Logging Utils (AS)

* Provides a set of logging functions; call them
to log something.

Serialization

delegates
logvent(appSt,e)

// for deep logging :
logFunEntrer(...)

logFunExit(...)
logLoopEnter(...)




To log an object o, LogUtils relies on a
“serialization scheme”

1. It works like this:
1. If oimplements Serializable, then it has a method
serializeSelf.
2. Else check delegates mapping, which is a map of this

type:
Class of o = (Object = void)

2. There is a separation between:
1. Specifying projection
2. Formatting



Example of class implementing
Serializable

class Pair implements Serializable {
public var fst : *;

publicvarsnd : *;
a Serializer will take care for the

—7 formatting.
public function serializeﬁelf(s , Serializem

s.beginObject(this,Object(MYTYPE)) ;
s.storeField(Object(FST),fst) ;
s.storeField(Object(SND),snd) ;
s.endObject() ;

\

this function specifies how to make the projection



Example of serialization delegate

function collectionSerializationDelegateFunction(c : Object, s : Serializer) : void {
s.beginObject(c,COLL_TY_NAME) ;
for each (var o:* in c) s.storeField("elem",0) ;
s.endObject() ;

}




Automation framework

e Listens to flash events, decide which ones are worth
“recording”.

e On arelevant event e, it will produce a “RECORD” event,
that will in turn contain pointers to:
— e (actually, something else representing it)
— its parameters
— its target (e.g. which button e interacts on).
 Logging is attached simply by adding a handler to this
RECORD event, and this handler will call “logEvent(...)” from
LogUtils, passing to it:
— the RECORD event itself (which in turn contain the above infos)

— a projection of application state. Someone has to provide this
projection function ---the logger cannot invent one on its own.



Automation Delegates

e To determine which events to monitor, the automation

framework scans all GUI elements (called “Display
Objects”) of the application.

* |tis also aware when at the runtime more DOs are
added, or removed.

e For each DO x, it checks a map of type:

Class of x =2 AutomationDelegate

If a delegate exists, then x will be logged; the delegate
specifies which events on x will be logged.



Example of Automation Delegate

class ClickableDelegate extends Delegate {

public function ClickableDelegate(x:DisplayObject){
super(x) ;
// this decides that only event CLICK will be recorded:
x.addEventListener(CLICK, myHandler);

}

public function myHandler(ev:Event) {
// this will dispatch RECORD-event:
Automation.record(this, Command.create("click"));

}

// not needed for logging, used by replay (for test execution):
public function click():void {
object.dispatchEvent(new MouseEvent(CLICK,true,false));

}
}



FITTEST Integrated Test Environment
(ITE)

e Allows logging to turned on/off on users’
machines or SUT’s server

e Collecting logs
e Launching test suite on other machines

Jdl-o | @V
= Test machine
Habbo server\
\dl:'w |V
\6 - |V
=) = Player-1 playing Habbo
FITTEST ITE
M-~ |V .
FITTEST agent Player-2 playing Habbo




Automation
Automation Delegates

Framework (input)

Serialization
(define abs-function) Delegates

\ (input)

(with ASIC instrumentation for
deep logging)

FITTEST Agent

raw log file

(compress, selection, export to
XML, reduction (new))

Model _
inference etc XML log file



	Logging Utils (AS)
	To log an object o, LogUtils relies on a “serialization scheme” 
	Example of class implementing Serializable
	Example of serialization delegate
	Automation framework
	Automation Delegates
	Example of Automation Delegate
	FITTEST Integrated Test Environment (ITE)
	Slide Number 9

