
[Faculty of Science
Information and Computing Sciences]

Attribute Grammars: A short tutorial
Tree-Oriented Programming

S. Doaitse Swierstra (doaitse@cs.uu.nl), GPCE 2003
Arie Middelkoop (ariem@cs.uu.nl), LERNET 2008

Universiteit Utrecht

March 1, 2008



[Faculty of Science
Information and Computing Sciences]

2

Overview

I Historical overview

I Example

I Concepts

I AG by example

I Discussion



[Faculty of Science
Information and Computing Sciences]

3

Not covered

I First class aspects

I Delegation

I Subtyping-like systems

I Embedding attribute grammars in other languages

I Extending compilers dynamically



[Faculty of Science
Information and Computing Sciences]

4

Implementing a language

I Parsing is about syntax

I What about semantics?



[Faculty of Science
Information and Computing Sciences]

5

Historical Overview

I Context-free grammars have limited expressiveness, and
thus fail to describe:

I Scope rules
I Typing rules
I Pretty printing
I Code generation

I Are there extensions?

I Context-sensitive grammars are not very useful, so the idea
came up to...



[Faculty of Science
Information and Computing Sciences]

5

Historical Overview

I Context-free grammars have limited expressiveness, and
thus fail to describe:

I Scope rules
I Typing rules
I Pretty printing
I Code generation

I Are there extensions?

I Context-sensitive grammars are not very useful, so the idea
came up to...



[Faculty of Science
Information and Computing Sciences]

5

Historical Overview

I Context-free grammars have limited expressiveness, and
thus fail to describe:

I Scope rules
I Typing rules
I Pretty printing
I Code generation

I Are there extensions?

I Context-sensitive grammars are not very useful, so the idea
came up to...



[Faculty of Science
Information and Computing Sciences]

6

Parameterize Non-Terminal Symbols

Parameterize non-terminal symbols:

I With strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)

I With trees: affix grammars
S → L〈N 〉
N → 1 : N | 0
L〈N 〉 → A〈N 〉 B〈N 〉 C 〈N 〉
A〈0〉 → ε B〈0〉 → ε ...
A〈1 : N 〉 → a A〈N 〉 B〈1 : N 〉 → b B〈N 〉 ...

I With values from some other domain: attribute grammars
(Knuth)



[Faculty of Science
Information and Computing Sciences]

6

Parameterize Non-Terminal Symbols

Parameterize non-terminal symbols:

I With strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)

I With trees: affix grammars
S → L〈N 〉
N → 1 : N | 0
L〈N 〉 → A〈N 〉 B〈N 〉 C 〈N 〉
A〈0〉 → ε B〈0〉 → ε ...
A〈1 : N 〉 → a A〈N 〉 B〈1 : N 〉 → b B〈N 〉 ...

I With values from some other domain: attribute grammars
(Knuth)



[Faculty of Science
Information and Computing Sciences]

7

What Has Been Achieved?

I A lot of research on the efficient evaluation, both in space
and time, and

I So we could write compilers with it that were almost as
efficient as hand-written compilers

I And so attribute grammars were not used by compiler
writers

I And other people thought it was something for compiler
writers only

I And had do do something very complicated with grammars
I And so they are still largely ignored

I We may see attribute grammars however as:
I A way to do lazy functional programming in an imperative

setting
I An aspect oriented programming language
I A domain-specific language for writing catamorphisms



[Faculty of Science
Information and Computing Sciences]

7

What Has Been Achieved?

I A lot of research on the efficient evaluation, both in space
and time, and

I So we could write compilers with it that were almost as
efficient as hand-written compilers

I And so attribute grammars were not used by compiler
writers

I And other people thought it was something for compiler
writers only

I And had do do something very complicated with grammars
I And so they are still largely ignored

I We may see attribute grammars however as:
I A way to do lazy functional programming in an imperative

setting
I An aspect oriented programming language
I A domain-specific language for writing catamorphisms



[Faculty of Science
Information and Computing Sciences]

7

What Has Been Achieved?

I A lot of research on the efficient evaluation, both in space
and time, and

I So we could write compilers with it that were almost as
efficient as hand-written compilers

I And so attribute grammars were not used by compiler
writers

I And other people thought it was something for compiler
writers only

I And had do do something very complicated with grammars
I And so they are still largely ignored

I We may see attribute grammars however as:
I A way to do lazy functional programming in an imperative

setting
I An aspect oriented programming language
I A domain-specific language for writing catamorphisms



[Faculty of Science
Information and Computing Sciences]

7

What Has Been Achieved?

I A lot of research on the efficient evaluation, both in space
and time, and

I So we could write compilers with it that were almost as
efficient as hand-written compilers

I And so attribute grammars were not used by compiler
writers

I And other people thought it was something for compiler
writers only

I And had do do something very complicated with grammars

I And so they are still largely ignored

I We may see attribute grammars however as:
I A way to do lazy functional programming in an imperative

setting
I An aspect oriented programming language
I A domain-specific language for writing catamorphisms



[Faculty of Science
Information and Computing Sciences]

7

What Has Been Achieved?

I A lot of research on the efficient evaluation, both in space
and time, and

I So we could write compilers with it that were almost as
efficient as hand-written compilers

I And so attribute grammars were not used by compiler
writers

I And other people thought it was something for compiler
writers only

I And had do do something very complicated with grammars
I And so they are still largely ignored

I We may see attribute grammars however as:
I A way to do lazy functional programming in an imperative

setting
I An aspect oriented programming language
I A domain-specific language for writing catamorphisms



[Faculty of Science
Information and Computing Sciences]

7

What Has Been Achieved?

I A lot of research on the efficient evaluation, both in space
and time, and

I So we could write compilers with it that were almost as
efficient as hand-written compilers

I And so attribute grammars were not used by compiler
writers

I And other people thought it was something for compiler
writers only

I And had do do something very complicated with grammars
I And so they are still largely ignored

I We may see attribute grammars however as:
I A way to do lazy functional programming in an imperative

setting
I An aspect oriented programming language
I A domain-specific language for writing catamorphisms



[Faculty of Science
Information and Computing Sciences]

8

An Attribute Grammar Consists Of:

I An underlying context free grammar

I A description of which non-terminals have which
attributes:

I Inherited attributes, that are used or passing information
downwards in the tree

I Synthesized attributes that are used to pass information
upwards

I For each production a description how to compute the:
I Inherited attributes of the non-terminals in the right hand

side
I The synthesized attributes of the non-terminal at the left

hand side

I In this way we describe global data flow over a tree, by
defining local data-flow building blocks, corresponding to
the productions of the grammar



[Faculty of Science
Information and Computing Sciences]

8

An Attribute Grammar Consists Of:

I An underlying context free grammar
I A description of which non-terminals have which

attributes:
I Inherited attributes, that are used or passing information

downwards in the tree
I Synthesized attributes that are used to pass information

upwards

I For each production a description how to compute the:
I Inherited attributes of the non-terminals in the right hand

side
I The synthesized attributes of the non-terminal at the left

hand side

I In this way we describe global data flow over a tree, by
defining local data-flow building blocks, corresponding to
the productions of the grammar



[Faculty of Science
Information and Computing Sciences]

8

An Attribute Grammar Consists Of:

I An underlying context free grammar
I A description of which non-terminals have which

attributes:
I Inherited attributes, that are used or passing information

downwards in the tree
I Synthesized attributes that are used to pass information

upwards

I For each production a description how to compute the:
I Inherited attributes of the non-terminals in the right hand

side
I The synthesized attributes of the non-terminal at the left

hand side

I In this way we describe global data flow over a tree, by
defining local data-flow building blocks, corresponding to
the productions of the grammar



[Faculty of Science
Information and Computing Sciences]

9

Introducing UUAG

I Special syntax for programming with attributes

I Domain specific language for specifying tree walks

This example:

I Attribute values do not influence the parsing process

I Semantic functions for the parser are generated from the
attribute grammar



[Faculty of Science
Information and Computing Sciences]

10

Creating HTML from a document

\section{Intro} <h1>Intro</h1>
\section{Section 1} <h2>Section 1</h2>
\paragraph <p>
paragraph 1 Paragraph 1

\end </p>
\paragraph <p>
paragraph 2 Paragraph 2

\end </p>
\end
\section{Section 2} <h2>Section 2</h2>
\paragraph <p>
paragraph 1 Paragraph 1

\end </p>
\paragraph <p>
paragraph 2 Paragraph 2

\end </p>
\end \end



[Faculty of Science
Information and Computing Sciences]

11

Concrete syntax

Docs ::= Doc*
Doc ::= \section { Text } Docs \end

| \paragraph Text \end

pDocs :: Parser Token T Docs
pDocs = pFoldr gr (sem Docs Cons, sem Docs Nil) pDoc
pDoc :: Parser Token T Doc
pDoc =

sem Doc Section 〈$ pKey "\Section"
〈∗〉 pPacked (pKey "{") (pKey "}") pText
〈∗〉 pDocs 〈∗ pKey "\end"

〈|〉
sem Doc Paragraph
〈$ pKey "\Paragraph" 〈∗〉 pText 〈∗ pKey "\end"



[Faculty of Science
Information and Computing Sciences]

12

Abstract syntax

In our example we will use the Utrecht Attribute Grammar
System, which borrows heavily from Haskell.

I Grammars closely resemble Haskell data types:
TYPE Docs = [Doc ]
DATA Doc | Section title : String body : Docs

| Paragraph text : String

I Docs and Doc are non-terminals

I Section and Paragraph label different productions

I title, body and string are names for children



[Faculty of Science
Information and Computing Sciences]

12

Abstract syntax

In our example we will use the Utrecht Attribute Grammar
System, which borrows heavily from Haskell.

I Grammars closely resemble Haskell data types:
TYPE Docs = [Doc ]
DATA Doc | Section title : String body : Docs

| Paragraph text : String

I Docs and Doc are non-terminals

I Section and Paragraph label different productions

I title, body and string are names for children



[Faculty of Science
Information and Computing Sciences]

13

Our First Attribute!

I We introduce an attribute html of type String to return
the generated html code in a synthesized attribute:

ATTR Doc Docs [ | | html : String ]

I Definitions for attributes are given in Haskell, with
embedded references to attributes, in the form of
@<ntname>.<attrname>:

SEM Doc
| Section lhs.html = "<bf>" ++ @title ++ "</bf>\n"

++ @body .html
| Paragraph lhs.html = "<P>" ++ @text ++ "</P>"

SEM Docs
| Cons lhs.html = @hd .html ++ @tl .html
| Nil lhs.html = ""



[Faculty of Science
Information and Computing Sciences]

13

Our First Attribute!

I We introduce an attribute html of type String to return
the generated html code in a synthesized attribute:

ATTR Doc Docs [ | | html : String ]

I Definitions for attributes are given in Haskell, with
embedded references to attributes, in the form of
@<ntname>.<attrname>:

SEM Doc
| Section lhs.html = "<bf>" ++ @title ++ "</bf>\n"

++ @body .html
| Paragraph lhs.html = "<P>" ++ @text ++ "</P>"

SEM Docs
| Cons lhs.html = @hd .html ++ @tl .html
| Nil lhs.html = ""



[Faculty of Science
Information and Computing Sciences]

14

A Picture

lhs

Docs

html

hd html tl html

lhs

Doc

html

title body html



[Faculty of Science
Information and Computing Sciences]

15

Adding The Level Aspect

I Introduce an inherited attribute with name level ,
indicating the nesting level of the headings:

ATTR Doc Docs [ level : Int | | ]

I With the semantic rules:
SEM Doc | Section

body .level = @lhs.level + 1
lhs.html := mk tag ("H" ++ show @lhs.level)

"" @title ++ @body .html

I Where the function mk tag is defined by:
mk tag tag attrs elem = "<" ++ tag ++ attrs ++ ">" ++ elem

++ "</" ++ tag ++ ">"



[Faculty of Science
Information and Computing Sciences]

15

Adding The Level Aspect

I Introduce an inherited attribute with name level ,
indicating the nesting level of the headings:

ATTR Doc Docs [ level : Int | | ]

I With the semantic rules:
SEM Doc | Section

body .level = @lhs.level + 1
lhs.html := mk tag ("H" ++ show @lhs.level)

"" @title ++ @body .html

I Where the function mk tag is defined by:
mk tag tag attrs elem = "<" ++ tag ++ attrs ++ ">" ++ elem

++ "</" ++ tag ++ ">"



[Faculty of Science
Information and Computing Sciences]

15

Adding The Level Aspect

I Introduce an inherited attribute with name level ,
indicating the nesting level of the headings:

ATTR Doc Docs [ level : Int | | ]

I With the semantic rules:
SEM Doc | Section

body .level = @lhs.level + 1
lhs.html := mk tag ("H" ++ show @lhs.level)

"" @title ++ @body .html

I Where the function mk tag is defined by:
mk tag tag attrs elem = "<" ++ tag ++ attrs ++ ">" ++ elem

++ "</" ++ tag ++ ">"



[Faculty of Science
Information and Computing Sciences]

16

A Picture With level Added

lhs

Docs

level html

hdlevel html tllevel html

lhs

Doc

level html

title bodylevel html



[Faculty of Science
Information and Computing Sciences]

17

Example

Section "Intro"
[Section "Section 1"

[Paragraph "paragraph 1",
, Paragraph "paragraph 2"
]

, Section "Section 2"
[Paragraph "paragraph 3",
, Paragraph "paragraph 4"
]

]



[Faculty of Science
Information and Computing Sciences]

18

Note The Following:

I We did not touch the original code

I We introduced a new inherited attribute with its definitions

I We only redefined the definition of Doc.section.html ,
hence the use of :=

I Maybe we also want to add yet another aspect: section
counters



[Faculty of Science
Information and Computing Sciences]

18

Note The Following:

I We did not touch the original code

I We introduced a new inherited attribute with its definitions

I We only redefined the definition of Doc.section.html ,
hence the use of :=

I Maybe we also want to add yet another aspect: section
counters



[Faculty of Science
Information and Computing Sciences]

19

Adding The Section Counter Aspect

I Introduce two inherited attributes:
I The context , representing the outer blocks
I A counter for keeping track of the number of encountered

siblings.

ATTR Doc Docs [ context : String
| count : Int
|]

I Since we do not now whether a Doc will update the
counter we will have to pass it from Docs to Doc, and
back up again. So count becomes a threaded attribute

I loc is a virtual non-terminal, with which we may associate
local attributes



[Faculty of Science
Information and Computing Sciences]

20

A picture With The count Added

lhs

Docs

count level html count

hdcount level html count tlcount level html count

lhs

Doc

count level html count

title bodycount level html count



[Faculty of Science
Information and Computing Sciences]

21

The Semantic Functions

SEM Doc
| Section body .count = 1

body .context = @loc.prefix
lhs.count = @lhs.count + 1
lhs.html := @loc.html
loc.prefix = if null @lhs.context

then show @lhs.count
else @lhs.context

++ "."
++ show @lhs.count

loc.html = mk tag ("H" ++ show @lhs.level)
""
(@loc.prefix ++ " "
++ @title)

++ @body .html



[Faculty of Science
Information and Computing Sciences]

22

...

I expected more rules. What happened?

I We have not given rules for count and prefix for Docs?

I Since we generate copy rules in case attributes are passed
on unmodified

I Some copy rules that were automatically generated are:

SEM Docs
| Nil lhs.count = @lhs.count
| Cons hd .count = @lhs.count

tl .count = @hd .count
hd .context = @lhs.context
tl .context = @lhs.context
hd .level = @lhs.level
tl .level = @lhs.level



[Faculty of Science
Information and Computing Sciences]

22

...

I expected more rules. What happened?

I We have not given rules for count and prefix for Docs?

I Since we generate copy rules in case attributes are passed
on unmodified

I Some copy rules that were automatically generated are:

SEM Docs
| Nil lhs.count = @lhs.count
| Cons hd .count = @lhs.count

tl .count = @hd .count
hd .context = @lhs.context
tl .context = @lhs.context
hd .level = @lhs.level
tl .level = @lhs.level



[Faculty of Science
Information and Computing Sciences]

23

Copy rules

If a rule for an attribute k .a is missing:

I Use @loc.a
I Use @c.a for the rightmost child c to the left of k , which

has a synthesized attribute named a
I Use @lhs.a



[Faculty of Science
Information and Computing Sciences]

24

A Pictorial Representation

I We show some different aspects

I We show the aspects count and level and html

lhs

Docs

count level html count

hdcount level html count tlcount level html count



[Faculty of Science
Information and Computing Sciences]

25

Adding Extra Productions

I We may also add extra productions, and as an example we
will insert a table of contents

I An extra synthesized attribute toclines in which the table
of contents is constructed

I An extra inherited attribute toc, containing the table of
contents

DATA Root | Root doc : Doc
ATTR Root [|| html : String ]
DATA Doc | Toc
ATTR Doc Docs [ toc : String

|
| toclines USE{++}{""} : String ]

I The USE clause defines default semantic computation



[Faculty of Science
Information and Computing Sciences]

25

Adding Extra Productions

I We may also add extra productions, and as an example we
will insert a table of contents

I An extra synthesized attribute toclines in which the table
of contents is constructed

I An extra inherited attribute toc, containing the table of
contents

DATA Root | Root doc : Doc
ATTR Root [|| html : String ]
DATA Doc | Toc
ATTR Doc Docs [ toc : String

|
| toclines USE{++}{""} : String ]

I The USE clause defines default semantic computation



[Faculty of Science
Information and Computing Sciences]

26

A picture with the toc and toclines added

lhs

Docs

toc count level html count toclines

hdtoc count level html count toclines tltoc count level html count toclines

lhs

Doc

toc count level html count toclines

title bodytoc count level html count toclines



[Faculty of Science
Information and Computing Sciences]

27

...

SEM Doc
| Section

lhs .toclines = mk tag "LI" ""
(mk tag ("A")
(" HREF=#" ++ @loc.prefix )
(@loc.prefix ++ " "
++ @title))

++ mk tag "UL" ""@body .toclines
lhs .html := mk tag "A" (" NAME="

++ @loc.prefix ) ""
++ @loc.html

| Toc lhs .html = @lhs.toc
SEM Root

| Root doc.toc = @doc.toclines
doc.level = 1
doc.context = ""
doc.count = 1



[Faculty of Science
Information and Computing Sciences]

28

Backward Flow Of Data

I We want to be able to jump to the section to the left and
the right of the current section

I We introduce two new attributes for passing this
information around



[Faculty of Science
Information and Computing Sciences]

29

Left

lhs

Docs

left left

hdleft left tlleft left

lhs

Doc

left left

title bodyleft left



[Faculty of Science
Information and Computing Sciences]

30

Right

lhs

Docs

right right

hdright right tlright right

lhs

Doc

right right

title bodyright right

SEM Docs SEM Doc
| Cons | Section

hd .right = @tl .right lhs.right = @title
tl .right = @lhs.right body .right = ""
lhs.right = @hd .right



[Faculty of Science
Information and Computing Sciences]

31

Current Situation

I Attribute grammars are a domain specific language for
describing catamorphisms

I With higher-order domains, i.e. we assign functions
mapping inherited to synthesized attributes

I Different systems differ in what kind of specific patterns of
attribution being supported, such as:

I The copy rules we have seen
I The USE clause that was used to cmbine attribute values

presented by children
I Some systems allow to refer to far away attributes



[Faculty of Science
Information and Computing Sciences]

31

Current Situation

I Attribute grammars are a domain specific language for
describing catamorphisms

I With higher-order domains, i.e. we assign functions
mapping inherited to synthesized attributes

I Different systems differ in what kind of specific patterns of
attribution being supported, such as:

I The copy rules we have seen
I The USE clause that was used to cmbine attribute values

presented by children
I Some systems allow to refer to far away attributes



[Faculty of Science
Information and Computing Sciences]

32

What Is Generated?

I Data types

data Doc = Doc Paragraph String
| Doc Section String Docs
| Doc Toc

I Types
type T Doc = String →

Int →
Int →
String →
(Int ,String ,String)



[Faculty of Science
Information and Computing Sciences]

32

What Is Generated?

I Data types

data Doc = Doc Paragraph String
| Doc Section String Docs
| Doc Toc

I Types
type T Doc = String →

Int →
Int →
String →
(Int ,String ,String)



[Faculty of Science
Information and Computing Sciences]

33

... And ...

Semantic functions:

sem Docs Cons ( hd) ( tl) =
λ lhs context

lhs count
lhs level
lhs toc →
let ( hd count , hd html , hd toclines) =
( hd ( lhs context) ( lhs count) ( lhs level) ( lhs toc))

( tl count , tl html , tl toclines) =
( tl ( lhs context) ( hd count) ( lhs level) ( lhs toc))
in ( tl count , hd html ++ tl html

, hd toclines ++ tl toclines)



[Faculty of Science
Information and Computing Sciences]

34

Optimizations

I Perform an abstract interpretation of the grammar

I Computing dependencies between attributes

I Schedule the attributes for computation per non-terminal
(multiple visits)

I And is this way achieve a data-driven evaluation

I That may be somewhat cheaper

I And takes far less space



[Faculty of Science
Information and Computing Sciences]

34

Optimizations

I Perform an abstract interpretation of the grammar

I Computing dependencies between attributes

I Schedule the attributes for computation per non-terminal
(multiple visits)

I And is this way achieve a data-driven evaluation

I That may be somewhat cheaper

I And takes far less space



[Faculty of Science
Information and Computing Sciences]

34

Optimizations

I Perform an abstract interpretation of the grammar

I Computing dependencies between attributes

I Schedule the attributes for computation per non-terminal
(multiple visits)

I And is this way achieve a data-driven evaluation

I That may be somewhat cheaper

I And takes far less space



[Faculty of Science
Information and Computing Sciences]

34

Optimizations

I Perform an abstract interpretation of the grammar

I Computing dependencies between attributes

I Schedule the attributes for computation per non-terminal
(multiple visits)

I And is this way achieve a data-driven evaluation

I That may be somewhat cheaper

I And takes far less space



[Faculty of Science
Information and Computing Sciences]

35

What is generated now?

Type signatures:

type T Doc = Int →
String →
([Int ]) →
(Int ,PP Doc,String ,T Doc 1 )

type T Doc 1 = Int →
String →
PP Doc →
(PP Doc,String)



[Faculty of Science
Information and Computing Sciences]

36

... And ...

Semantic functions:

sem Docs Cons :: T Doc → T Docs → T Docs
sem Docs Cons ! hd ! tl =

(λ(! lhsIcount) (! lhsIleft) (! lhsIprefix ) →
(case ( lhsIprefix ) of
{! tlOprefix →
...

(case ((hd hdOcount hdOleft hdOprefix )) of
{(! hdIcount , ! hdIgathToc, ! hdIleft , !hd 1 ) →
...

(case ((tl tlOcount tlOleft tlOprefix )) of
{(! tlIgathToc, !tl 1 ) →
...
{(!sem Docs 1 ) →
( lhsOgathToc, sem Docs 1 )})



[Faculty of Science
Information and Computing Sciences]

37

... And ...

Semantic functions:

sem Docs Cons 1 :: String → T Docs 1 →
T Doc 1 → T Docs 1

sem Docs Cons 1 ! hdIleft ! tl 1 ! hd 1 =
(λ(! lhsIlevel) (! lhsIright) (! lhsItoc) →

(case ( lhsItoc) of
{! tlOtoc →
(case ( lhsIlevel) of
...

(case ((tl 1 tlOlevel tlOright tlOtoc)) of
{(! tlIcount , ! tlIhtml , ! tlIleft , ! tlIright) →
(case ( tlIcount) of
...

(case ( hdIhtml > − < tlIhtml) of
...

( lhsOcount , lhsOhtml , lhsOleft , lhsOright)})



[Faculty of Science
Information and Computing Sciences]

38

This Is Easy Because..

I We use Haskell as the target language

I And Haskell has lazy/demand driven evaluation

I And so we do not have to schedule the computations
ourselves

I Furthermore we borrow:
I The type system from Haskell
I The language for defining the semantic functions



[Faculty of Science
Information and Computing Sciences]

38

This Is Easy Because..

I We use Haskell as the target language

I And Haskell has lazy/demand driven evaluation

I And so we do not have to schedule the computations
ourselves

I Furthermore we borrow:
I The type system from Haskell
I The language for defining the semantic functions



[Faculty of Science
Information and Computing Sciences]

38

This Is Easy Because..

I We use Haskell as the target language

I And Haskell has lazy/demand driven evaluation

I And so we do not have to schedule the computations
ourselves

I Furthermore we borrow:
I The type system from Haskell
I The language for defining the semantic functions



[Faculty of Science
Information and Computing Sciences]

39

Why Are Attribute Grammars Nice?

If we look at functional languages we see that:

I It is easy to define a new function that computes a
property of a data type: define an alternative for each
alternative of the data type.

I It is difficult to add a new alternative to a data type, since
we have to update all functions so it deals with this extra
alternative

If we look at object oriented languages we see that:

I It is easy to define a subclass: simply provide a method
contributing its part for each property we are interested in.

I It is difficult to add a property to a data type, since we
have to update all subclasses with a new method



[Faculty of Science
Information and Computing Sciences]

39

Why Are Attribute Grammars Nice?

If we look at functional languages we see that:

I It is easy to define a new function that computes a
property of a data type: define an alternative for each
alternative of the data type.

I It is difficult to add a new alternative to a data type, since
we have to update all functions so it deals with this extra
alternative

If we look at object oriented languages we see that:

I It is easy to define a subclass: simply provide a method
contributing its part for each property we are interested in.

I It is difficult to add a property to a data type, since we
have to update all subclasses with a new method



[Faculty of Science
Information and Computing Sciences]

39

Why Are Attribute Grammars Nice?

If we look at functional languages we see that:

I It is easy to define a new function that computes a
property of a data type: define an alternative for each
alternative of the data type.

I It is difficult to add a new alternative to a data type, since
we have to update all functions so it deals with this extra
alternative

If we look at object oriented languages we see that:

I It is easy to define a subclass: simply provide a method
contributing its part for each property we are interested in.

I It is difficult to add a property to a data type, since we
have to update all subclasses with a new method



[Faculty of Science
Information and Computing Sciences]

39

Why Are Attribute Grammars Nice?

If we look at functional languages we see that:

I It is easy to define a new function that computes a
property of a data type: define an alternative for each
alternative of the data type.

I It is difficult to add a new alternative to a data type, since
we have to update all functions so it deals with this extra
alternative

If we look at object oriented languages we see that:

I It is easy to define a subclass: simply provide a method
contributing its part for each property we are interested in.

I It is difficult to add a property to a data type, since we
have to update all subclasses with a new method



[Faculty of Science
Information and Computing Sciences]

39

Why Are Attribute Grammars Nice?

If we look at functional languages we see that:

I It is easy to define a new function that computes a
property of a data type: define an alternative for each
alternative of the data type.

I It is difficult to add a new alternative to a data type, since
we have to update all functions so it deals with this extra
alternative

If we look at object oriented languages we see that:

I It is easy to define a subclass: simply provide a method
contributing its part for each property we are interested in.

I It is difficult to add a property to a data type, since we
have to update all subclasses with a new method



[Faculty of Science
Information and Computing Sciences]

40

We Do Not Have To choose...

I Attribute grammars do not force you to think along either
axis

I You may ”grow” a system by:

I Stepwise adding extra productions to data types
I Stepwise adding extra attributes

I Aspects are largely independent

I But interactions can take place by just referring to other
aspects

I The system will weave things together



[Faculty of Science
Information and Computing Sciences]

40

We Do Not Have To choose...

I Attribute grammars do not force you to think along either
axis

I You may ”grow” a system by:
I Stepwise adding extra productions to data types
I Stepwise adding extra attributes

I Aspects are largely independent

I But interactions can take place by just referring to other
aspects

I The system will weave things together



[Faculty of Science
Information and Computing Sciences]

40

We Do Not Have To choose...

I Attribute grammars do not force you to think along either
axis

I You may ”grow” a system by:
I Stepwise adding extra productions to data types
I Stepwise adding extra attributes

I Aspects are largely independent

I But interactions can take place by just referring to other
aspects

I The system will weave things together



[Faculty of Science
Information and Computing Sciences]

41

Conclusions

I Attribute grammars are your friend if you want to
implement a language

I Attributes may even depend on themselves if you are
building on a lazy language

I Even thinking in terms of attribute grammars you my
construct interesting programs

I http://www.cs.uu.nl/wiki/HUT/WebHome

I or check your CD


