
Logging Utils (AS)

• Provides a set of logging functions; call them 
to log something.

logvent(appSt,e)
// for deep logging :
logFunEntrer(...)
logFunExit(...)
logLoopEnter(...)

raw log 
(UTF8)

Serialization 
delegates



To log an object o, LogUtils relies on a 
“serialization scheme” 

1. It works like this:
1. If o implements Serializable, then it has a method 

serializeSelf.
2. Else check delegates mapping, which is a map of this 

type:

Class of o  (Object  void)

2. There is a separation between:
1. Specifying projection
2. Formatting  

(a function that given an object knows how to serialize it)



Example of class implementing 
Serializable

class Pair implements Serializable {
public var fst : * ;
public var snd : * ;

....
public function serializeSelf(s : Serializer) : void {

s.beginObject(this,Object(MYTYPE)) ;
s.storeField(Object(FST),fst) ;
s.storeField(Object(SND),snd) ;
s.endObject() ;

}
}

this function specifies how to make the projection

a Serializer will take care for the 
formatting.  



Example of serialization delegate

function collectionSerializationDelegateFunction(c : Object, s : Serializer) : void {
s.beginObject(c,COLL_TY_NAME) ;
for each (var o:* in c)  s.storeField("elem",o) ; 
s.endObject() ;

}



Automation framework

• Listens to flash events, decide which ones are worth 
“recording”.

• On a relevant event e, it will produce a “RECORD” event, 
that will in turn contain pointers to:
– e (actually, something else representing it)
– its parameters
– its target (e.g. which button e interacts on). 

• Logging is attached simply by adding a handler to this 
RECORD event, and this handler will call “logEvent(...)” from 
LogUtils, passing to it:
– the RECORD event itself (which in turn contain the above infos)
– a projection of application state. Someone has to provide this 

projection function ---the logger cannot invent one on its own.



Automation Delegates

• To determine which events to monitor, the automation 
framework scans all GUI elements (called “Display 
Objects”) of the application.

• It is also aware when at the runtime more DOs are 
added, or removed.

• For each DO x, it checks a map of type:

Class of x  AutomationDelegate

If a delegate exists, then x will be logged; the delegate 
specifies which events on x will be logged.



Example of Automation Delegate
class ClickableDelegate extends Delegate {

public function ClickableDelegate(x:DisplayObject){
super(x) ;
// this decides that only event CLICK will be recorded:
x.addEventListener(CLICK, myHandler);

}

public function myHandler(ev:Event) {
// this will dispatch RECORD-event:
Automation.record(this, Command.create("click"));

}

// not needed for logging, used by replay (for test execution):
public function click():void  {

object.dispatchEvent(new MouseEvent(CLICK,true,false));
}

}



FITTEST Integrated Test Environment 
(ITE)

• Allows logging to turned on/off on users’ 
machines or SUT’s server

• Collecting logs
• Launching test suite on other machines

Test machine

Habbo server

Player-1 playing Habbo

Player-2 playing Habbo

FITTEST ITE

FITTEST agent
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