
UU AG System User Manual

Arthur Baars, Doaitse Swierstra and Andres Löh
Department of Computer Science

Utrecht University
doaitse@cs.uu.nl

May 24, 2007

Contents

1 Getting Started 2
1.1 Running the uuagc system . 2
1.2 Simple Attribute Grammar . 2
1.3 Adding attributes . 2
1.4 Compiling an attribute grammar . 3
1.5 Generated code . 3
1.6 RepMin continued . 4

2 Language Constructs 6
2.1 DATA declaration . 6
2.2 ATTR declaration . 7
2.3 SEM . 8
2.4 TYPE . 9
2.5 INCLUDE . 9
2.6 Code Block . 10
2.7 Comments . 11
2.8 Names . 11
2.9 Strings . 11

3 Copy Rule 12
3.1 Examples . 12
3.2 Generalised copy rule . 12
3.3 USE rules . 13
3.4 SELF rules . 13

4 Code Generation 14
4.1 Module header . 14
4.2 Data types . 14
4.3 Semantic functions . 15
4.4 Catamorphisms . 15
4.5 Wrappers . 16

5 Grammar 16
5.1 Lexical Syntax . 17
5.2 Context-free Grammar . 17

6 Compiler flags 18

1

The uuag system is an attribute grammar system developed at the University of Utrecht.
After the introduction, this document contains a user guide. This guide is divided in two parts,
the first consists of an example introducing most language features, the second part covers the
language constructs and the uuagc compiler in more detail.
Any bugs (or fixes!) can be reported to the author, Arthur Baars (doaitse@cs.uu.nl). Any
feedback on:

• what modifications you are interested in
• what modifications you have made yourself

is greatly appreciated too. Besides that, we are also quite interested in any applications, that are
created using this system.

1 Getting Started

1.1 Running the uuagc system

We assume that uuagc compiler is installed on your system. If you run the compiler without
arguments it will show you a short help message, and a list of options.

> uuagc

Usage info:

uuagc options file ...

List of options:

-m generate default module header

--module[=name] generate module header, specify module name

-d --data generate data type definitions

...

In this user manual all the compiler switches and language features are introduced and explained
in the examples.

1.2 Simple Attribute Grammar

As a first example we take the well known RepMin problem. The input of the program is a binary
tree, and it produces a binary tree of the same shape. In the new tree however all values in the
leaves are equal to the minimum of the values in the leaves in the original tree.
A grammar is defined as a collection of DATA declarations. The types correspond to the nonter-
minals and the constructors to the productions of the grammar. The grammar of binary trees is
defined as follows:

DATA Tree

| Node left:Tree right:Tree

| Leaf int:Int

As in Haskell the names of the types and constructors start with an uppercase letter. The difference
with a Haskell data type definition is that the fields of a constructor are associated with a name,
and not only by position.

1.3 Adding attributes

In this section we define attributes to solve the Repmin problem. We split the computation to be
performed into three different aspects:

• computing the minimal value
• making the minimal value available at the leaves
• constructing the final result

2

For each of the aspects we introduce an attribute and attribute computation rules.
Firstly we introduce a synthesized attribute minval representing the minimum value of a Tree by
an ATTR declaration.

ATTR Tree [| | minval:Int]

That minval is a synthesized attribute follows from the fact that its declaration is located after the
second vertical bar. In an ATTR declaration there are three places to put attributes declarations.

[inherited | inherited/synthesized | synthesized] (1)

Attributes in the first position are inherited attributes, attributes in the last position are synthe-
sized attributes, and attributes in the middle are inherited as well as synthesized.
Next we specify the computation of the minimum value by providing semantic rules.

SEM Tree

| Leaf lhs.minval = { @int }

| Node lhs.minval = { min @left.minval @right.minval }

To compute the minimum value of a Leaf we simply return the value of the Leaf . For a Node
the minimum value is the minimum of left ’s minval and right ’s minval . The right-hand side of a
semantic rule is a Haskell expression between braces. The references to attribute and field values
are all marked with an ’@’ symbol. The left-hand side of a semantic rule is a reference to an
attribute. In this case the minval attribute of Tree, which is the left hand side of the productions
Leaf and Node, hence the name lhs.

1.4 Compiling an attribute grammar

The example code developed thusfar is can be found in examples/Repmin1.ag. This simple
attribute grammar is compiled into a Haskell source file as follows:

> uuagc --module --data --semfuns --catas --signatures Repmin1.ag

Repmin1.hs generated

Using the functions in the generated Haskell program we can compute the minimum of a Tree
as is shown in the following example:

Repmin1> sem_Tree (Node (Node (Leaf 2)(Leaf 3))(Node (Leaf 1)(Leaf 2)))

1

1.5 Generated code

In this section we explain the following compiler options a and take a brief look at the code
generated by the uuag compiler.
short option long option description
-m --module[=name] generate module header, specify module name
-d --data generate data type definitions
-f --semfuns generate semantic functions
-c --catas generate catamorphisms
-s --signatures generate type signatures for semantic functions

The option --module tells the uuag compiler to generate a Haskell module header. If a name is
specified this name is used as the module name. If no name is specified or when the short option
(-m) is used the module name is the name of the uuag source file, without its extension. Hence
the generated code for RepMin1.ag code contains the following module header:

module Repmin1 where

The option --data tells the uuag compiler to generate Haskell data type definitions correspond-
ing to the DATA statements in the attribute grammar. The data type definition generated for
RepMin1.ag is:

3

data Tree = Leaf Int

| Node Tree Tree

The SEM rules are compiled into semantic functions that compute the output attributes from the
input attributes. For each nonterminal a type synonym, named T Type,is introduced for the type
of its semantics. In our example there are no inherited attributes and only a single synthesized
attribute, namely minval with type Int . Hence the type synonym for the nonterminal Tree is:

type T_Tree = Int

The option semfuns tells the compiler to generate a semantic function for each constructor. They
are named as follows: sem Nonterminal Constuctor . A semantic function takes the semantics of
the constructor’s children as argument to compute the semantics of the nonterminal. By providing
the --catas the uuag compiler generates catamorphisms for each data type in the attribute
grammar. A catamorphism takes a data type and computes its semantics. This is achieved by and
applying the appropriate semantic functions. The generated catamorphisms are named as follows:
sem Type. The option --signatures tells the compiler to emit type signatures for all semantic
functions and catamorphisms. For our example these signatures are:

sem_Tree_Node :: T_Tree -> T_Tree -> T_Tree

sem_Tree_Leaf :: Int -> T_Tree

sem_Tree :: Tree -> T_Tree

The semantics of a child with a type that is not defined using a DATA statement is simply its value.
Hence the type Int for the semantics of the value in a Leaf .
The actual code generated for semantics functions and catamorphisms is discussed in section 4.

1.6 RepMin continued

The attribute grammar developed thusfar computes the minimum of a tree. This computation is
done bottom-up using a single attribute minval . The global minimum of a tree is the value of
minval at the root node. To solve the “repmin” problem we need to distribute the global minimum
to all the leaves and, then reconstruct the tree with each value replaced by the global minimum.

1.6.1 Distribute global minimum

The global minimum is the minimum value of the root node of the tree. In order to make the
global minimum available at all the leaves we need to push the minimum value of the root node
down to all the leaves.
Firstly we declare an inherited attribute gmin that holds the global minimum.

ATTR Tree [gmin:{Int} | |]

At each Node the global minimum is distributed to both children. Their is no rule for the con-
structor Leaf because it does not have children.

SEM Tree

| Node left.gmin = { @lhs.gmin }

right.gmin = { @lhs.gmin }

The global minimum is passed down from parent nodes to their children. The root node of a Tree,
however, does not have a parent, so we cannot set its inherited attribute gmin. We introduce a
data type Root that serves as the parent of a Tree. It uses the synthesized attribute minval of the
Tree to define the inherited attribute gmin.

DATA Root | Root tree:Tree

SEM Root

| Root tree.gmin = { @tree.minval }

4

1.6.2 Construct the result

Now the global minimum is available everywhere in the tree we can construct the final result, that
is a tree with the same structure as the original, but with the value stored in each leaf replaced
by the smallest integer stored in the entire tree.
First we declare a synthesized attribute result for both Tree and Root .

ATTR Tree [| | result:Tree]

ATTR Root [| | result:Tree]

In a Node the resulting trees of both children are combined into a new Node. For a Leaf a new
Leaf is returned containing the minimum value.

SEM Tree

| Node lhs.result = { Node @left.result @right.result }

| Leaf lhs.result = { Leaf @lhs.gmin }

At a Root the resulting tree is returned.
SEM Root

| Root lhs.result = { @tree.result }

1.6.3 Haskell code blocks

To finish the rep-min example we define a number of Haskell functions. These definitions are
written between braces and are copied literally into the output of the uuagc System. The following
code block defines an instance of Show for Tree, a sample Tree and a main function.

{

instance Show Tree where

show tree = case tree of

Leaf val -> "Leaf " ++ show val

Node l r -> "Node (" ++ show l ++ ") (" ++ show r ++ ")"

example :: Tree

example = Node (Leaf 3)(Node (Leaf 6)(Leaf 2))

main :: IO ()

main = do putStrLn "input tree:"

print example

putStrLn "result tree:"

print (sem_Root (Root example))

}

1.6.4 Compile and Run

The example code developed thusfar is can be found in examples/Repmin2.ag. This attribute
grammar is compiled into a Haskell source file as follows:

> uuagc --module=Main --signatures --data --semfuns --catas Repmin2.ag

Repmin2.hs generated

The generated code is a module named Main containing the Tree datatype, semantic functions,
catamorphisms, and some additional Haskell definitions. The program can be run using runhugs
as follows:

> runhugs Repmin2.hs

input tree:

Node (Leaf 3) (Node (Leaf 6) (Leaf 2))

result tree:

Node (Leaf 2) (Node (Leaf 2) (Leaf 2))

5

2 Language Constructs

This section gives an overview of the uuag language. Lines printed in bold are grammar rules and
show what the language construct looks like in general. Subscripts and “. . . ”-notation are used
in the syntax rules. For example:

constructor name1:type1. . .namen:typen (n ≥ 0)

This means that a constructor has zero or more fields. Valid instantiations are:
Leaf val:Int

Bin left:Tree right:Tree

Empty

The following sections show the syntax of each construct as a grammar rule, followed by an
explanation of its semantics and a number of examples. The uuag language provides many
shorthand notations. These abbreviations are explained by example, as including them in the
grammar rules would clutter the presentation. A complete reference in ebnf of the uuag language
can be found in Section 5.

2.1 DATA declaration

DATA nonterminal
|constructor1field1,1:type1,1 . . .field1,i:type1,i

|
...

|constructornfieldn,1:typen,1 . . .fieldn,j:typen,j

(i ≥ 0, j ≥ 0, n ≥ 0)

A DATA declares a number of productions for a nonterminal. Each production is labelled with a
constructor name. In contrast to Haskell it is allowed to use the same constructor name for more
than one nonterminal. However, the names of all constructors of the same nonterminal must be
different. Giving multiple DATA declarations for the same nonterminal is allowed, provided that
the constructor names in the declarations do not clash. The fields of each production all have
a name and a type. The type can be a nonterminal or a Haskell type. All fields of the same
constructor must have different names.
Valid DATA declarations:

DATA Tree | Bin left:Tree right:Tree

| Leaf value:Int

DATA Decl | Fun name:String args:{[String]} body:Expr

Several abbreviations exist for DATA declarations. Fields with the same type can be declared by
listing their names separated by commas. Also the field name can be left out, in which case the
name is defaulted to the type name with the first letter converted to lowercase. It is only allowed
to leave out the field name if the type is an uppercase type identifier. You also need to make sure
that the default name does not clash with the name of another field. The following example show
correct abbreviations:

DATA Tree | Bin left,right:Tree -- ’left’ & ’right’ have type ’Tree’

| Leaf Int -- field name is ’int’

The following DATA statement is wrong:
DATA Tree | Bin Tree Tree -- duplicate field name

| Leaf {(Int,Int)} -- type is not a single type identifier

6

2.2 ATTR declaration

ATTR nonterminal1 . . .nonterminaln
[attr1:type1 . . .attri:typei

| attr(i+1):type(i+1) . . .attrj:typej

| attr(j+1):type(j+1). . .attrk:typek

]
(n ≥ 1, 0 ≤ i ≤ j ≤ k)

An ATTR declaration declares attributes for one or more nonterminals. Each attribute has a name
and a type. The position of an attribute in the declaration list (left of the bars, between the bars,
or right of the bars) determines whether it is inherited, chained, or synthesized, respectivly. A
chained attribute is just an abbreviation for an attribute that is both inherited and synthesized.
The names of all inherited attributes declared by ATTR statements must be different. The same
holds for synthesized attributes.
Valid ATTR declarations are:

ATTR Tree [depth:Int | minimum:Int | out:{[Bool]}]

ATTR Tree [count:Int | | count:Int]

ATTR Decl [environment : {[(String,Type)]} | |]

ATTR Decl [| | code:Instructions]

For attribute declarations the same abbreviations are permitted as for field in a DATA declaration.
The name of an attribute can be left out, and attributes with the same type can be grouped. For
example:

ATTR Tree [| | min,max:Int] -- ’min’ and ’max’ both have type ’Int’

ATTR Decl [Environment | |] -- attribute name is ’environment’

The following abbreviations are wrong:
ATTR Tree [| | Int Int] -- duplicate attribute names

ATTR Decl [{[(String,Type)]} | |] -- complex type without name

A USE clause can be added to the declaration of a synthesized or chained attribute, to trigger
a special kind of copy rule(see Section 3.3). The first expression must be an operator, and the
second expression is a default value for the attribute.

attr USE expr1 expr2 : type

For example:
DATA Tree

| Bin left,right:Tree

| Leaf value:Int

ATTR Tree [| | value USE {+} {0} : Int] -- compute sum of values

An attribute can be declared to be of type SELF. The type SELF is a placeholder for the type of
the nonterminal for which the attribute is declared. For example:

ATTR Tree Expr [| | copy:SELF]

The ATTR statement above declares an attribute copy of type Tree for nonterminal Tree, and an
attribute copy of type Expr for nonterminal Expr . Declaring a synthesized attribute of type SELF
triggers a special copy-rule, that constructs a copy of the tree. Section 3.4 explains this type of
copy-rule.
Attribute declarations can also be given in DATA or SEM statements after the name of the nonter-
minal. For example:

DATA Tree | Bin left,right:Tree

| Leaf Int

ATTR Tree [| | min:Int]

7

can be combined into:
DATA Tree [| | min:Int]

| Bin left,right:Tree

| Leaf Int

2.3 SEM

In a SEM construct one can specify semantic rules for attributes. For each production the synthe-
sized attributes associated with its corresponding nonterminal and the inherited attributes of its
children must be defined. If there is a rule for a certain attribute is missing, the system tries to
derive a so called copy-rule. The SEM construct has the following form:

SEM nonterminal
|constructor1 fieldref1.attribute1=expression1

...
|constructorn fieldrefn.attributen=expressionn

(n ≥ 0)

Semantic rules are organised per production. Semantic rules for the same production can be spread
between multiple SEM statements. This has the same meaning as they were defined in a single SEM
statement. A fieldref is lhs, or loc, or a field name. To refer to a synthesized attribute of the
nonterminal associated with a production the special fieldref lhs is used together with the name
of the attribute. To refer to an inherited attribute of a child of a production the field name of
the child is used together with the attribute’s name. The special fieldref loc is used to define a
variable that is local to the production. It is in the scope of all semantic rules for the production.
The expressions in semantic rules are code blocks, i.e. Haskell expressions enclosed by { and },
see Section 2.6. They may contains references to values of attributes and fields. These references
are all prefixed with an @-sign to distinguish them from Haskell identifiers. To refer to the value
of a field one uses the name of the field. References to attributes are similar to the ones on the
left-hand side of a semantic rule (fieldref.attribute). The difference is that they now refer to the
synthesized attributes of the children and the inherited attributes of the nonterminal associated
with the production. Local variables can be referenced using their name, optionally prefixed with
the special fieldref loc.
Valid definitions:

ATTR Tree [gmin:Int | | min:Int result:Tree]

SEM Tree

| Bin left.gmin = { @lhs.gmin }

-- "left.gmin" refers to the inherited attribute "gmin"

-- of the child "left"

| Bin right.gmin = { @lhs.gmin }

-- "@lhs.gmin" refers to the inherited attribute "gmin"

-- of nonterminal "Tree"

| Bin loc.min = { min @left.min @right.min }

-- "min" is a new local variable of the constructor "Bin"

SEM Tree

| Bin lhs.result = { Bin @left.result @right.result }

-- "@left.result" refers to the synthesized attribute "result"

-- of child "left"

| Bin lhs.min = { @min }

-- "@min" refers to the local variable "min"

| Leaf lhs.result = { Leaf @lhs.gmin }

-- "@lhs.gmin" refers to the inherited attribute "gmin"

-- of nonterminal "Tree"

| Leaf lhs.min = { @int }

-- "@int" refers to the value of field "int" of "Leaf"

8

For the SEM construct there exist a number of abbreviations. As for DATA statements one can write
attribute declarations after the name of the nonterminal. Furthermore semantic rules for the same
production can be grouped, mentioning the name of the production only once. For example:

SEM Tree

| Bin left.gmin = { @lhs.gmin }

right.gmin = { @lhs.gmin }

loc.min = { min @left.min @right.min }

In a similar way semantic rules for the same fieldref can be grouped. For example:
SEM Tree

| Bin lhs.result = { Bin @left.result @right.result }

.min = { @min }

When the same semantic rule is defined for two productions of the same nonterminal they can be
combined by writing the names of both productions in front of the rule. For example:

SEM Tree

| Node1 lhs.value = { @left.value + @right.value }

| Node2 lhs.value = { @left.value + @right.value }

can be abbreviated as follows:
SEM Tree

| Node1 Node2 lhs.value = { @left.value + @right.value }

Finally the curly braces around expressions may be left out. The layout of the code is then used
to determine the end of the expression as follows. The column of the first non-whitespace symbol
after the =-sign is the reference column. All subsequent lines that are indented the same or further
to the right are considered to be part of the expression. The expression ends when a line is indented
less than the reference column. An advantage of using layout is that problems with unbalanced
braces, as described in Section 2.6 are avoided.

2.4 TYPE

The TYPE construct is convenient notation for defining list based types. It has the following form:

TYPE nonterminal = [type]

A TYPE construct is equivalent to:

DATA nonterminal
| Cons hd:type tl:nonterminal
| Nil

Apart from a convenient notation the TYPE construct has effect on the code generated. Instead of
generating data constructors Cons and Nil Haskell’s list constructors :, and [] are used.
Examples of TYPE constructs:

TYPE IntList = [Int]

TYPE Trees = [Tree]

2.5 INCLUDE

Other uuag files can be included using the following construct:

INCLUDE string

The string is a file name, between double quotes. The suffix of the file (.ag , or .lag) should not
be omitted. The file should contain valid uuag statements. These statements are inlined in the
place of the INCLUDE statement.

9

2.6 Code Block

A code block is a piece of Haskell code enclosed by curly braces.

{ haskellcode }

There exist three kinds of code blocks: top-level, type, and expression code blocks. A top-level
code block contains Haskell declarations, such as import declarations, and function and type
definitions. A name can be writen before a top-level code block. The code blocks are sorted by
their names, and appended to the code generated by the uuag system. A special name imports
is used to mark code blocks containing import declarations. These are copied to the start of the
generated code, as Haskell only allows import declarations at the beginning of a file.
An example of two code blocks, an import declaration and a function definition:

imports

{

import List

}

quicksort

{

-- simple implementation of quicksort:

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = let (l,r) = partition (<=x) xs

in qsort l ++ [x] ++ qsort r

}

A type code block contains a Haskell type and may be used as types in DATA, TYPE, and ATTR
declarations. Examples:

DATA Module

| Module name:{Maybe String} body:Declarations

TYPE Points = [{(Int,Int)}]

ATTR [env:{[(String,Int)]} | |]

Finally expression code blocks contain a Haskell expression and occur as the right-hand side
of attribute definitions in SEM statements. Apart from normal Haskell code they may contain
references to attributes. These references are prefixed with an @-symbol, to distinguish them from
ordinary Haskell identifiers. Examples:

SEM Tree [| | min:{Int}]

| Node lhs.min = { min @left.min @right.min } -- an expression code block

The contents of a block is the plain text between an open and a close brace. The text in a code
block is not interpreted by the uuag system.

any ::= [“\0”..“\255”] (any character)
codeblock ::= “{”codeblockcontent∗“}”
codeblockcontent ::= any except {, and }

| codeblock

Curly braces occurring inside the Haskell code must be balanced. This includes curly braces in
comments, and in string and character literals.
An example of a code block containing a nested pair of braces:

{

f a b c = let { d = b*b - 4*a*c

; result1 = (-b + sqrt d) / 2*a

; result2 = (-b - sqrt d) / 2*a

; result | d > 0 = [result1, result2]

| d == 0 = [result1]

10

| d < 0 = []

}

in result

}

All curly braces Haskell constructs, such as do, let must be matched. However, curly braces in
string, or character literals may cause problems. The balancing rule forbids code blocks such as:

{

openbrace = "{"

}

This problem can be fixed by inserting a matching brace in comments. In the following code the
curly braces are balanced:

{

openbrace = "{"

-- }, just to balance braces

}

2.7 Comments

One-line comments start with two dashes (--) and end at the end of the line. Multi-line comments
start with {- and end with -}. As in Haskell comments can be nested.

{-

Definition of a datatype for binary trees

-}

DATA Tree

| Leaf val:Int

| Node left:Tree right:Tree -- a node has two subtrees

2.8 Names

Names start with a letter followed by a (possibly empty) sequence of letters, digits, and the symbols
_ and ’. A name for a nonterminal or constructor must start with an upper-case letter. A
name of a field or attribute must start with a lower-case letter. The following words are reserved
and cannot be used as names: DATA, EXT, ATTR, SEMTYPE, USE, loc, lhs, and INCLUDE.
Valid names:

-- nonterminals or constructors:

Node

Expression

Tree_Node

-- field names or attributes:

left

long_name

field2

2.9 Strings

A string in uuagc is sequence of characters enclosed by double quotes ("). The structure of
strings is similar to Haskell strings. The escape character is a backslash (\). Below a table with
the most common escape sequences:
\’ single quote (’)
\" double quote (")
\n newline
\t tab
\nnn character with ascii-code nnn

For a more detailed description of string and escape se-

11

quences see the Haskell Report[?]. Examples of valid strings:
"hello world"

"line 1\nline 2"

"hello\32world"

3 Copy Rule

When a definition for an attribute is missing, the uuag can often derive a rule for it. These
automatic rules, also known as copy rules, are based on name equality of attributes. They save
a lot of otherwise trivial typing, thus making your programs easier to read by just leaving the
essential parts in the code. If in the list of rules for a constructor a rule for an attribute attr1 is
missing then uuag system tries to derive a rule for this attribute. This is done by looking for an
attribute attr2 with the same name as attr1 in the sets of synthesized attributes of the children
of the constructor and in the set of inherited attributes of the nonterminal it belongs to. If such
an attribute attr2 is found then the value of attr1 is set to the value of attr2 . This section firstly
shows two examples and then defines a generalisation that captures both(and others). There are
also two special copy rules, the USE, and SELF rules, which are explained at the end of this section.

3.1 Examples

Very often one needs to pass a value from a node to all its children. Consider for example the
following code, in which a inherited attribute gmin is declared.

DATA Tree | Bin left,right:Tree

| Leaf val:Int

ATTR Tree [gmin:Int | |]

In this example rules for the syntesized attribute gmin of children of the constructor Bin are
missing. This is however no problem. The nonterminal Tree has an inherited attribute with the
same name and the uuag system automatically inserts the following rules:

SEM Tree

| Bin left.gmin = @lhs.gmin

right.gmin = @lhs.gmin

This kind of copy-rule is very convenient for copying an inherited attribute to all nodes in a
top-down fashion.
Another kind of copy-rule is a co-called chain-rule. For a chain rule an attribute that is both
inherited as well as synthesized is chained from left to right through all children of a constructor.
Consider for example the following code that numbers all leaves in a Tree from left to right.

ATTR Tree [| label:Int |]

SEM Tree

| Leaf lhs.label = @lhs.label+1

Because the attribute label is declared inherited as well as synthesized the uuag system derives
the following rules for the constructor Bin:

SEM Tree

| Bin left.label = @lhs.label

right.label = @left.label

lhs.label = @right.label

3.2 Generalised copy rule

The uuag system implements a more general copy rule of which the examples above are instances.
If a rule is missing for an inherited attribute n of a child c of constructor con, the uuag system

12

searches for an attribute with the same name(n). The uuag system searches for a suitable
candidate in the following lists:

1 local attributes
2 synthesized attributes of children on the left of c
3 inherited attributes
4 fields

The search takes place in the order defined above, and the first occurrence of n is copied. Thus
local attributes have preference over others. When there are multiple occurrences of n in the list
of synthesized attributes of the children the rightmost is taken.
When a rule for a synthesized attribute is missing the search for a candidate with the same name
takes place in a similar fashion. In the second step all children are searched, again taking the
rightmost candidate if more than one is found.

3.3 USE rules

A USE rule can be derived for a synthesized attribute whose declaration includes a USE clause. A
USE clause consists of two expressions; the first is an operator, and the second is a default value.
Suppose s is a synthesized attribute of n, that is declared with a USE clause. If for a constructor
c of n a definition of s is missing, a rule is derived as follows. Collect all synthesized attributes
of constructor c’s children with the same name as s. If this collection is empty the default value
declared in the USE clause is taken. If this collection contains only a single attribute, then the
value of this attribute is copied. Otherwise the values of the attributes are combined using the
operator and the result is used to define s.
For example:

DATA Tree

| Bin left,right:Tree

| Single val:Int

| Empty

ATTR Tree [|| sum USE {+} {0} : Int]

SEM Tree

| Single lhs.sum = @val

The uuag system derives the following rules:
SEM Tree

| Bin lhs.sum = @left.sum + @right

| Empty lhs.sum = 0

3.4 SELF rules

The type SELF in an attribute declaration is equivalent to the type of the nonterminal to which
the attribute belongs. A synthesized SELF attribute can for example be used if one wants a local
copy of a tree, or wants to transform it. The SELF attribute then holds the transformed version
of the tree. A SELF attribute usually holds a copy of the tree, except for a few places where a
transformation is done. The semantic rules required for constructing a copy of a tree call for
each production the corresponding constructor function on the copies of the children. The uuag
system implements a special copy rule to avoid writing these trivial rules. For each production of
a nonterminal with a synthesized SELF attribute n, the uuag system generates a local attribute
containing the application of the corresponding constructor to the SELF attributes of the children
with the same name as n. The value of the synthesized attribute is set to this local attribute.
For example for:

DATA Tree

| Bin left,right:Tree

| Leaf val:Int

13

ATTR Tree [| | copy : SELF]

the following semantic rules are generated:
SEM Tree

| Bin loc.copy = Bin @left.copy @right.copy

lhs.copy = @copy

| Leaf loc.copy = Leaf @val

lhs.copy = @copy

The default definitions for the local and sythesized SELF attributes can be overriden by the pro-
grammer.
The following program is a complete attribute grammer for the rep-min problem using as many
copy rules as possible. For constructing the transformed a SELF attribute result is used. Note
that only for the production Leaf an explicit definition of this attribute is given. The definition
for Bin is provided by an automatic rule.

DATA Tree

| Bin left,right:Tree

| Leaf val:Int

DATA Root

| Root Tree

ATTR Tree [gmin:Int | | lmin USE {‘min‘} {0}:Int]

ATTR Root Tree [| | result:SELF]

SEM Tree

| Leaf lhs.lmin = @val

.result = Leaf @lhs.gmin

SEM Root

| Root tree.gmin = @tree.lmin

4 Code Generation

4.1 Module header

If the option -m or --module=[name] is provided to the uuag compiler then a module header will
be generated. If a name is provided to the --module flag then this name is used as module name,
otherwise the module name will be the filename without the suffix .ag or .lag.

4.2 Data types

When the flag --data or -d is passed to the uuag compiler, then a data type definition is generated
for each nonterminal introduced in a DATA declaration and a type synonym is generated for each
nonterminal introduced in a TYPE declaration. The uuag system allows different nonterminals to
have constuctors with the same names. For Haskell data types this is not allowed. To prevent
clashes between constuctors of different data types the flag --rename or -r can be specified. All
constructors will then be prefixed with their corresponding nonterminal(and an underscore).
For example for this fragment of uuag code:

DATA Expr

| Var name:String

| Apply fun:Expr arg:Expr

| Tuple elems:Exprs

| ...

TYPE Exprs = [Expr]

DATA Type

| Var name:String

| Apply fun:Type arg:Type

14

| ...

the following Haskell code is generated when the flags --data and --rename are switched on:
data Expr

= Expr_Var String

| Expr_Apply Expr Expr

| ...

type Exprs = [Expr]

data Type

= Type_Var String

| Type_Apply Type Type

| ...

If the --rename flag is not provided it is the responsibility of the programmer to make sure that
are constructors are uniquely named.

4.3 Semantic functions

The semantic domain of a nonterminal is a mapping from its inherited to its synthesized attributes.
When the flag --semfuns or -f is switched on, the uuag compiler generates for each nonterminal
a type synonym representing its semantic domain, and for each constructor a semantic function.
A semantic function takes the semantics of its children as arguments and returns the semantics of
the corresponding nonterminal. A semantic function is named as follows:
prefix nonterminal constructor.
The default prefix is sem, another prefix can be supplied with the --prefix=name flag.
Consider the following code fragment:

DATA Tree

| Bin left,right:Tree

| Leaf val:Int

ATTR Tree [lmin:Int gmin:Int | | lmin:Int result:Tree]

SEM Tree

| Bin lhs.result = Bin @left.result @right.result

| Leaf lhs.lmin = min @lhs.lmin @val

lhs.result = Leaf @lhs.gmin

The semantic domain of the nonterminal Tree is defined as follows:
type T_Tree = Int -> Int -> (Int,Tree)

The inherited attributes are arguments and the synthesized attributes are packed together in a
tuple as result. The uuag system lexicographically sorts the attributes, hence the first Int stands
for the inherited attribute gmin, and the second for the inherited attribute lmin. If the flag
--newtypes is switched on, a newtype declaration is generated for the semantic domain instead
of a type synonym.
The types of the generated semantic functions for the constructors Bin, and the Leaf are the
following:

sem_Tree_Bin :: T_Tree -> T_Tree -> T_Tree

sem_Tree_Leaf :: Int -> T_Tree

Note that the semantics of a child that has a Haskell type is simply the value of that child. When
the flag --signatures or -s is switched on then the type signatures of the semantic functions are
actually emmited in the generated code.

4.4 Catamorphisms

When the flag --catas or -c is supplied, the the uuag compiler generates catamorphisms for
every nonterminal. A catamorphism is a function that takes a (syntax) tree as argument and

15

computes the semantics of that tree. The catamorphism for a nonterminal nt is named as follows:
prefix nonterminal.
As for semantic functions the prefix is sem by default, and can be changed with the --prefix=name
flag. For example the type of the catamorphism for the nonterminal Tree is:

sem_Tree :: Tree -> T_Tree

When the flag --signatures or -s is switched on then the type signatures of the catamorphisms
are actually emmited in the generated code.

4.5 Wrappers

The result of a semantic function or a catamorphism is a function from inherited to synthesized
attributes. To be able to use such a result, a programmer needs to know the order of all the
attributes. Wrapper functions for the semantic domains can be generated to provide access to
the attributes by their names. When the flag --wrappers or -w is switched on the following is
generated for each semantic domain:

• a record type with named fields for the inherited attributes
• a record type with named fields for the synthesized attributes
• a wrapper function that transforms a semantic domain in a function from a record of inherited

attributes to a record of synthesized attributes
The two record types for a nonterminal nt are called nt_Inh, and nt_Syn, for the inherited and
synthesized attributes, respectively. The labels of the records are the names of the attributes
suffixed with the name of the record type. The generated wrapper function is named wrap_nt.
For the nonterminal Tree in the example above the following record types are generated:

data Tree_Inh = Tree_Inh{ lmin_Tree_Inh :: Int

, gmin_Tree_Inh :: Int

}

data Tree_Syn = Tree_Syn{ lmin_Tree_Syn :: Int

, result_Tree_Syn :: Tree

}

The generated wrapper function has the following type:
wrap_Tree :: T_Tree -> Tree_Inh -> Tree_Syn

Using the generated wrapper code the function repmin can be defined as follows:
repmin :: Tree -> Tree

repmin tree = let synthesized = wrap_Tree (sem_Tree tree) inherited

inherited =

Tree_Inh

{ lmin_Tree_Inh = infty

, gmin_Tree_Inh = lmin_Tree_Syn synthesized

}

infty = 1000

in result_Tree_Syn synthesized

5 Grammar

Normal uuag system source files have .ag as suffix. The uuag system also supports literate
programming. Literate uuag files have .lag as suffix. In literate mode all text in a file is
considered to be comments, except for those blocks enclosed between: \begincode, and \endcode.
The begin and end commands should be placed at the beginning of a line.
The remainder of this section presents the grammar of the uuag system as ebnf production rules.
Parenthesis are used for grouping, nonterminals are printed boldface, and terminal symbols are
printed between “quotes”. A rule of form X∗ means zero or more occurrences of X, X+ means

16

one or more occurrences of X, and X? is an optional occurrence of X. In the lexical syntax
character ranges are written between square brackets. For example [“A”..“Z”] represents the range
of uppercase letters.

5.1 Lexical Syntax

keywords = { “DATA”, “EXT”, “ATTR”, “SEM”, “TYPE”
, “USE”, “loc”, “lhs”, “INCLUDE” }

uppercase ::= [“A” .. “Z”]
lowercase ::= [“a” .. “z”]
any ::= [“\0” .. “\255”] (any character)
conid ::= uppercase identletter* except keywords

varid ::= lowercase identletter* except keywords

identletter ::= uppercase
| lowercase
| “’”
| “ ”

string ::= “"” stringcontents “"”
codeblock ::= “{” codeblockcontent* “}”
codeblockcontent ::= any except “{”, and “}”

| codeblock

layoutcodeblock ::= layoutcontent*
layoutcontent ::= any (except letters that are less indented than reference column)

5.2 Context-free Grammar

ag ::= elem*

elem ::= “DATA” conid attrDecls? dataAlt*
| “ATTR” conid+ attrDecls
| “TYPE” conid “=” “[” type* “]”
| “SEM” conid attrDecls? semAlt*
| varid? codeblock
| “INCLUDE” string

attrDecls ::= “[” inhAttrDecl* “|” synAttrDecl* “|” synAttrDecl* “]”

type ::= conid
| codeBlock

inhAttrDecl ::= varids “:” type

varids ::= varid (“,” varid)*
synAttrDecl ::= varids (“USE” codeBlock codeBlock)? “:” type

dataAlt ::= “|” conid field*

field ::= varids “:” type
| conid

semAlt ::= “|” conid+ semDef*

semDef ::= (varid | “lhs”) attrDef+
| “loc” locDef+

attrDef ::= “.” varid assign expr

17

locDef ::= “.” pattern assign expr

expr ::= codeBlock
| layoutCodeBlock

assign ::= “=”
| “:=”

pattern ::= conid pattern1*
| pattern1

pattern1 ::= varid (“@” pattern1)?
| “(” patterns? “)”
| “ ”

patterns ::= pattern (“,” pattern)*

6 Compiler flags

short option long option description
-m --module[=name] generate module header, specify module name
-d --data generate data type definitions
-f --semfuns generate semantic functions
-c --catas generate catamorphisms
-s --signatures generate type signatures for semantic functions

--newtypes use newtypes instead of type synonyms
-p --pretty generate pretty printed list of attributes
-w --wrappers generate wappers for semantic domains
-r --rename prefix data constructors with the name of corresponding type

--nest use nested pairs, instead of large tuples
-o file --output=file specify output file
-v --verbose verbose error message format
-h,-? --help get usage information
-a --all do everything (-dcfsprm)

--prefix=prefix set prefix for semantic functions, default is sem_
--self generate self attribute for all nonterminals
--cycle check for cyclic attribute definitions
--version get version information

18

The “Artistic License”

Preamble
The intent of this document is to state the conditions under which a Package may be copied, such
that the Copyright Holder maintains some semblance of artistic control over the development of
the package, while giving the users of the package the right to use and distribute the Package in
a more-or-less customary fashion, plus the right to make reasonable modifications.
Definitions

• “Package” refers to the collection of files distributed by the Copyright Holder, and derivatives
of that collection of files created through textual modification.

• “Standard Version” refers to such a Package if it has not been modified, or has been modified
in accordance with the wishes of the Copyright Holder as specified below.

• “Copyright Holder” is whoever is named in the copyright or copyrights for the package.
• “You” is you, if you’re thinking about copying or distributing this Package.
• “Reasonable copying fee” is whatever you can justify on the basis of media cost, duplication

charges, time of people involved, and so on. (You will not be required to justify it to the
Copyright Holder, but only to the computing community at large as a market that must
bear the fee.)

• “Freely Available” means that no fee is charged for the item itself, though there may be fees
involved in handling the item . It also means that recipients of the item may redistribute it
under the same conditions they received it.

1 You may make and give away verbatim copies of the source form of the Standard Version
of this Package without restriction, provided that you duplicate all of the original copyright
notices and associated disclaimers.

2 You may apply bug fixes, portability fixes and other modifications derived from the Public
Domain or from the Copyright Holder. A Package modified in such a way shall still be
considered the Standard Version.

3 You may otherwise modify your copy of this Package in any way, provided that you insert
a prominent notice in each changed file stating how and when you changed that file, and
provided that you do at least ONE of the following:

• place your modifications in the Public Domain or otherwise make them Freely Available,
such as by posting said modifications to Usenet or an equivalent medium, or placing the
modifications on a major archive site such as uunet.uu.net, or by allowing the Copyright
Holder to include your modifications in the Standard Version of the Package.

• use the modified Package only within your corporation or organization.
• rename any non-standard executables so the names do not conflict with standard ex-

ecutables, which must also be provided, and provide a separate manual page for each
non-standard executable that clearly documents how it differs from the Standard Ver-
sion.

• make other distribution arrangements with the Copyright Holder.
4 You may distribute the programs of this Package in object code or executable form, provided

that you do at least ONE of the following:
• distribute a Standard Version of the executables and library files together with instruc-

tions (in the manual page or equivalent) on where to get the Standard Version.
• accompany the distribution with the machine-readable source or the Package with your

modifications.
• give non-standard executables non-standard names, and clearly document the differ-

ences in manual pages (or equivalent), together with instructions on where to get the
Standard Version.

• make other distribution arrangements with the Copyright Holder.
5 You may charge a reasonable copying fee for any distribution of this Package. You may

charge any fee you choose for support of this Package. You may not charge a fee for this
Package itself. However, you may distribute this Package in aggregate with other (possibly

19

commercial) programs as part of a larger (possibly commercial) software distribution pro-
vided that you do not advertise this Package as a product of your own. You may embed this
Package’s code within an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version is so embedded.

6 Aggregation of this Package with a commercial distribution is always permitted provided
that the use of this Package is embedded; that is, when no overt attempt is made to make
this Package’s interfaces visible to the end user of the commercial distribution. Such use
shall not be construed as a distribution of this Package

7 The name of the Copyright Holder may not be used to endorse or promote products derived
from this software without specific prior written permission.

8 THIS PACKAGE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

20

