, in order to use different invoke-rules, depending on
the values of an attribute.

itf Root visit compile syn outcome : (Errs syn.finEnv)] (Target syn.finEnv)
datasem Root prod root -- some rules omitted
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visit compile -- clauses of visit/context
clause emptyerrors -- linear sequence of clauses

match [ ] = top.errors -- possibly failing test
top.noErrors = refl -- if match succeeds
invoke generate of top context errorfree -- take errorfree visit
lhs.outcome = inj2 top.code

clause nonemptyerrors -- ¬([ ]≡ top.errors)
invoke generate of top context haserrors -- take haserrors visit
lhs.outcome = inj1 top.errors

Clauses and match rules are confined to the visit/context they are defined in. The clauses must
be exhaustive. Within these constraints, match-rules can be scheduled as usual. Match-rules
are also scheduled as early as possible, similarly to absurd-rules (Section 9.A.1). There is a
good reason to do so: we typically do not have explicit dependencies on a match rule, and its
in general better to distinguish cases as soon as possible.

In the AGX
DA translation, the visit function that corresponds to a visit has a parameter for

each attribute of that visit. For the translation of contexts we give an additional, initial param-
eter to such a visit function. The value is a handle [Middelkoop et al., 2010b]: it describes
what context we want, and what the type of that context is supposed to be. The handle can
be considered a typed version of the control parameter in Kennedy and Warren [1976]. For
example, for visit generate, there are two contexts, errorfree and haserrors respectively. For
each context, we generate a type that specifies the types of the attributes (as described earlier):

T ′Source′errorfree ...
T ′Source′haserrors ...

Each constructor of the handle-type is indexed by one of these context types:

data H′Source′generate : (lhssgathEnv : Env)→ (lhsserrors : Errs lhssgathEnv)→ Set→ Set
where

errorfree :∀ {lhssgathEnv} { lhsserrors}→
H′Source′translate lhssgathEnv lhsserrors (T ′Source′errorfree lhssgathEnv lhsserrors)

haserrors :∀ {lhssgathEnv} { lhsserrors}→
H′Source′translate lhssgathEnv lhsserrors (T ′Source′haserrors lhssgathEnv lhsserrors)

The visit function takes such a handle (H′Generate β ) and returns β . The caller thus knows
what β is, and the callee can find this out by pattern matching against the data constructors.
The actual type of the visit function, and its implementation becomes:

T ′Source′generate synagathEnv synaerrors
= ∀ {β }→ H′Source′synagathEnv synaerrors generate β → β

lhsvgenerate : T ′Source′generate lhssgathEnv lhsserrors
lhsvgenerate errorfree = ... -- translation for errorfree
lhsvgenerate haserrors = ... -- translation for haserrors

The types in question seem rather complex, although this is mainly plumbing to pass at-
tributes around on the type level. Fortunately, AGs alleviate us from writing such code by
hand.
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The presented mechanism opens up the possibility to have non-linear visit sequences. It
also allows us to express interfaces for the ordered AGs as presented by Kennedy and Warren
[1976]. Each context can represent an operation or query to be performed on the AST. For
example, we could define an interface on the AST of types, such that one context computes
the free variables, and another one applies a substitution to the type. The presented approach
only permits branching. However, it may be possible to generalize the approach further and
allow branches to merge and loop. Merging of branches could be of use for proofs of special
cases that span multiple visits (Section 9.6). Also, the interfaces can be seen as session types
for coroutines.

9.C Ideas Transferrable to AG Systems for Haskell

Some of the above ideas carry over to AG systems for Haskell, such as UUAG [Löh et al.,
1998]. In a dependently typed AG, attributes can represent both values and types. In Haskell,
there is a clear distinction between values and types. In an AG for Haskell, we can make an
explicit distinction between attributes that represent types (and have a kind as type), and at-
tributes that represent values. The type of a type attribute may not refer to other attributes. The
type of a value attribute, however, may refer to a type attribute. Type attributes correspond
to quantification. An inherited type attribute corresponds to universal quantification, since
the caller can choose its instantiation. A synthesized type attribute corresponds to existential
quantification. The callee can choose its type, but the caller cannot make an assumption about
it. This mechanism allows us to deal with polymorphism in interfaces.

Currently, UUAG only supports kind star data types. We showed how to deal with param-
eterized data types, and GADT-style data constructors. These extensions allow AGs to be
written for data types with a stronger typing discipline. Also, we can deal with class con-
straints in constructors by introducing explicit wrappers for dictionaries that we can store as
additional fields, e.g.:

data DictEq ::∗→ ∗where
DictEq :: Eq a⇒ DictEq a

With such extensions, we can handle even non-regular data types, as long as nonterminals
have an outermost type construct described by a grammar declaration.

The handles of Appendix 9.B are conventional GADTs, hence the context-idea can be
implemented in Haskell.
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This chapter shows how to express attribute grammars on graph structures using the exten-
sions that we presented in the previous chapters. Moreover, we show how these extensions
form an alternative to Reference Attributed Grammars (RAGs). Unlike RAGs, these exten-
sions are compatible with ordered attribute grammars. In fact, these extensions rely on a
static analysis of attribute dependencies. Finally, this chapter can be seen as a showcase of
how the extensions fit together in a wider context than type inference.

10.1 Introduction

Directed graphs often occur as intermediate representation in compilers. Graph traversals are
inherently more difficult than tree traversals, because nodes can have multiple predecessors,
and graphs can be cyclic. Yet, the concept of inherited and synthesized attributes appears
attractive to model fixpoint computations on control flow graphs and dependency graphs, as
shown by Reference Attribute Grammars (RAGs).

In RAGs [Magnusson and Hedin, 2007], references to nodes are first class. A reference to
a node provides access to synthesized attributes of that node. The graph is formed by taking
a children of a node as the node’s successors, and the node’s optional parent and referenced
nodes as predecessors. There is a subtle different between a parent and a referenced node:
inherited attributes are accessed via the reference to the parent, whereas synthesized attributes
are accessed via references to other nodes. Attributes that are accessed via a reference are
called reference attributes. In the presence of reference attributes, it is not obvious that all
attributes are well-defined.

In a tree, if an inherited attribute of a node n depends on an attribute of a subtree, then
it also depends on a synthesized attribute of n. Similarly, if a synthesized attribute of a
node n depends on an attribute of a parent, then it also depends on an inherited attribute
of n. These properties allows us to abstract the dependencies of a subtree of a production
to the dependency graph of the associated nonterminal. These properties thus allows statical
analysis of attribute dependencies, and allow us to compute attributes using regular treewalks.

In general, the above properties do not hold for graphs. For example, attributes of siblings
can be accessed via a reference without having dependencies on an attribute of a common an-
cestor. Moreover, cyclic graphs may cause attributes to be accidentally or purposefully cyclic,
and we may need more control over fixpoint computations in the latter case. Consequently,
well-definedness of RAGs cannot be determined statically, which complicates reasoning with
attributes.

In this chapter, we show with examples how techniques from Chapter 5) provide an alter-
native to reference attributes in ordered attribute grammars. Effectively, reference attributes
are a means to observe attribute values from other locations in the tree and produce attribute
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values that are observable at other locations. We obtain a similar behavior by shuffling actual
children (instead of references) around. When we detach a child at one location, and attach
it at another location, then we may define and access some of its attributes at that location.
Detached children are first class functional values that can be passed around via attributes,
and may be duplicated.

However, this raises the question what the state a child is (i.e. what attributes of it are
computed) when we detach or attach it. We showed in Chapter 5 that when we partition the
evaluation of attributes as a sequence of visits, that each visit to a child represents a state
transformation of that child. The interface of a nonterminal is a static description of the
intermediate states of the child from the perspective of the parent. This mechanism allows
us to detach and attach children, and still statically guarantee that their attributes are well-
defined. The catch is that when we attach a child, we are actually required to provide a value
value that represents the child to attach. Typically, we look such a value up in an environment,
which implies that the value must be present in that environment.

The mechanism of shuffling children around still allows us to reason with attributes in
a conventional purely functional way. We demonstrate this mechanism with a control flow
example in Section 10.2 and an example based on symbol tables in Section 10.3.

10.2 Analyses on Control Flow Graphs

We present a relatively simple control flow analysis with AGs. This example is based on
experiences with transformations of bytecode for the AVM2 virtual machine. AVM2 is the
runtime of ActionScript version 3 programs. In bytecode, the body of an ActionScript method
is a sequence of AVM2 instructions. The execution of an instruction may have an effect on the
stack. For example, during a call instruction the arguments of the function are popped off the
stack and the result of the method is pushed on the stack. AVM2 reserves stack space upon
entry of the method, and requires a priori knowledge of the maximum size of the stack after
any instruction, given an empty stack upon method entry. In this section, we show an analysis
with AGs that computes this number as an attribute maxStack of a sequence of instructions.

10.2.1 Abstract Syntax Tree of Byte Code

Figure 10.1 shows an example of the AST of a compiled ActionScript method that represents
a repeated invocation of some method m that takes an integer as argument and returns an
integer as result. The following is a simplified representation of such ASTs:

grammar Method -- nonterminal represents methods bodies
prod Body nonterm instrs : Instrs -- a method is a cons-list of instructions

grammar Instrs -- nonterminal represents instructions
prod Nil -- empty sequence
prod Cons nonterm hd : Instr nonterm tl : Instrs -- hd followed by tl

grammar Instr -- nonterminal represents instructions
prod Nop -- no-op
prod Dup -- duplicates top of stack
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prod Push term val :: Int -- pushes val on top of stack
prod Call term method :: Ident -- pops args, calls method, pushes result
prod Jump term index :: Int -- execution continues with index
prod JmpZero term index :: Int -- pops top, continues with index if zero

By default, AVM2 executes instructions of a method in the order of appearance. However,
after a (conditional) branch instruction, such as Jump and JmpZero, the execution continues
with the instruction as specified by the branch instruction (if the condition is met).

1 2

2

1 2 1

1

1
2

3
4

5
6

7

1 2 3 4 5 6 7

Body

Cons
Cons

Cons
Cons

Cons
Cons

Cons
Nil

Push 3
Push 0

Jump 6
Call m

Dup
JmpZero 4

Nop

Figure 10.1: Bytecode AST with CFG.

For such a sequence of instructions, we define our analysis as a synthesized attribute
maxStack with the following semantics. In passing, we use an inherited attribute env that
specifies the number of arguments and results for each method, and an inherited attribute ind
for the sequential numbering of the instructions:

itf Instrs
inh env :: Map Ident (Int, Int) -- maps method to number of args and results
inh ind :: Int -- begin index of instruction sequence
syn maxStack :: Int -- maximum after-stack of instr sequence

sem Method
prod Body instrs.env = ... -- obtained from method declarations

instrs.ind = 1 -- index of the first instruction
sem Instrs

prod Nil lhs.maxStack = 0
prod Cons lhs.maxStack = hd.maxStack ‘max‘ tl.maxStack

tl.ind = 1+ lhs.ind -- index of next instruction
hd.env = lhs.env -- pass down env

For each instruction i, we define the size of the stack i.after in terms of the size of the stack
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i.before:

itf Instr
inh env :: Map Ident (Int, Int) -- method to number of args and results
inh before :: Int -- size of stack before this instruction
syn after :: Int -- size of stack after executing this instr
syn maxStack :: Int -- max size of stack after this instr

sem Instr
lhs.after = lhs.before+ loc.effect -- loc.effect different for each instr
lhs.maxStack = ... -- defined later
prod Nop Jump loc.effect = 0 -- exec has no effect on stack size
prod Dup Push loc.effect =+1 -- exec adds one to the stack size
prod JmpZero loc.effect =−1 -- exec pops top of the stack
prod Call loc.effect = loc.results− loc.args

(loc.args, loc.results) = lookup method lhs.env

So far, the analysis appears to be a straightforward attribute grammar. However, this is not the
case when we try to define hd.before in production Cons, and lhs.maxStack in productions of
Instr. The size i.before of an instruction i is equal to j.after for any last instruction j that is
executed prior to executing i. Due to branching instructions, there may be several j.after sizes
for i.before (which all need to be the same), and i may be before or after j in the instruction
sequence. Such definitions may be cyclic, for example when i ≡ j (e.g. a loop with empty
body). It is therefore not obvious how to define these attributes in terms of the cons-list of
instructions.

10.2.2 Control Flow Graph

As solution, we construct a static Control Flow Graph (CFG), and define the remaining part
of the analysis in terms of this graph. A control flow graph is a directed graph where each
instruction uniquely corresponds with a vertex. There is an edge from a vertex i to vertex j
if the execution may continue with j after executing i. Figure 10.1 shows an example of a
CFG derived from an exemplary AST of a method body. Note that there is no edge between
vertex 3 and vertex 4 because of the jump of instruction 3. Also, there is a back edge from
vertex 6 to vertex 4 due to the conditional branching of instruction 6. The analysis labels each
edge with the size of the stack after executing the source vertex of the edge and prior to the
execution of the target vertex of the edge.

The incoming edges of a vertex must be labeled with the same stack size, similarly for
the outgoing edges of a vertex. Instead of labeling the edges with the stack size, we can thus
label the vertices with the stack size. The analysis then boils down to the following depth-first
traversal. We start with a stack size of 0 at vertex 0. A vertex that is visited via a predecessor
with stack size s, has a stack size of s+ loc.effect, where loc.effect is the effect on the stack
of the associated instruction.

There are multiple ways to construct such graphs with attribute grammars. With RAGs
or cyclic AGs, we can construct the graph implicitly. For that, we introduce an attribute
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that contains the after value for each instruction, and define a list of predecessors for each
instruction, so that we define the after attribute in terms of the after values of the predecessors.
However, these AG extensions use a fixpoint computation to compute the attribute values,
which may actually lead to nontermination when the join operation is naively defined as max.
The fixpoint computation is also more expensive than a single depth-first traversal.

As an alternative, we explicitly construct the graph. For that, we introduce attributes that
specify where instructions branch to. An instruction may be followed up with the next in the
sequence, unless attribute hd.isJump is True. Moreover, an instruction may be followed up
by hd.branch if its value is not Nothing:

itf Instr
syn isJump :: Bool -- whether it is the Jump instruction
syn branch :: Maybe Int -- non-sequential label to branch to

sem Instr
lhs.isJump = False -- defaults for isJump and branch
lhs.branch = Nothing -- Nothing: no non-sequential branch
prod Jump lhs.isJump = True
prod Jump JmpZero lhs.branch = Just index -- branches to instruction index

Furthermore, we introduce attributes vertices and edges. The index of each instruction is
the unique identification of the associated vertex. At the top of the instruction sequence, we
use a graph library to construct a graph from the vertices and edges, and traverse the graph
depth-first to obtain the resulting vertices. Attribute outcome distributes these vertices. We
explain below how we actually represent the vertices:

itf Instrs
syn vertices :: Map Int ... -- vertices of the sequence of instrs
syn edges :: [(Int, Int)] -- edges of the sequence of instrs
inh outcome :: Map Int ... -- contains result vertices of the instrs

sem Instrs
prod Nil lhs.vertices = /0

lhs.edges = [ ]
prod Cons lhs.vertices = insert lhs.index loc.vertex tl.nodes

lhs.edges = [(lhs.index,s) | s← loc.succs]++ tl.edges
loc.succs = loc.seqts++maybeToList hd.branch
loc.seqts = if hd.isJump then [ ] else [lhs.index+1]
loc.vertexOut = lookup lhs.index lhs.outcome
loc.vertexIn = ... -- definition of vertex explained below

sem Method prod Body
instrs.outcome = dfvisit 0 instrs.vertices instrs.edges

As a first approach, we take the loc.effect value of hd for loc.vertexIn, and replace in dfvisit
a vertex labelled with effect e with s+ e where s is the stack value of the predecessor of the
vertex in the traversal, or 0 if the vertex does not have a predecessor. However, this approach
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has the disadvantage that we manually pack and unpack context in the graph. For example,
we may need to additionally pack compiler options, and additionally unpack error messages
aside from the stack size. Also, the logic for each visit belongs with the associated instruction,
not with the top of the instruction sequence.

Therefore, we take a different approach. The instruction node itself becomes the vertex
in the graph. The following is the interface for Instr again, but this time with the attributes
declared explicitly in three visits:

itf Instr
visit analysis

inh env :: Map Ident (Int, Int) -- method to number of args and results
syn isJump :: Bool -- whether it is the Jump instruction
syn branch :: Maybe Int -- non-sequential label to branch to

visit graph
inh before :: Int -- size of stack before this instruction
syn after :: Int -- size of stack after executing this instr

visit outcome
syn maxStack :: Int -- max size of stack after this instr

The interface allows us to specify that the graph visit is not performed by hd, but performed
by some external means. In this example, the graph visit is performed by the graph traversal.
We detach hd from the Cons production as attribute loc.vertexIn when it reached the graph
state, and attach it again when it is delivered in the outcome state as attribute loc.vertexOut:

sem Instrs prod Cons
loc.vertexIn = detach graph of hd -- detach hd in state graph
attach outcome of hd : Instr = loc.vertexOut -- attach hd in state outcome

As a minor detail, the Cons node does not perform the graph visit, therefore it may not
access hd.after. However, since the graph visit for the instruction node was performed, we
may access these attributes at this node. Thus, we expose this attribute in a later visit as
maxStack:

sem Instr lhs.maxStack = syn.lhs.after -- syn.lhs.after computed by prev visit

With this mechanism, we thus specify the packing boilerplate (via detach) and unpacking
boilerplate (via attach) of the node as vertex in the graph once. For the definition of the
semantics of the node we conveniently have access to its attributes, and may use the attributes
introduced by a visit that is visited externally in subsequent visits.

10.2.3 Discussion

The depth-first traversal dfvisit invokes the graph visit (e.g. through the associated wrapper
function) and supplies a value for the before attribute. The result of the invocation is the value
of the after attribute and the node in the outcome state. The former value forms the input for
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the visits to the successors of the node, and the latter value is the transformed value of the
vertex. The following definition of dfvisit serves as illustration:

dfvisit :: α →Map Int (α → (α,β ))→ [(Int, Int)]→Map Int β

dfvisit initial vertices edges = visMany initial empty sources where
sources = keys vertices ‘difference‘ concatMap snd edges
visMany inp = foldl (visSingle inp)
visSingle inp results node
| member node results = results
| otherwise = let (out,next) = lookup node vertices inp

succs = [t | (s, t)← edges,s≡ node ]
in visMany out (insert node next results) succs

The attributes of the graph visit form the interface with the graph traversal. Extra attributes
can be defined to tune the traversal. For example, in case of a fixpoint traversal, a synthesized
Boolean attribute may specify that the node’s state did not change. With this mechanism, we
thus separated the traversal strategy from the semantics of the node.

When a node is attached again, it is essential that it is an appropriate node. We do not
statically guarantee that this is the case. A detached node may be duplicated, swapped or
lost. The latter case causes a runtime error when an attempt is made to attach the node,
as it is absent in the outcome map. The former two cases may be intended, although we
can formulate a runtime check for them. Chapter 9 shows how to statically enforce such
invariants.

10.3 Subtrees in Symbol Tables

Abstraction in programming languages entails that terms of the language can be given a
name (thus defining or declaring that name), which may then be used at other locations in
the program by referring to that name. Consequently, in an attribute grammar, at a node that
uses such a name, we refer to properties of the subtree that introduces this name. To access
such properties, we usually pass these properties around using attributes that represent symbol
tables (maps from name to some value).

Symbol tables are a technique to explicitly transfer properties of a defining node to its use
nodes. This technique involves boilerplate code to wrap properties of the defining nodes in
record-like data structures, and unwrap these properties at use nodes. We present a technique
to reduce this boilerplate code by transferring the tree of the defining node via symbol tables
to its use nodes.

10.3.1 Abstract Syntax of an ActionScript Module

We present our technique with an example of an analysis that requires information from a
class declaration to deal with a call to a method of that class. Similar to the example of Sec-
tion 10.2, this example is based on our experiences with the transformation of ActionScript
bytecode.
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In this setting, a module consist of a sequence of declarations, where a declaration is either
a class declaration or a method body. A class declaration specifies the traits of an object that
is an instance of that class. A trait is either a field which stores some value, or a method which
can be called. A method body may be bound to a compatible method-trait of an object. A
method body consists of a sequence of instructions. Relevant for this example is the method
call instruction. The following is a simplification of the relevant abstract syntax:

grammar Module
prod Module nonterm decls : Decls

grammar Decl
prod Class nonterm decl : ClassDecl
prod Body nonterm decl : MethodBody

grammar ClassDecl
prod Class term nm :: Name nonterm traits : Traits

grammar Traits
prod Nil
prod Cons nonterm hd : Trait nonterm tl : Traits

grammar Trait
prod Field ...
prod Method nonterm decl : MethodDecl

grammar MethodDecl
prod Method term nm :: Name nonterm params : Params

grammar Params
prod Nil
prod Param term tp :: Type nonterm tl : Params

grammar Instr
prod Call term cl :: Name term trait :: Name

We omitted some of the intermediate nonterminals (e.g. Decls and MethodBody) that are not
relevant for this example.

A method call specifies which method of which class to call. When the instruction is
executed, an object that is an instance of this class must be on top of the stack, as well
as arguments of the right types. For typical compilation tasks for the call instruction (e.g.
the analysis of Section 10.2) we need several properties of the relevant class, the relevant
trait, and the relevant parameters. For such properties, the structure in the symbol table is
typically an abstraction that has a similar structure as the class declaration subtree itself.
Figure 10.2 depicts this situation. At the call instruction node, we obtain through symbol
tables an abstraction of the declaration subtree (larger triangle), and extract from that an
abstraction of the appropriate trait subtree (smaller triangle).
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Figure 10.2: AST with a method call that needs information from class declarations.

10.3.2 Distribution of Subtrees

Instead of creating special data structures to represent the abstractions in the symbol table, we
show how to use the decorated declaration subtree itself as abstraction. For that purpose, we
partition attributes for the declarations in visits: a def visit with attributes for the definition
node, and visits use1 and use2 with attributes for the use nodes. These attributes represent
typical properties of class and method declarations:

itf ClassDecl
visit def -- more attributes of def omitted

syn nm :: Name -- name of the class
visit use1

inh moduleNm :: Name -- context in which the class is used
syn visible :: Bool -- whether or not the class is visible

visit use2
inh methodNm :: Name -- name of method to lookup
syn method :: I MethodDecl use -- decl associated with methodNm

itf MethodDecl
visit def -- more attributes of def omitted

inh index :: Name -- index of trait assigned by parent
syn nm :: Name -- name of the method

visit use
syn slot :: Int -- index of the trait in the object
syn numParams :: Int -- number of parameters

The type I ClassDecl use1 is the type of a detached ClassDecl tree in the the use1 state. When
we attach a node in this state, we may use the visible attribute when we provide a value for the
moduleNm attribute. Also, when we provide the name of a method as attribute methodNm,
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we obtain the associated detached method as attribute method. The type I MethodDecl use
is the type of a detached MethodDecl that can be attached starting with visit use.

We collect detached nodes with the above interfaces in several symbol tables.

itf Traits Trait
syn gath :: Map Name I MethodDecl use -- collects method traits

itf Decls Decl
syn gath :: Map Name I ClassDecl use1 -- collects class declarations

sem Trait prod Method
loc.tree = detach use of decl -- detach tree in the use state
lhs.gath = singleton decl.nm loc.tree -- collected detached tree

sem Decl prod Class
loc.tree = detach use1 of decl -- detach tree in the use state
lhs.gath = singleton decl.nm loc.tree -- collected detached tree

itf Decls Decl MethodBody Instrs Instr
inh dist :: Map Name I ClassDecl use1 -- distribution of symbol table

sem Module prod Module
decls.dist = decl.gath -- pass down gathered classes

sem Instr prod Call -- attach the trees
attach use1 of c : ClassDecl = lookup cl lhs.dist
attach use of m : MethodDecl = c.method

Aside from the detaching and attaching of the nodes, the collection and distribution of the
nodes is standard attribute grammar practice.

We define the properties that are needed at the use node as synthesized attributes of the
definition node. For the definition of these attributes we may use attributes that are in scope
of the definition node:

sem ClassDecl prod Class
lhs.nm = nm -- pass name up (visit def )
lhs.visible = ¬ private ∨ ...lhs.moduleNm ...
lhs.method = lookup lhs.methodNm traits.gath

sem MethodDecl prod Method
lhs.nm = nm -- pass name up (visit def )
lhs.slot = lhs.index -- pass the assigned index up (visit use)
lhs.numParams = params.count -- pass the number of params up (visit use)

A particular advantage of this approach is that by adding more synthesized attributes, we
expose properties of the definition node without additional boilerplate code to transfer these
properties to the use node. At the use node we simply refer to these attributes:

sem Instr prod Call
c.moduleNm = lhs.moduleNm
c.methodNm = trait
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lhs.errors = if c.visible then [ ] else [ClassHiddenError ]
lhs.code = ...t.slot ... t.numParams ...

Another advantage is the separation of concerns. At the use node, we specify in which module
the use node occurs, and at the definition node we determine if the class declaration is visible
at the use node. Similarly, at the use node, we just specify the method in which we are
interested and the definition side provides the relevant subtree, and e.g. is responsible for
producing error messages.

10.3.3 Discussion

Accessing information from other locations in the tree is a common pattern in compiler imple-
mentations, and we typically use symbol tables to transfer the information from one location
to the other. However, when the data stored in the symbol table has a structure that mimics the
AST itself, tedious boilerplate is required to store and retrieve information from the symbol
table. We showed how to transport subtrees using symbol tables, which can then be used to
access attributes of the remote location.

RAGs permit access to synthesized attributes to nodes at arbitrary locations in the tree
through references to these nodes. In contrast to RAGs, we permit that use-nodes also provide
values for inherited attributes, such that the use-node is effectively a client and the definition-
node a server. We can thus provide values for synthesized attributes at the definition side,
while taking context of the use node into account.

In fact, the interfaces can be seen as a specification of queries to a subtree. The caller
specifies the query as values of the inherited attributes, and the subtree responds with values
for the synthesized attributes. We designed this example such that every use node queries
the definition side in the same way. This is generally not the case. For example, for field
assignment instructions we are interested in the field traits of a class, and not the method
traits. In Section 9.B we show how to specify alternative interfaces for a nonterminal, which
can be used to query a nonterminal in different ways.

A subtree may be duplicated many times. Since we treat detached trees as purely functional
values, attached trees are independent of each other. Attributes that do not depend on context
of the use node can be computed before detaching the tree at the definition node and are only
evaluated once. Attributes that are computed in the visits performed by the use node, however,
are thus computed once per use node. If such an attribute has a non-trivial computation, then
this is a candidate for memoization, since there are typically not many different contexts in a
program.

10.4 Related Work: Door Attribute Grammars

Door Attribute Grammars (DOGs) [Hedin, 1994] share commonalities with our approach to
reference attributes. A DOG introduces a different kind of AST node, called a door node.
Door nodes may not have children, and carry no syntactic content. References to door nodes
may be passed as attribute values, and may be attached as a child. These nodes thus serve as
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interface to attributes of another door node at another location in the tree. Inherited attributes
at the source location become synthesized attributes at reference location.

An essential difference with our approach is that attributes of a DOG are evaluated on de-
mand. In comparison to RAGs, DOGs must specify precisely which attributes are exchanged
between two locations in the tree.

10.5 Conclusion

We showed how the explicit visits of Chapter 5 can be used to shuffle children around. This
mechanism forms an alternative to reference attributes, and can be used to abstract from com-
mon patterns in compiler implementations related to symbol tables and fixpoint computations
over dependency or flow graphs.

These abstractions pay off when implementing mature compilers for larger languages. For
such languages, context information plays an important role. For example, context informa-
tion in the form of position information, error messages, several environments, and runtime
options such as iteration limits. To have such context available automatically via attributes
saves the manual packing and unpacking of context information into graph representations,
which makes it easier to extend such solving algorithms with more context information.
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This thesis presented several extensions to attribute grammars. With these extensions, com-
plex type inference algorithms can be expressed. When viewed from a high level perspective,
this thesis explored notation that allows units of evaluation in an AG to be made explicit,
to be annotated, and to be controlled. More concretely, we regard type inference as the si-
multaneous construction of a derivation tree and the evaluation of the tree’s attributes. In an
inference algorithm, attribute evaluation and tree construction take turns. The construction of
a derivation tree thus introduces the notion of phasing. Certain attributes must be evaluated to
decide on the structure of the tree. We provided several examples, in particular in Chapter 5.

With our extensions, we organize the evaluation of attributes in phases, which makes ex-
plicit in what state the tree is before and after the evaluation of a phase. We showed how
to exploit this additional information to encode fixpoint computations and search algorithms.
Although we focussed on type inference, our extensions are actually making it possible to
describe complex tree walking automata.

11.1 Addressed Challenges

We briefly restate the challenges as mentioned in the instruction. A declarative specifica-
tion of a type system is used for formal reasoning and explanation. An inference algorithm
describes how to infer admissible types for a program. The former is therefore an implemen-
tation of the latter. To show that an inference algorithm is indeed an implementation, it is
desirable to have a proof that it is consistent with the type system.

As discussed in Section 1.1, it is a non-trivial exercise to construct an inference algorithm
for languages such as Haskell, which integrate several cross-cutting type systems. In this
setting, a formal specification (if it exists at all) and the implementation are complex, which
makes it hard to keep both consistent, let alone proof that this is the case. Moreover, such an
implementation changes continuously to support more language features or to use different
implementation techniques, thus it is likely to be inconsistent. The apparent inconsistency
leaves a big gap between theory and practice. With this thesis, we worked towards a solution
where the gap is closed by specifying a formal type systems that contain sufficient algorithmic
details to be executable.

A question that arose is what execution model to associate with type rules. Despite the
absence of a general inference algorithm that fits any type system (Section 1.2.4), most infer-
ence algorithms are a complex composition of standard inference techniques. An executable
specification thus describes how to tailor these algorithms to the type system. In this thesis,
we zoomed in on the description of such underlying algorithms.

Previous work on the language Ruler posed an initial solution. Ruler is a language in
which syntax-directed, algorithmic type rules can be described, which in combination with
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some additional annotations can be translated automatically to AGs (Section 1.4). Type rules
coincide with productions, and metavariables with attributes. The inference algorithm is thus
expressed as the evaluation of AGs.

For a declaratively specified type system, type inference for declarative aspects boils down
to inferring the structure of the derivation tree and inferring instantiations for non-functionally
constrained meta variables. Higher-order AGs withstanding, AGs assume an apriori fixed
tree, and require functional definitions for attributes. Therefore, an inference algorithm for
declarative type rules cannot be obtained via a straightforward translation to attribute gram-
mars. We addressed this issue in this thesis by extending the AG language to cater for several
inference strategies, and mechanism to combine these strategies.

11.2 Solutions

As initial setting, we showed that we can model an AG on type derivation trees instead of
parse trees. To deal with non-functional attributes such as types, we used a conventional
unification-based strategy with an additional threaded substitution attribute (Section 1.3.11),
and expressed unifications in the AG in a declarative manner using higher-order children
(Section 1.3.12). The substitution in combination with placeholders in types makes the rela-
tions on types functional. Moreover, the implementation of the higher-order child expresses
the standard unification algorithm, and the threading of the substitution its algorithmic coor-
dination, since the threading defines the relative order of the unifications and other operations
that depend on the substitution. To this setting, we made various improvements which we
describe in the remainder of this section.

The explicit threading of the substitution is a tedious job. Alternatively, we can regard
unification as an operation with side effects that affects the substitution. In Chapter 3, we
showed how to make the visit order explicit and use this order to declaratively specify the
relative order of the operations with side effects in addition to the usual order constraints
induced by attribute dependencies. To retain the desired referential transparency of attributes
in the programming model, side effects may only be used in the construction of higher-order
children. In particular, this approach allows AGs to be integrated in a compiler that uses
inference monads.

The relative order of operations that provide fresh placeholders and perform unification is
largely irrelevant. In Chapter 4, we presented commutable rules for threaded attributes to both
model side effects and to relax the order induced by attribute dependencies. In Chapter 4, we
abstracted from visits to phases, where a phase corresponds to one or more inferred visits,
and allowed us to decouple the actual AG evaluation algorithm. Visits provide a fine-grained
model to describe aspects of the evaluation of AGs, whereas with phases we can specify
properties of larger chunks of evaluation. We also showed how to encode the Kennedy-
Warren AG evaluation algorithm in a strongly-typed functional language.

We exploited the notion of a visit to express typical inference algorithms. In Chapter 5, we
presented how to express fixpoint iteration by iterating visits. An invocation of a visit on a
subtree specifies how to compute the visit’s inherited attributes from its synthesized attributes
of the previous iteration. In contrast to conventional fixpoint evaluators for AGs, the notion
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11.3 Remarks

of visits allows us to compute stop conditions as synthesized attribute, and have visit-local
chained attributes that retain computed values of previous visits.

When an attribute contains an unconstrained placeholder, residuation is a strategy that
defers a dependent computation until the placeholder is sufficiently constrained. In Chapter 5,
we presented an example that implements the residuation strategy by decoupling a child at
one location in the tree and provide input at another location in the tree. This mechanism also
provides an integration with constraints (Section 5.2.7).

In Chapter 5, we also presented how to infer the derivation tree as a function of the in-
herited attributes. In a case study [Middelkoop, 2011a], we illustrated the need for search
strategies to infer the structure of derivation trees when the structure of the derivation tree is
not functionally defined. Chapter 7 showed how to encode such search strategies.

Finally, our work provides solutions in other contexts than type inference. We illustrated
this in the extended edition of this thesis [Middelkoop, 2011b], where we applied our work
to graphs. Since many analyses in compilers are based on control-flow or data-flow graphs,
we showed how to associate a semantics with each node of such a graph with an AG, while
explicitly specify visits to these nodes with a traversal algorithm. Moreover, this approach
allows the encoding of reference attributes in an ordered AG.

In Chapter 9, we applied our work to dependently-typed languages. With dependently-
typed attributes, invariants between attributes can be expressed, and proven to hold, which
allows formal reasoning with attribute grammars. Moreover, the type attributes provide a
mechanism for the universal and existential quantification of the type of a semantic functions.

11.3 Remarks

We put great effort in ensuring that our extensions retain the ease of composition as offered by
AGs so that attributes and rules can still be defined in an aspect-wise and order-independent
fashion. Also, our ideas are conservative extensions of AGs. A conventional AG can be
expressed straightforwardly, which allows features of RulerCore to be retrofitted on an im-
plementation using conventional AGs.

However, to exploit the visit order, we need to specify in which order the children are vis-
ited. For conventional AGs, the traversal over the AST and order of evaluation of rules does
not need to be specified, which has the advantage that it is no concern for the programmer.
This is only a small price to pay. Such orders are declaratively specified (Chapter 3), and only
where needed.

11.4 Implementations

We implemented several prototypes to experiment with the extensions presented in this the-
sis. We validated that our extensions have reasonably efficient implementations. In particular,
the ideas are implementable in Haskell. Our prototypes depend on language features such as
lazy evaluation, monads and GADTs. However, the underlying ideas themselves are imple-
mentable in mainstream languages and other AG systems.
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11 Conclusion

To our attribute grammar system UUAG, we added higher-order children (Section 1.3.7)
and stepwise evaluation (Chapter 7). In essence, we added only features that do not conflict
with the conventional notion of AGs. Also, we implemented several features to support the
use of AGs in large compiler implementations. In particular, we organized the code generated
by UUAG such that separate compilation, debugging, and profiling is possible.

In the tool ruler-core, we implemented the programming model with explicit visits
(Chapter 3). We experimented with clauses, fixpoint iteration, and other features that benefit
from the notion of a visit (Chapter 5). As further case study, ruler-core was used in a
master project to implement the inference algorithm of the HML type system [Leijen, 2009].

In the tool ruler-interpreter we implemented the operational semantics as outlined in
Chapter 4. The interpreter provides custom judgment syntax, aspect-weaving of type rules,
and a built-in efficient unification mechanism. The simplicity of an interpreter facilitated
rapid prototyping with some of RulerCore’s features.

11.5 Future Work

We implemented and validated our ideas with several prototype implementations. We pro-
vided powerful building blocks for the description of inference algorithms with AGs, and
the description of patterns that often occur in these contexts. However, to fully exploit our
techniques, an integrated implementation of all extensions is needed.

The features that we implemented in UUAG were used to improve the UHC implementa-
tion. Moreover, we used UHC as motivation to investigate AG extensions using RulerCore
for prototyping purposes. We claim that we provide sufficient expressive power to implement
unification and context reduction more concisely in UHC, but to actually do so remains as
future work.

We provide the algorithmic underpinning of inference algorithms for AGs. This takes us
one step closer to our ultimate goal to derive type inference algorithms from type system
specifications. However, the remaining challenges as mentioned in Section 1.5 need to be
addressed as well, such as special syntax and first-class abstractions for AGs. Moreover,
visits are a prominent component in our current work. A direction of future work is to infer
properties of visits from a more abstract specification.

A question that remains open is how we can formally prove and ensure properties of the
implementations that we generate. We address this topic briefly in Chapter 9. A direction of
future work is to generate boilerplate code to support typical proofs.

This thesis provides a core language for inference algorithm descriptions, which paves
the way for high-level abstractions of inference algorithms, thus facilitates more complex
language implementations, and ultimately leads to software of higher quality.
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J. Engelfriet and G. Filé. Passes, Sweeps, and Visits in Attribute Grammars. Journal of the
ACM, 36(4):841–869, 1989.

J. Engelfriet and H. J. Hoogeboom. Tree-Walking Pebble Automata. In Jewels are Forever,
pages 72–83, 1999.

366



Bibliography

L. Erkök and J. Launchbury. Recursive Monadic Bindings. In ICFP ’00, pages 174–185,
2000.

R. Farrow. Sub-Protocol-Evaluators for Attribute Grammars. Sigplan Notices, 19:70–80,
1984.

R. Farrow. Automatic Generation of Fixed-Point-Finding Evaluators for Circular, but Well-
Defined, Attribute Grammars. In CC ’86, pages 85–98, 1986.

R. Farrow, T. J. Marlowe, and D. M. Yellin. Composable Attribute Grammars: Support for
Modularity in Translator Design and Implementation. In POPL ’92, pages 223–234, 1992.

K.-F. Faxén. A Static Semantics for Haskell. JFP, 12(4&5):295–357, 2002.

S. Fischer, O. Kiselyov, and C. Shan. Purely Functional Lazy Non-deterministic Program-
ming. In ICFP ’09, pages 11–22, 2009.

J. Fokker and S. D. Swierstra. Abstract Interpretation of Functional Programs using an At-
tribute Grammar System. ENTCS, 238(5):117–133, 2009.
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Samenvatting

Computers zijn niet meer uit onze maatschappij weg te denken. Computerprogramma’s wor-
den steeds omvangrijker. De keerzijde is dat deze programma’s meer tijd kosten om te maken
en te testen, en bovendien ook meer fouten bevatten. Helaas ervaren we regelmatig de con-
sequenties ervan. Autofabrikanten roepen bijvoorbeeld auto’s terug om een software-update
door te voeren, omdat door fouten in de programmering de auto’s op hol konden slaan. Ook
fouten in web-browsers worden door duistere figuren uitgebuit om zogenaamde keyloggers
op computers te installeren die toetsaanslagen afluisteren om uiteindelijk bankrekeningen te
plunderen. Oplossingen voor dergelijke problemen kunnen deels in programmeertalen ge-
zocht worden. Onderzoek naar programmeertalen helpt om zowel de onderhoudskosten en
de kwaliteit van software te verbeteren.

Met geavanceerde programmeertalen is het mogelijk om computerprogramma’s van hoge
kwaliteit te maken. Daarvoor is een belangrijk stuk gereedschap van belang: de compiler.
Een compiler zet een programma wat een programmeur geschreven heeft om in machine-
instructies die door de computer uitgevoerd kunnen worden. Hoe geavanceerder de program-
meertaal, hoe lastiger het is om een compiler te maken.

Met attributengrammatica’s kunnen compilers op een aantrekkelijke manier gemaakt wor-
den. Programmeertalen met ingewikkelde typesystemen zijn echter lastig met attributen-
grammatica’s te schrijven. In dit proefschrift beschouwen we uitbreidingen om attributen-
grammatica’s ook voor het ontwikkelen van compilers voor ingewikkelde programmeertalen
in te kunnen zetten.

Programmeertalen en compilers. Een computerprogramma verwerkt gegevens die zich
in het geheugen van de computer bevinden. In een programmeertaal wordt deze verwerking
beschreven. Voor dergelijke beschrijvingen stelt een programmeertaal elementaire verwer-
kingstaken ter beschikking. Tijdens de uitvoering van het programma krijgt zo’n taak gege-
vens uit het geheugen van de computer als invoer en laat het resultaten in het geheugen van
de computer achter. Bekeken vanaf een hoog niveau kunnen we zeggen dat programmeren
het samenstellen van verwerkingstaken is door de uitvoer en invoer van verwerkingstaken aan
elkaar te knopen.

Een programmeertaal biedt abstractiemechanismen aan om dergelijke samenstellingen te
beschrijven. Programmeren is het opstellen van zo’n beschrijving: de broncode. Een com-
piler vertaalt broncode naar instructies die door een computer uitgevoerd kunnen worden:
de machinecode. Een compiler handelt details af zoals hoe de invoer en uitvoer van taken
in het geheugen van de computer gerepresenteerd zijn. In de broncode is het niet nodig om
dergelijke details te specificeren, wat het gemak om verwerkingstaken samen te stellen ten
goede komt.

De mate waarin een programmeur een verwerkingstaak uit deeltaken kan samenstellen is
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van grote invloed op de kwaliteit van een programma, en de tijd die het kost om het pro-
gramma te ontwikkelen en te onderhouden. Wanneer de broncode overzichtelijk is, worden
er minder fouten gemaakt. Bovendien hoeft de broncode van een deeltaak maar een keer
geschreven te worden. De mate waarin een programmeertaal abstractie van details toestaat
speelt hierbij een belangrijke rol.

Programmeertalen bieden vaak voor specifieke domeinen speciale abstractiemechanismen
aan. De taal SQL voor het raadplegen van databases is hier een goed voorbeeld van. In SQL
beschrijft men het combineren van informatie uit tabellen, terwijl van de representatie van de
gegevens in de tabellen en van de volgorde van het combineren geabstraheerd wordt. Idealiter
richt de programmeur zich op het totaalplaatje, terwijl de compiler voor een correcte invulling
van de details zorgt, eventueel aan de hand van wat expliciete hints die door de programmeur
gegeven worden. Met behulp van een relatie tussen broncode en machine-instructies kan dit
gedrag gespecificeerd worden.

Een programmeertaal stelt bovendien eisen aan de broncode. Bijvoorbeeld, in een samen-
stelling van taken dient iedere taak een correct gestructureerde invoer te hebben. Een type
is een beschrijving van de structuur van een waarde. Ofwel, de invoer dient het juiste type
te hebben. De compiler controleert als onderdeel van het vertaalproces of de broncode in-
derdaad aan deze eisen voldoet, en vormt dus een implementatie van het typesysteem. Een
statische semantiek in de vorm van een type system specificeert deze eisen met een relatie
tussen broncode en typen. Het afdwingen van deze eisen voorkomt dat bepaalde (triviale)
fouten tijdens de uitvoering van het programma op kunnen treden.

Als onderdeel van het vertaalproces controleert de compiler of de broncode aan de eisen
voldoet door een bewijs af te leiden dat de broncode relateert aan een type. De machine-
instructies worden verkregen door een bewijs af te leiden dat een relatie legt met machine-
instructies. Als dit niet lukt, dan bevat het programma een statische fout en is het programma
ongeldig. Relaties in een semantiek worden doorgaans met afleidingsregels gedefinieerd.
Het afleiden van zo’n bewijs wordt inferentie of afleiden genoemd. De bewijzen hebben een
boomstructuur waarin de toepassing van afleidingsregels zichtbaar is.

Vrijheid in het bepalen van het bewijs geeft de compiler de mogelijkheid om details in te
vullen. Echter, er bestaan harde theoretische grenzen aan wat voor bewijzen er automatisch
afgeleid kunnen worden. Door de taal ingewikkelder te maken, kan er op een hoger niveau
geredeneerd worden. Dan is het mogelijk een programma duidelijker uit te drukken, zodat de
broncode meer structuur heeft, en er meer aannames zijn om het bewijs mee rond te krijgen.
Een direct gevolg is dat de compiler daardoor lastiger wordt om te maken.

Attributengrammatica’s. Als initiële stap ontleedt een compiler de broncode aan de hand
van de grammatica van de programmeertaal. Het resultaat is een boomstructuur, de abstracte
syntaxboom (AST), wat een expliciete representatie is van de compositionele structuur van
de broncode. Deze boomstructuur is geschikt voor syntax-gestuurde vertaling. In dit geval
heeft een semantiek een afleidingsregel voor ieder stukje syntax. De structuur van een bewijs
komt dan vrijwel overeen met de AST.

Een compiler is ook een computerprogramma, en worden in een programmeertaal geschre-
ven. Attributengrammatica’s (AG’s) zijn een domein-specifieke programmeertaal voor het
uitdrukken van eigenschappen van ASTs, en daarmee dus ook het afleiden van bewijzen voor
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relaties van een syntax-gestuurde semantiek. Een AG relateert attributen met elke knoop in de
AST, en specificeert functies die waarden van attributen berekenen aan de hand van waarden
van andere attributen van een knoop en kinderen van de knoop. De attributen stellen eigen-
schappen van de broncode voor, en zijn aspecten of getuigen van het bewijs, zoals typen,
lijsten van instructies en foutmeldingen.

De voordelen van AG’s ten opzichte van algemene programmeertalen zijn dat niet beschre-
ven wordt hoe de AST afgelopen wordt. Daardoor kunnen de berekeningen van attributen in
afzondering beschreven worden, wat vele voordelen biedt in termen van hergebruik, overzicht
en documentatie. De samenstelling van deze berekeningen wordt automatisch bepaald. Voor
dit aanzienlijke voordeel is vereist dat het bewijs als attributengrammatica uit te drukken is,
wat het geval is wanneer de semantiek syntax-gestuurd is.

Inferentie. Voor programmeertalen met een complexe (statische) semantiek is de structuur
van het bewijs niet gelijk aan de AST. Tenslotte, om vrijheid in de invulling van het bewijs
te hebben, dienen delen van het bewijs van de broncode afleidbaar te zijn, maar niet door de
structuur ervan te worden bepaald. Daarvoor bestaan een aantal gangbare algoritmen, zoals
het berekenen van een dekpunt van een stelsel van randvoorwaarden, en de gedeeltelijke ver-
kenning van een bos van kandidaat-deelbewijzen. Deze algoritmen hebben als eigenschap
dat de attributen wederzijds afhankelijk zijn van tussentoestanden van het bewijs. Om bij-
voorbeeld een kandidaat te selecteren is het nodig om eigenschappen ervan in te zien. In
een attributengrammatica zijn attributen gedefinieerd in termen van het uiteindelijke bewijs,
waardoor het lastig is om dergelijke algoritmen met een AG te beschrijven.

In dit proefschrift richten we ons op geordende attributtengrammatica’s, en breiden deze uit
met de mogelijkheid om tussentoestanden te inspecteren en te manipuleren. In een geordende
AG kan de berekening van de attributen als een eindige sequentie van toestandsveranderingen
beschreven worden. Deze beschrijving maakt het mogelijk om over deelbewijzen in een
gegeven toestand te redeneren, berekeningsstrategieën te specificeren, en attributen die in
deze toestand beschikbaar zijn te inspecteren. Daarvoor schrijven we geen AGs voor de
abstracte syntax van de taal, maar AGs voor de abstracte syntax van de bewijsregels van de
semantiek.

Uitbreidingen. In hoofdstuk 3 introduceren we notatie om een sequentie van visits voor
een nonterminal te specificeren. Een visit is een eenheid van evaluatie voor een knoop in de
(bewijs)boom. Ieder attribuut is gerelateerd aan een visit. De attributen van een vorige visit
zijn beschikbaar in een opvolgende visit. Bovendien kunnen berekeningen voor attributen aan
specifieke visits toegekend worden om af te dwingen dat berekeningen in een vaste volgorde
plaatsvinden. Deze uitbreiding maakt het mogelijk om monadische operaties met AGs te
combineren.

In hoofdstuk 5 laten we zien hoe we berekeningsstrategiën aan visits koppelen. Door
het voorwaardelijk herhalen van een visit aan een knoop kan een dekpunt berekend worden.
Met clauses kunnen voorwaardelijke berekeningen van attributen en kinderen van de knoop
gespecificeerd worden, zodat het mogelijk is om deelbewijzen te verkennen. Ook kunnen
knopen ontkoppeld worden en op een andere locatie in de boom weer aangekoppeld worden,
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waarbij we statische garanties geven over de toestand van dergelijke verplaatsbare knopen. Zo
kunnen berekeningen die afhangen van bewijzen die nog niet voltooid zijn uitgesteld worden
tot deze bewijzen beschikbaar komen. Hiermee kunnen we constraints representeren.

In hoofdstuk 7 gaan we een stapje verder dan visits. Tussenresultaten die tijdens de uitvoe-
ring van een visit beschikbaar komen kunnen met technieken uit dit hoofdstuk stapsgewijs
geı̈nspecteerd worden. Door om de beurt kandidaat-knopen een stap te laten zetten, kunnen
de bewijzen gelijktijdig verkend worden, zonder de bewijzen van te voren al helemaal op te
bouwen.

In hoodstuk 9 presenteren we AGs met afhankelijke typen. Dit zijn AGs waarin het type van
een attribuut mag verwijzen naar de waarden van andere attributen. Deze uitbreiding maakt
het mogelijk om invarianten op attributen te specificeren en bewijzen ervoor uit te drukken.
Voor deze uitbreiding maken we gretig gebruik van de mogelijkheden die door voorgaande
hoofdstukken besproken zijn.

De uitbreiding vormen een conservatieve uitbreiding van AGs. De mate van abstractie,
zoals deze door AGs aangeboden wordt, blijft behouden. De uitbreidingen maken het moge-
lijk om eigenschappen van de berekeningsvolgorde te specificeren en te inspecteren, zonder
daarbij het automatisch ordenen van attribuutberekeningen te breken. Met de uitbreidingen
heeft de programmeur een stel krachtige bouwstenen in handen om compilers mee te imple-
menteren.
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