
Merging Idiomatic Haskell with Attribute Grammars

Arie Middelkoop
LIP6-REGAL

adriaan.middelkoop@lip6.fr

Jeroen Bransen Atze Dijkstra
S. Doaitse Swierstra

Universiteit Utrecht
{J.Bransen,atze,doaitse}@uu.nl

Abstract
Attribute grammars with embedded Haskell code form an expres-
sive domain specific language for tree traversals. However, the in-
tegration with some prominent Haskell features poses challenges:
conventional attribute grammars cannot be written for all Haskell
data types, lazy evaluation may lead to space leaks, and the em-
bedded code may not be monadic. This paper investigates these
challenges, and presents solutions using some general extensions
to attribute grammars.

Categories and Subject Descriptors D.3.4 [Processors]: Prepro-
cessors

General Terms Algorithms, Languages

Keywords Attribute grammars, Composition, Monads

1. Introduction
In functional programming, attribute grammars can be seen as a
declarative and compositional domain specific language for tree
traversals, in particular those that can be written as a fold or cata-
morphism [Meijer et al. 1991]. Because of the correspondence be-
tween grammars and algebraic data types, an attribute grammar de-
scribes such a traversal as a collection of rules between attributes
of connected nodes of the tree, leaving the fact that we describe a
catamorphim implicit.

Haskell is known to be an excellent implementation language
for attribute grammars, since lazy evaluation provides a natural in-
frastructure for evaluating attribute grammars and advanced type
system features even allows them to be expressed as a an embed-
ded domain specific language [Viera et al. 2009, 2011]. In addi-
tion, rules can be given as pure embedded Haskell code [Swierstra
and Alcocer 1998] thus adding the expressiveness of Haskell to at-
tribute grammars.

Our experiences with attribute grammars in the large Haskell
project UHC [Dijkstra et al. 2009] confirm that Haskell is an ex-
cellent host language. However, over the years we also ran into a
number of obstacles:

• Lazy evaluation is a double-edged sword. The translation of at-
tribute grammars to Haskell results in so-called circular Haskell
code which is difficult to optimize. This code easily exhibits

[Copyright notice will appear here once ’preprint’ option is removed.]

space leaks which are troublesome when dealing with large
trees. This problem can be remedied by producing acyclic
Haskell code [Bransen et al. 2012], imposing however (mild)
restrictions on the grammar. In particular, the grammar is not
allowed to be cyclic, which makes it hard to express fix-point
computations within the grammar.

• Haskell data types, which may be parametrized over the types
of their fields, are more expressive than context-free grammars.
We can for example not define a context-free grammar for a
data type with α as type parameter where a field of type α is
represented as a nonterminal. Consequently, these fields cannot
be traversed.

• The order of evaluation is completely left implicit in an attribute
grammar, hence it is unclear how to integrate monadic attribute
definitions, as the order of evaluation may be relevant for the
result.

There is a need to solve these obstacles: lazy evaluation, poly-
morphism, and monads are prominent Haskell features that would
be useful in combination with attribute grammars. As potential
use-case, consider Xmonad layout combinators expressed by an at-
tribute grammar that may tile windows either horizontally or ver-
tically, depending on the best fit. This problem is closely related
to pretty printing [Swierstra and Chitil 2009]. A solution for such
a problem features monadic operations to query window proper-
ties such as hints, and may be parametrized over the type of state
used by user hooks. We need solutions for integrating such features
with attribute grammars, because these are not only obstacles for
the application of attribute grammars, but also an obstacle for their
adoption by Haskell programmers, who expect to be able to use
such features.

This paper makes two kinds of contributions: we show how
to integrate these Haskell features with attribute grammars, and
we present some novel attribute grammar extensions that form
essential ingredients. Specifically, we give a short introduction to
attribute grammars (Section 2), show the translation of attribute
grammars to cyclic and acyclic code (Section 3) and explain some
common attribute grammar extensions (Section 4). We present the
following novel attribute grammar extensions:

• Section 6 presents eager rules, which allows local assumptions
to be made about the evaluation order of rules.

• Section 10 presents hooks into the attribute evaluator so that
Haskell code can control the evaluator of a node (e.g. apply it
repeatedly, or change attribute values), about which normally
no assumptions can be made in an attribute grammar.

We show that with these extensions we can integrate the aforemen-
tioned Haskell features:

Challenges and solutions when using Haskell with attribute grammars. 1 2012/9/22

• Section 5 deals with data types and attributes that parameter-
ized over types. Section 7 deals with the integration of type
classes. Finally, Section 8 shows how to represent the fields of
a datatype as nonterminal that have a type that is a parameter of
the data type.

• Section 9 introduces monadic rules which allows the combina-
tion of the composition mechanism of attribute grammars and
monads to be combined.

• The above solutions require a static evaluation order. Section 10
offers a solution for bypassing some of the restrictions; in par-
ticular for dealing with iteration and fixpoint computations.

2. Attribute Grammar Tutorial: Repmin
Figure 1 shows Repmin [Bird 1984], a typical example of an at-
tribute grammar. Before we explain the example, we first discuss
the three important syntactic elements in the figure.

Syntax. The data declarations resemble Haskell data declara-
tions. They describe the context-free grammar: type constructors
are nonterminals, value constructors are productions, and construc-
tor fields are symbols in the right hand side of productions. An in-
stance of such a type is a tree where each node was produced by a
constructor. The fields of the constructors are explicitly named and
come in two variations: terminal symbols (with a double colon) and
nonterminal symbols (with a single colon).

Two categories of attributes can be declared for a nonterminal:
inherited attributes (declared with inh) of a child are defined by the
parent and can be used by children; synthesized attributes (declared
with syn) are defined by children and can be used by the parent. A
chained attribute (declared with chn, not used in the example) is
syntactic sugar for both an inherited and synthesized attribute with
the same name.

Rules define how an attribute is to be computed in terms of
other attributes. A semantics block (starting with sem) specifies
a collection of rules per production. A rule has the form p = e
where p is a pattern defining attributes, and e is a Haskell expression
that may refer to an attribute or terminal by prefixing it with the @
symbol. We refer to an attribute using the notation c.a where a is
the name of the attribute, and c is either the name of a child or the
keyword lhs (left hand symbol) when referring to an attribute of the
parent.

Attribute grammars thus offer a programming model where
each node is decorated with attributes, and rules specify their com-
putation, implying data dependencies between attributes as a con-
sequence. Attribute evaluation consists of computing values for at-
tributes in an evaluator order imposed by the data dependencies.

Example. Figure 1 shows how to compute a transformed tree as
synthesized attribute res where the value in each leaf is replaced
by the minimal value in the original tree. The synthesized attribute
lmin represents the local minimum of the tree, and the inherited
attribute gmin the global minimum. The local minimum is propa-
gated upwards and passed down as global minimum at the root.

Advantages. Attribute grammars offers several advantages com-
pared to writing Haskell functions by hand:

• The rules and attributes can be given in any order.
• The navigation over the tree structure is implicit in comparison

to e.g. zippers.

These two advantages allow an attribute grammar to be composed
out of several individual fragments, which facilitates separation of
concerns.

Roots. In the example Root is a start symbol of the grammar.
Start symbols must be declared explicitly, but in the paper we shall

data Root
| Top top : Tree

data Tree
| Bin left : Tree right : Tree
| Leaf val :: Int

attr Tree inh gmin :: Int inh lmin :: Int syn repl :: Tree
attr Root syn repl :: Tree

sem Tree
| Leaf lhs.lmin = @val

lhs.repl = Leaf @lhs.gmin
| Bin lhs.lmin = @left.lmin ‘min‘ @right.lmin

lhs.repl = Bin@left.repl @right.repl
left.gmin = @lhs.gmin
left.gmin = @lhs.gmin

sem Root
| Top top.gmin = @top.lmin

lhs.repl = @top.repl

Figure 1: Common example of an attribute grammar: Repmin

assume that this is clear from the context. There is a semantic
difference that we refer to later in this paper: the root needs only to
define the inherited attributes of the children that are dependencies
of the synthesized attributes of the root.

3. Evaluation Algorithm
This sections shows two translations to Haskell. They both serve
two goals: to provide the reader with a better understanding of
the semantics (which we do not specify formally), and to prepare
for later sections on the various grammar extensions and their
implementation.

3.1 Translation to Lazy Haskell Code
In Swierstra and Alcocer [1998] a translation to lazy Haskell code
is presented. The translation uses catamorphisms to map each node
of the tree to its evaluator, which is a function that takes values of
its inherited attributes as its arguments and produces the values of
its synthesized attributes as its results. For the Repmin example of
the previous section, the evaluator is thus a function that takes gmin
and produces lmin and repl.

Figure 2 shows the catamorphisms for Tree and Root, and the
semantic functions that comprise the algebra, one for each produc-
tion. A semantic function takes the evaluators for the children of a
node as parameter and produces the evaluator for itself. The body
of the function consists of calls to the evaluators of the children,
and their inputs and outputs are tied together by straightforward
translations of rules.

Cyclicity. Note that sem_Top has a cyclic definition because the
argument top_gmin to function top depends on the result top_lmin
of top. This is not a problem because the runtime data depen-
dencies are acyclic: top_lmin can be computed without need-
ing top_gmin. Lazy evaluation provides the appropriate attribute
scheduling. However, this requires that the function is not strict in
its arguments, reducing the opportunity for optimizations.

3.2 Translation to Acyclic Haskell Code
It is possible to avoid the cyclic definition in Figure 2. In Bransen
et al. [2012] we describe our approach in detail; here we give an
informal description.

Challenges and solutions when using Haskell with attribute grammars. 2 2012/9/22

sem_Tree (Leaf val) = sem_Leaf val
sem_Tree (Bin left right) = sem_Bin (sem_Tree left)

(sem_Tree right)
sem_Root (Top top) = sem_Top (sem_Tree top)

sem_Leaf val = λ lhs_gmin→
let lhs_lmin = val

lhs_repl = Leaf lhs_gmin
in (lhs_lmin, lhs_repl)

sem_Bin left right = λ lhs_gmin→
let (left_lmin, left_repl) = left lhs_gmin

(right_lmin,right_repl) = right lhs_gmin
lhs_lmin = left_lmin ‘min‘ right_lmin
lhs_repl = Bin left_repl right_repl

in (lhs_lmin, lhs_repl)

sem_Top top =
let (top_lmin, top_repl) = top top_gmin

top_gmin = top_lmin
lhs_repl = top_repl

in lhs_repl

Figure 2: Translation of Repmin to lazy Haskell code.

The definition in Figure 1 is cyclic because the evaluator of the
root needs to pass gmin to top before it gets lmin. However, what
if the evaluator does not evaluate a tree in one (lazy) step, but as a
sequence of smaller steps? If the evaluator of top can produce lmin
in the first step, and only in the second step would need gmin to
produce repl, then the definition is no longer cyclic!

Absolutely noncircular. The evaluator of a node receives the
evaluators of its children as parameter. It thus does not know the
actual tree structure of the children. The above idea works thus only
if for all possible trees the attributes of the children have acyclic
dependencies. The grammar is absolutely noncircular if this is the
case, which can be verified using a static analysis given by Knuth
[1968].

The rules of a production define the data dependencies between
the attributes of a node and attributes of the children of the node. To
obtain a static approximation of the attribute dependencies of a tree
of some type N with the root node produced by production P of N
but with arbitrary trees of the appropriate types as children, we plug
the approximations of their dependencies into the dependencies
given by P. The approximation of an arbitrary tree of type M is the
union of the above approximations for each production of M. The
fixpoint of these cyclic equations is the result of the static analysis.

Scheduling. Each step of the evaluator is called a visit, which
produces some of the synthesized attributes given the appropriate
inherited attributes. For each visit, the evaluator of some node needs
an algorithm that comprises visits to children and the evaluation of
rules that compute the appropriate inherited attributes of children
and the synthesized attributes of the node itself. Note that an evalu-
ator is defined for each nonterminal, and that a nonterminal symbol
can occur more than once in the right-hand side of a production.
Each occurrence may have different demands regarding the order
in which the attributes are to be computed. Hence, an evaluator may
need to support multiple sequences of visits. The process of deter-
mining the sequences of visits and the attributes that are computed
is called attribute scheduling.

The basis for the scheduling algorithm that we employ is given
by Kennedy and Warren [1976]. We start at the root nonterminal of

sem_Bin left right = λk→
left $ λ left_lmin left′→

right $ λ right_lmin right′→
let lhs_lmin = left_lmin ‘min‘ right_lmin in
let closure = λ lhs_gmin k′→

left′ lhs_gmin $ λ left_repl→
right′ lhs_gmin $ λ right_repl→

let lhs_repl = Bin left_repl right_repl in
k′ lhs_repl

in k (lhs_lmin,closure)

Figure 3: Translation to Acyclic Haskell code (simplified).

the grammar, for which we require a single visit that comprises all
attributes. To construct an algorithm for a given visit, we know the
state of the tree prior to the visit. We obtain the schedule backwards
by chasing the data dependencies between attributes and rules in
such a way that we first have chased all the dependents (for this
visit) before proceeding with their dependencies. Rules are simply
added to the schedule. For synthesized attributes of children we
have to do more work: given the dependencies, we identify the
required inherited attributes and have thus identified another visit
for the child.

Our actual scheduling algorithm is a refinement of the above
scheme. It additionally ensures that that the order in which the de-
pendencies are chased does not influence the schedule. It also en-
courages independent visits to children, which are thus candidates
to be executed in parallel.

Representation. The evaluator is represented as a closure that
contains the attributes of the node and the evaluators of the children.
To apply it, the caller specifies which of the possible visits to use
and the needed values of the corresponding inherited attributes.
The caller also specifies a continuation, which is given an updated
closure and the requested values of the corresponding synthesized
attributes. The encoding is rather complex, but features the nice
property that it is purely functional, strongly typed, and strongly
normalizing if the rules do so too.

Figure 3 gives an impression of how such a function looks like
(representing a single visit sequence of Bin). In the figure, left′ and
right′ are the updated closures of left and right respectively, k is the
continuation after the first visit, and k′ the continuation after the
second visit, and closure is the updated closure of the node itself.

4. Common Attribute Grammar Extensions
This section covers a number of common language-independent
attribute grammar extensions that we need in later sections.

4.1 Local Attributes
Local attributes are a simple but useful extension for sharing an
intermediate result per node among rules. Rules may refer to an
attribute of the form loc.x when it is defined by a rule. Local
attributes resemble let-bindings, and examples of their use are given
in later sections.

4.2 Copy Rules
Many rules simply copy values up and down the tree. These rules
often follow standard patterns and can be derived automatically
based on the name equality of attributes. Such a derivable rule is
called a copy rule. Copy rules may be omitted by the programmer,
which has significant benefits in larger grammars where the major-
ity of rules are copy rules. Such an abstraction is familiar to Haskell

Challenges and solutions when using Haskell with attribute grammars. 3 2012/9/22

programmers as it corresponds to the use of monads for implicit pa-
rameter and result passing.

The following are common patterns for which rules are auto-
matically derivable:

Topdown Reader-monadic behavior is obtained by copying the
inherited attribute a from the parent to children c that have c.a
as inherited attribute.

Bottom-up For synthesized and chained attribute a merging oper-
ation may be specified with additional use syntax:

attr Tree syn s use mappend mempty :: Sum Int

Then, writer-monad behavior is obtained by combining the syn-
thesized attributes s of the children with the mappend function
to define the synthesized attribute s of the parent, or by using
mempty when no such child exists, which would give:

sem Tree
| Leaf lhs.s = mempty
| Bin lhs.s = @left.s ‘mappend‘ @right.s

The rule lhs.s = @val for Leaf must be given explicitly because
an automatically derived mempty is probably not intended.

Chained State-monad behavior is obtained by passing a value of
an inherited attribute a of the parent through the children that
define a as chained attribute, and finally from the last child back
to the synthesized a of the parent.

When an attribute has a use declaration, copy rules are generated
according to the topdown and bottom-up pattern, and otherwise the
chained pattern.

Note. We do not omit copy rules for our examples for didactic
reasons. However, we mention copy rules in later arguments, hence
this explanation.

4.3 Higher-Order Children
A production declares the children that a node has at the start
of attribute evaluation. An extension, higher-order attribute gram-
mars [Vogt et al. 1989], allows additional children to be declared
that become part of the tree during attribute evaluation. This is one
of the most important and versatile attribute grammar extensions.

Syntax and semantics. A higher-order child c : M (where c is the
name of the child and M the nonterminal) is a tree defined by
an attribute inst.c of its parent node. We say that the child c is
instantiated with the value of attribute inst.c. Such an attribute is
also known as a higher-order attribute.

The declaration of the child is prefixed with inst to differentiate
it from a conventional child declaration. So, to define some child
c : M as the result of expression e, the child must be declared and
the attribute inst.c must be defined by some rule:

data N
| P inst.c : M

sem N
| P inst.c = e

Equivalently, child declarations may also be given in the semantics
block.

Furthermore, we must define the inherited attributes of c and
may use the synthesized attributes of c. Its synthesized attributes
additionally depend on the definition of inst.c, because part of the
tree must be known before synthesized attributes can be computed
for it. Otherwise, a higher-order child is indistinguishable from a
conventional child.

We define a nonterminal to represent a counter dispenser:

data Uniq | Next
attr Uniq chn counter :: Int syn value :: Int
sem Uniq
| Next lhs.value = @lhs.counter

lhs.counter = @lhs.counter+1

Copy rules can be used to chain the counter through the tree, and
an attribute @u.value is obtained with:

inst.u : Uniq
inst.u = Next

Figure 4: A unique number mechanism.

We define a nonterminal to represent a local attribute:

data Loc @α | Loc
attr Loc chn value :: α

sem Loc | Loc lhs.value = @lhs.value

To desugar a local attribute x, introduce:

inst.x : Loc
inst.x = Loc

and replace each occurrence of loc.x with x.value.
Figure 5: Local attributes as higher-order children.

Implementation. The code generated for a production gets the
evaluator for conventional children as parameter, but not for higher-
order children. Instead, the evaluator is obtained by applying the
catamorphism sem_M to the tree constructed for attribute inst.c.

Abstraction. Later sections make heavy use of higher-order chil-
dren as a means to view Haskell functions as a tree so that the com-
position mechanism as offered by AGs can be exploited. Since this
pattern is important we give now two examples:

• Figure 4 shows a tree Uniq as abstraction for a dispenser of
unique numbers. The tree itself is just a plain node Next. The
required information is in the attributes.

• Figure 5 shows how to express local attributes with higher-order
children.

4.4 Proxy Nonterminals
We present a common pattern for adding a nonterminal to the
grammar that serves as an alias for another nonterminal. Similar
to type aliasses in Haskell, this pattern can be used to statically
distinguish certain occurrences of nonterminals.

Definition. A common pattern is to introduce a nonterminal that
serves as an observable alias for another nonterminal, which we
will call proxy nonterminals. A proxy nonterminal Proxy for N is
a nonterminal Proxy with the same attributes declarations as N and
is defined as:

data Proxy
| P n : N

and its semantics is trivially defined by copy rules. It thus has a sin-
gle production P, containing one child n which is the nonterminal
symbol N. We can thus substitute Proxy for occurrences of N (in
productions other than P) without changing the attribute computa-
tions.

Challenges and solutions when using Haskell with attribute grammars. 4 2012/9/22

data List α @β

| Nil
| Cons hd :: α tl : List α β

attr List syn length :: Int

sem List
| Nil lhs.length = 0
| Cons lhs.length = 1+@tl.length

attr List inh f :: α → β syn r :: List β

sem List
| Nil lhs.r = Nil
| Cons lhs.r = Cons (@lhs.f @hd)@tl.r

Figure 6: Parametric polymorphism in an attribute grammar.

Usage. In later sections we impose for example artifical data
dependencies on attributes of Proxy without necessarily imposing
these on all occurrences of N.

Grammar extension. Proxy nonterminals can be added to the
grammar by changing the original description, e.g. the data decla-
rations. This transformation is not transparent. Code that produces
the tree (e.g. a parser) must also generate the proxy nodes at the
appropriate places in the tree.

A transparent approach is possible, which we will use in Sec-
tion 8, using an extension of higher-order attributes. Instead of
defining a child with an attribute, we allow the redefinition of a
child via an attribute that contains a function that transforms the
evaluator of the child. The following example demonstrates a trans-
formation of a child n : N in production Root to a child n : Proxy:

data Root
| Root n : N

sem Root
| Root inst.n : Proxy

inst.n = λevalN→ sem_P evalN

The Root production declares a child n : N. The inst.n attributes
defines an attribute that is actually a function that takes the origi-
nal evaluator of n as parameter evalN and transforms it so that it
becomes an evaluator that fits nonterminal Proxy. In this case, we
accomplish this by adding a P node on top of it. Note that the func-
tion sem_P, which is the part of the algebra that corresponds to pro-
duction P, is exactly doing that. This transformation possible when
the definition of inst.n does not depend on any of the synthesized
attributes of n.

5. Parametric Polymorphism
The ability to abstract over types plays a major role in obtaining
code reuse in strongly typed functional languages, and also in
the form of generics in imperative languages. This section shows
an attribute grammar extension for parametrizing nonterminals to
abstract over the types of terminals, and for abstracting over the
types of attributes.

Figure 6 shows that by parametrizing the nonterminal List with
the type α of the terminal hd, it is possible to define the synthesized
attribute length for lists containing elements of any type.

Similarly, by parametrizing the attributes over a type β , we can
implement a functor: a transformation that maps each element @hd
of the list to @lhs.f @hd where @lhs.f is an arbitrary function from
a (the type the list is parametrized with) to some arbitrary type β .

There is an essential difference between type variables α and
β . Type variables declared with the prefix @ may appear only in
the types of attributes, but may not appear in the types of terminals,
and are not part of the generated data type. Thus, the data type is
parametrized with α and the evaluator with α and β .

The implementation of this extension consists of printing the
type variables at the appropriate places in type signatures.

6. Feature: Eager rules
The data dependencies between rules form a partial order, which
suffices for attribute grammars because rules are encouraged to be
pure. It may sometimes be useful to augment the data dependencies
to locally prioritize certain rules over other rules in a production.
This can for example be useful for debugging, efficiency, and other
reasons that appear in later sections.

By taking the order of appearance of rules in the source files
into account, it is possible to obtain a total order among rules. This
approach impairs the composability of attribute grammars, but may
still be useful for specifying an order among strongly correlated
rules. Other canonical total orders are far from obvious. A total
order would also leave little freedom to attribute scheduling, hence
we are looking for a less ad-hoc mechanism.

Definitions. A rule is eager when it is described with the notation
p $= e with a pattern p and expression e. The idea is to schedule
these rules so that they are computed as soon as their dependencies
are available, in contrast to conventional rules that are scheduled
when an attribute that depends on it needs to be computed.

This is a challenging problem. To prioritize a rule, it is also
necessary to prioritize the dependencies of that rule. This interacts
globally with rules of other productions, and it is not clear which
one has more priority. Such global consequences are undesirable
when all that we want is a bit more local priority. We therefore
propose to prioritize only the attributes that involve themselves only
with eager rules, and leave the scheduling of the other attributes up
to their original data dependencies.

An attribute a is eager when each rule r that depends on a is
by itself eager, or r depends on another eager attribute. These are
global properties of a grammar that are easily derived from the
grammar with a statical analysis similar to cycle analysis.

Given an inherited eager attribute a of some nonterminal N, we
can determine the set of synthesized eager attributes that depend on
a. We call these the collaborators of a. Furthermore, we can deter-
mine the set of non-eager inherited attributes that the collaborators
depend on, which we call the opposition of a. The idea is to priori-
tize the computation of eager inherited attributes of a child as soon
as their opposition has been computed.

Scheduling. The scheduling algorithm of Section 3.2 starts from
the demanded synthesized attributes of the parent for a visit to
determine which rules and child visits to schedule. We change
this algorithm to realize the above idea. For each eager inherited
attribute n.a of a child n, if the opposition of n.a can be computed,
we add the collaborators of n.a that can be computed to the set of
attributes to be computed. Recall that an attribute of a child can
be computed if the inherited attributes of the parent it indirectly
depends on have been computed.

Then, to deal with ordering the eager rules scheduled to a
particular visit, we repeatedly take the unscheduled eager rules that
do not depend on any other unscheduled eager rules, and schedule
their non-eager dependencies and then the rules themselves in the
order of appearance. See Middelkoop [2012, Section 3.5.2] for a
detailed algorithm.

Properties. The approach is sound because it only adds additional
scheduling constraints. The approach is also complete: if a sched-

Challenges and solutions when using Haskell with attribute grammars. 5 2012/9/22

data Root α

| Top root : Tree α

data Tree α

| Bin left : Tree α right : Tree α

| Leaf val :: α

attr Tree inh gmin :: α lmin :: α syn repl :: Tree α

Figure 7: Repmin with type classes (see also Figure 1)

ule can be computed for a grammar than a schedule can also be
computed when rules are changed into eager rules. The schedul-
ing is also locally predictable: an eager rule is guaranteed to be
scheduled before an independent non-eager rule that depends on
a superset of the non-eager inherited attributes that the eager rule
depends.

Conventional rules are scheduled based on the dependencies
of the attributes that they define. Eager rules have the additional
property that they also get scheduled if the inherited attributes that
they depend on become available. We make use of this property in
several later sections.

7. Integration: Type Classes
Haskell programmers make heavy use of type classes, and thus ex-
pect to combine them with attribute grammars. A typical use arises
when some part of the tree or some of the attributes are abstracted
over some type. When an overloaded function is applied to the
value of such an attribute, a dictionary is required that provides
the implementation of the overloaded function. The construction
and passing of dictionaries is normally handled implicitly by the
Haskell compiler, and the question arises how this integrates with
attribute grammars.

Example. Figure 7 shows a variation on Repmin of Figure 1
which works for trees containing comparable values of any type α .
We omitted the rules as these are the same as the original definition.
The attributes are polymorphic in the type α , and in the rules
we are using min from the class Ord, so the generated code can
only be used when the type α is in the Ord class and when the
corresponding dictionary is brought in scope of the code that is
generated from the attribute definition that uses min.

The way we generate code allows the Haskell compiler to han-
dle type classes automatically if we do not generate type signatures.
Note that type signatures are particularly important to aid error re-
porting, hence we are not willing to leave them out. Fortunately, the
impact on type signatures is rather small, because only the types of
the generated fold and algebra functions need to specify the used
dictionaries in their body as class predicates, which can be manu-
ally specified by the programmer with a bit of additional syntax:

attr Ord α ⇒ Root Tree inh gmin :: α lmin :: α

This notation expresses that the Ord α class constraint is added to
the catamorphisms and semantic functions generated for Root and
Tree.

This construction is undesirable for several reasons:

• In a context where not all synthesized attributes are needed,
the rule using the dictionary may not be scheduled, and the
dictionary not needed, resulting in ambiguous overloading.

• It requires a language-specific extension; is a solution possible
that is more native to attribute grammars?

Explicit dictionaries. With a GHC extension it is possible to wrap
a dictionary in a data constructor when constructing a value, and

bring it in the environment via a pattern match. For example, the
following DictOrd type stores an Ord dictionary.

data DictOrd ::∗→ ∗where
DictOrd :: Ord α ⇒ DictOrd α

Now, dictionaries can be considered as an inherited attribute that is
copied unchanged from the root. Thus, we can express the dictio-
nary passing for the repmin example as:

attr Root Tree inh dict :: DictOrd α

sem Root
| Root root.dict = @lhs.dict

sem Tree
| Leaf left.dict = @lhs.dict
| Right right.dict = @lhs.dict

sem Tree
| Leaf lhs.lmin = @val
| Bin lhs.lmin = case @lhs.dict of

DictOrd→ @left.lmin ‘min‘ @right.lmin

The definitions of the dict-attributes are trivial and can be provided
implicitly via copy rules. The dict attribute thus serves as evidence
that it is possible to apply min to the attributes of type a. As
expected, the code that invokes the attribute evaluator of the root
must provide the value of the dict attribute, e.g. by building it using
the DictOrd constructor.

Advantages of this approach are that no attribute grammar ex-
tension is required and that it is oblivious to how the code is gen-
erated. A disadvantage is that the dictionary needs to be unpacked
for each rule that needs the dictionary. When multiple rules need a
certain dictionary in scope, it is however possible to hoist out the
pattern match:

sem Tree
| Bin DictOrd = @lhs.dict

lhs.lmin = @left.lmin ‘min‘ @right.lmin

Below, we call such a rule, which pattern matches against a dictio-
nary, a dictionary rule.

Scheduling. The pattern match must be in scope of the rule that
needs the dictionary. The code generation only guarantees this if the
dictionary rule precedes the rules that uses the dictionaries in the
static rule ordering. The pattern does not define any attributes thus
the dependency on it is not visible without analyzing the Haskell
code (which we treat as-is). Therefore, some code needs to be
added to the grammar to specify a proper static order.

Upon closer inspection of the rules, we observe that the inher-
ited attributes that contain the dictionaries are copied unchanged
and are in the end only inspected by dictionary rules. Thus, if the
dictionary rules are scheduled as eager rules (Section 6), the inher-
ited attributes become eager attributes, and the rules end up before
any of the conventional rules in the order. The order among dictio-
nary rules is then not specified, but that is fortunately also irrele-
vant. So, to ensure the proper ordering, it suffices to annotate the
dictionary rules as eager rules:

sem Tree
| Bin DictOrd $=@lhs.dict

The above approach builds upon more general attribute gram-
mar features, and does not require changes to the code generation.
Certainly, it requires more effort by the programmer, which can
be eliminated by desugaring the notation using the pattern given
above.

Type specialization. Since type equalities can also be represented
as a dictionary using GADTs, we can now use the approach in

Challenges and solutions when using Haskell with attribute grammars. 6 2012/9/22

this section to write grammars for particular instances of the type
variables:

data List α

| Nil
| Cons hd :: α tl : List α

attr List inh dict : α :=: Int syn sum : Int
sem List
| Nil lhs.sum = 0
| Cons lhs.sum = @hd+@tl.sum

Refl $= @lhs.dict

We use this construction in the follow-up section (Section 8).

8. Integration: Abstraction over Nonterminals
Section 5 showed that data types may have fields that have a type
that the data type takes as parameter, and that we treat these fields as
terminals. But what about nonterminals? For example, when some
meta information such as source locations occurs at many places in
different types of trees, it is common to factor it out into a separate
nonterminal:

data Info t
| Label tree :: t line :: Int

data Stmt
| If guard : Info Expr body : Info Stmt

data Expr
| App fun : Info Expr arg : Info Expr

We would like to change terminal tree into a nonterminal so that
Info becomes polymorphic in the nonterminal t choosen for tree,
but it is unclear how to deal with such a grammar: what are the
attributes of Info? This likely depends on what attributes are defined
on t (which is not known) and the line likely influences them
or requires additional attributes. This issue becomes even more
difficult when a production has multiple of such children.

Saraiva and Swierstra [1999b] deals nonterminals parameter-
ized over nonterminals by specifying which attributes will be
present. This is not a solution in this case because it Stmt and Expr
may not have the same attributes. Instead, we propose a simpler
approach: we virtualize the tree. The observation is that higher-up
there must be a place where it is known which attributes to expect:
either because the instantiation of the type variables is known or
because the attributes are independent of it. For example, we can
assume that we know the attributes of a tree of type Info Expr.

For this concrete type, it is possible to derive some suitable
representation that does not involve nonterminals as parameters, for
example by specializing the original data definition to the known
type arguments:

data InfoExpr
| Rep expr : Expr line :: Int

We can thus define the required attributes and rules on InfoExpr
instead, provided that we transform a tree of type Info Expr to
InfoExpr. We first introduce a proxy nonterminal for InfoExpr,
which will take care of the conversion.

data ExprProxy
| Proxy orig : Info Expr

sem Stmt
| If inst.guard : ExprProxy

inst.guard = Proxy

For the conversion, we compute the representation from Label,
passing down as additional information that t is a Stmt in this

context, and using a higher-order child to make the representation
part of the tree:

attr Info inh eqExpr :: t ∼ Expr syn repExpr :: InfoExpr
sem Info
| Label lhs.repExpr = case @lhs.eqExpr of

Refl→ Rep@tree@line
sem ExprProxy
| Proxy orig.eqExpr = Refl

inst.rep : InfoExpr
inst.rep = @orig.repExpr

Similarly, a representation for Info Stmt can be added, with corre-
sponding attributes eqStmt and repStmt for Info. The orig.eqExpr
attribute can only be defined in ExprProxy and vice versa for
orig.eqStmt. Thus, by making these nonterminals start symbols of
the grammar, these inherited attributes need only be defined for the
appropriate proxies (Section 2).

Generic programming. The above approach for specializing the
types of nonterminals can be automated with some preprocessing.
On the other hand, this approach makes it also possible to use a
more abstract representation (e.g. using sums of products [Maga-
lhães et al. 2010]) to obtain generic code.

9. Integration: Monads
Monads are a typical abstraction that Haskell programmers use
when implementing tree traversals. They are often considered as an
alternative to attribute grammars. Indeed, Schrijvers and Oliveira
[2011] show how to deal with stacks of reader, write and state
monads to obtain a similar composability that comes naturally with
attribute grammars.

However, attribute grammars and monads are not mutually ex-
clusive, and are in fact different composition mechanisms that are
fruitful to combine [Meijer and Jeuring 1995]. Section 9.1 shows
the embedding of pure monadic computations that use reader,
writer, state functionality as abstraction (e.g. the RWS monad),
and Section 9.2 shows how we can represent the AG as a monad to
incorporate impure operations.

9.1 Integration: Pure Monadic Code in Rules
When using an attribute grammar there seems no need to use
reader, writer or state (RWS) monads, because attributes provide a
more general facility when combined with copy rules (Section 4.2).
However, as rules may contain arbitrary Haskell code, that code can
involve (pure) monads, and this may certainly be appropriate when
constructing complex values.

When the monad can be evaluated as a pure Haskell function,
which is the case for RWS monads, monadic code is not different
from conventional code, and can be used without a need for special
attribute grammar facilities (otherwise, see Section 9.2). However,
the use of monadic code gives rise to a particular pattern for which
we can introduce an abstraction, which we discuss in the remainder
of this section.

Example. The following grammar on lists of integers defines a
synthesized attribute r. Given such a list L, the attribute r of L is
also a list of integers but with consecutive elements and so that there
are as many elements as the total sum of the elements of L. The
grammar implements this behavior by concatenating lists loc.es
that are present for each cons-node of L, where the size of loc.es
is equal to the integer fld hd of the cons-node. The consecutive
numbers are obtained by taking them from the inherited attribute s
that is threaded to the end of the list. The computation that defines
loc.es is given as a monadic expression loc.m:

Challenges and solutions when using Haskell with attribute grammars. 7 2012/9/22

data IntList
| Nil
| Cons hd :: Int tl : IntList

attr IntList inh s :: Int syn r :: IntList
sem IntList
| Nil lhs.r = []
| Cons lhs.r = @loc.es++@tl.r

(loc.es, tl.s) = runState@loc.m@lhs.s
loc.m = replicateM @hd $ do

e← get
modify (+1)
return e

The state monad takes the initial counter, produces the result loc.es
and an updated counter, which is subsequently passed on to the tail
of the list as tl.c.

Concerns. This simple example demonstrates the use of monads
in rules. It also shows that attributes have to be threaded into and
out of the monad (e.g. via runState). Such rules that interface with
the monad are tedious to write because they mention all attributes
that play a role in the monad. This becomes more of an issue
when multiple of these rules occur in a production, because of the
threading of the attributes between rules and children. Thus, such
a construction impairs the ability to describe rules for attributes
separately and thus affects the composability of the description.

Code as the above is also prone to mistakes in attribute names
that lead to accidental cycles in the threading of attributes, e.g.:

(..., loc.s1) = ...@lhs.s
(..., loc.s2) = ...@loc.s2 -- cycle: should have been s1
(..., tl.s) = ...@loc.s2

Fortunately, this classical mistake is caught by the static depen-
dency analysis of attribute grammars. It would otherwise lead to
hard to find cases of nontermination.

Composable descriptions. As a solution to the composability is-
sues, we show another use of higher-order children (Section 4.3).
First we introduce a nonterminal M φ α with a single production
Do that represents a monadic computation that it obtains as inher-
ited attribute expr of type State φ α , where φ is the type of the state
and α is the result type:

data M @φ @α

| Do
attr M inh expr :: State φ α

chn s :: φ

syn a :: α

sem M
| Do (lhs.a, lhs.s) = runState@lhs.expr @lhs.s

Given a tree M φ α , we can obtain the result of the monadic
computation as attribute a, and also have the input and output
state as chained attribute s. We can construct such a tree using the
constructor Do, but how to integrate it with the actual tree?

This is where higher-order children come in again. The follow-
ing example shows how to declare a higher-order child m1, its def-
inition and the threading of the attributes:

sem IntList
| Cons inst.m1 : M

inst.m1 = Do
m1.expr = @loc.m
loc.es = @m1.a

m1.s = lhs.s
tl.s = m1.s

Inlining these definitions gives actually the same code as the former
example. The difference is the ability to specify the threading of
the attributes separately and factoring out the wrapping code of the
monads. In addition, copy rules (Section 4.2) may take care of the
threading rules altogether.

9.2 Integration: Attribute Grammars as Monads
The previous section showed rules containing monadic RWS oper-
ations. Dealing with impure monadic operations is more involving,
as we discuss in this section. Of particular interest are IO and ST
operations. The ability to e.g. update auxiliary data while process-
ing a tree opens up a whole range of applications.

At first glance, monadic operations may not appear as quite a
challenge because attribute grammars can be mapped to a sequen-
tial computation (Section 3.2) and the resulting computation can
be represented as a monadic computation so that rules can be an
arbitrary monadic expression. However, a declarative formalism is
a double-sided sword in this setting. The evaluation of rules de-
pends only on data dependencies, which gives little guarantees with
respect to when rules are evaluated, if at all. To be able to use
monadic operations, we need to provide stronger guarantees, e.g.
that monadic effects are always performed and at most once.

Example 1. To introduce monadic rules, we give a variant of
the unique number dispenser of Figure 4. When there is only the
requirement that the produced numbers are unique but not that they
are sequential, we can pass a reference to a shared counter as an
inherited attribute and use monadic code to fetch-and-increment it:

attr Uniq inh hCounter :: TVar Int syn value :: Int
sem Uniq
| Next lhs.value← atomically $ do

c← readTVar @lhs.hCounter
writeTVar $! c+1
return c

This example features a monadic rule, which is a rule of the form
p← m where p is a pattern and m a monadic expression. It has
the expected semantics: it is translated to m′>>= λp′ → r, where
m′ and p′ are the respective translations of m and p, and r is the
remainder of the computation that is scheduled after the rule. We
shall furthermore assume that monadic rules are scheduled as eager
rules.

Example 2. Consider a system that is processing a stream of tree-
shaped requests that it takes from an input channel and outputs the
responses to an output channel. This system can for example be
some kind of webservice or a streaming compiler. The question we
now address is whether we can represent the stream processor as an
attribute grammar so that we can use attributes to describe the flow
of information from one request to the next (e.g. environments).

Figure 8 gives the general structure of the stream processor. This
description requires several ingredients. It incorporates monadic
rules that read and write from the channel (as shown earlier in this
section), and higher-order children (Section 4.3) so that the trees
read from the channel become children of the processor. Below, we
discuss the example a bit further, and then zoom in to the semantics
of monadic rules.

The stream processor is an automaton. That we can describe it
with a grammar is not a surprise, because certain automata are used
to specify the semantics of attribute grammars. The productions of
Proc describe the states of the processor. A node Pending represents
the processor in the state where it reads a request from the channel.
When it did so, it creates a Handle node as higher-order child

Challenges and solutions when using Haskell with attribute grammars. 8 2012/9/22

data Proc
| Pending
| Handle req : Request next : Proc

data Request
... -- some tree-like structure

attr Proc inh chanIn :: Chan Request
inh chanOut :: Chan Response

attr Request syn result :: Response
... -- + other attributes on requests

sem Proc
| Pending inst.run : Proc

inst.run← readChan@lhs.chanIn>>=
λm→ return (Handle m Pending)

| Handle ← writeChan@lhs.chanOut @req.result

Figure 8: Sketch of a stream processor that reads modules from
chanIn and puts the processed results in chanOut.

which processes the node and writes the response to the output
channel. This way the attribute grammar evaluator simulates the
state transitions of the processor when it visits Proc nodes.

Executing the code generated from the grammar leads to a sur-
prise: nothing is evaluated at all! The reason is that attribute gram-
mar evaluation is driven by data dependencies. Since Proc does not
define any synthesized attributes, there are thus no dependencies
on rules or children of its productions. There are also no obvious
synthesized attributes to be given to Proc, because it needs to out-
put to the channel instead. Similarly, the rule with writeChan does
not define any attributes so there are no data dependencies on the
rule. Making monadic rules eager (Section 6) takes care of the lat-
ter case, but not of the former, so we need to extend the grammar
with additional code.

State threading. We take inspiration from the integration of IO
in Clean [Groningen et al. 2010] and state threading in the St and
IO monad to add additional data dependencies to the grammar.
Applying a variation on the pattern of Section 9.1, we introduce a
nonterminal M which serves as a wrapper for monadic actions. The
monadic action is provided as inherited attribute expr, and the result
of the monadic action given as the synthesized attribute value. In
addition, it contains a chained attribute st that represents the state
threading, and can be used to introduce data dependencies.

data M @α

| Do
attr M inh expr :: IO α

syn value :: α

chn st :: StateToken
sem M
|M (lhs.result, lhs.st)← do

a← code
return (a,@lhs.st)

The st attribute is a token of some opaque type (with a role similar
as State # RealWorld), and later we come back to the essential role
that it plays. We first show that the monadic operations can now be
written as:

sem Proc
| Pending inst.oper1 : M

inst.oper1 = Do

oper1.expr = readChan ...
inst.run = @oper.value

| Handle inst.oper2 : M
inst.oper2 = Do
oper2.expr = writeChan ...

= @oper2.value

In addition, definitions for the st attributes are needed. Since their
values are opaque, a value cannot be given by the programmer, so
the value will have to come from the parent, and its parent, and so
on:

attr Proc chn st :: StateToken
sem Proc
| Pending oper1.st = @lhs.st

act.st = @oper1.st
lhs.st = @act.st

| Handle oper2.st = @lhs.st
next.st = @oper2.st
lhs.st = @next.st

Above we gave the rules for the st attributes explicitly, but can
actually be omitted because they are copy rules (Section 4.2).
The way we connect the st attributes determines influences the
evaluation order, to which we come back to later.

Initial token. At the root, the token is passed via an inherited
attribute, and taken out as synthesized attribute. For example, the
programmer can call the generated monad code via:

withTk :: Monad m⇒ StateT StateToken m α → m α

withTk m = evalStateT m hiddenTokenValue

The data dependencies on the token then ensures that the monadic
operations will be evaluated. With standard static attribute depen-
dency analysis the proper threading can be checked, e.g. to verify
that the st attribute of each M child is a dependency of a synthe-
sized attribute of the root, and if desired, that the st attributes are
referenced at most once.

Bottom-up. The data dependencies on the st attribute influences
the relative order of the monadic operations. The definition of in-
herited attributes is usually handled by copy rules. For the synthe-
sized attributes, we can either thread the token through the children
sequentially (the most restrictive), or collect the tokens bottom up
(the least restrictive), e.g. implicitly via a collection rule:

attr Proc chn st use seq :: StateToken
sem Proc
| Pending oper1.st = @lhs.st

run.st = @lhs.st
lhs.st = @oper1.st ‘seq‘ @run.st

| Handle oper2.st = @lhs.st
next.st = @lhs.st
lhs.st = @oper2.st ‘seq‘ @next.st

These rules can again be omitted, as they are implied by the collec-
tion rule. Due to the strict attribute evaluation, both operands to seq
will already be evaluated but it does not specify in which order. It
depends on the monadic operations in question how strict the order
guarantees have to be.

The latter approach has the advantage that automatic paralel-
lization of attribute grammars can run the processor for the next
request in parallel with the analysis of the current module, as soon
as the results are available that are required for the processor of the
next request. Whether this is desirable depends on the application,
as it may change the order in which the responses are written to the
output channel.

Challenges and solutions when using Haskell with attribute grammars. 9 2012/9/22

Strictness matters. The example also shows that it is important
to generate strict code: lazy results (that may keep data of previ-
ous requests alive) can be disastrous for memory usage. It is also
important that the generated code for the processor is tail recur-
sive, otherwise it keeps consuming more memory with each sub-
sequent module it processes. This is the case when the synthesized
attributes are only copies of the synthesized attributes of the last
visited child. This also holds in the case when the st attribute is de-
fined according to the latter approach, because seq is rewritten to
its right argument when its left argument is proved to be evaluated
already.

Syntactic sugar. The syntax with the higher-order children is
rather verbose. To remedy this, we can easily provide syntactic
sugar for it using the notation p← c = e where c is the name to
introduce for the monadic operation:

sem Proc
| Pending inst.act← oper1 = readChan ...
| Handle () ← oper2 = writeChan ...

Note. We exploit the correspondence between attribute grammars
and monads as seen in Section 9.1. The use of monads in a Haskell
function has consequences on the type of the function and requires
sequentialization of the code (e.g. do notation). In an attribute
grammar, the consequences become visible as additional attribute
and the semi-implicit threading of these attributes. Also, the IO
monad is a state monad where operations get and put the state. In
an attribute grammar, those are higher-order children that thread
the state attributes.

10. Feature: Inversion of Control
A common pattern that appears when writing tree computations is
to first perform some initial computation over the tree (e.g. spread-
ing environments), followed by an iterative computation (e.g. com-
puting some fixpoint), followed by a resulting computation (e.g.
producing a transformed tree and collecting error messages). This
section provides a construction for expressing this pattern, and as it
turns out use it to encode the monadic rules of the previous section.

Iteration. There are several ways to incorporate iterative or fix-
point computations in attribute grammars. [Farrow 1986]. Using
Haskell, lazy evaluation can be exploited to obtain iteration by lift-
ing attributes to lists and giving a collection of cyclic attribute def-
initions that define the value of index i in the list in terms of values
in the list of attributes at indices j< i (preferably j = i− 1). How-
ever, it is tedious to write these equations especially when differ-
ent attributes are involved in the cycle. Moreover, the rule ordering
cannot be expressed this way.

We present a different solution that extends cycle-free attribute
grammars with an inversion of control construction that can be used
to express iteration. The general idea is that we can obtain from a
child a function f that represents the computation of a subset of its
attributes, and can replace it with another function. To this end, we
need additional syntax to specify which attributes are involved and
to specify a transformation function of the function that computes
these attributes. We illustrate this syntax with an example.

Example. Figure 9 shows an example which is based on the
stream processor of Section 9.2. The inversion of control syntax is
given near the bottom of the figure, and we explain the example’s
code and the extra syntax below.

In contrast to the example in the earlier section has the processor
Proc only one state in which it obtains the request, processes
it, and outputs the response. It does not spawn a new processor
to handle the remainder of requests in the channel. Instead, we

data Top
| Root proc : Proc

data Proc
| Handle

attr Control Proc inh chanIn :: Chan Request
inh chanOut :: Chan Response
chn st use seq :: StateToken

attr Request syn result :: Response
... -- other attributes on requests

sem Proc
| Handle inst.req : Request

inst.req← oper1 = readChan@lhs.chanIn

()← oper2 = writeChan@lhs.chanOut
@req.result

expl Proc chn st

sem Top | Root
expl.proc = fix (λ r f i k→ f i (λ s→ r f (s2i i s) k))

s2i i s = i {st = st s}

Figure 9: Stream processor realized through inversion of control.

added a toplevel nonterminal Top that contains the processor as
child proc, and additional description so that the computations for
the processors are repeated indefinitely. To explain this additional
description, we first introduce some vocabulary.

Syntax and semantics. The optional explicit attribute set (EAS)
of a nonterminal is a declared subset of the attributes of the nonter-
minal. The syntax to declare it is similar to attribute declarations,
except that it uses the keyword expl and the attribute types are omit-
ted. In the example, the st attributes of Proc are in the set.

Declaring an EAS has consequences. For each nonterminal N
with an EAS, a production containing a child n : N must define an
attribute expl.n. This function gets as parameter the evaluator for
the attributes in the EAS, and must give such an evaluator as result.
Consequently, we can influence the application of the evaluator for
a particular subset of the attributes.

The identity transformation is obtained by defining expl.n = id,
and more complex transformations are obtained by exploiting that
the evaluator is a monadic function that takes a record containing
values of the inherited attributes in the EAS and a monadic contin-
uation that receives a record containing values of the synthesized
attributes in the EAS. The definition in the example denotes the
repeated application of the evaluator f to the inherited attributes i
(containing only the inherited st attribute), where the inherited st
attribute for the next application is taken from the synthesized st
attribute of the previous application. The function s2i performs the
conversion from the synthesized attributes to the new inherited at-
tributes by replacing the st field in the record with the old attributes.

With the current construction, only one EAS can be specified
per nonterminal. This is not a limitation as the constructions are
composable by introducing proxy nonterminals (Section 4.4). This
is also a good practice when inversion of control is not required for
each occurrence of a nonterminal symbol.

The EAS must be declared so that it is clear in the specification
which attributes are contained in the input and output records. The
inherited channels are for example not in the set. This way they
are passed to the processor in an earlier visit so that the work that
depends on these attributes is not repeated.

Challenges and solutions when using Haskell with attribute grammars. 10 2012/9/22

data P @α -- placeholder for a monadic computation
| Nop

attr P chn st :: StateToken
syn mbVal :: Maybe α

expl P chn st syn value

sem P
| Nop lhs.st $= @lhs.st

lhs.mbVal = Nothing

sem M
|M inst.act : P

inst.act = Nop
expl.act = λ f i k→ f i $ λ s→

@lhs.expr>>=λa→ k s {mbVal = Just v}
lhs.value = fromJust @act.mbVal

Figure 10: Monadic operations via inversion of control.

Static dependencies. To ensure that we can obtain an evaluator
that takes the inherited attributes in one go we impose the static re-
striction that the inherited attributes in the EAS may not depend on
any of the synthesized attributes in the EAS, and that each synthe-
sized attribute in the EAS depends on each inherited attribute. This
additionally ensures that the evaluation occurs only in the child, and
does not require evaluation at a parent node. Furthermore, to have
the expl.n attribute available for such a node n when computing the
attributes in the EAS set, it needs to be an additional dependency
of n.a for all attributes a in the EAS.

Implementation. The implementation of this feature is surpris-
ingly straightforward. When we schedule a visit v to a node to com-
pute a synthesized attribute mentioned in the EAS, then it needs to
schedule all the attributes in the EAS. We precede v with an ad-
ditional visit u that can take care of other attributes that may be
involved that are not in the EAS. With this approach, when schedul-
ing a visit v for some node n, we simply call the function defined
by expl.n (which will be in scope) with the evaluator for v (which
will also be in scope) instead of calling the evaluator for v directly.

We desire a least number of computations in v to prevent du-
plicate work when re-applying the evaluator. Eager rules aside, the
strategy of evaluating only the rules that are needed for producing
the values for the synthesized attributes scheduled to v ensures that
we do not compute additional results that are discarded when rein-
voking the evaluator. The purpose of u is to compute all attributes
that are dependencies of synthesized attributes in the EAS but that
do not depend on inherited attributes in the EAS. This requires a
similar enhancement to the scheduler as discussed in Section 6:
when we schedule a visit, we can specify additionally a set of syn-
thesized attributes for which the scheduler schedules all dependen-
cies that can be scheduled, e.g. which depend only on inherited
attributes that are available so far.

Expressiveness. The construction in this section is expressive:

• Figure 10 shows how to encode the monadic actions of Sec-
tion 9.2 with it. The nonterminal P serves as a placeholder
that computes Nothing, but exhibits the desired scheduling con-
straints. Its evaluation is transformed to execute the monadic
action and update the result with it. We can thus eliminate
the language-specific monadic rules with the more general and
language-independent construction shown in this section.

• Figure 11 shows exception handling and backtracking. Suppose
that N is a nonterminal that provides two ways for computing

attr N inh e :: Maybe BacktrackException
expl N inh e

data M | P c : N
sem M
| P c.e = Nothing

expl.c = λ f i k→
catch (f i k) (λex→ f i {e = Just ex} k)

Figure 11: Example of exception handling and backtracking.

the synthesized attributes depending on an inherited attribute
e. If some exception occurs during the first way, we want it to
take the alternative way, which we accomplish by running the
evaluator with a different value for e. In generel, this construc-
tion makes it possible to integrate Iteratees [Kiselyov 2012] and
stepwise evaluation [Middelkoop et al. 2011].

Note. This construction also makes a unit of attribute evalua-
tion explicit, and it is possible to encode this evaluation in differ-
ent ways, each leading to different evaluation strategies. For ex-
ample, one could choose to generate lazy code to allow mixing
monadic/sequential with cyclic lazily evaluated code. Or, instead
of calling the evaluator repeatedly, the evaluator could produce an
updated version of itself to be called for a subsequent invocation
which can refer to values computed in the previous iteration using
incremental evaluation techniques [Yeh and Kastens 1988]. This
section showed a practical application of inverstion of control in
attribute grammars, thereby paving the way for a thorough theoret-
ical investigation.

11. Related Work
Background. Attribute grammars where introduced by Knuth
[1968] to define the semantics of context free languages, and have
since found their application in compiler generation. The circular-
ity of attribute grammars is a prominent topic in related literature.
Bird [1984] provided the basis for attribute grammars as circu-
lar functional programs [Johnsson 1987]. Swierstra and Alcocer
[1998] give the corresponding translation to Haskell, and show the
advantages of embedded Haskell code in rules.

In a different setting, Kennedy and Warren [1976] gave an ab-
stract interpretation of acyclic attribute grammars for the genera-
tion of efficient evaluators, but may require the evaluator to sup-
port a number of visit sequences that are exponential in the amount
of attributes. Kastens [1980] showed an approach that is incom-
plete but requires only a single visit sequence. Saraiva and Swier-
stra [1999a] showed a continuation-based translation to strict func-
tional programs for this case. Bransen et al. [2012] report that Kas-
tens’ approach is too restrictive in the context of UHC, and propose
a functional implementation of the Kennedy-Warren approach in-
stead which does not exhibit exponential behavior in practice.

Circularity has its undeniable uses in e.g. data-flow analy-
ses [Thome and Wilhelm 1989] or when dealing with DAGs [Mag-
nusson and Hedin 2007]. In contrast to these approaches, we keep
the circularity out of the grammar and instead provide hooks into
the evaluator to perform iteration or tie the knot.

UUAGC. The Universiteit Utrecht Attribute Grammar Compiler
(UUAGC) is the source of inspiration for this paper. The requests
for the features discussed in this paper originated from the UHC
project [Dijkstra et al. 2009] and from students taking a course
on program analysis. UUAGC supports higher-order children,
demand-driven and statically ordered attribute evaluators, and poly-

Challenges and solutions when using Haskell with attribute grammars. 11 2012/9/22

morphism and overloading. It offers various forms of code gener-
ation, including monadic code that it can additionally exploit for
generating a parallel evaluator.

The ideas related to eager rules and inversion of control origi-
nate from a research project [Middelkoop 2012] and corresponding
prototype implementation [Middelkoop et al. 2010]. We made these
ideas suitable for attribute grammars (this paper) and are integrat-
ing them into UUAGC.

Functional programming. Aside from attribute grammar prepro-
cessors such as UUAGC and Happy, there are also deep embed-
dings [de Moor et al. 2000; Viera et al. 2009]. The deep embeddings
integrate well with the type system, and the preprocessors usually
leave type checking to Haskell. Recently, Kaminski and Van Wyk
[2011] showed the inverse direction: how to incorporate functional
programming features into attribute grammars, including type in-
ference, polymorphic types, and pattern matching.

12. Conclusion
Purely functional programming languages and attribute grammars
fit well together, because purity gives the necessary freedom for
scheduling attribute computations. Previous work has shown that
Haskell is in particular a good host language because its lazy
evaluation provides most of the machinery needed to implement
attribute grammars.

Some desirable Haskell features raise challenges when com-
bined with attribute grammars, and this paper presented solutions
to these challenges. These challenges included the support of data
types with higher kinds and monadic effects. Our solutions relied
on two general attribute grammar techniques that we used through-
out the paper: higher-order children and static attribute scheduling.
On top of these extensions, we proposed eager rules to influence the
static scheduling, and inversion of control to hook into the attribute
evaluator.

Some of the addressed challenges are strictly spoken not unique
to Haskell, but do show up more prominently when using Haskell.
The attribute grammar extensions that we propose are however not
language specific and thus offer general solutions that are useful for
other languages as well.

This paper can therefore also be seen as motivation for investing
the effort of incorporating extensions such as higher-order children
into an attribute grammar system. This paper also showed the
need for static attribute scheduling, and the question remains how
we can further exploit it. In contrast to higher-order children, the
attribute scheduling is not so easily implemented and clashes with
some extensions that are of a dynamic nature. This potentially asks
for approaches to combine demand driven and statically ordered
attribute evaluation, which is where techniques as presented in
Section 10 can play a role.

Acknowledgments
Our thanks go out to the contributors and users of UUAGC.

References
R. S. Bird. Using Circular Programs to Eliminate Multiple Traversals of

Data. Acta Informatica, 21:239–250, 1984.

J. Bransen, A. Middelkoop, A. Dijkstra, and S. D. Swierstra. The Kennedy-
Warren Algorithm Revisited: Ordering Attribute Grammars. In PADL
’12, pages 183–197, 2012.

O. de Moor, K. Backhouse, and S. D. Swierstra. First-class Attribute
Grammars. Informatica, 24(3), 2000.

A. Dijkstra, J. Fokker, and S. D. Swierstra. The Architecture of the Utrecht
Haskell Compiler. In Haskell Symposium, pages 93–104, 2009.

R. Farrow. Automatic Generation of Fixed-Point-Finding Evaluators for
Circular, but Well-Defined, Attribute Grammars. In CC ’86, pages 85–
98, 1986.

J. v. Groningen, T. v. Noort, P. Achten, P. Koopman, and R. Plasmeijer.
Exchanging Sources between Clean and Haskell: a Double-Edged Front
End for the Clean Compiler. In Haskell, pages 49–60, 2010.

T. Johnsson. Attribute Grammars as a Functional Programming Paradigm.
In Functional Programming Languages and Computer Architecture,
pages 154–173, 1987.

T. Kaminski and E. Van Wyk. Integrating Attribute Grammar and Func-
tional Programming Language Features. In SLE, pages 263–282, 2011.

U. Kastens. Ordered Attributed Grammars. Acta Informatica, 13:229–256,
1980.

K. Kennedy and S. K. Warren. Automatic Generation of Efficient Evalua-
tors for Attribute Grammars. In POPL ’76, pages 32–49, 1976.

O. Kiselyov. Iteratees. In FLOPS, pages 166–181, 2012.
D. E. Knuth. Semantics of Context-Free Languages. Mathematical Systems

Theory, 2(2):127–145, 1968.
J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A Generic Deriving

Mechanism for Haskell. In Haskell, pages 37–48, 2010.
E. Magnusson and G. Hedin. Circular Reference Attributed Grammars -

their Evaluation and Applications. SCP ’07, 68(1):21–37, 2007.
E. Meijer and J. Jeuring. Merging Monads and Folds for Functional

Programming. In AFP, volume 925, pages 228–266, 1995.
E. Meijer, M. M. Fokkinga, and R. Paterson. Functional Programming with

Bananas, Lenses, Envelopes and Barbed Wire. In FPCA, pages 124–144,
1991.

A. Middelkoop. Inference of Program Properties with Attribute Grammars,
Revisited. PhD thesis, Universiteit Utrecht, 2012.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Iterative Type Inference
with Attribute Grammars. In GPCE ’10, pages 43–52, 2010.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Stepwise Evaluation of
Attribute Grammars. In LDTA, page 5, 2011.

J. Saraiva and S. D. Swierstra. Purely Functional Implementation of At-
tribute Grammars. Technical report, Universiteit Utrecht, 1999a.

J. Saraiva and S. D. Swierstra. Generic Attribute Grammars, 1999b.
T. Schrijvers and B. C. d. S. Oliveira. Monads, Zippers and Views: Virtual-

izing the Monad Stack. In ICFP, pages 32–44, 2011.
S. D. Swierstra and P. R. A. Alcocer. Attribute Grammars in the Functional

Style. In Systems Implementation 2000, pages 180–193, 1998.
S. D. Swierstra and O. Chitil. Linear, Bounded, Functional Pretty-Printing.

JFP, 19(1):1–16, Jan. 2009.
W. Thome and R. Wilhelm. Simulating Circular Attribute Grammars

Through Attribute Reevaluation. Information Processing Letters, 33(2):
79–81, 1989.

M. Viera, S. D. Swierstra, and W. Swierstra. Attribute Grammars Fly First-
Class: how to do Aspect Oriented Programming in Haskell. In ICFP ’09,
pages 245–256, 2009.

M. Viera, D. Swierstra, and A. Middelkoop. UUAG Meets AspectAG -
How to make Attribute Grammars First-Class. Technical Report UU-
CS-2011-029, Universiteit Utrecht, 2011.

H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher-Order Attribute Gram-
mars. In PLDI ’89, pages 131–145, 1989.

D. Yeh and U. Kastens. Improvements of an Incremental Evaluation
Algorithm for Ordered Attribute Grammars. SIGPLAN Notices, 23(12):
45–50, 1988.

Challenges and solutions when using Haskell with attribute grammars. 12 2012/9/22

