
Logging Utils (AS)

• Provides a set of logging functions; call them
to log something.

logvent(appSt,e)
// for deep logging :
logFunEntrer(...)
logFunExit(...)
logLoopEnter(...)

raw log
(UTF8)

Serialization
delegates

To log an object o, LogUtils relies on a
“serialization scheme”

1. It works like this:
1. If o implements Serializable, then it has a method

serializeSelf.
2. Else check delegates mapping, which is a map of this

type:

Class of o (Object void)

2. There is a separation between:
1. Specifying projection
2. Formatting

(a function that given an object knows how to serialize it)

Example of class implementing
Serializable

class Pair implements Serializable {
public var fst : * ;
public var snd : * ;

....
public function serializeSelf(s : Serializer) : void {

s.beginObject(this,Object(MYTYPE)) ;
s.storeField(Object(FST),fst) ;
s.storeField(Object(SND),snd) ;
s.endObject() ;

}
}

this function specifies how to make the projection

a Serializer will take care for the
formatting.

Example of serialization delegate

function collectionSerializationDelegateFunction(c : Object, s : Serializer) : void {
s.beginObject(c,COLL_TY_NAME) ;
for each (var o:* in c) s.storeField("elem",o) ;
s.endObject() ;

}

Automation framework

• Listens to flash events, decide which ones are worth
“recording”.

• On a relevant event e, it will produce a “RECORD” event,
that will in turn contain pointers to:
– e (actually, something else representing it)
– its parameters
– its target (e.g. which button e interacts on).

• Logging is attached simply by adding a handler to this
RECORD event, and this handler will call “logEvent(...)” from
LogUtils, passing to it:
– the RECORD event itself (which in turn contain the above infos)
– a projection of application state. Someone has to provide this

projection function ---the logger cannot invent one on its own.

Automation Delegates

• To determine which events to monitor, the automation
framework scans all GUI elements (called “Display
Objects”) of the application.

• It is also aware when at the runtime more DOs are
added, or removed.

• For each DO x, it checks a map of type:

Class of x AutomationDelegate

If a delegate exists, then x will be logged; the delegate
specifies which events on x will be logged.

Example of Automation Delegate
class ClickableDelegate extends Delegate {

public function ClickableDelegate(x:DisplayObject){
super(x) ;
// this decides that only event CLICK will be recorded:
x.addEventListener(CLICK, myHandler);

}

public function myHandler(ev:Event) {
// this will dispatch RECORD-event:
Automation.record(this, Command.create("click"));

}

// not needed for logging, used by replay (for test execution):
public function click():void {

object.dispatchEvent(new MouseEvent(CLICK,true,false));
}

}

FITTEST Integrated Test Environment
(ITE)

• Allows logging to turned on/off on users’
machines or SUT’s server

• Collecting logs
• Launching test suite on other machines

Test machine

Habbo server

Player-1 playing Habbo

Player-2 playing Habbo

FITTEST ITE

FITTEST agent

SUT

(with ASIC instrumentation for
deep logging)

LogerSetup

Automation
Framework

LogUtils

Automation
Delegates

(input)

Serialization
Delegates

(input)
(define abs-function)

FITTEST Agent

FITTEST ITE HasLog (compress, selection, export to
XML, reduction (new))

launch

raw log file

Model
inference etc XML log file

	Logging Utils (AS)
	To log an object o, LogUtils relies on a “serialization scheme”
	Example of class implementing Serializable
	Example of serialization delegate
	Automation framework
	Automation Delegates
	Example of Automation Delegate
	FITTEST Integrated Test Environment (ITE)
	Slide Number 9

