
CHAPTER 2

Architecture of the Proxima
Editor

*** Version: 30th May 2003 ***

A generic editor is a large system with an architecture that consists of many compo-
nents for performing many different tasks. However, in this chapter, we focus on those
components of the architecture that are involved in the process of presenting the internal
document to the user, and translating the edit gestures given by the user to edit operations
on the document structure. Of course, other functionality, such as IO handling, macro
processing, or a search facility is very important for the usability of the final editor, but
its implementation is mainly straightforward and merely requires a substantial amount of
engineering.∗∗∗ The presentation and handling of edit gestures, on the other hand, is of∗∗∗ maybe a bit

to strong?
greater importance, because it determines for which applications the editor can be used,
and how powerful the editing behavior will be.

The core components of the Proxima architecture are a number of layers that only com-
municate with their direct neighbors. The layered structure is based on the staged nature
of the presentation process. Instead of mapping it directly onto its rendering, a document
is first mapped onto an intermediate data structure. The intermediate data structure is
mapped onto another intermediate data structure, until a final intermediate data structure
is mapped onto the rendering. The intermediate data structures are the datalevels, and the
components that take care of the mapping are thelayers. Figure 2.1 schematically shows
the levels and layers of Proxima. Only two levels are visible at each layer: an upper and
a lower level.

There are a number of reasons why the Proxima architecture is layered:

Staged presentation process.The presentation process is naturally staged. The process

1

2 2 Architecture of the Proxima Editor

Document

Evaluation layer

Enriched document

Presentation layer

Abstract presentation

Arrangement layer

Arrangement

Rendering layer

Rendering

Figure 2.1: The levels and layers of Proxima (draft)

consists of repeatedly mapping structures that have a different meaning on a higher
level onto the same set of lower level structures. For example, a table of contents,
once its structure has been computed, can be presented in the same way as a chapter
structure. Similarly, a line that comes from a formatted paragraph is rendered in the
same way as a line that was explicitly specified in the presentation. Mappings like
these form stages in the presentation process that can be performed by separate
layers.

Specification of presentation and edit behavior.A layered architecture provides natu-
ral hooks for the editor designer to specify presentation and edit behavior. A sep-
arate evaluation layer, for example, makes it possible to separate computation and
presentation, thus allowing different style sheets to be used for a document to-
gether with its derived structures. At the same time, layers offer more control over
backward mappings, for example specifications of how edit operations in derived
structures should be translated to edit operations on the document.

Local state. ∗∗∗ An important aspect of the Proxima editor is the concept of local state,∗∗∗ maybe this
name is not right:
”Extra state”? which is inherently connected to a layered architecture. Each level in the presenta-

tion process may contain information that is not present in the surrounding upper
or lower levels. Applications of local state include keeping track of the focus and
storing whitespace for tokens.

Keeping bidirectional mappings. Because Proxima supports editing on all levels, a map-
ping between each pair of levels needs to be maintained. Maintaining such map-
pings is easier in a layered architecture. Furthermore, the lower layers can maintain
the mappings automatically.

Efficiency. Some steps in the presentation process, especially in the higher layers, may be
time consuming because global computations need to be performed. In a layered

2.1 The levels of Proxima 3

architecture, it is possible to perform the higher layer computations not at every
keystroke, but only once in a while. For example, in a program editor, parsing the
program may be delayed until the user enters a whitespace character or performs
a navigation operation. Type checking the program may be delayed until after a
certain period of inactivity, or when specifically requested by the user.

The remainder of this chapter contains an informal description of the levels and layers in
the Proxima architecture. A formal description is presented in Chapter??.

2.1 The levels of Proxima

A data level in Proxima is not just an intermediate value in the presentation computation,
but an entity in its own right. Together, the data levels constitute the state of the editor.
The six data levels of Proxima are:

Document: The edited document, the type of which is described by a DTD or an EBNF
grammar.

Enriched Document: The document enriched with computed information.

Presentation: A logical description of the presentation of the document, consisting of
rows and columns of presentation elements with attributes. The presentation also
supports elements to be specified to be formatted based on the available space (line
breaking).

Layout: Similar to the presentation, but with explicit whitespace.

Arrangement: Similar to the layout, but with absolute size and position information. At
this level, line breaking have been performed.

Rendering: A collection of user interface commmands for drawing the absolutely posi-
tioned and sized arrangement.

2.1.1 Document

A document is the internal tree data structure that is edited by the user. The type of the
document is described by a context free grammar, with special constructs for lists and
optional values (similar to EBNF). Haskell data types, EBNF, DTDs and XML Schemas
are all restricted forms of context free grammars suitable for describing the document
type. In this thesis, we make use of simple Haskell data types without higher-order types,
except for the list and the maybe type.

The exact type formalism is important for document to document transformations (ie.
document edit operations), because it should be possible to guarantee type safety of such

4 2 Architecture of the Proxima Editor

transformations. However, for the time being, the only supported document edit oper-
ations are simple tree based operations, such as cut and paste, and basic operations on
lists and optionals, such as selecting a segment of a list. Therefore, using a context free
grammar formalism for describing document structure is powerful enough.

Because the type of the document will vary for different applications of the editor, we
can only give an example for a specific application. The example document consists of a
list of declarations, each of which is an identifier declaration or a comment. An identifier
declaration contains a string that represents the declared identifier, as well as an expression
that may contain conditional expressions, integers, and booleans. The third field of the
declaration is a string that may contain additional information about the declaration. It is
used to illustrate the local state concept in the Proxima editor. A comment consists of a
list of strings. The typesString , Int , andBool are primitive types. Although not very
suitable for practical purposes, the chosen document type will allow us to illustrate the
different aspects of the Proxima data levels and layers.

data Document = Root Doc [Decl Doc]
data Decl Doc = Decl Doc String Exp Doc String

| Comment Doc [String]
data Exp Doc = IfExp Doc ExpDoc ExpDoc ExpDoc

| IntExp Doc Int
| BoolExp Doc Bool

An example document of this type, as well as examples of the lower levels, is provided
with the explanation of the presentation process in Section 2.3.

2.1.2 Enriched Document

An enriched document is a copy of the document, to which derived information has been
added. In the word processor example, the enriched document contains a table of contents,
and each section or subsection element has a field that contains its number. Such derived
information is not present in the document level.

Besides containing extra information, the enriched document, or a subtree of it, may also
be a reordered version of the document. For example, the enriched document may contain
a sorted list of values, which is not sorted in the document.

As an example of an enriched document, we take the sample document of the previ-
ous section and a type declaration alternative to theDecl type. The type declaration is
computed for each declaration. The type of an expression may be integer, boolean, or
erroneous (eg.if True then 0 else False). It is also possible to add the type as a
field to theDecl alternative, however, separate type declarations make it easier to show
how edit operations on the enriched document are handled in Section 2.4.5.

data EnrichedDocument = Root Enr [Decl Enr]

2.1 The levels of Proxima 5

data Decl Enr = TypeDecl Enr String Type Enr

| Decl Enr String Exp Enr String
| Comment Enr [String]

data Exp Enr = IfExp Enr ExpEnr ExpEnr ExpEnr

| IntExp Enr Int
| BoolExp Enr Bool

data Type Enr = IntType Enr | BoolType Enr | ErrorType Enr

2.1.3 Presentation

A presentation is an abstract description of what the document will look like to the user. It
consists of strings, images, and simple graphical elements (lines, rectangles, etc.) that are
grouped in rows, columns and matrices. Elements have attributes for colors, line styles,
fonts, and alignment. Attribution can be influenced using awith element, which contains
a rule that specifies how the attribution is affected.

There are three ways of positioning elements in the presentation. Firstly, the position can
be specified relative to other elements in the presentation, by placing a list of elements next
to each other in arow, or above each other in acolumn. Elements are aligned according
to reference lines (eg. the baseline for a string), and stretchable elements may be used to
influence the positioning. Besides rows and columns, amatrixconstruct presents a list of
lists of elements aligned both horizontally as well as vertically, and anoverlaypresents a
list of elements in front of each other (eg. for presenting a squigglyline).

The second way of positioning presentation elements is by using aformatterelement, that
positions a list of children based on the available space. Currently, Proxima only supports
horizontal formatting, suitable for line breaking in a paragraph. Vertical formatting is not
fundamentaly different, but has not been implemented yet. Furthermore, support for a
page model also requires extensions to the lower levels, which have not been realized yet.

Finally, a presentation can consist of a list of tokens, which may be identifiers, operators,
integers, strings, etc. If textual editing on a presentation is desired (eg. for a source editor),
a parser is invoked on the presentation after it has been edited. A presentation that needs
to be parsed may be specified using tokens, which make it possible to use a separate layer
for scanning. A token contains information about the whitespace (line breaks and spaces)
preceding it in the presentation. In some cases, a presentation may need to be parsed
without using the Proxima scanner. For example, when explicit whitespace information
is stored in the document. In that case, dummy tokens that are not processed by the
scanner may be used for the presentation.

In some cases, a presentation that needs to be parsed contains parts that we do not want
to be parsed. For example, non-textual presentations, such as images. Such presentations
can be included in the token list presentation with astructural token. A structural token
contains a presentation, and is treated specially by the parser. Although the child presen-
tation is not parsed, it may be an arbitrary presentation, and hence contain a token list

6 2 Architecture of the Proxima Editor

presentation itself, that will be parsed.

Unlike the document and the enriched document, the presentation has a fixed type. It is
discussed in more detail in Chapter??. Here, we present a slightly simplified subset of
the type. The details regarding the attribution (eg. color, font, and reference lines) of
presentation elements have been left out, by leaving the typeAttributionRule abstract.

data Presentation = Empty Pres

| String Pres String
| Tokens Pres [Token]
| Row Pres [Presentation]
| Column Pres [Presentation]
| Overlay Pres [Presentation]
| Matrix Pres [Presentation]
| Formatter Pres [Presentation]
| With Pres AttributionRule Presentation

data Token = UCaseToken Whitespace String
| LCaseToken Whitespace String
| IdentToken Whitespace String
| OpToken Whitespace String
| IntToken Whitespace Int
| StructuralToken Whitespace Presentation
...

type Whitespace = (LineBreaks, Spaces)
type LineBreaks = Int
type Spaces = Int

data AttributionRule = ...

∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ refnr in
row/col?

∗∗∗ Hoe doen
we tokens?

∗∗∗
verschillende types
Token vs
Presentation?

∗∗∗ mention
Structural tokens?

2.1.4 Layout

The layout level is the same as the presentation level, but without the tokens. Whitespace
information from the tokens is represented in the layout level by strings containing spaces
and by starting a new row for each line break. Formatters are still present, because the
exact size and position information required to remove them is not known at the layout
level.

The similarity between the layout and the presentation level is clearly visible in the types:
theLayout type is thePresentation type without theTokens alternative.

data Layout = Empty Lay

2.1 The levels of Proxima 7

| String Lay String
| Row Lay [Layout]
| Column Lay [Layout]
| Overlay Lay [Layout]
| Matrix Lay [Layout]
| Formatter Lay [Layout]
| With Lay AttributionRule Layout

data AttributionRule = ...

2.1.5 Arrangement

At the arrangement level, each element gets its position and size. The position is expressed
in actual coordinates. These may be different from the pixel coordinates in the final
rendering because the rendering may be scaled. Formatters have been resolved at this
point, and are represented by columns of rows.

The arrangement is structured as a tree and positions are relative to the parent element.
Relative positioning makes it easier to reposition a subtree in the arrangement, because it
removes the need to update the position of each element in the moved subtree.

A with node does not have a geometry field, because it only influences the attribution of
the tree, but does not form an actual part of the arrangement.∗∗∗ ∗∗∗ geometry for

Empty?

*** two options: position in each child, or positions in parent ***

data Arrangement = Empty Arr Geometry
| String Arr Geometry String
| Row Arr Geometry [Arrangement]
| Column Arr Geometry [Arrangement]
| Overlay Arr Geometry [Arrangement]
| Matrix Arr Geometry [Arrangement]
| With Arr AttributionRule Arrangement

type Geometry = (Position, Size)
data AttributionRule = ...

*** of ***

data Arrangement = Empty Arr

| String Arr Size String
| Row Arr Size [Arrangement] [Position]
| Column Arr Size [Arrangement] [Position]
| Overlay Arr Size [Arrangement] [Position]

8 2 Architecture of the Proxima Editor

| Matrix Arr Size [Arrangement] [Position]
| With Arr AttributionRule Arrangement

type Position = (Int, Int)
type Size = (Int, Int)
data AttributionRule = ...

∗∗∗∗∗∗ have to
make a choice: 2nd
one makes moving
arrs in a compound
arr easier, good for
incrementality, but
has not been
implemented/tested

2.1.6 Rendering

A rendering is a set of user interface drawing commands that are actually drawn on the
screen. Positions are expressed in pixel coordinates. In contrast to the other levels, a
rendering has no explicit tree structure.∗∗∗∗∗∗ maybe it

should be a tree
though

Because the rendering is highly dependent on the GUI library that is used, we only give
an abstract type.∗∗∗∗∗∗ Haskell

syntax? (type vs.
data)

type Rendering = [RenderingCommand]
data RenderingCommand = ...

2.2 The layers of Proxima

Between each pair of data levels is alayer that takes care of mapping the upper level onto
the lower level (downward mapping, or presentation) and that translates edit operations
on the lower level to edit operations on the upper level (upward mapping, or translation).

In the actual architecture, the downward mapping is not a mapping between the upper and
lower levels, but between edit operations on the levels, similar to the upward mapping.
Hence, the upward and the downward mappings are symmetrical, as both are concerned
with edit operations. The layer has access to the upper and lower levels surrounding it,
and may update the upper level. The exact types of the mappings in a layer are presented
in Chapter??. Figure 2.2 contains a more detailed picture of a single layer. The update
on the higher level is denoted with theÃ symbol.

∗∗∗∗∗∗ Mention
where update takes
place?

A layer has two separate components, one for the downward mapping (presentation) and
one for the upward mapping (translation). Because each layer is between two levels and
the Proxima system consists of six data levels, there are five layers:

• Evaluation layer: Evaluator/Reducer

• Presentation layer: Presenter/Parser

2.3 Presentation Process 9

δHigh upper level δHigh
↓ ↓ ↓ ↑
presentation component / translation component

↓ ↑ ↑ ↑
δLow lower level δLow

Figure 2.2: A single proxima layer

• Layout layer: Layouter/Scanner

• Arrangement layer: Arranger/Unarranger

• Rendering layer: Renderer/Gesture Interpreter

The downward mappings together form a logical whole (the presentation process), just
like the upward mappings (the translation process). Therefore, rather than discussing the
components pairwise from layer to layer, we give a description of all the components in-
volved in the presentation process, followed by the components of the translation process.

2.3 Presentation Process

The presentation process is the stepwise mapping of a document onto its final rendering.
Although the mapping is actually a mapping between edit operations on each of the levels,
we will present it here as a mapping between edit levels. The reason for this is that the
fact that the mapping is on edit operations rather than on levels is important mainly for
reasons of incrementality, and regarding it as a mapping on levels makes the presentation
process easier to explain.

In order to illustrate the different stages in the presentation process, we follow the pre-
sentation of an simple document. After the description of each layer component, the
intermediate result of the presentation of the document is given.

The document type of the example is the expression list document type from Section 2.1.1.
The sample document consists of two items: a comment and an expression. For sake of
clarity, we will denote strings on each level with"..." instead ofString level "..." .

Document:

Root Doc [Comment Doc ["This", "is", "a", "simple", "expression"]
, Decl Doc "simple1"

(IfExp Doc (BoolExp Doc True) (IntExp Doc 1) (IntExp Doc 0))
"info"

]

10 2 Architecture of the Proxima Editor

2.3.1 Evaluation layer: Evaluator

The first step in the presentation process is the computation of the derived information
in the document. The component that takes care of this is the evaluator. The evaluator is
parameterized with acomputation sheet, which is a declarative specification of the derived
values. The computation sheet is specified using the attribute grammar formalism.

Besides basic values, such as section numbers or the outcome of a computation in a spread
sheet, the evaluator may also derive tree structures, such as a table of contents. The
derived structures may be partial, duplicated, or reordered versions of the document.∗∗∗∗∗∗ probably

more is possible

Example: For each declaration, the evaluator computes a type declaration in the enriched
document. In the example this means that a type declaration for"simple1" with type
IntType is included in the item list, yielding:

Enriched document:

Root Enr [Comment Enr ["This", "is", "a", "simple", "expression"]
, TypeDecl Enr "simple1" IntType Enr
, Decl Enr "simple1"

(IfExp Enr (BoolExp Enr True) (IntExp Enr 1) (IntExp Enr 0))
"info"

]

2.3.2 Presentation layer: Presenter

The enriched document is mapped onto the presentation by the presenter. Similar to
the evaluator, the presenter is parameterized with apresentation sheetthat specifies the
presentation. The presentation sheet is an attribute grammar that defines the presentation
as a synthesized attribute for each element in the enriched document.

Tokens form a special case in the presentation process, because a token contains its own
whitespace, which is not represented in the document or enriched document levels. There-
fore, the presenter keeps track of which tokens the enriched document is mapped onto. If
a enriched document structure is re-presented, the old tokens (and corresponding white-
space) are reused.

If an enriched document element that is presented with tokens, is newly created or has
not been presented before, a default value for the whitespace of its tokens is chosen. This
default may come from a pretty print algorithm. A default value may be used also in case
a structure has been edited in such a way that reusing the old tokens does not make sense.

The mechanism of reusing presentation tokens is also used to handle ambiguities in token
representations. For example when a user has entered the text ”001” which is stored
in the document as the integer 1, the mapping between the enriched document and the
presentation ensures that on re-presentation, the integer is presented as ”001” instead of
”1”

2.3 Presentation Process 11

The evaluator and the presenter both make use of the attribute grammar formalism and
are closely related. The separation between evaluating and presenting is not strict. On
the one hand, the entire presentation can be regarded as a derived structure, and on the
other hand the presentation sheet can reorder elements in the presentation and introduce
structures, which is more appropropriately done in the evaluation sheet.

The editor designer must make a careful decision on where to specify document eval-
uation and presentation. Whenever it is conceivable that a derived structure may have
different presentation styles, the computation of the structure and presenting it is best
separated. A good example of such a structure is a table of contents, whose presenta-
tion must match the presentation of the document. Another case in which separation is
beneficial is when edit operations on the derived structure have to be supported, as the
separation makes it easier to specify the translation of the edit operations.∗∗∗ ∗∗∗ bad

paragraph

Example: The example presentation of the enriched document is basic: a comment is put
in a formatted paragraph and a (type) declaration is presented in a textual infix represen-
tation using tokens. The third string field of the declaration"info" is not included in the
presentation in order to have an example of a partially presented structure. The reason
for this becomes apparent in Section 2.4.4 on parsing. The pair of numbers in each token
represents the whitespace (nr. of line breaks, nr. of spaces) preceding it.

The With nodes specify the font for the presentation of the declarations. For sake of
simplicity, the exact details of the attribution rule are not shown: the bracketed declaration
{fontFamily = " name", fontSize = size} specifies the font family and size for the
child of the with node.∗∗∗ ∗∗∗ ∗∗∗ need an end

token

∗∗∗ mention that
this is a simple
whitespace repr.
that does not allow
lines containing
only spaces?

Presentation:

Col Pres [With Pres { fontFamily = "Times New Roman", fontSize = 12 }
(Formatter Pres ["This", "is", "a", "simple", "expression"])

, With Pres { fontFamily = "Courier New", fontSize = 12 }
(Tokens Pres [LCaseToken Pres (1,0) "simple1", OpToken Pres (0,1) "::"

, UCaseToken Pres (0,1) "Int"
])

, With Pres { fontFamily = "Courier New, fontSize = 12 }
(Tokens Pres [LCaseToken Pres (1,0) "simple1", OpToken Pres (0,1) "="

, LCaseToken Pres (1,2) "if", UCaseToken Pres (0,1) "True"
, LCaseToken Pres (0,1) "then", IntToken Pres (0,1) "1"
, LowercaseToken Pres (1,10) "else", IntToken Pres (0,1) "0"
])

]

2.3.3 Layout layer: Layouter (better name?)

The layouter removes the tokens in the presentation level, yielding the layout level. Each
list of tokens is mapped on a column that contains rows of strings. Each token is repre-
sented as a string∗∗∗ and spaces are represented as strings of spaces. A line break causes∗∗∗ Structural

tokens are not
strings

12 2 Architecture of the Proxima Editor

a new row in the layout.∗∗∗∗∗∗ mention a
layout sheet?

Example: The tokens that are present in the presentation level are replaced by strings in
the layout level (the character denotes a space). The formatter is not affected. The line
break before the type declaration is represented by an empty string.

Layout:

Col Lay [With Lay { fontFamily = "Times New Roman", fontSize = 12 }
Formatter Lay ["This", "is", "a", "simple", "expression"]

, With Lay { fontFamily = "Courier New, fontSize = 12 }
(Col Lay [""

, RowLay ["simple1", " ", "::", " ", "Int"]
])

, With Lay { fontFamily = "Courier New, fontSize = 12 }
(Col Lay [RowLay ["simple1", " ", "="]

, RowLay [" ", "if", " ", "True", " ", "then", " ", "1"]
, RowLay [" ", "else", " ", "0"]
])

]

2.3.4 Arrangement layer: Arranger

The arranger computes the exact sizes and positions for all elements in the layout level,
yielding the arrangement. Fonts are queried to determine the size of strings, and child
elements of compound elements such as rows and columns are aligned and positioned.

The arrangement layer also processes formatters by mapping them onto columns of rows
in the arrangement. First, the amount of available space for a formatter is computed, and
then the child elements are distributed along rows using a (possibly optimal) line breaking
algorithm.

Example: The formatter, which is the first element in the top-level column of the example
layout, is replaced by a column of rows in the arrangement. Furthermore, each element in
the arrangement tree contains has an exact size and a position relative to its parent, which
are denoted with superscripts:element(x,y)(width×height).

Note that the with elements are not removed, because the font information is required to
render the arrangement.

Arrangement:

Col
(0,0)(80×84)
Arr
[With Arr { fontFamily = "Times New Roman", fontSize = 12 }

(Col
(0,0)(80×24)
Arr

[Row
(0,0)(80×12)
Arr ["This" (0,0)(17×12), "is" (25,0)(6×12), "a" (41,0)(4×12)

2.3 Presentation Process 13

, "simple" (53,0)(27×12)]

, Row
(0,12)(80×12)
Arr ["expression" (0,0)(42×12)]

])
, With Arr { fontFamily = "Courier New, fontSize = 12 }

(Col
(0,24)(75×24)
Arr

["" (0,0)(0×12)

, Row
(0,12)(75×12)
Arr ["simple1" (0,0)(35×12), " " (35,0)(5×12), "::" (40,0)(10×12)

, " " (50,0)(5×12), "Int" (55,0)(15×12)]
])

, With Arr { fontFamily = "Courier New, fontSize = 12 }
(Col

(0,24)(80×36)
Arr

[Row
(0,24)(50×12)
Arr ["simple1" (0,0)(35×12), " " (35,0)(5×12), "=" (40,0)(5×12)]

, Row
(0,36)(80×12)
Arr [...]

, Row
(0,48)(80×12)
Arr [...]

])
]

2.3.5 Renderering layer: Renderer

The renderer maps each element of the arrangement onto a set of drawing commands for
the user interface. All positions and size have already been computed by the arranger, and
the renderer only scales these positions and sizes according to the current scaling factor
of the view.

Example: The result of applying the renderer to the example arrangement is a set of ren-
dering commands which display the comment and the declaration when executed. Note
that the comment is rendered in a different font than the declaration. The fonts are speci-
fied in the presentation, layout, and arrangement levels, but have been

Rendering:

This is a simple
expression

simple1 :: Int
simple1 =

if True then 1
else 0

14 2 Architecture of the Proxima Editor

2.4 Translation Process

The translation process of edit operations is layered in the same way as the presentation
process. However, there are important differences between the two.

For the translation process, edit operations are the main focus, and therefore we do not
regard a translation mapping as a mapping between levels, like we did for the presentation
process.

Another difference is that in the translation process, layers may be skipped. For example,
a document edit operation is passed on by the lower layers, until it reaches the evaluation
layer, where it is performed on the document level.

The translation of edit operations can take place either directly, or indirectly by applying
the edit operation to a lower level, using a mapping between levels to compute the corre-
sponding upper level and computing the upper level edit operation by taking the difference
between the new and the previous upper level.

An example of the direct translation is when a mouse click on an absolute position in the
arrangement is mapped onto a mouse click operation on a tree path in the layout level.
An example of an indirect translation is the insertion of a character in the presentation
level. Rather than mapping this edit operation immediately on an enriched document edit
operation, the character is inserted in the presentation, the presentation is parsed, and the
edit operation is distilled from the newly parsed enriched document.

On the lowest two layers (rendering and arrangement), only direct translation takes place,
whereas on the higher levels also indirect translation is possible. The reason for this is
that the rendering and the arrangement level cannot be edited by the user, and an indi-
rect translation only takes place when a lower level is edited and the edited level is then
mapped onto the new upper level. The lowest level that may be edited by the user is the
layout level. However, the architecture does not fundamentally prohibit editing the lower
levels, and a future version of Proxima may support editing on the arrangement, by allow-
ing a user to change the absolute positions of arrangement elements. Editing the rendering
seems to be rather far fetched, since the rendering is a set of GUI-specific commands.

Because the translation of edit operations does not go through all stages like the presen-
tation does, and because of the variation in edit operations, it is not possible to give a
running example of the translation process. A number of separate examples are therefore
provided together with the descriptions of the translation components.

2.4.1 Renderering layer: Gesture Interpreter

The gesture interpreter has two tasks. It maps edit gestures onto edit operations for the
designated levels, and it translates edit operations on the rendering onto edit operations on
the arrangement, which means that absolute positions in pixel coordinates are translated
descaled to arrangement level coordinates.∗∗∗∗∗∗ explain more

that gesture
interpreter is a bit
weird because it
creates wrapped
upper level edit
ops?

2.4 Translation Process 15

Example: We will give two example translations by the gesture interpreter: a mouse click
and a key press.

The mouse edit operation is a single left click at pixel coordinates (84,57) in a rendering
that has been scaled to 150%. Because of the scaling factor, the coordinates are divided
by 1.5 to get the arrangement coordinates.

MouseClick Ren Left 1 (84,57)) 7→ MouseClick Arr (56, 38) Left 1

The second example is a key press of the letter ’a’, which is mapped onto an insert event.
However, a textual insert event is targeted at the layout level instead of the arrangement
level, since the arrangement level cannot be edited textually. The insert operation is there-
fore not of the arrangement edit type, and needs to be wrapped. The arrangement layer
unwraps the insert operation and passes it on to the layout layer.

KeyPress Ren ’a’ 7→ WrapArr (Insert Lay ’a’)

2.4.2 Arrangement layer: Unarranger

The main task of the unarranger is mapping locations in arrangement level edit operations
on locations in layout level edit operations. A location that is specified in absolute coor-
dinates is first converted to a location in the arrangement tree, which is specified as a tree
path. Subsequently, the arrangement tree path is mapped onto a layout tree path. The ar-
rangement tree is largely isomorphic to the layout tree, except for the formatter subtrees,
as these are represented by rows and columns in the arrangement. Therefore, the mapping
is mainly the identity function, except for paths in rows that originate from a formatter,
which are mapped to paths in the originating formatter.

Example: An mouse left click event at position (56,38) in the example arrangement from
Section 2.3.4 represents a click on the string ”Int ” in the layout (Section 2.3.3). To
be precise, it is a click on the left side of the letter ’I ’. If we represent a path in the
arrangement tree by list of integers and a 0 denotes the first child, then this position is
represented by[1,0,1,4,0] . ∗∗∗ Hence: ∗∗∗ explain

more?

unarrange (MouseClick Arr (56,38) Left 1) = MouseClick Lay [1,0,1,4,0] Left
1

2.4.3 Layout layer: Scanner

The scanner is the first layer in which the level to level mapping is important, since the
layout level may be edited by the user. Edit operations targeted at the layout level are per-
formed on the layout level, after which the level is scanned, yielding the new presentation.
A presentation edit operation is computed from the new presentation.

The scanner operates only on the subtrees in the layout layer that originate from a token

16 2 Architecture of the Proxima Editor

list on the presentation level, while leaving other parts of the tree unaffected. A subtree,
which is a column of rows, is scanned by inspecting it row by row, and recognizing the
tokens that are represented by the strings in each row. For each token, the whitespace
preceding it is recorded. Whitespace in the layout level is represented either by explicit
whitespace characters in the strings, or by row transitions (line breaks).∗∗∗ ∗∗∗∗∗∗ structural

tokens?

∗∗∗ scanner
sheet? (has
consequences for
presentation type)

Scanning is a rather localized process, so rather than re-scanning an entire token list,
only the edited part of the layout level is scanned and used to compute the appropriate
presentation edit commands.∗∗∗∗∗∗ note the

exception for
comments?

Example: Consider the example layout level from Section 2.3.3, and assume that the
edit operation on the layout is the insertion of a space between the characters ’e’ and
’1’ in the identifer "simple1" of the type declaration. Of course, inserting a space here
is not allowed here, since our example declarations do not have parameters.∗∗∗ A parse∗∗∗ give the

grammar
somewhere? error will therefore occur on the presentation layer, but this has no consequences for the

example on the layout layer.

In order to compute the edit operation on the presentation, we first apply the layout edit
operation to the layout level, yielding:

...
Col Lay [""

, RowLay ["simple 1", " ", "::", " ", "Int"]
]

...

Now, the scanner is invoked on the updated parts of the layout (including the whitespace
parts that precede the updated part,) which gives rise to the following list of tokens.

[LCaseToken Pres (1,0) "simple", IntToken (1,0) 1
, OpToken Pres (0,1) "::", UCaseToken Pres (0,1) "Int"
]

From the new token list and the old presentation, an edit operation on the presentation
level can be derived:

insertLay ’ ’
7→
replacePres [LCaseToken Pres (1,0) "simple1"]
by [LCaseToken Pres (1,0) "simple", IntToken (1,0) 1]

We use an informal notation for both theinsertand thereplaceedit operations to improve
readability. The actual insert operation also contains a reference to the target location of
the inserted character, and the replace operation contains the locations of the token lists,
rather than the lists themselves.

2.4 Translation Process 17

2.4.4 Presentation layer: Parser

It is difficult to directly map edit operations on the presentation to edit operations on
the enriched document, therefore we take the indirect approach: the edit operations are
applied to the presentation, which is then parsed. The edit operations on the enriched
document are computed from the new enriched document.

Similar to the scanner, the parser component of the presentation layer makes a distinc-
tion between token lists and the rest of the presentation. Only the token lists are actually
parsed, the other parts of the presentation may not be edited at presentation level and are
therefore recursively mapped onto their originating enriched document structures. Be-
cause parsed presentations may contain parts that are not parse, and vice versa, the two
processes alternate.∗∗∗ ∗∗∗ it could also

be possible to
parse something
that is not a token
list

Each part of the presentation that is not parsed is mapped directly onto the enriched doc-
ument element of which it is the presentation. Because the presentation is specified with
an attribute grammar, for each subtree in the presentation, the element in the enriched
document that gave rise to it can be determined.∗∗∗ If the originating enriched document∗∗∗ is this

entirely right?
element has children that are also presented, these children are determined via the same
process. A child that does appear in the presentation is reused from the previous enriched
document level, or if is not possible, it is initialized to a default value. If a child has a
token list presentation, the parser process takes over.

Parsing takes place by invoking a parser, which is specified in the parsing sheet, on the list
of tokens. Parse errors are represented in the document with special error nodes that may
appear anywhere in the document tree.∗∗∗ Because the enriched document may contain∗∗∗ error corr.

parser, with errors
in local state?information that is not presented, the parser tries to reuse the enriched document nodes

from the previous time the enriched document was presented. If a node cannot be reused,
the extra information is initialized to a default value. If a structural node is encountered,
the previously described mapping process is invoked again.

Even though it is possible to specify a presentation for which it is not possible to automat-
ically determine the originating enriched document elements, this is not a big problem
in the editor. In such a case, automatic handling of presentation editing is simply not
supported, and the editor designer will have to take care of handling it, or prohibit it
altogether.∗∗∗ ∗∗∗ what about

formatters, these
should probably
also have tokens

Example: For the example translation at the parser component, we consider a delete
operation on a number of succesive tokens in the presentation. Due to the simplicity of
the example presentation, each declaration or type declaration is presented with a separate
token list. Hence, presentation edit operations are always local to a single declaration
or type declaration and cannot span several declarations. Therefore, the resulting edit
behavior for the example is somewhat restrictive. However, in an actual source editor, the
the token lists may be concatenated.

The presentation level for the example is the same as in Section 2.3.2. The part that is
affected by the edit operation is:

18 2 Architecture of the Proxima Editor

...
Tokens Pres [LCaseToken Pres (1,0) "simple1", OpToken Pres (0,1) "="

, LCaseToken Pres (1,2) "if", UCaseToken Pres (0,1) "True"
, LCaseToken Pres (0,1) "then", IntToken Pres (0,1) "1"
, LowercaseToken Pres (1,10) "else", IntToken Pres (0,1) "0"
]

...

The delete operation removes the"if" , "True" , "then" , "1" , and"else" tokens, giving
rise to a new presentation level.

...
Tokens Pres [LCaseToken Pres (1,0) "simple1", OpToken Pres (0,1) "="

, IntToken Pres (0,1) "0"
]

...

Now, a parser is invoked on the new list of tokens. The result is not an entire enriched
document, but only an updated declaration forsimple1 . For the resulting declaration, the
previously presented declaration is reused. This is why the declaration contains the string
"info" , even though it is not present at the presentation level. The string is part of the
local state of the enriched document level.

Decl Enr "simple1" (IntExp Enr 0) "info"

The edit operation is extracted from the new enriched document part and the previous
enriched document, yielding:

deletePres"if" ... "else"
7→
replaceEnr (IfExp Enr (BoolExp Enr True) (IntExp Enr 1) (IntExp Enr 0))
by (IntExp Enr 0)

It should ne noted that the second(IntExp Enr 0) in the replacement operation is exactly
the same as the one in the else part of the if expression. In this case, the expression is
uniquely determined by its presentation, and hence parsing it gives an exact copy, but even
if this were not the case, both expressions would be the same, due to the reuse strategy of
the parser. For example, if the int expression has an extra field that is not presented, the
replacement int expression gets the same value for that field, since the first int expression
is reused by the parser. This is analogous to the"info" string for the declaration.

After it is edited, an enriched document may be inconsistent with regard to the document
and the evaluator. For example, if the declaration is edited in such a way that its type no
longer matches the one in its type declaration. The consistency is guaranteed again when
the reducer and evaluator have been invoked.

2.4 Translation Process 19

2.4.5 Evaluation layer: Reducer

The reducer takes care of mapping edit operations in derived structures on edit operation
on the document. The specification of the mapping is in thereduction sheet, which in
many cases may be automatically derived from the evaluation sheet. Automatic reduction
behaviour is typically possible for parts of the enriched document that are duplicated,
reordered, or partial versions of parts of the document.

The reducer resolves duplicates in the enriched document by taking the duplicate that
was edited. In case of a conflict, either the edit operation may be blocked, or a choice
between the two may be made. Reordering and partiality∗∗∗ is handled by maintaining a∗∗∗ word:

partiality?
mapping between each enriched document element and the document element from which
it originated.

For many derived structures, a reverse mapping does not make much sense. For example,
it is hard to give a clear semantics of editing a chapter number directly, however, when
two chapters in a table of contents are swapped, swapping the two actual chapters in the
document could be a logical operation in some editors. In the cases for which the reverse
mapping makes sense, it be specified in the reduction sheet. In the other cases, editing
derived structures can be forbidden.

Besides regarding the reduction as the reverse of the evaluation, it is also possible to use
reduction as an extension of the parser. For example, when a program source contains
definitions of infix operators with a user-specified associativity and precedence. Parsing
such operators in one pass requires a sophisticated parser, whereas the two pass solution
is straightforward.

Another application of reduction is the handling of rendundancy in a document presenta-
tion. For example, when a document type for expressions does not have a construct for
explicitly representing parentheses, redundant parentheses that are entered by a user can
be removed by the reducer, to be added again by the evaluator.∗∗∗ ∗∗∗ also mention

ambiguity? eg.
1:2:3:[] vs [1,2,3]?

Example:

For the reducer example, assume that the editor supports editing on an identifier in a
type declaration, leading to an update on the indentifier in the corresponding declaration.
Although this may not be desirable behavior in an actual source editor, it provides a good
example of editing on derived values.

The enriched document edit operation that is translated is an update on the identifier in the
type declaration of the enriched document from Section 2.3.1. The identifier is changed
from "simple1" to "simple" . Thus, we get the following updated enriched document.

Root Enr [Comment Enr ["This", "is", "a", "simple", "expression"]
, TypeDecl Enr "simple" IntType Enr
, Decl Enr "simple1"

(IfExp Enr (BoolExp Enr True) (IntExp Enr 1) (IntExp Enr 0))
"info"

20 2 Architecture of the Proxima Editor

]

The reducer processes the enriched document and maps both the type declaration and the
declaration onto a document level declaration. The type declaration is mapped onto a doc-
ument level declaration with string"simple" and expression (if True then 1 else 0).
The declaration on the other hand, is mapped on a document declaration that contains the
same expression but has string"simple1" . The two conflicting declarations are resolved
in favor of the updated fields. In this case, it means that the string"simple" is chosen.
The result is a new document.

Root Doc [Comment Doc ["This", "is", "a", "simple", "expression"]
, Decl Doc "simple"

(IfExp Doc (BoolExp Doc True) (IntExp Doc 1) (IntExp Doc 0))
"info"

]

And the document level edit operation is:

replaceEnr "simple1" by "simple" 7→ replaceDoc "simple1" by "simple"

2.5 Local state on each level

Each level in the Proxima editor is part of the total editor state, rather than just an inter-
mediate value in a computation. One reason for this is to support incrementality, but a
more fundamental reason is that the presentation and translation mappings are not com-
plete. More specifically, a level does not always contain enough information to compute
the level below it and vice versa. By storing both layers, together with information on
how elements in each layer depend on each other, it is possible to compute the lower level
from an updated upper level and vice versa.

An example of a partial presentation mapping can be found between the enriched docu-
ment and the presentation. An enriched document element that is presented with tokens,
does not contain the layout information that is present in the tokens. Therefore, if the el-
ement is re-presented, it must reuse the tokens from its previous presentation. In order to
be able to reuse the tokens, the element must keep track of which parts of the presentation
it is mapped on.

The translation of edit operations also has to deal with partial mappings. Take for exam-
ple an enriched document subtree that contains only the titles of the chapters, sections,
and subsections of a document. This structure does not contain enough information to
construct the document. Therefore, if a title in the enriched document is edited, and we
want to be able to perform the title update in the document, each enriched document node
needs to keep track of the document node from which it originated.

2.6 Motivation for the layer structure 21

In short, the presentation function that is given by the editor designer, specifies a mapping
between the two levelshigh and alow: present:: high→ low. However, because the
lower level may contain extra information, the mapping that needs to be maintained by
the editor ispresent:: high+ extrahigh → low+ extralow. Similarly, for the translation,
the specified mapping function istranslate:: low→ high, whereas the editor needs the
mappingtranslate:: low+extralow → high+extrahigh.

The problem with partial mappings, ie. that when mapping one level onto another, infor-
mation from a previous mapping must be reused, appears in several layers of the Proxima
editor. In the lower layers, the mappings can be maintained by the system, because the
lower layers operate between levels that have fixed types, and the presentation and transla-
tion mappings at these layers are less customizable by the editor designer. For the higher
levels, however, the editor designer in some cases needs to specify how the mappings
should be maintained. The formalisms for the sheets on these levels offer special support
for making this more easy. Furthermore, for frequently appearing patterns in the presenta-
tion process, special functionality is present for automatic maintenance of the mappings.
Chapter??deals more extensively with the problem.

2.6 Motivation for the layer structure

The choice of layers for the Proxima editor is not an exact one. On the one extreme, the
entire edit process can be put in one big layer, whereas on the other extreme a separate
layer can be defined for every small step in the process. The choice of layers in Proxima
is a balance between these extremes. This section contains the motivation for the layer
structure as it is.

The separation of document evaluation from the presentation serves two purposes. Firstly,
the separation makes it possible to have different presentations for a document together
with its derived structures. And secondly, it facilitates the specification of edit behavior
on derived structures. When parsing and reduction are mixed, such behavior is harder to
specify.

The reasons for a separate layout layer are automatic whitespace handling for token pre-
sentations and efficiency, since first scanning and then parsing is more efficient than pars-
ing on character basis. A downside is that different languages require slightly different
scanning methods, and a generic scanner that is able to handle all exotic cases is hard to
construct. Moreover, in some cases, an editor designer may be interested in dealing with
whitespace at enriched document or document level. However, in these cases, the scanner
layer may be bypassed altogether, allowing the editor designer to parse on a character
basis and explicitly deal with whitespace.

Below the layout level are the arrangement level and the rendering level. The separation
between these two levels and the higher levels is obvious, since the position and size com-
putations are similar for different elements in the layout, and keeping the computations in
a separate layer prevents cluttering the higher layers. The reason why the arrangement and

22 2 Architecture of the Proxima Editor

rendering are split is to keep the part of the architecture that deals with the GUI-specific
issues as small as possible. Furthermore, the arrangement contains exact information on
the location and size of each item that is to be rendered, which is useful for resolving
pointing issues and performing incremental updates.

The arrangement process itself also consists of steps, since formatters are mapped on ar-
rangement rows and columns which are then arranged similar to other rows and columns.
However, these steps are very closely intertwined, and separating the arrangement into
different layers does not offer enough advantages.

Besides the current layers, several other layers are imaginable. For example, a post-
arrangement layer could process the arrangement in order to handle footnotes and for-
matting of paragraphs that contain text in languages with different reading directions.
Similarly, an extra evaluation layer is conceivable when computations over computed
structures need to be specified. When yet other computations are desired on the resulting
computed structures, even multiple evaluation layers may be required. This brings up the
issue of using higher-order attribute grammars for the evaluation layer. In fact, the whole
presentation process can be specified with a higher-order attribute grammar. However,
when using higher-order attribute grammars, it is not straightforward anymore to handle
local state at intermediate levels, nor is it clear how to translate the edit operations on
lower levels. In Proxima, these problems are dealt with by the layered architecture. Be-
fore it is possible to do presentation, or even just evaluation, with higher-order attribute
grammers in Proxima, more research is necessary.

