
Action Script Instrumentation

October 24, 2010

1 Introduction

Our goal is to instrument the execution of an Action Script program in order to obtain an
abstract representation of transitions of the program’s state during its execution. Con-
cretely, we are interested in an execution trace that contains some information about the
methods executed and their respective parameters. The programs under considerations
are Adobe Flash programs written using Action Script version 3.

An Action Script program is compiled to byte code, which in turn is interpreted by
a virtual machine to execute the program. This provides us with three possibilities to
instrument an Action Script program:

• Instrument the virtual machine (Section 2). This provides us with limitless access
to the run-time state of the machine (foreign code aside), and does not require
us to preprocess the program. On the other hand, since a Action Script program
typically runs in a web browser, it may not be possible to change the virtual
machine running in that browser.

• Instrument the byte code (Section 3). With this approach, we can instrument any
program or library that we explicitly pass to the virtual machine. The standard
library, which is already present in the virtual machine, cannot be instrumented.
This, however, is not a real limitation in practice. Advantageous is that the in-
strumentation is part of the program, which ensures that it automatically works
fine in combination with optimizations performed by the virtual machine, such as
just-in-time compilation.

• Instrument the source code. The sole advantage is that information that we have
access to information not preserved by the compilation process, such as the precise
lexical structure of nested expressions and loops. Some information, such as the
names of local variable and some source code locations are optionally preserved
in the byte code, when compiling to byte code with debugging enabled. This
approach is impractical: we cannot instrument libraries or programs of which we
do not have the source code.

1

The Action Script language evolved from Javascript to Java. Like Java, a program
is modeled as classed with methods, with code-reuse via inheritance. The classes define
statically what the structure of an object is, and what methods an object has. An
object is associated statically with a class (the compile-time type), and dynamically
with a subclass of that class (the run-time type). Classes that are explicitly marked
as dynamic may have additional structure at runtime not described by the class. This
effectively corresponds to a hidden association list stored with each object, containing
additional fields of the class. Such an object also has a field named prototype, which
points to an object whose fields and methods the current object shared (and possibly
overrides).

Another dynamic feature of Action Script is the possibility to use a run-time computed
string as name of a variable. Combined with the possibility to query the query the
structure of an object, this provides a reflection API to the programmer. These dynamic
features, however, complicate the instrumentation or make it less efficient.

2 Virtual Machine Instrumentation

The virtual machine of Action Script (version 3), called AVM2, is standardized1. The
Tamarin-project2 of Mozilla provides an open-source virtual machine written in C++
that interprets the byte code.

The sources of the virtual machine can be obtained via the Mercurial3 version control
software from:

hg c lone http :// hg . moz i l l a . org / tamarin−redux/

There are several ways to build the source code. On Mac OSX Snow Leopard, it is pos-
sible to use Eclipse. First update to a recent version of Eclipse with the CDT extension
installed. The build-settings are for a previous version of the operating system. Update
paths that point to the OSX 10.4 SDK to the 10.6 SDK. Also, add /usr/lib to the
library path, and z (zlib) to the library list.

Todo. Info on structure of the interpreter. In what file to find the main loop. Info on
the main data structures of the interpret.

3 Byte-code Instrumentation

Todo. The ASC compiler.

1http://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.

pdf
2http://www.mozilla.org/projects/tamarin/
3http://mercurial.selenic.com/

2

http://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/actionscript/articles/avm2overview.pdf
http://www.mozilla.org/projects/tamarin/
http://mercurial.selenic.com/

4 Instrumentation language

4.1 Layer 1: General Instrumentation

Todo.

e : := x −− r e f e r e n c e the value bound to x (may be a q u a l i f i e d name)
| e @ e −− a p p l i c a t i o n
| \x . e −− a b s t r a c t i o n
| d ; e −− bind
| e >> e −− match the cur rent program point aga in s t the l h s
| e # e −− a l t e r n a t i v e s (order l e f t to r i g h t)
| r e t a i n −− given an x and e , memorize x in the context e
| ac t i on −− i f dr iven by a match , g iven an x , execute s that e x t e r n a l func t i on (may f a i l)

| any −− a r b i t r a r y value
| c l a s s −− a c l a s s , g iven e
| f i e l d −− a f i e l d , g iven e
| method −− a method , g iven e
| l o c a l −− a l o c a l , g iven e
| param −−

| with in −− with in a c e r t a i n context e
| c a l l −− c a l l to a c e r t a i n context e
| a s s i g n −− assignment , g iven x and e
| d e r e f −− de re f e r ence , g iven e
| type −− a type , g iven x and value e

d : := x = e −− d e f i n i t i o n (non−r e c u r s i v e)
| s t o r e x = e −− named s t o r e
| data x = (x+)+ −− data d e f i n i t i o n

4.2 Layer 2: Tracing

3

	Introduction
	Virtual Machine Instrumentation
	Byte-code Instrumentation
	Instrumentation language

