
Haskell as an Architecture Description Language

Martijn M. Schrage

S. Doaitse Swierstra

Technical Report UU-CS-2008-045

December 2008

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Haskell as an Architecture Description Language

Martijn M. Schrage S. Doaitse Swierstra
Utrecht University

{martijn,doaitse}@cs.uu.nl

Abstract
We define a domain specific embedded language in Haskell for
describing layered software architectures which maintain bidirec-
tional dependencies. By using a typed programming language to
describe the architecture, the type correctness of its components is
guaranteed by the type checker of the language. Because, contrary
to the situation with typical Architecture Description Languages,
the description is part of the implementation of the system, the im-
plementation is guaranteed to comply with the architecture, and the
architecture is guaranteed to comply with the implementation.

1. Introduction
In this paper we develop a set of Haskell combinators for de-
scribing architectures of layered systems. Although designed with
a layered editor in mind, we claim this approach to be applica-
ble to many kinds of layered architectures. The combinators have
been successfully used in the implementation of the generic editor
Proxima (Schrage 2004), as well as for a system providing web-
interfaces to databases.

Describing an architecture in an real programming language not
only makes it possible to describe the interfaces of the components
of the system, and how they are to be composed, but also enables
us to smoothly extend this high-level description into a real imple-
mentation, without having to maintain several views on our system,
with all its problems of diverging versions. Because the architec-
ture description in Haskell is a program in itself, the system can be
instantiated by providing implementations for each of the compo-
nents.

In their survey of architecture description languages (Medvi-
dovic and Taylor 2000), Medvidovic and Taylor identify three es-
sential components of an architecture description: a description of
the (interface of the) components, a description of the connectors,
and a description of the architectural configuration. They claim that
the focus on conceptual architecture and explicit treatment of con-
nectors as first-class entities differentiate architecture description
languages from, amongst others, programming languages. How-
ever, Haskell offers possibilities for describing the main compo-
nents of an architecture, while incorporating these components as
part of the program itself. Furthermore, by using abstraction, the
description of the architecture can be focused on the conceptual
architecture, while the details are left to the actual components.

As argued by Hudak (Hudak 1998), higher-order typed func-
tional languages offer excellent possibilities for embedding domain-
specific languages. Embedding a domain-specific language facil-
itates reuse of syntax, semantics, implementation code, software
tools, as well as look-and-feel. In this paper we develop a DSEL in
Haskell for describing layered editor architectures. We use records
that contain functions to describe the components of the architec-
ture. The connectors are combinators, and the configurations are
programs (functions) that consist of combinators and components.

In this paper we give three implementation models for layered
architectures. First, in Section 2, we introduce a simplified layered
editor architecture and, in section 3, explore how its main compo-
nents can be modeled in Haskell. Then we proceed to connect the
components. In Section 4 the connection is straightforward, with
little abstraction. This is used as a basis in Section 5 as a base to de-
velop a more abstract combinator implementation that uses nested
pairs. In Section 6, we present another set of combinators, which
employ a form of state hiding to improve on the previous set. Sec-
tion 7 develops a small generic library for building the architecture-
specific combinators of Section 6. The combinators from this sec-
tion require two minimal function definitions for instantiating a
specific architecture. In Section 8, we exploit the type system to
automatically provide these definitions, based solely on the types
of the layer interface. Section 9 shows how the architecture combi-
nators are used to describe (and implement) the architecture of the
Proxima editor. And, finally, Section 10 discusses future work and
concludes.

2. A simple editor
The architecture description combinators in this paper have been
designed for the generic presentation-oriented structure editor
Proxima. Proxima supports editing on the document structure as
well as on its presentation, which has given rise to its layered ar-
chitecture. A typical feature of the architecture is that each layer
maintains its own local state, which is used to store information
that does not have a logical place on the other layers. An example
of this is white space, which is part of the presentation of a program
source, but does not fit well in the abstract syntax tree.

Because of the complexity of the actual Proxima architecture,
we introduce a simple layered architecture for a presentation-
oriented editor to explain the architecture description methods in
the next sections. Although the architecture is simple, it contains
the essential features of the Proxima architecture.

Figure 1 depicts the editing process for our simple editor. The
editor keeps track of a document (doc), which is mapped onto a
presentation (pres). The presentation process is split into n steps:
present1 . . . presentn, each step takes care of a specific sub-
task, such as computing a set of layout alternatives, computing
minimal and maximal sizes, negotiation between objects to be dis-
played about the available screen space, keeping track of white
space which was explicitly entered by the user but which does not
play a role at the document level and keeping track of explicit repre-
sentation choices –toggling visibility, alignment, unfolding status–
made by the user in the course of the editing process. At the bottom
of the figure, the presentation is shown to a user, who provides an
edit gesture (gest) in response. The edit gesture is mapped onto a
document update (upd) by interpretn . . . interpret1, which is
then applied to the document. In the next cycle, the updated doc-
ument is presented again. Note that some of the editing gestures

present1

pres

doc

presentn

interpret1

gest

update

presentn

present1

pres

doc

presentn

interpret1

gest

update

presentn

...

Figure 1. Two cycles in the editing process.

interpretpresent statemapstate

pres

updatedoc

gest

Figure 2. A single layer.

effectively turn out to be identity operations at the top level, since
some of them will be handled at an intermediate level, and will
result in an update of the state maintained at that level.

A layer consists of a pair of presenti and interpreti func-
tions, which we refer to as layer functions. Besides the vertical data
flow for presentation and interpretation, we thus may also have hor-
izontal data flow that stays within the layer. Horizontal data flow is
used to maintain state in a layer; this state component is passed
along between all computations taking place in a layer.

Figure 2 shows the data flow for a single layer with two exam-
ples of horizontal data flow. The result map of the function present
is passed on to interpret and represents information about where
things are mapped on the screen. Furthermore, a state parameter
is passed to present as well as interpret, and may be updated
by interpret. Note that the state parameter of present is the
result of interpret in the previous edit step. Because of the se-
quential nature of the edit steps, we only consider horizontal data
flow that goes from left to right.

3. A layer in Haskell
In the next sections, we explore the possibilities of describing the
layered architecture from the previous section in Haskell. There
are two aspects to modeling a layered architecture in Haskell: the
building blocks, which are the layer functions, and the connections
between the building blocks. Before discussing how to model the
connections between the layers, we focus on the functions within a
layer.

A layer function takes horizontal as well as vertical arguments
and returns both horizontal and vertical results. To make the differ-
ence between horizontal and vertical data explicit, we introduce a
type synonym for layer functions.

type LayerFn horArgs vertArg horRess vertRes =
horArgs -> vertArg -> (vertRes, horRess)

Each layer is represented by a record containing all the layer
functions: in our case present and interpret. The types of
the layer functions follow directly from Figure 2. If we put these
functions directly in a record, we get:

interpretpresent state’

map

state

pres

updatedoc

gest

state

map

state

Figure 3. Data flow in a normalized layer.

data Simple state map doc pres gest upd =
Simple { present :: LayerFn state doc

map pres
, interpret :: LayerFn (map,state) gest

state upd
}

However, this is not entirely what we want. To simplify the hori-
zontal connection between layer functions, we prefer a normalized
data type in which the horizontal result type (horRes) of a layer
function matches the horizontal argument type (horArg) of the next
layer function. For our example, this implies that the horizontal re-
sult of present has the same type as the horizontal argument of
interpret and vice versa (since the result of interpret is the
argument of present in the next edit cycle). Figure 3 shows the
data flow for the layer functions in the normalized type Simple.
Because the conversion to a normalized type is straightforward, we
do not show it here. The definition of the normalized Simple is:

data Simple state map doc pres gest upd =
Simple { present :: LayerFn state doc

(map, state) pres
, interpret :: LayerFn (map, state) gest

state upd
}

Although a Simple layer consists of two layer functions, the
final combinator library presented in this paper abstracts over this
number and can be used for layers with arbitrary numbers of layer
functions.

4. Method 1: Explicitly connecting the
components

Now that the layers have been modeled, we need to realize the
vertical data flow by connecting the layer functions. The document
must be fed into the layers at the top, yielding the presentation at the
bottom, and similarly, the edit gesture must be fed into the bottom
layer, yielding the document update. The most straightforward way
of tying everything together is to explicitly write down the selection
and application of each of the functions in each of the layers. This
will be the first approach, followed by gradually more abstract
approaches in sections 5 to 7.

We give an example edit loop that explicitly connects three
layers: layer1, layer2, and layer3 of type Simple. The data
flow between the layer functions is shown in Figure 4. Note that
we might look at the code below as a textual representation of
this picture, and that vice versa we might compute such a pic-
ture out of the code. At the bottom of the figure, the presenta-
tion is shown to the user, and an edit gesture is obtained, which
we represent in the code with two functions showRendering
:: Rendering -> IO () and getGesture :: IO Gesture.
At the top of the figure, the document is updated, which we model
with a function updateDocument :: Update -> Document ->
IO Document. The Haskell code for the edit loop is:

interpretpresent state1'

map1

state1

state1

pres1

updatedoc

gest1

interpretpresent state2'

map2

state2

state2

pres2 gest2

interpretpresent State3'

map3

state3

state3

pres3 gest3

Figure 4. Data flow in and between layers.

editLoop (layer1, layer2, layer3) states doc =
loop states doc where
loop (state1, state2, state3) doc =
do { let (pres1,(map1,state1’)) =

present layer1 state1 doc
; let (pres2,(map2,state2’)) =

present layer2 state2 pres1
; let (pres3,(map3,state3’)) =

present layer3 state3 pres2

; showRendering pres3
; gest3 <- getGesture

; let (gest2,state3’’) =
interpret layer3 (map3, state3’) gest3

; let (gest1,state2’’) =
interpret layer2 (map2, state2’) gest2

; let (update,state1’’) =
interpret layer1 (map1, state1’) gest1

; let doc’ = updateDocument update doc
; loop (state1’’, state2’’, state3’’) doc’
}

The following function main calls editLoop with the correct
parameters.

main layer1 layer2 layer3 =
do { states <- initStates

; doc <- initDoc
; editLoop (layer1, layer2, layer3) states doc
}

The functions initStates and initDoc provide the initial
values for states and doc, and are left unspecified. The layers of
the editor are arguments of the main function. An editor can now be
instantiated by applying the function main to three Simple values
each implementing a different layer. The type system verifies that
the implemented layer functions have the correct type signatures.

A disadvantage of the implementation of the edit loop sketched
in this section is that the patterns of the data flow are not very trans-
parent. The fact that the state parameters are horizontal parameters
and that the presentation is a vertical parameter is not immediately
clear from the program code. Moreover, explicitly encoding the
standard patterns for upward and downward vertical parameters,

(…((hArg1,hArg2),hArg3),…)

f1

vertRes

vertArg

fn

...

(…((hRes1,hRes2),hRes3),…)

Figure 5. Horizontal nested pairs for a downward step.

increases the chance of errors. Finally, the number of layers is hard
coded in the implementation. If the system is extended with an ex-
tra layer, variables have to be renamed. If each type appearing in
the layers is distinct, the type checker catches mistakes. However,
type checking will not detect two equally typed variables acciden-
tally being swapped. the goal of the coming sections is to gradually
abstract from the current, very explicit description of the problem.

5. Method 2: Nested pairs
In this section we abstract from the horizontal and vertical data-
flow patterns in the edit loop of the previous section, by using
combinators for combining layers. In the main loop, we call the
layer functions of the combined layer, rather than explicitly calling
each layer function in the main loop. The combinators also make
the data flow more explicit. The direction of the vertical parameter
is made apparent by the choice of combinator, rather than explicitly
threading it through the function applications.

Similar to function composition (f · g), we develop a combine
combinator that takes two layers and returns a combined layer. The
layer functions of the combined layer are compositions of the layer
functions in the layers that are combined.

In the method described in this section, each of the functions in
the combined layer not only takes a vertical argument and returns a
vertical result, but it also takes a collection of horizontal arguments
(one for each layer) and returns a collection of horizontal results
(one from each layer). The combine combinator takes care of dis-
tributing the horizontal arguments to the corresponding layers, and
also collects the horizontal results. The combined layer provides
layer functions of type LayerFn horArgC vertArg horResC
vertRes. The parameters horArgC and horResC stand for the
types of the collections of horizontal parameters and results. Fig-
ure 5 sketches the data flow in the combined layer. Only one layer
function with a downward vertical parameter is shown.

Because the types of the horizontal parameters are typically not
of the same type, we cannot use a list to represent the collections.
Moreover, we wish to be able to determine at compile time whether
the collection contains the required number of elements. A tuple or
cartesian product is more suitable for the task but has the disad-
vantage that its components cannot be accessed in a compositional
way. Hence, we use a nested cartesian product to represent the hor-
izontal parameters and results.

We only use left-associatively nested products in this section:
(...((e1,e2),e3), ...), en), although this will not be en-
forced by the combinators; as long as the structure of the argument
and result products is the same, which is guaranteed by the way the
combine combinator is used, the precise structure does not matter.

We first define two combinators for composing layer functions:
a downward combinator composeDown (for present) and a up-
ward combinator composeUp (for interpret). A downward ver-
tical parameter passes through the higher layer first, whereas an

upperhArgU

arg

intr

hResU

lowerhArgL

intr

res

hResL

`composeDown` =

lower

(hArgU,hArgL)

res

upper

arg

(hResU,hResL)

upperhArgU

res

intr

hResU

lowerhArgL

intr

arg

hResL

`composeUp` =

lower

(hArgU,hArgL)

arg

upper

res

(hResU,hResL)

Figure 6. composeDown and composeUp

upward vertical parameter passes through the lower layer first. Fig-
ure 6 shows the data flow for the two combinators.

The combinator composeDown composes two layers higher
and lower by feeding the intermediate vertical result of h into l. At
the same time, the horizontal parameters for higher and lower are
taken from the horizontal parameter to the combined layer (which is
a tuple), and the horizontal result for the combined layer is formed
by tupling the horizontal results of higher and lower.

composeDown :: LayerFn horArgU arg horResU intr ->
LayerFn horArgL intr horResL res ->
LayerFn (horArgU, horArgL) arg

(horResU, horResL) res
composeDown upper lower =

\(horArgU, horArgL) arg ->
let (interm, horResU) = upper horArgU arg

(res, horResL) = lower horArgL interm
in (res, (horResU,horResL))

The definition of composeUp is analogous to composeDown. Its
type is:

composeUp :: LayerFn horArgU intr horResU res ->
LayerFn horArgL arg horResL intr ->
LayerFn (horArgU, horArgL) arg

(horResU, horResL) res

Combining layers
Using composeUp and composeDown, we can now define a

combinator to combine Simple layers.
First, we need to define a new data type for combined layers.

Although the composition of two layer functions is a layer function
itself, we cannot use type Simple to represent a combined layer,
because the types for the horizontal parameters do not match. For
Simple, the horizontal parameter of present has type state,
and its result has type (map, state). In contrast, the horizontal

parameter of present in the composed layer is a nested pair of
states and its result is a nested pair of map and state tuples.

We introduce a type LayerC as a more general version of
Simple. Because we cannot easily denote a nested pair structure
in a Haskell type declaration, we leave the structure of the hori-
zontal parameters unspecified. The parameter states represents
the nested pair of state values, and the parameter mapsStates
represents the nested pair of map and state tuples.

data LayerC states mapsStates doc pres gest upd =
LayerC { presentC ::

LayerFn states doc mapsStates pres
, interpretC ::

LayerFn mapsStates gest states upd
}

The trivial function lift takes a layer of type Simple and
returns a LayerC layer.

lift :: Simple a b c d e f -> LayerC a (b,a) c d e f
lift simple =

LayerC { presentC = present simple
, interpretC = interpret simple
}

The combine combinator is defined by using the appropriate
compose combinator on each of the layer functions.

combine :: LayerC a b c d e f -> LayerC g h d i j e ->
LayerC (a,g) (b,h) c i j f

combine upper lower =
LayerC { presentC = composeDown (presentC upper)

(presentC lower)
, interpretC = composeUp (interpretC upper)

(interpretC lower)
}

Simple editor
The main editor loop from the previous section now reads:

editLoop layers states doc = loop states doc
where loop states doc =

do { let (pres, mapsStates) =
presentC layers states doc

; showRendering pres
; gest <- getGesture

; let (update, states’) =
interpretC layers mapsStates gest

; let doc’ = updateDocument update doc
; loop states’ doc’
}

The main function is almost the same as in the previous section,
except that instead of a 3-tuple of layers, the combined layers are
passed to editLoop.

main layer1 layer2 layer3 =
do { (state1, state2, state3) <- initStates

; doc <- initDoc
; let layers = lift layer1 ‘combine‘ lift layer2

‘combine‘ lift layer3
; editLoop layers ((state1, state2), state3) doc
}

Conclusions
The nested pairs solution is more compositional than the ap-

proach of the previous section and most of the data flow is hidden

from the main loop. However, the horizontal parameters are passed
all the way through the composite layer, and are visible in the main
loop, which is not where they conceptually belong. Moreover, the
type of the composite layer is parameterized with all the types ap-
pearing in the layers, leading to large type signatures.

6. Method 3: Hidden parameters
In the previous section, the horizontal results that are computed on
evaluation of a combined layer function are returned explicitly and
passed as arguments to the next layer function. In this section we
take an alternative approach, which we explain with an example.
Recall that with the nested pairs method, each combined layer
function returns a collection of horizontal results together with its
vertical result:
. . .
let (pres, mapsStates) = presentC layers states doc

. . .
let (update, states’) = interpretC layers mapsStates gest

. . .
In contrast, the hidden-parameter method does not return a

collection of horizontal results, but a function that has already been
partially applied to the horizontal results; the state is stored in the
closure which is thus formed.
. . .
let (pres, interpretStep) = presentStep doc

. . .
let (update, presentStep’) = interpretStep gest

. . .
The code that is shown is not entirely accurate, but it gives

the general idea. Together with the presentation, presentStep
returns a function interpretStep for computing the document
update. The layer functions in interpretStep have already been
partially applied to the horizontal results from the presentation step.
Thus, the horizontal parameters are now entirely hidden from the
main loop, the main editor loop becomes more transparent and the
type of a combined layer becomes simpler since the types for the
horizontal parameters are internalized.

Type definitions
The type of the layer is described by the following type:

(Doc -> (Pres, Gest -> (Upd, Doc -> (Pres, Gest ->
(Upd, ...))))). Unfortunately, we cannot use a type declara-
tion:

type Layer = (Doc -> (Pres, Gest -> (Upd, Layer)))

because Haskell does not allow recursive type synonyms.
Hence, we need to use a newtype declaration, with the disad-
vantage that values of the type have to be wrapped with constructor
functions.

newtype Layer doc pres gest upd =
Layer (doc ->

(pres,
(gest ->

(upd
, Layer doc pres gest upd))))

We now define two combinators for constructing and combining
Layer values: lift converts a Simple layer to a hidden-parameter
layer of type Layer, and combine combines two layers of type
Layer. Both combinators in this section are specific to the Simple
type. In the next section, we define a library to construct lift and
combine for arbitrary layers.

Definition of lift
The combinator lift takes a Simple layer and returns a Layer:

lift :: Simple state map doc pres gest upd ->
state -> Layer doc pres gest upd

lift simple state = presStep state
where presStep state = Layer $

\doc -> let (pres, (map,state)) =
present simple state doc

in (pres, intrStep (map,state))
intrStep (map,state) =

\gest -> let (upd, state’) =
interpret simple (map,state) gest

in (upd, presStep state’)

Besides layer, lift gets a second parameter, init, which is
the initial value of the horizontal parameter. The data flow pattern
of the horizontal parameters is encoded entirely in the definition of
lift. Moreover, the state type is not visible in the result of lift.
Thus, once the initial horizontal state is passed to the lifted layer,
it is no longer visible outside this layer; the lift combinator takes
care of passing around the horizontal parameters between the layer
functions, and also to the next edit cycle.

Definition of combine
To combine layers, we define a combinator combine, which

gets two layers as arguments: a higher layer and a lower layer. The
type of combine is:

combine :: Layer high med emed ehigh ->
Layer med low elow emed ->
Layer high low elow ehigh

The reason for the order of the type variables is that for each
pair of variables, the first type is an argument type and the second
type a result type. Hence, the first step in the combined layer is
a function high -> low, which is the composition of a function
high -> med in the higher layer and a function med -> low in
the lower. On the other hand, the second step goes upward. Thus,
the function elow -> ehigh in the combined layer is the reverse
composition of functions elow -> emed and emed -> ehigh in
the higher and lower layers

The implementation of combine is just plumbing to get the pa-
rameters at the right places. The direction of the vertical parameters
is encoded in the definition of combine.

combine = presStep
where presStep (Layer upr) (Layer lwr) = Layer $

\high -> let (med, uprIntr) = upr high
(low, lwrIntr) = lwr med

in (low, intrStep uprIntr lwrIntr)
intrStep upr lwr =

\elow -> let (emed, lwrPres) = lwr elow
(ehigh, uprPres) = upr emed

in (ehigh, presStep uprPres lwrPres)

Simple editor
The edit loop of the simple editor no longer contains references

to the horizontal parameters. Furthermore, the combined layer is
called presentStep instead of layers to reflect that it represents
the presentation step of the computation.

editLoop (Layer presentStep) doc =
do { let (pres , interpretStep) = presentStep doc

; showRendering pres
; gesture <- getGesture

; let (update, presentStep’) = interpretStep gesture

; let doc’ = updateDocument update doc

; editLoop presentStep’ doc’
}

In the main function, the combined layer is created by lifting
the layers together with their initial states and using combine to
put them together.

main layer1 layer2 layer3) =
do { (init1, init2, init3) <- initStates

; doc <- initDoc
; let layers = lift layer1 init1 ‘combine‘

lift layer2 init2 ‘combine‘
lift layer3 init3

; editLoop layers doc
}

Conclusions
The hidden-parameter model hides the data flow of the horizon-

tal parameters from the main loop of the system. Furthermore, the
types of the horizontal parameters, as well as the intermediate ver-
tical parameters, are hidden from the type of the composed layer.
Thus, both horizontal and vertical data flow are made more trans-
parent.

7. Developing a library for architecture
descriptions

In this section, we develop a small library for constructing lift
and combine combinators for layered architectures having an arbi-
trary number of layer functions. We refer to these combinators as
meta combinators because they are used to construct combinators.

The lift and combine combinators from the previous section
are just one case of a layered architecture: a layer with two layer
functions and hence two steps. Even though the combinators are
straightforward, some code is duplicated, and small errors are eas-
ily made. Therefore, instead of a guideline on how to write lift
and combine by hand, we prefer a small library of meta combi-
nators for constructing these combinators. A further advantage of
having a meta-combinator library is that instead of explicitly en-
coding the direction for each of the steps in the combine function,
we can use the name of the meta combinator to reflect the direction
in which the data flows (like with the composeUp/Down functions
from the nested pairs method in Section 5).

Looking at the definitions of lift and combine in the previous
section, we see that they both consist of two parts: one for each
step in the layer. Both functions define a local function for each of
the layer functions in the layer. In both lift and combine for the
Simple layer type, these local functions are called presStep and
intrStep.

We derive the meta combinators by starting with the combina-
tors from the previous section and gradually factoring out all step-
specific aspects. We end with a combinator that is constructed out
of a collection of simple building blocks (or meta combinators).

7.1 Type definitions
The Layer type poses a problem if we want to construct a library
for building lift and combine functions, since somehow its con-
structors need to be added to and removed by the combinators. One
solution is to create a type class for the constructor and deconstruc-
tor functions, but this complicates the types and requires a user to
provide an instance of this class. Therefore, we introduce a com-
positional representation of a layer type that makes use of simple
types defined in the library.

If we inspect the Layer type from the Section 6, we see it is
made up of two steps of the form vArg -> (vRes, ...). We
capture this in the following type:

newtype Step a b ns = Step (a -> (b, ns))

In order to compose steps, we define an infix, right-associative,
type constructor (:.:). The reason for right associativity will
become apparent in Section 7.2.

infixr :.:
newtype (:.:) f g ns = Comp (f (g ns))

We also define a NilStep as the starting point for a series of
compositions:

newtype NilStep t = NilStep t

Now, for example, we can encode the type Doc -> (Pres,
Gest -> (Upd, next)) as (Step Doc Pres :.: Step Gest
Upd :.: NilStep) next. To encode the feedback loop, we in-
troduce a fixed-point type Fix:

newtype Fix f = Fix (f (Fix f))

With these type combinators, we can now express Layer in a
compositional and point-free way:

type Layer doc pers gest upd =
Fix (Step doc pres :.: Step gest upd :.: NilStep)

Because Step, NilStep, and :.: appear partially parameter-
ized in the layer type, and Fix is recursive, all three types need to
be introduced using newtype definitions. Hence, instead of hav-
ing a single Layer constructor, lift and combine will be littered
with constructors. This is not a problem, however, since the com-
binators we will derive in the next subsections take care of adding
and removing these constructors.

The reason why we have an explicit NilStep with yet another
constructor is that it causes the number of occurrences (:.:) to be
the same as the number of steps, which will facilitate the removal
of Comp constructors. Furthermore, as we will see in Section 8, the
NilStep will also provide a base for recursive instances, prevent-
ing overlapping instances.

7.2 Derivation for lift
First we develop a meta combinator for the lift function. We start
with the code for lift for a layer with two steps from Section 6.
If we rename several variables and adapt the code for the new
constructor-rich representation of the Layer type, we get:

lift simple state = step1 state
where step1 hArg = Fix . Comp . Step $

\vArg -> let (pres, hRes) =
present simple hArg vArg

in (pres, step2 hRes)
step2 hArg = Comp . Step $

\vArg -> let (upd, hRes) =
interpret simple hArg vArg

in (upd, lNilStep hRes)
lNilStep hRes = NilStep $ step1 hRes

The definitions of the local functions step1 and step2 contain
mutually-recursive references, thus hard-coding their position in
the sequence of steps. We eliminate this positional information in
the definitions by supplying the next step as a parameter to each
function. The lNilStep no longer needs to be a local function.

lift :: Simple state map doc pres gest upd ->
state -> Layer doc pres gest upd

lift simple state =
step1 (step2 (lNilStep (lift simple))) state

where step1 next hArg = Fix . Comp . Step $
\vArg -> let (pres, hRes) =

present simple hArg vArg

in (pres, next hRes)
step2 next hArg = Comp . Step $

\vArg -> let (upd, hRes) =
interpret simple hArg vArg

in (upd, next hRes)

lNilStep next hRes = NilStep $ next hRes

Next we capture the Comp and Step constructors and the lambda
expression with the function liftStep. Here, it becomes apparent
why composition is right associative, since each step has both
aComp constructor and a Step constructor. If composition were
left-associative, the Comp constructors would end up between the
Fix and Step constructors, and it would be harder to capture the
pattern.

liftStep f next horArgs = Comp . Step $
\vArg -> let (vertRes, horRes) = f horArgs vArg

in (vertRes, next horRes)

leading to the new definition of lift:

lift simple state =
step1 (step2 (lNilStep (lift simple))) state

where step1 next hArg =
Fix $ liftStep (present simple) next hArg

step2 next hArg =
liftStep (interpret simple) next hArg

If we drop the state parameter on the first two lines and rewrite
the function application as a composition, we get:

lift layer = (step1 . step2 . lNilStep) (lift layer)
...

Capturing the recursion pattern with the fix combinator:

fix a = let fixa = a fixa
in fixa

we get our next version of lift:

lift simple = fix (step1 . step2 . lNilStep)
where step1 next hArg = Fix $

liftStep (present simple) next hArg
step2 next hArg =

liftStep (interpret simple) next hArg

Regardless the number of steps, there will only be one Fix con-
structor (in contrast to the number of Comp and Step constructors,
which are equal to the number of steps). Hence, we can define a
function lfix to add this constructor. The function lfix also com-
poses the lNilStep with the steps.

lfix f = fix f’ where f’ n = Fix . (f . lNilStep) n

lift simple = lfix (step1 . step2)
where step1 next hArg =

liftStep (present simple) next hArg
step2 next hArg =

liftStep (interpret simple) next hArg

Now we got rid of the all the constructors in the local step
definitions, we can drop the next and args parameters and give
a point-free definition:

lift :: Simple state map doc pres gest upd ->
state -> Layer doc pres gest upd

lift simple = lfix $ liftStep (present simple)
. liftStep (interpret simple)

liftStep works for an arbitrary number of steps
For an n-step layer, the definition of lift (using the method

from Section 6) has n local step functions, each containing a refer-
ence to the next. For such a layer, we can perform exactly the same

steps as for the 2-step lift. The resulting lift contains a com-
position of n liftStep applications. If we denote the step type
constructors by Stepi and the layer functions by layerFni, we
get:

lift layer = lfix $ liftStep (layerFn1 layer)
. . .
. liftStep (layerFnn layer)

7.3 Derivation for combine
The derivation of the meta combinators for combine is largely
similar to the derivation for lift. We again start with the original
definition of combine for a two-step layer, adapt it to the new
Layer type and rename several variables:

combine upr lwr = step1 upr lwr
where step1 (Fix (Comp (Step upr)))

(Fix (Comp (Step lwr))) =
Fix . Comp . Step $
\high -> let (med, uprIntr) = upr high

(low, lwrIntr) = lwr med
in (low, step2 uprIntr lwrIntr)

step2 (Comp (Step upr)) (Comp (Step lwr)) =
Comp . Step $
\low -> let (med, lwrPres) = lwr low

(high, uprPres) = upr med
in (high, cNilStep uprPres lwrPres)

cNilStep (NilStep u) (NilStep l) =
NilStep $ step1 u l

The explicit mutual recursion in the local functions is removed
by passing the next step as a parameter, and rewriting the whole
function as a fixed point. The cNilStep becomes a top-level func-
tion.

combine upr lwr = fix (step1 . step2 . cNilStep) upr lwr
where step1 next (Fix (Comp (Step upr)))

(Fix (Comp (Step lwr))) =
Fix . Comp . Step $
\high -> let (med, uprIntr) = upr high

(low, lwrIntr) = lwr med
in (low, next uprIntr lwrIntr)

step2 next (Comp (Step upr)) (Comp (Step lwr)) =
Comp . Step $
\low -> let (med, lwrPres) = lwr low

(high, uprPres) = upr med
in (high, next uprPres lwrPres)

cNilStep next (NilStep u) (NilStep l) =
NilStep $ next u l

Without the explicit recursive calls, we can capture the verti-
cal data flow patterns with two functions combineStepDown and
combineStepUp:

combineStepDown :: (f x -> g y -> h ns) ->
(Step a b :.: f) x ->
(Step b c :.: g) y ->
(Step a c :.: h) ns

combineStepDown next (Comp (Step upper))
(Comp (Step lower)) = Comp . Step $

\h -> let (m ,upperf) = upper h
(l, lowerf) = lower m

in (l, next upperf lowerf)

combineStepUp :: (f x -> g y -> h ns) ->
(Step b c :.: f) x ->
(Step a b :.: g) y ->
(Step a c :.: h) ns

combineStepUp next (Comp (Step upper))
(Comp (Step lower)) = Comp . Step $

\l -> let (m, lowerf) = lower l
(h, upperf) = upper m

in (h, next upperf lowerf)

If we use these two functions, and drop the parameters to step2,
we get:

combine upr lwr = fix (step1 . step2 . cNilStep) upr lwr
where step1 next (Fix upr) (Fix lwr) =

Fix $ combineStepDown next upr lwr
step2 = combineStepUp

The second step is now simply a combineStepUp, but the first
step still contains a Fix constructor. In order to get rid of it, we first
rewrite combine to make the pattern more apparent:

combine = fix (\n (Fix u) (Fix l) ->
Fix $ (step1 . combineStepUp . cNilStep) n u l)

where step1 next upr lwr =
combineStepDown next upr lwr

Now we can define a function cfix that pattern matches on the
arguments and adds a Fix to the result. Similar to lfix, it also adds
the cNilStep.

cfix f = fix f’
where f’ n (Fix u) (Fix l) = Fix $ (f . cNilStep) n u l

which leaves us with:

combine upr lwr = cfix (step1 . step2) upr lwr
where step1 next upr lwr =

combineStepDown next upr lwr
step2 = combineStepUp

Now, we can drop the parameters and replace to step1 and
step2 by combineStepDown and combineStepDown. Thus, the
final version of combine reads

combine :: Layer high med emed ehigh ->
Layer med low elow emed ->
Layer high low elow ehigh

combine = cfix (combineStepDown . combineStepUp)

Similar to liftStep, combineStepDown and combineStepUp
do not depend on the number of steps. Hence, they can be used
to construct combine for layers with an arbitrary number of layer
functions.

Simple editor
The main function for the simple editor is the same as in Sec-

tion 6. Only the editLoop function has a couple of changes to
account for the new constructors. To make the code more sym-
metric, we define deconstructor functions unStep :: (Step a r
:.: g) t -> a -> (r, (g t)) and unNil (which is the selec-
tor function of NilStep, when declared as a record.)

unStep (Comp (Step step)) = step
unNil (NilStep step) = step

editLoop (Fix presentStep) doc =
do { let (pres , interpretStep) =

unStep presentStep $ doc

; showRendering pres
; gesture <- getGesture

; let (update, presentStep’) =
unStep interpretStep $ gesture

; let doc’ = updateDocument update doc
;
; editLoop (unNil presentStep’) doc’
}

7.4 Adding a monad
The final modification we make to the library is to add a monad, in
order to allow layer functions to perform IO operations. The type
LayerFn is extended with an extra type variable m for the monad.

type LayerFn m horArgs vertArg horRess vertRes =
horArgs -> vertArg -> m (vertRes, horRess)

Consequentially, the Step type is also modified to account for
the monadic result:

newtype Step a b m ns = Step (a -> m (b, ns))

At composition, the monad is passed to both arguments:

newtype (:.:) f g m ns = Comp (f m (g m ns))

The NilStep does not actually use the monad argument:

newtype NilStep m t = NilStep t

For the fixed point, we introduce a type synonym FixM, which
passes the monad to its type-function argument, and applies Fix to
the result.

type FixM m f = Fix (f m)

The monadic version of the other code is largely similar to the
non-monadic version. Basically, each let expression of the form

let x1 = exp1; ...; xn = expn in (hRes,vRes)

is replaced by a monadic statement

do { x1 <- exp1; ...; xn <- expn; return (hRes,vRes) }

Furthermore, the type signatures for the pairs of horizontal
and vertical results (hRes, vRes) become m (hRes, vRes).
Because of the similarity between the two libraries, we only show
the monadic liftStep:

liftStep :: (hArg -> vArg-> m (vRes, hRes)) ->
(hRes -> ns) -> hArg -> Step vArg vRes ns

liftStep f next horArgs = Step $
\vArg -> do { (vertRes, horRes) <- f horArgs vArg

; return (vertRes, next horRes)
}

The functions lfix, lcomp, cfix, and ccomp are independent
of the monad and are the same for both versions of the library.

7.5 Final Library and conclusions
Figure 7 contains the final monadic library. In order to describe and
implement an architecture, we need to provide a Layer type, and
definitions of lift and combine. We give a general description of
these definitions.

General use
The general case that we consider is a layer with n layer func-

tions. The record type TheLayer m h1 ... hm a1 r1 a2 r2

... an rn contains the layer functions. The variable m is the
monad, variables hi are the types that appear in the horizontal pa-
rameters of the layer, and the ai and ri are the types of the vertical
arguments and results.

Because the types of the horizontal parameters are not necessar-
ily single hi variables, but tuples of these variables, we denote the
horizontal parameters by horArgsi and horRessi. As an exam-
ple, consider the type Simple. Its horizontal type variables are map
and state, but the types of the horizontal parameters are state
and (map, state).

fix :: (a->a) -> a
fix a = let fixa = a fixa

in fixa

type LayerFn m horArgs vertArg horRess vertRes =
horArgs -> vertArg -> m (vertRes, horRess)

newtype FixM m f = Fix (f m)

infixr :.:

newtype (:.:) f g m ns = Comp (f m (g m ns))

newtype NilStep m t = NilStep t

newtype Step a b m ns = Step (a -> m (b, ns))

unStep (Comp (Step step)) = step
unNil (NilStep step) = step

lfix f = fix f’ where f’ n = Fix . (f . lNilStep) n

lNilStep next hRes = NilStep $ next hRes

liftStep f next horArgs = Comp . Step $
\vArg -> do { (vertRes, horRes) <- f horArgs vArg

; return (vertRes, next horRes)
}

cfix f = fix f’
where f’ n (Fix u) (Fix l) = Fix $ (f . cNilStep) n u l

cNilStep next (NilStep u) (NilStep l) =
NilStep $ next u l

combineStepDown next (Comp (Step upper))
(Comp (Step lower)) = Comp . Step $

\h -> do { (m ,upperf) <- upper h
; (l, lowerf) <- lower m
; return (l, next upperf lowerf)
}

combineStepUp next (Comp (Step upper))
(Comp (Step lower)) = Comp . Step $

\l -> do { (m, lowerf) <- lower l
; (h, upperf) <- upper m
; return (h, next upperf lowerf)
}

Figure 7. Final meta-combinator library

In general, the definition of TheLayer has this form:

data
TheLayer m h1 ... hm a1 r1 a2 r2 ... an rn =

TheLayer { LayerFn1 :: LayerFn m horArgs1 a1

horArgs2 r1

, LayerFn2 :: LayerFn m horArgs2 a2

horArgs3 r2 }
...
, LayerFnn :: LayerFn m horArgsn an

horArgs1 rn }

We assume the layer is normalized, meaning that horArgs1 =
horRessn and horArgsi+1 = horRessi. If the layer is not
normalized, a simple wrapper function can be defined to convert
the layer to a normalized layer (see Section 3).

Type definitions
For a layer record as defined above, the type definition for the

Layer type used by the combinators is:

type Layer m a1 r1 a2 r2 ... an rn =
FixM m (Step a1 r1 :.: a2 r2 :.: ... :.: Step an rn)

Definition of lift and combine
The definitions of lift and combine are straightforward. For

lift, we need to apply liftStep to each of the layer functions,
compose the steps with lcomp, and apply lfix to the composition.

lift :: Monad m =>
TheLayer m h1 ... hm a1 r1 ... an rn ->
Layer m a1 r1 ... an rn

lift theLayer =
lfix $ liftStep (LayerFn1 theLayer)

. liftStep (LayerFn2 theLayer)

...

. liftStep (LayerFnn theLayer)

The combine combinator consists of n combineStepUp/Down
meta combinators, composed with ccomp, after which cfix is
applied. The direction of the vertical data flow determines the
choice between combineStepUp and combineStepDown for each
step. The exact type of combine depends on the direction of the
meta combinators and is explained below.

combine :: Monad m =>
Layer m ... -> Layer m ... -> Layer m ...

combine =
cfix $ combineStepUp/Down

...

. combineStepUp/Down

The type of combine depends on the direction of the vertical
data flow in the layer. Consider the i-th pair of type variables
in Layer a1 r1 ... an rn. Variable ai represents the vertical
argument of layer function i, and ri the vertical result. If step i is
an upward step, the variables at this position in the Layer types are
related as follows in the type signature for combine:

combine :: Monad m =>
Layer ... md h ... -> Layer ... l md ... ->
Layer ... l h ...

On the other hand, for a downward layer function, we have:

combine :: Monad m =>
Layer ... h md ... -> Layer ... md l ... ->
Layer ... h l ...

7.6 Conclusions
The meta combinator library has the advantages of the hidden-
parameter solution from Section 6, but at the same time, it is
much easier to describe a specific architecture. The use of meta
combinators makes the data flow clearer and reduces the chance of
errors in the specification. For a specific architecture, we only need
to define a Layer type, and give simple definitions of lift and
combine.

8. Type-class magic
The definitions of lift and combine that have to be provided man-
ually for each specific architecture are almost uniquely determined
by the layer type, which leads to the question whether we can use

type classes to construct generic versions of these functions. In-
deed, this turns out to be possible if we encode the direction of
each step in its type. In this section, we present the type classes
and instances that do the job. For clarity, we use the non-monadic
combinators from Section 7 as a base.

To encode the direction of a step, we extend the Step type with
a phantom-type variable (Leijen and Meijer 1999).

newtype Step dir a b ns = Step (a -> (b, ns))

Two constructorless types encode the direction.

data Up
data Down

Definition of genericLift
A generic version of lift would take a variable number of layer

functions, and returns a layer type . The number of layer functions
is determined by the number of steps in the result type (which is
determined by the context in which it is used.)

The structure of a generic version of lift in a pseudo-Haskell
language would read:

genericLift ::
lf1 -> .. -> lfn ->
Fix (Step Up/Down <s1> :.: .. :.: Step Up/Down <sn>)

genericLift = \lf1 .. lfn ->
lfix (liftStep lf1 liftStep lfn)

In this code, we can identify a composition function that takes
a varying number of functions (liftStep lf1 to liftStep lfn)
and return a composition. If we assume a function compose, that
takes a representation of the number of steps (denoted by <n>)
followed by n functions, we can rewrite genericLift to:

genericLift = \lf1 .. lfn ->
lfix (compose <n> (liftStep lf1) .. (liftStep lfn))

Now, we can identify another pattern \a1 an -> f (g (h
a1) .. (h an)). Because of the parentheses around g and its
arguments, we cannot simply compose f and g. We assume a
function app, which takes the representation of the steps <n>, and
the two functions f and g. For h, app uses liftStep, which is not
a parameter. If we take f to be lfix, and g to be compose <n>,
we have a new version of genericLift:

genericLift = app <n> lfix (compose <n>)

The final non-Haskell part in the definition is the <n> expres-
sion. The number of steps is represented by the argument of the Fix
type in the result of genericLift. Hence, we assume a function
resType, which for functions of type a1 .. an -> Fix (s1
:.: .. :.: sn) returns steps t (note that steps has kind *
-> *). With this last function, the definition of genericLift is no
longer pseudo code, but actual Haskell:

genericLift = app (resType genericLift) lfix
(compose (resType genericLift))

Which leaves us the task of defining the type classes for con-
structing the right instances for compose, app, and resType.

For the variable-argument composition compose, we declare a
class Comp with a single method comp, which takes a composition
type, and a neutral element, and returns a composition function that
takes as many arguments as the composition type has steps. The
function compose is simply comp with id for the neutral element.

class Comp (cmp :: * -> *) r c | cmp -> r c where
comp :: cmp t -> r -> c

instance Comp (NilStep) (b->res) (b->res) where
comp cmp r = r

instance Comp g (a->res) cmp =>
Comp (f :.: g) (y->res) ((a->y) -> cmp) where

comp cmp r = \ab -> comp (rightType cmp) (r.ab)

rightType :: (f :.: g) t -> g t
rightType = undefined

compose c = comp c id

The application function is a bit more complex. The class App
has a method app, which takes a composition type, and two func-
tions f and fx. The result is a function that has the same number of
arguments as the composition type has steps, and which applies fx
to each argument, and applies these arguments to the function f.

class App (cmp :: * -> *) f fx r | cmp f -> fx r where
app :: cmp t -> f -> fx -> r

instance App (NilStep) (a->b) a b where
app cmp f a = f a

instance App g (a->b) d e =>
App (Step dr ar rs :.: g) (a->b)

(((hRes -> g ns) -> hArg ->
(Step dr vArg vRes :.: g) ns) ->d)

(LayerFn hArg vArg hRes vRes ->e) where
app cmp f fx = \lf -> (app (rightType cmp) f

(fx (liftStep lf)))

The code for liftStep is the same as in the previous section.
Its type differs slightly due to the direction type variable, but since
this is a phantom type, it does not show up in the values.

The last problem we need to tackle is how to obtain the compo-
sition type over which compose and app recurse. For this we de-
clare a class ResType with a method resType, which yields the re-
sult type of its function argument. Since the result of genericLift
is always of type Fix ct, we can define a base instance for Fix
ct, in which restype returns ct t, and a recursive instance for a
-> f, in which restype returns the result type of f. Since no val-
ues are actually computed here, we can give the method a default
implementation of undefined.

class ResType f res | f -> res where
resType :: f -> res
resType = undefined

instance ResType (Fix ct) (ct t)

instance ResType f r => ResType (a -> f) r

Definition of genericCombine
The situation for genericCombine is somewhat simpler than

for genericLift, since the function does not have a varying
number of arguments. However, unlike genericLift, the step
functions are based on the direction of the step. If we look at
genericCombine, the general structure would be:

combine ::
Fix (Step Up/Down .. :.: .. :.: Step Up/Down ..) ->
Fix (Step Up/Down .. :.: .. :.: Step Up/Down ..) ->
Fix (Step Up/Down .. :.: .. :.: Step Up/Down ..)

combine = cfix \$ combineStepUp/Down
...

. combineStepUp/Down

We assume a function that creates a composition of n combine
steps, where the choice for an upward or a downward step is based

on the direction of the respective Step type in the composition
type.

genericCombine = cfix (combineC (resType genericCombine))

The type class looks a bit unfriendly due to the presence of the
Step type, which is necessary because of the dependence on the
direction.

class Combine (cmp :: * -> *) t f | cmp t -> f where
combineC :: cmp t -> f

instance Combine NilStep t ((x -> y -> t) ->
(NilStep x) -> (NilStep y) -> NilStep t) where

combineC _ = \next (NilStep x) (NilStep y) ->
NilStep (next x y)

instance (Combine c ct ((ut -> lt -> ct) ->
u ut -> l lt-> c ct)) =>

Combine (Step Down a r :.: c) ct
((ut -> lt -> ct) ->
(Step Down a m :.: u) ut ->
(Step Down m r :.: l) lt ->
(Step Down a r :.: c) ct) where

combineC cmp = \next u l ->
combineStepDown (combineC (rightType cmp) next) u l

There is also an instance for Step Up but it is very similar to
the instance for Step Down. The only difference is that Down is
replaced by up, and that the parameter order for the upper and lower
arguments a m and m r is replaced by m r and a m. Hence, we do
not show it here.

Simple editor
With the two generic functions defined above, it is no longer

necessary to manually define a combine function. For lift, it
still makes sense to define a function that takes a layer as an
argument and selects the functions from this layer to pass on to
genericLift.

The required definitions for the simple editor are:

type Layer dc prs gst upd =
Fix (Step Down dc prs :.: Step Up gst upd :.: NilStep)

lift :: Simple state map doc pres gest upd ->
state -> Layer doc pres gest upd

lift smpl = genericLift (present smpl) (interpret smpl)

main layer1 layer2 layer3 =
do { (init1, init2, init3) <- initStates

; doc <- initDoc

; let layers = lift layer1 init1 ‘genericCombine‘
lift layer2 init2 ‘genericCombine‘
lift layer3 init3

; editLoop layers doc
}

The code for editLoop is the same as in Section 7.
The monadic version of the generic combinators is a straight-

forward extension, but has even more daunting types, so we will
not present it here.

Although type errors become somewhat more complicated be-
cause of the overloaded types, the type class solution turns out to
be quite useful. The monadic version has been successfully tested
in the Proxima generic editor.

δHighhigh δ'Highhigh'

high

interpretstate

δLow

low'

low

state'

δ'Low

state''

high''

low'

present

high'

low''

interpret

presentlow

Figure 8. Data flow in a Proxima layer.

9. The Proxima editor
The Proxima editor uses the combinators from Figure 7 for the de-
scription of its architecture. The module that contains the architec-
ture description is an part of the implementation of the prototype.

Although the precise data flow of a Proxima layer is beyond the
scope of this paper, we show a general overview in Figure 8. The
main difference with a Simple layer is that instead of mapping one
data level onto another, a Proxima layer maps edit operations on
a data level onto edit operations on the other level. Hence, each
layer must also keep track of the actual data at each level. The edit
operations are the deltas in the figure, whereas the data levels are
the high and low values, which are threaded through the layer and
switch between being vertical and horizontal parameters.

The data flow in the figure is encoded in the type definition for a
Proxima layer. For the edit operations (the δ’s in Figure 8), we use
distinct types for edit operations going up (editH and editL) and
edit operations going down (editH’ and editL’). The reason for
this distinction is that upward edit operations are often of a different
nature than the downward ones. The code below is actual Proxima
source code:

data Layer m state high low editH editL editH’ editL’ =
Layer { interpret ::

LayerFn m (state, high) (low, editL)
(state, low) (high, editH)

, present ::
LayerFn m (state, low) (high, editH’)

(state, high) (low, editL’)
}

The Layer definition is part of the Architecture module,
which imports the modules that define interpret and present
for each layer. The definitions of the layer type as well as lift
and combine for Proxima are the same as for the simple editor,
except for the fact that present and interpret are swapped. The
Proxima main edit loop is also virtually the same, except that it
consists of more layers than the simple editor.

10. Conclusions and future work
The combinators presented in this paper make it possible to spec-
ify layered editor architectures in a concise and transparent way.
With a small number of definitions, a layered architecture can be
described, clearly showing the data flow between the layers. The
combinators have been heap profiled to ensure that no memory
leaks are present, and have been used to implement the Proxima
prototype as well as a database web-interface system.

Because the architecture description language is embedded in
the implementation language, the architecture of a system forms
part of the implementation of the system. We do not need to trans-
late the architecture to an implementation, and hence, the imple-

mentation is guaranteed to comply with the architecture and vice
versa.

According to Medvidovic and Taylor (Medvidovic and Tay-
lor 2000), an architecture description language should describe the
components of an architecture, the connectors, and the configura-
tion. For the architecture combinators defined in this paper, we can
identify these aspects as follows: the layer functions are the compo-
nents; lift and combine are the connectors; and the applications
of lift and combine determine the configuration.

In the paper we have assumed that once we call a (combined)
step function, the information flows through all the layers. In a real
editor this might not always be the case; if the user adds some
extra white-space this might be recorded in the state at one of
the intermediate levels, upon which the presentation process can
be resumed. We can also envision a situation where information
flows up and down a few times between two adjacent layers, until
a situation is reached in which a change has to be propagated
to yet another layer. Note that we actually only require that the
upper protocol of a lower layer corresponds to the lower protocol
of its upper layer; the updating of the document and providing
the gesture at the bottom layer are examples of simple single-step
protocols. We foresee however that we might use the type system to
describe much more complicated protocols. An open question, and
a matter of debate, is whether this should be done by exploiting
the Haskell type system further, or whether one should move to
more expressive type systems such as found in Agda (Norell 2007).
Only experimenting and comparing solutions can give a definitive
answer. Another area of research concerns how dynamic aspects of
the architecture, such as invariants and constraints on the data, can
be described and, if possible, verified.

The combinator language in this paper is tailored to a specific
kind of architectures: those of layered editors. Although we use
the term editor in a broad sense, also including spreadsheets, e-
mail agents, etc., further research should explore the possibilities
of using Haskell to describe other kinds of architectures. For us
the experiment to model the structure of the system using Haskell
has been a successful experience, and we hope that this paper
will inspire others to pursue the approach for different classes of
architectures.

References
Paul Hudak. Modular domain specific languages and tools. In P. Devanbu

and J. Poulin, editors, Proceedings: Fifth International Conference on
Software Reuse, pages 134–142. IEEE Computer Society Press, 1998.

Daan Leijen and Erik Meijer. Domain specific embedded compilers. In
Domain-Specific Languages, pages 109–122, 1999.

Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans-
actions on Software Engineering, 26(1):70–93, 2000. ISSN 0098-5589.

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

Martijn M. Schrage. Proxima – a presentation-oriented editor for struc-
tured documents. PhD thesis, Utrecht University, The Netherlands,
Oct 2004. URL http://www.cs.uu.nl/research/projects/
proxima.

