
Merging Idiomatic Haskell with Attribute
Grammars

Arie Middelkoop1, Jeroen Bransen2, Atze Dijkstra2, and S. Doaitse Swierstra2

1 amiddelk@gmail.com
2 Utrecht University, {J.Bransen,atze,doaitse}@uu.nl

Abstract. Attribute grammars with embedded Haskell code form an
expressive domain specific language for tree traversals, and thereby an
excellent tool for compiler construction. The Utrecht Haskell Compiler
has been fully implemented with attribute grammars in a modular and
aspect-oriented way of programming. However, the integration of at-
tribute grammars with some prominent Haskell features poses challenges:
conventional attribute grammars cannot be written for all Haskell data
types, lazy evaluation may lead to space leaks, and the embedded code
may not be monadic. In this paper we investigate these challenges, and
present solutions using some general extensions to attribute grammars.

Keywords: Attribute grammars, Composition, Monads

1 Introduction

In functional programming, attribute grammars (AGs) can be seen as a declara-
tive and compositional domain specific language for tree traversals, in particular
those that can be written as a fold or catamorphism (Meijer et al., 1991). Because
of the correspondence between grammars and algebraic data types, an attribute
grammar describes such a traversal as a collection of rules between attributes of
connected nodes of the tree, leaving the fact that we describe a catamorphism
implicit. Attribute grammars are therefore well suited for the implementation of
compilers.

Haskell is known to be an excellent implementation language for attribute
grammars, since lazy evaluation provides a natural infrastructure for evaluating
attribute grammars and advanced type system features even allows them to be
expressed as an embedded domain specific language (Viera et al., 2009, 2011).
In addition, rules can be given as pure embedded Haskell code (Swierstra and
Alcocer, 1998) thus adding the expressiveness of Haskell to attribute grammars.

Our experiences with attribute grammars in the large project of the Utrecht
Haskell Compiler (UHC) (Dijkstra et al., 2009) confirm that attribute can be
used to implement a compiler in an attractive way and that Haskell is an excellent
host language. However, over the years we also ran into a number of obstacles:

– Lazy evaluation is a double-edged sword. The translation of attribute gram-
mars to Haskell results in so-called circular Haskell code which is difficult to

optimize. This code easily exhibits space leaks which are troublesome when
dealing with large trees. This problem can be remedied by producing acyclic
Haskell code (Bransen et al., 2012), imposing however (mild) restrictions on
the grammar.

– Haskell data types, which may be parametrized over the types of their fields,
are more expressive than context-free grammars. We can for example not
define a context-free grammar for a data type with α as type parameter
where a field of type α is represented as a nonterminal. Consequently, these
fields cannot be traversed.

– The order of evaluation is completely left implicit in an attribute grammar,
hence it is unclear how to integrate monadic attribute definitions, as the
order of evaluation may be relevant for the result.

There is a need to solve these obstacles: lazy evaluation, polymorphism, and
monads are prominent Haskell features that would be useful in combination
with attribute grammars. As potential use-case, consider layout combinators for
a window manager expressed by an attribute grammar that may tile windows
either horizontally or vertically. This problem is closely related to pretty print-
ing (Swierstra and Chitil, 2009). A solution for such a problem features monadic
operations to query window properties such as hints, and may be parametrized
over the type of state used by user hooks. We need solutions for integrating such
features with attribute grammars, because these are not only obstacles for the
application of attribute grammars, but also an obstacle for their adoption by
Haskell programmers, who expect to be able to use such features.

In this paper we make two kinds of contributions: we show how to integrate
these Haskell features with attribute grammars, and we present a novel attribute
grammar extension that forms an essential ingredients. Specifically, we give a
short introduction to attribute grammars (Section 2), show the translation of
attribute grammars to cyclic and acyclic code (Section 3) and explain some
common attribute grammar extensions (Section 4). We present the following
novel attribute grammar extensions:

– Section 5 deals with data types and attributes that parametrized over types.
– Section 6 presents eager rules, which allows local assumptions to be made

about the evaluation order of rules.
– Section 10 presents hooks into the attribute evaluator so that Haskell code

can control the evaluator of a node (e.g. apply it repeatedly, or change at-
tribute values), about which normally no assumptions can be made in an
attribute grammar.

We show that with these extensions we can integrate the aforementioned Haskell
features:

– Section 7 deals with the integration of type classes.
– Section 8 shows how to represent the fields of a data type as nonterminal

that have a type that is a parameter of the data type.
– Section 9 introduces monadic rules which allows the combination of the

composition mechanism of attribute grammars and monads to be combined.

data Root
| Top top : Tree

data Tree
| Bin l : Tree r : Tree
| Leaf val :: Int

attr Tree inh gmin :: Int
syn lmin :: Int
syn repl :: Tree

attr Root syn repl :: Tree

sem Tree
| Leaf lhs.lmin = @val

lhs.repl = Leaf @lhs.gmin
| Bin lhs.lmin = @l .lmin ‘min‘ @r .lmin

lhs.repl = Bin @l .repl @r .repl
l .gmin = @lhs.gmin
r .gmin = @lhs.gmin

sem Root
| Top top.gmin = @top.lmin

lhs.repl = @top.repl

Fig. 1: Common example of an attribute grammar: Repmin

This work is done in the context of the Utrecht University Attribute Grammar
Compiler (UUAGC). The ideas are applicable for attribute grammars in general,
but are explained in terms of the UUAGC syntax and implementation.

2 Attribute Grammar Tutorial: Repmin

Figure 1 shows Repmin (Bird, 1984), a typical example of an attribute grammar.
Before we explain the example, we first discuss the three important syntactic
elements.

The data declarations resemble data declarations from Haskell. They de-
scribe the context-free grammar: type constructors are nonterminals, value con-
structors are productions, and constructor fields are symbols in the right hand
side of productions. An instance of such a type is a tree where each node was pro-
duced by a constructor. The fields of the constructors are explicitly named and
come in two variations: terminal symbols (with a double colon) and nonterminal
symbols (with a single colon).

Three categories of attributes can be declared for a nonterminal: inherited
attributes of a child are defined by the parent and can be used by the child, and
synthesized attributes are defined by the child and can be used by the parent.
Finally, a chained attribute is a shorthand for a pair consisting of an inherited
and a synthesized attribute with the same name.

Rules define how an attribute is to be computed in terms of other attributes.
A sem block specifies a collection of rules per production. A rule is of the form
p = e where p is a pattern defining attributes, and e is a Haskell expression
that may refer to an attribute or terminal by prefixing it with the @ symbol. We
refer to an attribute using the notation c.a where a is the name of the attribute,
and c is either the name of a child, or the keyword lhs (left hand symbol) when
referring to an attribute of the parent.

Attribute grammars thus offer a programming model where each node is dec-
orated with attributes, and rules specify data dependencies between attributes.
The idea of attribute evaluation is to compute values for attributes according to
the data dependencies.

semTree (Leaf val) = semLeaf val
semTree (Bin l r) = semBin (semTree l)

(semTree r)
semRoot (Top top) = semTop (semTree top)

semTop top =
let (top_lmin, top_repl) = top top_gmin

top_gmin = top_lmin
lhs_repl = top_repl

in lhs_repl

semLeaf val = λlhs_gmin →
let lhs_lmin = val

lhs_repl = Leaf lhs_gmin
in (lhs_lmin, lhs_repl)

semBin l r = λlhs_gmin →
let (l_lmin, l_repl) = l lhs_gmin

(r_lmin, r_repl) = r lhs_gmin
lhs_lmin = l_lmin ‘min‘ r_lmin
lhs_repl = Bin l_repl r_repl

in (lhs_lmin, lhs_repl)

Fig. 2: Translation of Repmin to lazy Haskell code.

Figure 1 shows how to compute a transformed tree as synthesized attribute
repl where the value in each leaf is replaced by the minimal value in the original
tree. For this purpose, the synthesized attribute lmin represents the local mini-
mum of the tree. At the root of the tree, the inherited attribute gmin is defined
as the global minimum by taking the local minimum associated with thee node
at the top of the tree. This minimum value is passed down unchanged from each
parent to its children.

Using attribute grammars is advantageous over writing Haskell functions by
hand:

– The rules and attributes can be given in any order.
– The navigation over the tree structure is implicit in comparison to e.g. zip-

pers.

These two advantages allow an attribute grammar to be composed out of several
individual fragments, which facilitates separation of concerns.

3 Evaluation Algorithm

This sections mentions two translations to Haskell, which are both implemented
in UUAGC. This section serves two goals: to provide the reader with a better un-
derstanding of the semantics (which we do not specify formally), and to prepare
for later sections on the various grammar extensions and their implementation.

3.1 Translation to Lazy Haskell Code

In Swierstra and Alcocer (1998) a translation to lazy Haskell code is presented.
The translation uses catamorphisms to map each node of the tree to its evaluator,
which is a function that takes values of the node’s inherited attributes as its
arguments and computes the values of the node’s synthesized attributes. For the
Repmin example of the previous section, the evaluator is thus a function that
takes gmin and produces lmin and repl .

Figure 2 shows the catamorphisms for Tree and Root , and the semantic func-
tions that comprise the algebra, one for each production. A semantic function
takes the evaluators for the children of a node as parameter and produces the
evaluator for itself. The body of the function consists of calls to the evaluators of
the children, and their inputs and outputs are tied together by straightforward
translations of rules.

Note that semTop has a cyclic definition because the argument top_gmin
to function top depends on the result top_lmin of top. This is not a problem
because the runtime data dependencies are acyclic: top_lmin can be computed
without needing top_gmin. Lazy evaluation provides the appropriate attribute
scheduling. However, this requires that the function is not strict in its arguments,
reducing the opportunity for optimizations.

3.2 Translation to Acyclic Haskell Code

The definition in Figure 1 is cyclic because the evaluator of the root needs to
pass gmin to top before it gets lmin. However, what if the evaluator does not
evaluate a tree in one (lazy) step, but as a sequence of smaller steps? If the
evaluator of top can produce lmin in the first step, and only in the second step
would need gmin to produce repl , then the definition is no longer cyclic!

It is possible to avoid the cyclic definition in Figure 2 when the grammar
is absolutely noncircular. This can be verified using a static analysis given by
Knuth (1968). In Bransen et al. (2012) we describe our approach for generating
acyclic Haskell code based on attribute scheduling, using the algorithm from
Kennedy and Warren (1976).

4 Common Attribute Grammar Extensions

This section covers a number of common language-independent attribute gram-
mar extensions that we need in later sections.

4.1 Local Attributes

Local attributes are a simple but useful extension for sharing an intermediate
result per node among rules. Rules may refer to an attribute of the form loc.x
when it is defined by a rule. Local attributes resemble let-bindings, and examples
of their use are given in later sections.

4.2 Copy Rules

Many rules copy values simply up and down the tree. These rules occur often in
standard patterns and can be derived automatically based on the name equality
of attributes. Such a derivable rule is called a copy rule. Copy rules may be
omitted by the programmer, which has significant benefits in larger grammars
where the majority of rules are copy rules.

The following are common patterns for which rules are automatically deriv-
able:

Topdown When the inherited attribute c.a of a child is not defined, but lhs.a
exists, the copy rule c.a = @lhs.a is derived.

Bottom-up When the synthesized attribute lhs.a is not defined, either the rule
lhs.a = @c0.a ‘mappend ‘ ... ‘mappend ‘ @ck.a is derived for the subsequence
c0 ... ck of the children which have a synthesized attribute a, or the rule
lhs.a = mempty is derived when no such child exists. The functions mappend
and mempty come from the monoid class and can be overridden with the
use construct.

Chained When an inherited attribute c.a of a child c is missing, the rule c.a =
@k .a is derived if k .a exists, where k is either the nearest preceding child
that has a as synthesized attribute or otherwise lhs if a is an inherited
attribute. Also, when the synthesized attribute lhs.a is missing, lhs.a =
@k .a is derived.

When an attribute has a use declaration, copy rules are generated according to
the topdown and bottom-up pattern, and otherwise the chained pattern. Note
that we do not omit copy rules in our examples for didactic reasons. However,
we mention copy rules in later arguments, hence this explanation.

4.3 Higher-Order Children

A production declares the children that a node has at the start of attribute
evaluation. An extension, higher-order attribute grammars (Vogt et al., 1989),
allows additional children to be declared that become part of the tree during
attribute evaluation. This is one of the most important and versatile attribute
grammar extensions, and we will use it later in several examples.

A higher-order child c : M (where c is the name of the child and M the
nonterminal) is a tree defined by an attribute inst.c of its parent node. We
say that the child c is instantiated with the value of attribute inst.c. Such an
attribute is also known as a higher-order attribute.

The declaration of the child is prefixed with inst to differentiate it from
a conventional child declaration. So, to define some child c : M as the result of
expression e, the child must be declared and the attribute inst.c must be defined
by some rule:

data N | P inst.c : M
sem N | P inst.c = e

Equivalently, child declarations may also be given in the semantics block.
Furthermore, we must define the inherited attributes of c and may use the

synthesized attributes of c. Its synthesized attributes additionally depend on
the definition of inst.c, because part of the tree must be known before syn-
thesized attributes can be computed for it. Otherwise, a higher-order child is
indistinguishable from a conventional child.

We define a nonterminal to represent a counter dis-
penser:

data Uniq | Next
attr Uniq chn counter :: Int

syn value :: Int
sem Uniq

| Next lhs.value = @lhs.counter
lhs.counter = @lhs.counter + 1

Copy rules can be used to
chain the counter through
the tree, and an attribute
@u.value is obtained with:

inst.u :Uniq
inst.u = Next

Fig. 3: A unique number mechanism.

We define a nonterminal to represent a
local attribute:

data Loc @α | Loc
attr Loc chn value :: α
sem Loc

| Loc lhs.value = @lhs.value

To desugar a local attribute x , we
introduce:

inst.x : Loc
inst.x = Loc

and then replace each occurrence of
loc.x with x .value.

Fig. 4: Local attributes as higher-order children.

The code generated for a production gets the evaluator for conventional chil-
dren as parameter, but not for higher-order children. Instead, the evaluator is
obtained by applying the catamorphism semM to the tree constructed for at-
tribute inst.c.

Later sections make heavy use of higher-order children to expose Haskell
functions as a flat tree to exploit the AG’s composition mechanism. Since this
pattern is important we give now two examples:

– Figure 3 shows a tree Uniq as abstraction for a dispenser of unique numbers.
The tree itself is just a plain node Next . The required information is in the
attributes.

– Figure 4 shows how to implement local attributes with higher-order children.

4.4 Proxy Nonterminals

We present a common pattern for adding a nonterminal to the grammar that
serves as an alias for another nonterminal. Similar to type aliases in Haskell, this
pattern can be used to statically distinguish certain occurrences of nonterminals.

A common pattern is to introduce a nonterminal that serves as an observ-
able alias for another nonterminal, which we will call proxy nonterminals. A
proxy nonterminal Proxy for N is a nonterminal Proxy with the same attributes
declarations as N and is defined as data Proxy | P n : N with its semantics
trivially defined by copy rules. It thus has a single production P , containing one
child n which is the nonterminal symbol N . We can thus substitute Proxy for

data List α @β
| Nil
| Cons hd :: α tl : List α

attr List syn length :: Int

sem List
| Nil lhs.length = 0
| Cons lhs.length = 1 +@tl .length

attr List inh f :: α→ β syn r :: List β

sem List
| Nil lhs.r = Nil
| Cons lhs.r = Cons (@lhs.f@hd)@tl .r

Fig. 5: Parametric polymorphism in an attribute grammar.

occurrences of N (in productions other than P) without changing the attribute
computations.

Proxy nonterminals can be added to the grammar by changing the original
description, e.g. the data declarations. This transformation is not transparent.
Code that produces the tree (e.g. a parser) must also generate the proxy nodes
at the appropriate places in the tree.

A transparent approach is possible, which we will use in Section 8, using an
extension of higher-order attributes. Instead of defining a child with an attribute,
we allow the redefinition of a child via an attribute that contains a function that
transforms the evaluator of the child. The following example demonstrates a
transformation of a child n : N in production Root to a child n : Proxy :

data Root | Root n : N
sem Root | Root inst.n : Proxy

inst.n = λevalN → semP evalN

The Root production declares a child n : N . The inst.n attributes defines an
attribute that is actually a function that takes the original evaluator of n as
parameter evalN and transforms it so that it becomes an evaluator that fits
nonterminal Proxy . In this case, we accomplish this by adding a P node on top of
it. Note that the function semP , which is the part of the algebra that corresponds
to production P , is exactly doing that. This transformation possible when the
definition of inst.n does not depend on any of the synthesized attributes of n.

5 Parametric Polymorphism

The ability to abstract over types plays a major role in obtaining code reuse
in strongly typed functional languages, and also in the form of generics in
imperative languages. This section shows an attribute grammar extension for
parametrizing nonterminals to abstract over the types of terminals, and for ab-
stracting over the types of attributes.

Figure 5 shows that by parametrizing the nonterminal List with the type α
of the terminal hd , it is possible to define the synthesized attribute length for
lists containing elements of any type.

Similarly, by parametrizing the attributes over a type β, we can implement a
functor: a transformation that maps each element @hd of the list to @lhs.f @hd

where @lhs.f is an arbitrary function from a (the type the items in the list) to
some arbitrary type β.

There is an essential difference between type variables α and β. Type variables
declared with the prefix @ may appear only in the types of attributes, but may
not appear in the types of terminals, and are not part of the generated data
type. Thus, the data type is parametrized with α and the evaluator with α and
β.

The implementation of this extension consists of printing the type variables
at the appropriate places in type signatures.

6 Feature: Eager rules

The data dependencies between rules form a partial order, which suffices for
attribute grammars because rules are encouraged to be pure. It may sometimes
be useful to augment the data dependencies to locally prioritize certain rules
over other rules in a production. This can for example be useful for debugging,
efficiency, and other reasons that appear in later sections.

By taking the order of appearance of rules in the source files into account,
it is possible to obtain a total order among rules. This approach impairs the
composability of attribute grammars, but may still be useful for specifying an
order among strongly correlated rules. Other canonical total orders are far from
obvious. A total order would also leave little freedom to attribute scheduling,
hence we are looking for a less ad-hoc mechanism.

A rule is eager when it is described with the notation p $=e with a pattern p
and expression e. The idea is to schedule these rules so that they are computed
as soon as their dependencies are available, in contrast to conventional rules that
are scheduled when an attribute that depends on it needs to be computed.

This is a challenging problem. To prioritize a rule, it is also necessary to
prioritize the dependencies of that rule. This interacts globally with rules of
other productions, and it is not clear which one has more priority. Such global
consequences are undesirable when all that we want is a bit more local priority.
We therefore propose to prioritize only the attributes that involve themselves
only with eager rules, and leave the scheduling of the other attributes up to
their original data dependencies.

An attribute a is eager when each rule r that depends on a is by itself
eager, or r depends on another eager attribute. These are global properties of a
grammar that are easily derived from the grammar with a static analysis similar
to cycle analysis.

Given an inherited eager attribute a of some nonterminal N , we can deter-
mine the set of synthesized eager attributes that depend on a. We call these the
collaborators of a. Furthermore, we can determine the set of non-eager inherited
attributes that the collaborators depend on, which we call the opposition of a.
The idea is to prioritize the computation of eager inherited attributes of a child
as soon as their opposition has been computed.

data Root α | Top root : Tree α
data Tree α | Bin left : Tree α right : Tree α

| Leaf val :: α
attr Tree inh gmin :: α syn lmin :: α syn repl :: Tree α

Fig. 6: Repmin with type classes (see also Figure 1)

The scheduling algorithm of Section 3.2 starts from the demanded synthe-
sized attributes of the parent for a visit to determine which rules and child visits
to schedule. We change this algorithm to realize the above idea. For each eager
inherited attribute n.a of a child n, if the opposition of n.a can be computed, we
add the collaborators of n.a that can be computed to the set of attributes to be
computed. Recall that an attribute of a child can be computed if the inherited
attributes of the parent it indirectly depends on have been computed.

Then, to deal with ordering the eager rules scheduled to a particular visit,
we repeatedly take the unscheduled eager rules that do not depend on any other
unscheduled eager rules, and schedule their non-eager dependencies and then
the rules themselves in the order of appearance. See (Middelkoop, 2012, Sec-
tion 3.5.2) for a detailed algorithm.

The approach is sound because it only adds additional scheduling constraints.
The approach is also complete: if a schedule can be computed for a grammar
than a schedule can also be computed when rules are changed into eager rules.
The scheduling is also locally predictable: an eager rule is guaranteed to be
scheduled before an independent non-eager rule that depends on a superset of
the non-eager inherited attributes that the eager rule depends.

Conventional rules are scheduled based on the dependencies of the attributes
that they define. Eager rules have the additional property that they also get
scheduled if the inherited attributes that they depend on become available. We
make use of this property in several later sections.

7 Integration: Type Classes

Haskell programmers make heavy use of type classes, and thus expect to combine
them with attribute grammars. A typical use arises when some part of the tree
or some of the attributes are abstracted over some type. When an overloaded
function is applied to the value of such an attribute, a dictionary is required that
provides the implementation of the overloaded function. The construction and
passing of dictionaries is normally handled implicitly by the Haskell compiler,
and the question arises how this integrates with attribute grammars.

Figure 6 shows a variation on Repmin of Figure 1 which works for trees
containing comparable values of any type α. We omitted the rules as these are
the same as the original definition. The attributes are polymorphic in the type
α, and in the rules we are using min from the class Ord , so the generated code

can only be used when the type α is in the Ord class and when the corresponding
dictionary is brought in scope of the code that is generated from the attribute
definition that uses min.

The way we generate code allows the Haskell compiler to handle type classes
automatically if we do not generate type signatures. Note that type signatures
are particularly important to aid error reporting, hence we are not willing to leave
them out. Fortunately, the impact on type signatures is rather small, because
only the types of the generated fold and algebra functions need to specify the used
dictionaries in their body as class predicates, which can be manually specified
by the programmer with a bit of additional syntax:

attr Ord α⇒ Root Tree inh gmin :: α lmin :: α

This notation expresses that the Ord α class constraint is added to the catamor-
phisms and semantic functions generated for Root and Tree.

This construction is undesirable for several reasons:

– In a context where not all synthesized attributes are needed, the rule using
the dictionary may not be scheduled, and the dictionary not needed, resulting
in ambiguous overloading.

– It requires a language-specific extension, while there might be solutions more
native to attribute grammars.

8 Integration: Abstraction over Nonterminals

Section 5 showed that data types may have fields that have a type that the data
type takes as parameter, and that we treat these fields as terminals. But what
about nonterminals? For example, when some meta information such as source
locations occurs at many places in different types of trees, it is common to factor
it out into a separate nonterminal:

data Info t | Label tree :: t line :: Int
data Stmt | If guard : Info Expr body : Info Stmt
data Expr | App fun : Info Expr arg : Info Expr

We would like to change terminal tree into a nonterminal so that Info becomes
polymorphic in the nonterminal t chosen for tree, but it is unclear how to deal
with such a grammar: what are the attributes of Info? This likely depends on
what attributes are defined on t (which is not known) and the line likely in-
fluences them or requires additional attributes. This issue becomes even more
difficult when a production has multiple such children.

Saraiva and Swierstra (1999a) deal with nonterminals parametrized over non-
terminals by specifying which attributes will be present. This is not a solution in
this case because it Stmt and Expr may not have the same attributes. Instead,
we propose a simpler approach: we virtualize the tree. The observation is that
higher-up there must be a place where it is known which attributes to expect:

either because the instantiation of the type variables is known or because the
attributes are independent of it. For example, we can assume that we know the
attributes of a tree of type Info Expr .

For this concrete type, it is possible to derive some suitable representation
that does not involve nonterminals as parameters, for example by specializing
the original data definition to the known type arguments:

data InfoExpr | Rep expr : Expr line :: Int

We can thus define the required attributes and rules on InfoExpr instead, pro-
vided that we transform a tree of type Info Expr to InfoExpr . We first introduce
a proxy nonterminal for InfoExpr , which will take care of the conversion.

data ExprProxy | Proxy orig : Info Expr
sem Stmt | If inst.guard : ExprProxy

inst.guard = Proxy

For the conversion, we compute the representation from Label , passing down as
additional information that t is a Stmt in this context, and using a higher-order
child to make the representation part of the tree:

attr Info inh eqExpr :: t ∼ Expr syn repExpr :: InfoExpr
sem Info | Label lhs.repExpr = case@lhs.eqExpr of

Refl → Rep @tree @line
sem ExprProxy | Proxy orig .eqExpr = Refl

inst.rep : InfoExpr
inst.rep = @orig .repExpr

Similarly, a representation for Info Stmt can be added, with corresponding at-
tributes eqStmt and repStmt for Info. The orig .eqExpr attribute can only be
defined in ExprProxy and vice versa for orig .eqStmt . Thus, by making these
nonterminals start symbols of the grammar, these inherited attributes need only
be defined for the appropriate proxies (Section 2).

The above approach for specializing the types of nonterminals can be auto-
mated with some preprocessing. On the other hand, this approach makes it also
possible to use a more abstract representation (e.g. using sums of products (Ma-
galhães et al., 2010)) to obtain generic code.

9 Integration: Monads

Monads are a typical abstraction that Haskell programmers use when imple-
menting tree traversals. They are often considered as an alternative to attribute
grammars. Indeed, Schrijvers and Oliveira (2011) show how to deal with stacks
of reader, write and state monads to obtain a similar composability that comes
naturally with attribute grammars.

However, attribute grammars and monads are different composition mecha-
nisms but they are not mutually exclusive. In fac, they are different composition

mechanisms that are fruitful to combine (Meijer and Jeuring, 1995). Section 9.1
shows the embedding of pure monadic computations that use reader, writer,
state functionality as abstraction (e.g. the RWS monad), and Section 9.2 shows
how we can represent the AG as a monad to incorporate impure operations.

9.1 Integration: Pure Monadic Code in Rules

When using an attribute grammar there seems no need to use reader, writer or
state (RWS) monads, because attributes provide a more general facility when
combined with copy rules (Section 4.2). However, as rules may contain arbitrary
Haskell code, that code can involve (pure) monads, and this may certainly be
appropriate when constructing complex values.

When the monad can be evaluated as a pure Haskell function, which is the
case for RWS monads, monadic code is not different from conventional code, and
can be used without a need for special attribute grammar facilities (otherwise, see
Section 9.2). However, the use of monadic code gives rise to a particular pattern
for which we can introduce an abstraction, which we discuss in the remainder of
this section.

Example. The following grammar on lists of integers defines a synthesized at-
tribute r . Given such a list L, the attribute r of L is also a list of integers but
with consecutive elements and so that there are as many elements as the total
sum of the elements of L. The grammar implements this behavior by concate-
nating lists loc.es that are present for each cons-node of L, where the size of
loc.es is equal to the integer fld hd of the cons-node. The consecutive numbers
are obtained by taking them from the inherited attribute s that is threaded to
the end of the list. The computation that defines loc.es is given as a monadic
expression loc.m:

data IntList | Nil
| Cons hd :: Int tl : IntList

attr IntList inh s :: Int syn r :: IntList

sem IntList
| Nil lhs.r = []
| Cons lhs.r = @loc.es ++@tl .r

(loc.es, tl .s) = runState @loc.m @lhs.s

loc.m = replicateM @hd $ do
e ← get
modify (+1)
return e

The state monad takes the initial counter, produces the result loc.es and an
updated counter, which is subsequently passed on to the tail of the list as tl .c.

Concerns. This simple example demonstrates the use of monads in rules. It also
shows that attributes have to be threaded into and out of the monad (e.g. via
runState). Such rules that interface with the monad are tedious to write because
they mention all attributes that play a role in the monad. This becomes more
of an issue when multiple of these rules occur in a production, because of the
threading of the attributes between rules and children. Thus, such a construction
impairs the ability to describe rules for attributes separately and thus affects the
composability of the description.

Code as the above is also prone to mistakes in attribute names that lead to
accidental cycles in the threading of attributes, e.g.:

(..., loc.s1) = ... @lhs.s
(..., loc.s2) = ... @loc.s2 -- cycle: should have been s1
(..., tl .s) = ... @loc.s2

Fortunately, this classical mistake is caught by the static dependency analysis
of attribute grammars. It would otherwise lead to hard to find cases of non
termination.

Composable descriptions. As a solution to the composability issues, we show an-
other use of higher-order children (Section 4.3). First we introduce a nonterminal
M φ α with a single production Do that represents a monadic computation that
it obtains as inherited attribute expr of type State φ α, where φ is the type of
the state and α is the result type:

data M @φ @α | Do

attr M inh expr :: State φ α
chn s :: φ
syn a :: α

sem M | Do (lhs.a, lhs.s) = runState @lhs.expr @lhs.s

Given a tree M φ α, we can obtain the result of the monadic computation as
attribute a, and also have the input and output state as chained attribute s. We
can construct such a tree using the constructor Do, but how to integrate it with
the actual tree?

This is where higher-order children come in again. The following example
shows how to declare a higher-order child m1, its definition and the threading of
the attributes:

sem IntList | Cons inst.m1 : M
inst.m1 = Do
m1.expr = @loc.m
loc.es = @m1.a
m1.s = lhs.s
tl .s = m1.s

Inlining these definitions gives actually the same code as the former example.
The difference is the ability to specify the threading of the attributes separately

and factoring out the wrapping code of the monads. In addition, copy rules
(Section 4.2) may take care of the threading rules altogether.

9.2 Integration: Attribute Grammars as Monads

The previous section showed rules containing monadic RWS operations. Dealing
with impure monadic operations is more involving, as we discuss in this section.
Of particular interest are IO and ST operations. The ability to e.g. update
auxiliary data while processing a tree opens up a whole range of applications.

At first glance, monadic operations may not appear as quite a challenge
because attribute grammars can be mapped to a sequential computation (Sec-
tion 3.2) and the resulting computation can be represented as a monadic compu-
tation so that rules can be an arbitrary monadic expression. However, a declar-
ative formalism is a double-edged sword in this setting. The evaluation of rules
depends only on data dependencies, which gives little guarantees with respect to
when rules are evaluated, if at all. To be able to use monadic operations, we need
to provide stronger guarantees, e.g. that monadic effects are always performed
and at most once.

Example. To introduce monadic rules, we give a variant of the unique number
dispenser of Figure 3. When there is only the requirement that the produced
numbers are unique but not that they are sequential, we can pass a reference to
a shared counter as an inherited attribute and use monadic code to fetch-and-
increment it:

attr Uniq inh hCounter :: TVar Int syn value :: Int
sem Uniq
| Next lhs.value ← atomically $ do

c ← readTVar @lhs.hCounter
writeTVar $! c + 1
return c

This example features a monadic rule, which is a rule of the form p ← m where
p is a pattern and m a monadic expression. It has the expected semantics: it is
translated to m ′ >>= λp′ → r , where m ′ and p′ are the respective translations of
m and p, and r is the remainder of the computation that is scheduled after the
rule. Monadic rules are scheduled as eager rules, and in addition are evaluated
even when there is no data dependency on the left-hand side.

10 Feature: Inversion of Control

A common pattern that appears when writing tree computations is to first per-
form some initial computation over the tree (e.g. spreading environments), fol-
lowed by an iterative computation (e.g. computing some fixpoint), followed by
a resulting computation (e.g. producing a transformed tree and collecting error
messages). This section provides a construction for expressing this pattern, and
as it turns out use it to encode the monadic rules of the previous section.

Iteration. There are several ways to incorporate iterative or fixpoint computa-
tions in attribute grammars (Farrow, 1986). Using Haskell, lazy evaluation can
be exploited to obtain iteration by lifting attributes to lists and giving a collec-
tion of cyclic attribute definitions that define the value of index i in the list in
terms of values in the list of attributes at indices j<i (preferably j = i−1). How-
ever, it is tedious to write these equations especially when different attributes
are involved in the cycle. Moreover, the rule ordering cannot be expressed this
way.

We present a different solution that extends cycle-free attribute grammars
with an inversion of control construction that can be used to express iteration.
The general idea is that we can obtain from a child a function f that represents
the computation of a subset of its attributes, and can replace it with another
function. To this end, we need additional syntax to specify which attributes are
involved and to specify a transformation function of the function that computes
these attributes.

Syntax and semantics. We define the explicit attribute set (EAS) of a nontermi-
nal as a subset of the attributes of the nonterminal. The syntax to declare it is
similar to attribute declarations, except that it uses the keyword expl and the
attribute types are omitted.

Declaring an EAS has the following consequences. For each nonterminal N
with an EAS, a production containing a child n : N must define an attribute
expl.n. This function gets as parameter the evaluator for the attributes in the
EAS, and must give such an evaluator as result. Consequently, we can influence
the application of the evaluator for a particular subset of the attributes.

The identity transformation is obtained by defining expl.n = id , and more
complex transformations are obtained by exploiting that the evaluator is a
monadic function that takes a record containing values of the inherited attributes
in the EAS and a monadic continuation that receives a record containing values
of the synthesized attributes in the EAS.

With the current construction, only one EAS can be specified per nontermi-
nal. This is not a limitation as the constructions are composable by introducing
proxy nonterminals (Section 4.4). This is also a good practice when inversion of
control is not required for each occurrence of a nonterminal symbol.

Static dependencies. To ensure that we can obtain an evaluator that takes the
inherited attributes in one go we impose the static restriction that the inherited
attributes in the EAS may not depend on any of the synthesized attributes in the
EAS, and that each synthesized attribute in the EAS depends on each inherited
attribute. This additionally ensures that the evaluation occurs only in the child,
and does not require evaluation at a parent node. Furthermore, to have the
expl.n attribute available for such a node n when computing the attributes in
the EAS set, it needs to be an additional dependency of n.a for all attributes a
in the EAS.

data P @α -- placeholder for a monadic computation
| Nop

attr P chn st :: StateToken
syn mbVal ::Maybe α

expl P chn st syn value

sem P | Nop lhs.st $= @lhs.st
lhs.mbVal = Nothing

sem M | M inst.act : P
inst.act = Nop
expl.act = λf i k → f i $ λs →

@lhs.expr >>= λa → k s {mbVal = Just v }
lhs.value = fromJust @act .mbVal

Fig. 7: Monadic operations via inversion of control.

Implementation. The implementation of this feature is surprisingly straightfor-
ward. When we schedule a visit v to a node to compute a synthesized attribute
mentioned in the EAS, then it needs to schedule all the attributes in the EAS. We
precede v with an additional visit u that can take care of other attributes that
may be involved that are not in the EAS. With this approach, when scheduling
a visit v for some node n, we simply call the function defined by expl.n (which
will be in scope) with the evaluator for v (which will also be in scope) instead
of calling the evaluator for v directly.

We desire a least number of computations in v to prevent duplicate work
when re-applying the evaluator. Eager rules aside, the strategy of evaluating
only the rules that are needed for producing the values for the synthesized at-
tributes scheduled to v ensures that we do not compute additional results that
are discarded when reinvoking the evaluator. The purpose of u is to compute
all attributes that are dependencies of synthesized attributes in the EAS but
that do not depend on inherited attributes in the EAS. This requires a similar
enhancement to the scheduler as discussed in Section 6: when we schedule a
visit, we can specify additionally a set of synthesized attributes for which the
scheduler schedules all dependencies that can be scheduled, e.g. which depend
only on inherited attributes that are available so far.

Expressiveness. The construction in this section is expressive:

– Figure 7 shows how to encode the monadic actions of Section 9.2 with it. The
nonterminal P serves as a placeholder that computes Nothing , but exhibits
the desired scheduling constraints. Its evaluation is transformed to execute
the monadic action and update the result with it. We can thus eliminate
the language-specific monadic rules with the more general and language-
independent construction shown in this section.

– Figure 8 shows exception handling and backtracking. Suppose that N is a
nonterminal that provides two ways for computing the synthesized attributes

attr N inh e ::Maybe BacktrackException
expl N inh e

data M | P c :N
sem M | P c.e = Nothing

expl.c = λf i k → catch (f i k) (λex → f i {e = Just ex } k)

Fig. 8: Example of exception handling and backtracking.

depending on an inherited attribute e. If some exception occurs during the
first way, we want it to take the alternative way, which we accomplish by
running the evaluator with a different value for e. In generel, this construc-
tion makes it possible to integrate Iteratees (Kiselyov, 2012) and stepwise
evaluation (Middelkoop et al., 2011).

11 Related Work

Background. Attribute grammars where introduced by Knuth (1968) to define
the semantics of context free languages, and have since found their application in
compiler generation. The circularity of attribute grammars is a prominent topic
in related literature. Bird (1984) provided the basis for attribute grammars as
circular functional programs (Johnsson, 1987). Swierstra and Alcocer (1998) give
the corresponding translation to Haskell, and show the advantages of embedded
Haskell code in rules.

In a different setting, Kennedy and Warren (1976) gave an abstract interpre-
tation of acyclic attribute grammars for the generation of efficient evaluators,
but may require the evaluator to support a number of visit sequences that are ex-
ponential in the number of attributes. Kastens (1980) showed an approach that
is incomplete but requires only a single visit sequence. Saraiva and Swierstra
(1999b) showed a continuation-based translation to strict functional programs
for this case. Bransen et al. (2012) report that Kastens’ approach is too restric-
tive in the context of UHC, and propose a functional implementation of the
Kennedy-Warren approach instead which does not exhibit exponential behavior
in practice.

UUAGC. The Utrecht University Attribute Grammar Compiler (UUAGC) is the
source of inspiration for this paper. The requests for the features discussed in this
paper originated from the UHC project (Dijkstra et al., 2009) and from students
taking a course on program analysis. UUAGC supports higher-order children,
demand-driven and statically ordered attribute evaluators, and polymorphism
and overloading. It offers various forms of code generation, including monadic
code that it can additionally exploit for generating a parallel evaluator.

The idea related to eager rules originates from a research project (Mid-
delkoop, 2012) and corresponding prototype implementation (Middelkoop et al.,

2010). We made this idea suitable for attribute grammars (this paper) and are
integrating it into UUAGC.

Functional programming. Besides attribute grammar preprocessors such as the
UUAGC and Happy, there are also deep embeddings (de Moor et al., 2000; Viera
et al., 2009). The deep embeddings integrate well with the type system, and the
preprocessors usually leave type checking to Haskell. Recently, Kaminski and
Van Wyk (2011) showed the inverse direction: how to incorporate functional
programming features into attribute grammars, including type inference, poly-
morphic types, and pattern matching.

12 Conclusion

Purely functional programming languages and attribute grammars fit well to-
gether, because purity gives the necessary freedom for scheduling attribute com-
putations. Previous work has shown that Haskell is in particular a good host
language because its lazy evaluation provides most of the machinery needed to
implement attribute grammars.

Some desirable Haskell features raise challenges when combined with at-
tribute grammars, and this paper presented solutions to these challenges. These
challenges included the support of data types with higher kinds and monadic ef-
fects. Our solutions relied on two general attribute grammar techniques that we
used throughout the paper: higher-order children and static attribute schedul-
ing. On top of these extensions, we proposed eager rules to influence the static
scheduling.

Some of the addressed challenges are strictly spoken not unique to Haskell,
but do show up more prominently when using Haskell. The attribute grammar
extension that we propose is however not language specific and thus offers a
general solution that is useful for other languages as well.

This paper can therefore also be seen as motivation for investing the effort of
incorporating extensions such as higher-order children into an attribute grammar
system. This paper also showed the need for static attribute scheduling, and the
question remains how we can further exploit it. In contrast to higher-order chil-
dren, the attribute scheduling is not so easily implemented and clashes with some
extensions that are of a dynamic nature. This potentially asks for approaches to
combine demand driven and statically ordered attribute evaluation.

Bibliography

Bird, R. S. (1984). Using Circular Programs to Eliminate Multiple Traversals of
Data. Acta Informatica, 21:239–250.

Bransen, J., Middelkoop, A., Dijkstra, A., and Swierstra, S. D. (2012). The
Kennedy-Warren Algorithm Revisited: Ordering Attribute Grammars. In
PADL ’12, pages 183–197.

de Moor, O., Backhouse, K., and Swierstra, S. D. (2000). First-class Attribute
Grammars. Informatica, 24(3).

Dijkstra, A., Fokker, J., and Swierstra, S. D. (2009). The Architecture of the
Utrecht Haskell Compiler. In Haskell Symposium, pages 93–104.

Farrow, R. (1986). Automatic Generation of Fixed-Point-Finding Evaluators for
Circular, but Well-Defined, Attribute Grammars. In CC ’86, pages 85–98.

Johnsson, T. (1987). Attribute Grammars as a Functional Programming
Paradigm. In Functional Programming Languages and Computer Architec-
ture, pages 154–173.

Kaminski, T. and Van Wyk, E. (2011). Integrating Attribute Grammar and
Functional Programming Language Features. In SLE, pages 263–282.

Kastens, U. (1980). Ordered Attributed Grammars. Acta Informatica, 13:229–
256.

Kennedy, K. and Warren, S. K. (1976). Automatic Generation of Efficient Eval-
uators for Attribute Grammars. In POPL ’76, pages 32–49.

Kiselyov, O. (2012). Iteratees. In FLOPS, pages 166–181.
Knuth, D. E. (1968). Semantics of Context-Free Languages. Mathematical Sys-
tems Theory, 2(2):127–145.

Magalhães, J. P., Dijkstra, A., Jeuring, J., and Löh, A. (2010). A Generic
Deriving Mechanism for Haskell. In Haskell, pages 37–48.

Meijer, E., Fokkinga, M. M., and Paterson, R. (1991). Functional Programming
with Bananas, Lenses, Envelopes and Barbed Wire. In FPCA, pages 124–144.

Meijer, E. and Jeuring, J. (1995). Merging Monads and Folds for Functional
Programming. In AFP, volume 925, pages 228–266.

Middelkoop, A. (2012). Inference of Program Properties with Attribute Gram-
mars, Revisited. PhD thesis, Universiteit Utrecht.

Middelkoop, A., Dijkstra, A., and Swierstra, S. D. (2010). Iterative Type Infer-
ence with Attribute Grammars. In GPCE ’10, pages 43–52.

Middelkoop, A., Dijkstra, A., and Swierstra, S. D. (2011). Stepwise Evaluation
of Attribute Grammars. In LDTA, page 5.

Saraiva, J. and Swierstra, S. D. (1999a). Generic Attribute Grammars.
Saraiva, J. and Swierstra, S. D. (1999b). Purely Functional Implementation of
Attribute Grammars. Technical report, Universiteit Utrecht.

Schrijvers, T. and Oliveira, B. C. d. S. (2011). Monads, Zippers and Views:
Virtualizing the Monad Stack. In ICFP, pages 32–44.

Swierstra, S. D. and Alcocer, P. R. A. (1998). Attribute Grammars in the
Functional Style. In Systems Implementation 2000, pages 180–193.

Swierstra, S. D. and Chitil, O. (2009). Linear, Bounded, Functional Pretty-
Printing. JFP, 19(1):1–16.

Viera, M., Swierstra, D., and Middelkoop, A. (2011). UUAG Meets AspectAG
- How to make Attribute Grammars First-Class. Technical Report UU-CS-
2011-029, Universiteit Utrecht.

Viera, M., Swierstra, S. D., and Swierstra, W. (2009). Attribute Grammars Fly
First-Class: how to do Aspect Oriented Programming in Haskell. In ICFP ’09,
pages 245–256.

Vogt, H., Swierstra, S. D., and Kuiper, M. F. (1989). Higher-Order Attribute
Grammars. In PLDI ’89, pages 131–145.

	Merging Idiomatic Haskell with Attribute Grammars

