
UUAGC v.0.9.3

Release notes and Implementation notes

Jeroen Fokker

December 4th, 2006

This report describes the differences of UUAGC release candidate 0.9.3, as compared to version
0.9.1 of December 2005. The new version is currently available in the brach named candidate in
the SVN archive.
In short, this version has:

• Better input
− It was already possible to later add new alternatives to exisiting datatypes. But now

you can also later add new children to existing alternatives.
− You can also add children generically to multiple datatypes.
− It was already possible to declare an attribute for multiple datatypes. But now you can

also generically define these attributes in a single SEM-definition.

• Better output
− Optionally, the computation of attributes can be scheduled over multiple visits.
− The output is now ghc-6.6 compliant, because the lhs of a definition is no longer put in

parentheses.
− There are generally less superfluous parentheses in the output, which makes the gener-

ated code easier to read.
− Comments can be generated not only listing the attributes, but also the children and

local variables.
− Error messages have a better layout.

• Better source
− The five stages of processing that together form the main dataflow are made more

uniform, treating their input (tree and options) and output (next tree, errors, and
additional strings) in a more consistent way. This makes the source easier to understand
and modify in the future.

− In imported Haskell libraries, all needed functions are explicitly enumerated. This
makes it more transparent why a module is actually needed.

− Some code (especially the gathering of all information, and the generation of default
rules) has been rewritten in order to make it easier to understand.

In section 1 we introduce the new features of the input language. In section 2 we describe the
overall architecture of the program. In section 3 we list the modifications that were made for
the generic attribute definitions. In section 4 we list the modifications that were made for the
sequential visits. In section 5 we describe the build process as steered by make.

1

1 New features

1.1 Add children to existing datatypes

When defining a datatype in Haskell, you have to specify all alternatives in one declaration. In
contrast, in UUAGC it is possible to add new alternatives to existing datatypes. This was already
possible in earlier versions. For example:

-- initial definition

DATA Foo

| One a1 : {Int}

a2 : {Int}

| Two b1 : {Int}

--other definitions

DATA Bar

| First d : {Int}

-- add-on to first definition

DATA Foo

| Three c1 : {Int}

In the new version, it is also possible to add new children to existing alternatives. For example,
to add a second child to alternative Two of datatype Foo, you can extend the example above by:

-- add new child to existing alternative

data Foo

| Two b2 : {Int}

In earlier versions, this would result in a ‘duplicate alternative’ error, but now it is allowed. Of
course, the name of the added child b2 should differ from the name of the existing child b1.

1.2 Generically add children to multiple datatypes

If two datatypes share a common part, it is now possible to write it only once, and later extend
it in different ways. For example:

-- common part

DATA Foo Bar

| One a : {Int}

| Two b : {Int}

-- two extensions

DATA Foo

| Three c : {Int}

DATA Bar

| Four d : {Char}

In earlier versions, it was a syntax error to enumerate more than one type name in a DATA header.
Even an attempt to capture both names in a set would fail in earlier versions:

SET Common = Foo Bar

DATA Common

| One a : {Int}

| Two b : {Int}

It would throw a ‘duplicate synonym’ error in earlier versions, but it is possible in the new version.

2

1.3 Generically define attribute values

In earlier versions, it was already possible to declare an attribute for multiple datatypes:
ATTR Foo Bar [| | s : {Int}]

But it was not possible to define the value of the attribute generically. In the new version,
it is possible to have a single definition for two datatypes, provided that they have a common
alternative. Of course, this situation will occur more often if the construction in the previous
subsection is used frequently. We are now able to define in a single definition:

SEM Foo Bar

| One lhs.s = 3

In earlier versions, it was a syntax error to enumerate more than one type name in a SEM definition,
and an apporach using SETs would also fail.

1.4 Using wildcards

In earlier versions, it was already possible to use a wildchard name *, and a name set difference
operator -, to generically define an attribute for more than one alternative. For example:

SEM Foo

| * - One lhs.s = 4

would define the attribute for alternatives Two and Three.
It should be noted that in the new version, this notation has an even more generic meaning:

SEM Foo Bar

| * - One lhs.s = 4

will define the attribute for alternatives Two and Three of datatype Foo, and for alternatives Two
and Four of datatype Bar.
It is even allowed to use wildcards in the header of a SEM-definition, as in:

SEM *

| * - One lhs.s = 4

Also, it is now allowed to use wildcards in the header of DATA and ATTR definitions. Thus, we
can add an uniform alternative to all existing datatypes, for example to provide a placeholder for
error situations:

DATA *

| Error why : {String}

And it is possible to uniformly add a child to all alternatives of a (set of) datatype(s), for example
to store the location in the source file in all alternatives of both the Expr and the Stat datatype:

DATA Expr Stat

| * pos : {Int}

If the set of constructors to which the children should be added is other than a single identifier
or asterisk (for example a enumeration of names) it should be enclosed in parentheses to avoid
ambiguity with a single name with unnamed children.

3

2 Program architecture

2.1 Main data flow

Figure 1 shows the main dataflow of the UUAGC compiler. It is a graphical representation of the
main function in source file Ag.hs.
The central column shows the various stages of processing. The synthesized attribute output of
each stage is fed into the next stage as tree to be processed.

• The input string is parsed, resulting in an AG structure. This structure directly corresponds
to the source constructs.

• The AG structure is transformed into a Grammar structure. Child definitions, attribute
declarations, and attribute definitions are moved such that everything is grouped per non-
terminal. Attribute declarations which are common to multiple nonterminals are copied. In
this new version the same may happen to generic attribute definitions and child definitions.

• The Grammar structure is processed to automatically add default rules. The result is still a
Grammar.

• (this would be the place where other transformations could be plugged in)
• The Grammar is ordered, that is the attributes are partinioned in various visits, that can

be executed sequentially. The interfaces of the visits are stored, thereby augmenting the
Grammar to a CGrammar.

• The CGrammar is used to generate Haskell code. Here, the attributes are encoded into
tuples that are passed up and down by fold-like functions, which are also generated. The
result is a structure that represents a Haskell Program.

• The abstract Haskell program is pretty-printed. The result is al list of PP Doc documents,
one for each toplevel definition.

• The output string is obtained by rendering each PP Doc using the disp function, and written
to the output file.

Most of the phases (including parsing) can generate error messages. The errors are collected in
the synthesized attribute errors, which is a Sequence of Error values. The error messages are
separately prettyprinted and rendered on standard output.
Most of the phases (including error printing) take additional options through the inherited at-
tribute options. The options originate frmm the command line of the program.
Some phases, apart from their regular output and error messages, also generate additional code
Blocks. A Block is a named list of uninterpreted strings, which are supposed to contain Haskell
code. This code is merged with the generated code and written to the output file. Blocks with a
special name (optpragmas and imports) are moved to the front. The blocks are yielded in the
syntesized attribute blocks.

2.2 UUAGC source structure

Figure 2 shows the various modules which make up the UUAGC program. The orange boxes in
the rightmost column denote Haskell source files, of which file AG.hs contains the main program.
The yellow boxes in the other columns denote AG source files.
The eight boxes in the central column correspond to separate tree transformations. The first five
(Transform, DefaultRules, Order, GenerateCode and PrintCode are part of the main dataflow dis-
cussed in the previous subsection. The PrintErrorMessages transformation, of course, is for pret-
typrinting error messages. Finally, SemHsTokens and InterfaceRules are used to separately pro-
cess attribute definitions and interfaces, respectively. Attribute definitions are special in UUAGC
source, as they conform to Haskell syntax (with @ as an escape character). These Haskell fragments
are not parsed by UUAGC, but only processed at lexical level.
The nine boxes in the leftmost colums denote modules that describe datatypes (rather than their
attributes). The datatypes that are described are shown in italics in the green pop-up boxes. Four

4

of these correspond to the intermediate types discussed in the main data flow:
• module ConcreteSyntax defines the AG datatype
• module AbstractSyntax defines the Grammar datatype
• module CodeSyntax defines the CGrammar datatype
• module Code defines the Program datatype

The other four modules describe auxiliary datatypes.
In short, the modules boxes in the lefmost column describe the syntax of the language. They
are compiled separately using the -d flags, and thus only generate datatype definitions. The six
modules in the central column describe the semantics of the language. They are compiled using
the -cfs flags, and thus generate catamorphisms (c), semantics functions (f) and their signatures
(s).
The ‘syntax’ modules are included by the ‘semantics’ modules, which need to know the datatypes
they are attributing. But the ‘semantics’ modules don’t generate code defining the datatypes.
The separation of syntactical and semantical aspects is not only good coding practice, but also
necessary. Otherwise (that is, if the semantics modules would be compiled with -d flag on)
for example both the DefaultRules module and the Order module would generate the Grammar
datatype, which is described in the AbstractSyntax module they both include. That would give a
conflict when the generated Haskell files from these two modules are linked together.
There is one more column in figure 2: the two boxes left from the central column (GenerateCodeSM
and Dep). They denote simple file inclusion, which in this case is only done to prevent the file that
includes them from growing very big. These files are not compiled separately. There are only two
files left in this category (the other two that used to exist are inlined now). Furthermore, these
remaining two are obsolescent.
It should be noted that the arrows in figure 2 show the way the AG source files include each other.
This is not the same as the way the generated Haskell modules import each other. The latter
relationship is depicted in figure 3.
From this picture, it is more obvious how the various modules cooperate. Reading from right
to left, we first note that Ag.hs is the module which contains the main function and sets other
modules to work. Modules that perform a phase from the main dataflow import the description of
their source and target languages. For example, the Transform module imports its source language
ConcreteSyntax and its target language AbstractSyntax. This contrasts with the AG-compiletime
inclusion relations from figure 2, where transformation modules need only to know the datatypes
of their source language.
From the Haskell import-relations in figure 3 is also becomes clear that the three modules dealing
with HsToken perform a subordinate task for the GenerateCode module. Similar observations can
be made for three more clusters of files.
Definitions made in Options, CommonTypes and ErrorMessages are needed almost everywhere.
Also the consumers of Expression and Patterns are too many to list.

5

3 Modifications for generic attribute definitions

For the generic attribute definition feature, and the general code streamlining, many files were
edited, three were removed, and one was added. Not only were the new features described in
section 1 implemented, but also some modifications were made that streamline the architecture.
This will make future modifications easier. The architecture described in the previous section
reflects the new situation.

3.1 New and obsolete files

A new Haskell module Version.hs was introduced. It only contains a definition of a banner string
containing the version number. This used to be done in Ag.hs, the module containing the main
function.
The insertion of the version number is performed by configure, which generates Version.hs from
a template Version.hs.in. The fact that this is now isolated from the rest of Ag.hs, removes the
need for preprocessing Ag.hs by configure. Therefore, Ag.hs.in has become obsolete.
The previous version contained two more source modules: a ‘syntactical’ unit Rules and a corre-
sponding ‘semantical’ unit SemRules. The tasks performed by these modules are now integrated
in ConcreteSyntax and Transform, respectively.
The file Expr.hs, which contained fossile code, is removed.

3.2 Modified files

The following ‘syntactical’ units were modified:
• ConcreteSyntax: new datatypes SemDef(s) were added, originally in the Rules module.

Structures denoting DATA and SEM definitions were adapted to allow for more than one
nonterminal name.

• Patterns: added a SELF attribute declaration
• Code: changed the type of two leafs from PP Doc to a more structured type ([String] and

Pattern, respectively). Prettyprinting to a PP Doc belongs to a later phase.
• ErrorMessages: added a new alternative to denote parsing errors, in order to process parsing

errors uniformly with errors in later phases.
The following ‘semantical’ units were modified:

• Transform: major rewrite. In the new version, eveything is first collected in lists, and only
then checked for duplicates. (Originally, new declarations were checked for duplicates on
encountering them, inserting them in an set that was passed as a threaded attribute).

• DefaultRules: drastically rewrote the implementation of use-rules and copy-rules, which
makes them shorter and clearer.

• GenerateCode: adapted to changes in Code. In the included files furthermore:
− Comments: generate better comments for the -p option, listing not only the attributes

but also the children and local variables
− GenerateCodeSM: outputs Haskell code as Blocks, for uniform treatment with the blocks

generated by Transform (see figure 1)
• PrintCode: now also does prettyprinting of patterns, which used to be done too early. Also,

suppresses the generation of superfluous parentheses, especially those that are not compliant
to ghc-6.6.

• PrintErrorMessages: improved readability of error messages
The following Haskell files were modified:

• Parser: allowing more than one nonterminal in DATA and SEM definitions. Adapted error
processing for uniform treatment.

• Ag: streamlined the main dataflow as much as possible, as described in the previous section.

6

4 Modifications for sequential visits

4.1 New and obsolete files

The new phase that orders the attributes in sequential visits in the main pipeline is modeled in
the ‘syntactical’ unit CodeSyntax.ag and the ‘semantical’ unit Order.lag. Note that the latter is
written in literate-programming style. The unit GenerateCode is also rewritten in literate style,
changing the extension to .lag.
New units are introduced that describe the syntax and semantics of interfaces: Interfaces.ag and
InterfaceRules.lag. The wrapping of an interface is steered from SequentialComputation.hs, which
is an auxiliary file used in the ordering phase. Auxiliary types and functions related to ordering
are in the new files SequentialTypes.hs and GrammarInfo.hs.
In the previous version there was optional support for generating so-called ‘syntax macros’. This
feature is not compatible with the new sequential codegeneration. Four files were related to this
feature: two include-files to GenerateCode (GenerateCodeSM.ag and Dep.ag), and two auxiliary
Haskell-files (DepTypes.hs and Streaming.hs). These files are still in the distribution, but their use
is commented out.
The file ExpressionAttr.ag, formerly included by GenerateCode.ag, is now inlined in the new phase
Order.lag, making the original file obsolete.
The file Comments.ag, formerly included by GenerateCode.ag, is now inlined in GenerateCode.lag,
making the original file obsolete. The modifications described in the previous section are retained.

4.2 Modified files

A major rewrite was done of the GenerateCode unit. It is now split in two phases: Order.lag and
GenerateCode.lag.
A new intermediate language is defined in CodeSyntax.ag. It defines a datatype CGrammar, which
is similar to the datatype Grammar defined in AbstractSyntax.ag. The main differences are:

• While each Production contained Alternatives, now CProduction contains not only CAlter-
natives but also CInterfaces.

• While each Alternative contained Rules, now CAlternative contains CVisits, which in turn
contain CRules.

• While Rule had only one alternative denoting an attribute definition, now em CRule also
has an alternative denoting a child visit.

Syntax and semantics of a new auxiliary datastructure Interface is defined in Interfaces.ag and
InterfaceRules.ag. Additional Haskell types and functions are defined in SequentialTypes, Sequen-
tialComposition, and GrammarInfo.
The source language is slightly enhanced to allow type signatures for local attributes. This brings
small changes in Parser.hs, ConcreteSyntax.ag, Transform.ag, AbstractSyntax.ag, and Default-
Rules.ag.
A notion of unboxed tuples is introduced, which brings small changes in Code.ag and PrintCode.ag.
The new features can be enabled by six new options introduced in Options.hs. New error situations
are trapped in (Print)ErrorMessages.ag: three tastes of circularity replace the old CircGrammar
error, and type signatures can be ‘duplicate’ or ‘missing’.
The main file Ag.hs is updated to include the new phase, and to handle the new options.

7

5 Installation

As described in the readme document, compiling and installing UUAGC from the source is very
easy. It is done by typing the following commands:

• autoconf
• configure
• make build
• make install

Due to the bootstrapping nature of the process (UUAGC is written using itself), the third step
requires an existing UUAGC system. This is not included in the SVN archive, and should be
downloaded separately.
The remainder of this section describes in some more detail what happens during the steps above.
Understanding this is not necessary for simply installing UUAGC, but it is to be able to modify
the installation procedure. The process is summarized in figure 4, and discussed below.
First, the GNU utility autoconf is run to generate a configuration script named configure. It is
specified by the description in configure.in.
Next, the configure script is run. It basically inserts some configuration-dependent details (such
as the compiler to use) in source files. Thus, these files can be generated from a template which is
provided in the distribution. The template typically is named with suffix .in. For UUAGC, four
files are generated in this way:

• Makefile generated from template Makefile.in, inserting the names of compilers and other
utilities to use.

• src/Version.hs generated from template src/Version.hs.in, inserting the version number
found in file VERSION.

• uuagc.cabal generated from template uuagc.cabal.in, again inserting the version number.
• scripts/mkAgDepend.sh generated from template scripts/mkAgDepend.sh.in, which is just

copied because it doesn’t contain configuration-specific details
Subsequently, make build is used to build the system. It performs the following actions, steered
by the Makefile generated before:

• (only once): Setup.hs is compiled to generate a program Setup that can drive the Haskell
compiler steered by a cabal-file

• The dependencies between AG-files are detected by chasing the include-statements, thus
effectively determining the arrows in figure 2. The dependencies are temporarily stored in
file ag.depend, and used to decide by make itself which files need to be recompiled

• The ‘syntactic’ AG-sources are compiled using an existing version of UUAGC, with -d flag
• The ‘semantic’ AG-sources are compiled using an existing version of UUAGC, with -cfs

flag
• The Haskell program is build from the files generated by UUAGC, the original Haskell-files

in the distribution, and the Version.hs that was generated by configure. Compilation is
controlled by Setup. The dependencies between Haskell files are checked by Haskell itself, so
make needs no information about them.

The setup process is steered by uuagc.cabal, which specifies that the executable should be placed
in a subdirectory of directory dist.
Finally, make install is used to install the new UUAGC system. It copies the executable from the
dist directory to the location where executables should be stored.

8

Grammar

Transform . sem_AG

AG

Grammar

DefaultRules . sem_Grammar

Program

[PP_Doc]

PrintCode . sem_Program

parse

String

Errors

PP_Doc

PrintErrorMessages . sem_Errors

Options

options_Inh

options_Inh

options_Inh

errors_Syn

errors_Syn

errors_Syn

output_Syn

output_Syn

output_Syn

blocks_Syn

options_Inh

Blocks

blocks_Syn

unlines.concat.elems

options_Inh

output_Syn

map dispdisp

StringString

CGrammar

Order . sem_Grammar

output_Syn

options_Inh

GenerateCode . sem_CGrammar

Figure 1: UUAGC main dataflow

9

AG-unit syntax auxiliaryimport semantics AG-unit

ConcreteSyntax

Patterns

AbstractSyntax

Expression

Code

ErrorMessages

HsToken

Transform

DefaultRules

GenerateCode

PrintCode

PrintErrorMessages

SemHsTokens

AG

Version

DepTypes

HsTokenScanner

Options
Parser
Scanner

Streaming

TokenDef

Pattern(s)

Expression

Error(s)

HstokensRoot
HsToken(s)

Program
Expr(s)
Decl(s)
DataAlt(s)
Type(s)
Lhs

Grammar
Production(s)
Alternative(s)
Child(ren)
Rule(s)

AG
Elem(s)
Attrs
Alt(s)
SemAlt(s)
SemDef(s)
ConstructorSet
NontSet

CommonTypes

CodeSyntax

Order

CGrammar
CProduction(s)
CAlternative(s)
CRule(s)
Cinterface
Csegment(s)
Cvisit(s)

Interfaces InterfacesRules

Iroot
Interface(s)
Segment(s)

SequentialComputation

GenerateCodeSM

Dep

SequentialTypes
GrammarInfos

Figure 2: UUAGC source structure

10

Transform

Ag

Parser
Scanner

TokenDef

ConcreteSyntax

AbstractSyntax
DefaultRules

GenerateCode

HsToken SemHsToken

HsTokenScanner

PrintError-
Messages

Streaming

DepTypes

Error-
Messages

PrintCode

Code

Common-
Types

Options

PatternsExpression

many
places

Version

Order

CodeSyntax

Sequential-
Computation

Interfaces-
Rules

Interfaces

Sequential-
Types

Grammar-
Info

Figure 3: Dependencies in UUAGC generated code

11

configure

uuagc.cabal.inMakefile.in
scripts/

mkAgdepend.sh.in

configureconfigureconfigure

scripts/
mkAgdepend.sh

ag.depend Makefile

uuagc.cabal

src/
Version.hs.in

Setup.hs

ghc

configure.in

autoconf

src/
Version.hs

src/*.hs

src/*.hs

uuagc

src-ag/*.ag

ghcghcghc

VERSION

make

Setup

make

input

output

program

script

parameter

program source

install source

intermediate

target

system

LEGEND

Parameterized scripts start programs
that transform input to output

Note that uuagc is needed to build itself.
To boootstrap, an earlier executable
or generated hs-files are necessary.

Figure 4: Installation of UUAGC

12

