
Submitted to ICFP 2011

Experience Report: Functional
Instrumentation of ActionScript Programs

Arie Middelkoop Alexander B. Elyasov Jurriaan Hage Wishnu Prasetya
Universiteit Utrecht

{ariem,elyasov,jur,wishnu}@cs.uu.nl

Abstract
In log-based testing, the system under test contains code to log as-
pects of the system’s execution. Such code can be injected auto-
matically with program transformations. Still, manual intervention
is needed to identify execution steps of interest, as well as pro-
jections of the system’s state. With aspect-oriented programming
(AOP), we can describe the semi-automatic transformation of the
system. However, AOP languages typically lack abstraction mech-
anisms. In this paper, we show that well-known techniques from
functional programming facilitate the design of an expressive AOP
EDSL for ActionScript, called Asil.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Tracing

General Terms measurement

Keywords instrumentation, execution traces

1. Introduction
The future internet [Hudson-Smith 2009] challenges traditional
testing approaches, as future internet applications are a dynamic
composition of ever-changing third party components and services.
In addition to conventional unit and regression tests during develop-
ment, continuous testing is required even after deployment, which
can be accomplished through log-based testing. In log-based test-
ing, the execution of the system under test (SUT) is logged and
later analyzed to discover anomalies that require investigation by
software testers.

In this paper, we use functional programming techniques for
the design and implementation of a tool suite that facilitates the in-
jection of logging code into client-side web applications. Our use
case is Habbo Hotel [Sulake 2004], which is a large Flash appli-
cation deployed on the Internet. Therefore, we restrict ourselves to
programs written in ActionScript 3, the programming language of
Flash. From the execution of this Flash program, we wish to obtain
a log, which is an execution trace that records a projection of the
program’s state for each execution step.

To manually add logging to the source code of the SUT is
undesirable, as it is a crosscutting concern that easily clutters up the
original code. Moreover, modifications to the run-time environment

[Copyright notice will appear here once ’preprint’ option is removed.]

are generally not possible due to security restrictions on the clients
that run the application.

Fortunately, other techniques exist that help us deal with this
issue more effectively. In particular, logging is a prime example
of a functionality that can be implemented non-intrusively through
aspect-oriented programming (AOP) [Kiczales et al. 1997]. This al-
lows us to describe the instrumentation separately from the actual
source code. In order to change the actual logging, we only need to
change the instrumentation, and not the code to which instrumen-
tation was applied.

In AOP, a join point is a location in the program’s code to
which we may transfer control. A join point has a static and dy-
namic context, which is defined as the reachable program state at
that point. The advice is code that can inspect and alter this state
when executed at a join point. Typical AOP languages, such as As-
pectJ [Kiczales et al. 2001], offer facilities for specifying point cuts:
a particular set of join points, where a given piece of advice should
be executed. An aspect weaver integrates the advice into the ac-
tual program at such join points via static and/or dynamic program
transformation.

Unfortunately, typical AOP languages offer limited means of
abstraction in the join point model. For example, in AspectJ, point
cuts can only be parameterized over symbolic values. A symbolic
value is a statically unknown value that corresponds to a run-
time value in the state of the SUT during its execution. Due to
our strongly functional background, where the use of higher-order
functions is second nature, we would like point cuts to be first class
in the AOP specification.

From a functional perspective, an AOP description can be
viewed as a partial function that provides advice for some of the
join points. In the case of logging, advice is a state transformer that
additionally yields a sequence of events. Such an event typically
contains some projection of the program’s state, and an execution
trace is then the sequence of such events as they arose during the
SUT’s execution.

Spec = Instrumentation
Instrumentation = JoinPoint → Maybe Advice
Advice = World → (World × [Event])

The advice functions are typically written in the programming
language of the SUT. The instrumentation functions are point-cut
descriptions in the AOP language, which is typically some pattern
language.

For coverage analyses (which exploit the information contained
in logs) we typically want to specify a more fine-grained instrumen-
tation depending on, e.g., the nesting depth of branches, or annota-
tions provided by the user. To log the behavior of external services,
we often want to specify the instrumentation of the invocation of
the service as a function of (part of) the specification of the ex-
ternal service. Therefore, in this paper, we deviate from standard

A Functional Language for Action Script Instrumentation 1 2011/8/14

usage by parameterizing AOP specifications over values α. These
may include symbolic values and even AOP specifications them-
selves.

Spec α = α→ Instrumentation

Coverage = Spec ControlFlowGraph
External = Spec ServiceContract

Consequently, such abstractions allow us to write more modular
specifications.

From the point of view of the programmer this leads to a speci-
fication of the following type:

Spec α = α× JoinPoint ×World →
Maybe (World × [Event])

In other words, in an instrumentation specification a programmer
may employ values of an arbitrary type Haskell α, a point cut,
and information that will be only be available at run-time. For
an example of the former, consider a control flow graph that we
have previously computed for the SUT, and that we use to generate
specifications of point cuts, and of advice to be weaved in. In other
words, we can generate the AOP specification based on values and
(higher-order) functions living in the Haskell world.

Although the specification by the programmer may refer to
information that will be available at run-time, this information
is not yet available during the early stages that transform Asil
code (a DSL deeply embedded in Haskell) into AsilCore (our core
instrumentation language), or that weave in the advice. From this
point of view, the specifications are actually a bit more restrictive
than the type suggests. The following type is a closer match.

Spec α = α→ JoinPoint →
Maybe (World → (World × [Event]))

This type makes explicit that run-time information, contained in
values of type World , cannot be used during the first two stages of
translation. Indeed, run-time information may only be used in ways
that can be correctly translated into AsilCore or ActionScript. For
example, in the specification given by the programmer, a value that
will only be known at run-time may not be scrutinized in a case
statement, because AsilCore does not have the concept of a case
statement, and therefore it must be translated away. Of course, this
restriction does not hold the other way around: instead of weaving
in advice at join points in the point cut, one may decide to weave
in advice at every join point that dynamically decides whether the
joint point is an element of the point cut. For reasons of efficiency,
however, this is not a very wise thing to do.

We point out that the “arrows” in the above type correspond
exactly to code transformations: the first arrow transforms Asil into
AsilCore, the second arrow is the process of weaving the advice
into the ActionScript source (the tool Asic), and the final arrow
(inside the Maybe) refers to the run-time execution of the advice.

Figure 1 Overview of the specification artifacts.

SUT SUT’ Trace

Refl Core

Spec

Support

.swf .swf .log

.hs

.hs

.as

weave

generate

import

weave import

exec

compile

Figure 1 provides a somewhat more detailed view of the artifacts
involved in the logging specification. From the SUT, we generate
some reflection information Refl (symbol information, control flow

graphs), which is imported by our logging specification Spec. From
Spec, we generate AsilCore, which is weaved into the SUT together
with the support library that provides functions for, e.g., serializing
events. Finally, execution of the instrumented SUT generates the
trace.

Zooming in on the languages we employ, our instrumentation
language is a combinator language called AsilCore, that provides
two primitive operations: pattern matching (on join points) and the
invocation of advice. Such a language is not very easy to program
in, which is why we have chosen to extend it to a deeply embedded
Haskell DSL, called Asil. Asil uses the well-known concepts of
monadic [Wadler 1995] and alternative [Mcbride and Paterson
2008] interfaces to compose instrumentations.

The implementation of Asil is ongoing work within the Fittest
project1. The library asil2 contains Asil as a library, including
parsers, pretty printers, and other tools for the transformation of
ActionScript byte code. The tool asic3 generates reflection infor-
mation and performs aspect weaving.

The remainder of this paper is organised as follows. After intro-
ducing the running example in Section 2, we consider the Asil lan-
guage in more detail in Section 3. In Section 4 we show AsilCore
and some aspects of its implementation; the aspect weaver asic is
shortly discussed in Section 5. Finally, in Section 6 we reflect on the
advantages and disadvantages offered by functional programming
with respect to the implementation of Asil and Asic, and Section 7
concludes.

2. Example
In log-based testing, we log aspects of the program’s execution,
so that we can inspect the log to discover atypical execution pat-
terns that may be worth an investigation by a software tester. This
logging may take place in a special test environment, or after de-
ployment, when the program is in active use.

In this paper, we consider only the instrumentation of Flash pro-
grams: the representation of the logs and the analysis of the logs are
out of the scope of this paper. To set the scene, we describe a snip-
pet of chess-like internet game as a simple running example (see
Figure 2). The game proceeds in turns. In each turn, the user clicks
on a square to select a pawn, then clicks on an unoccupied square
to move the pawn there. Note that logging code has been explicitly
inserted, logging each call to the MyGame.clicked method (with
position information) and also the actual moves that are performed.
The calls to Log.clicked and Log.move take care of generating
events that are logged and thereby become part of the trace.

An execution trace is a sequence of events e1 ... en , where an
event e = (t , i) is a tuple consisting of a discrete timestamp t and
information i about the state of the program at t . In case of the
example, this information consists either of a clicked record or a
move record.

i ::= clicked (int , int) -- clicked record
| move (code.Square, code.Square) -- move record

The utility methods Log.clicked and Log.move take care of
raising the events and serializing a projection of the object-graph
of their parameters to a log. The actual implementation of these
utility methods is out of the scope of this paper.

The calls to the logging methods obscure the source code. This
gets worse when we make the logging code conditional for reasons
of, e.g., privacy or performance:

if (Level.privacy <= 2 && Level.verbose >= 1) {

1 http://www.pros.upv.es/fittest/
2 http://hackage.haskell.org/package/asil
3 http://hackage.haskell.org/package/asic

A Functional Language for Action Script Instrumentation 2 2011/8/14

http://www.pros.upv.es/fittest/
http://hackage.haskell.org/package/asil
http://hackage.haskell.org/package/asic

Figure 2 ActionScript snippet with logging code.
package code {
public class MyGame extends Sprite {

private var selSquare : Square;

public function MyGame() : void {
addEventListener("click", clicked); }

function clicked(event:MouseEvent) : void {
var x : int = event.localX;
var y : int = event.localY;

Log.clicked(x,y);
var target : Square = getSquare(x,y);
var taken : Boolean = occupied(target);

if (!this.selSquare && taken) {
this.selSquare = target;

} else if (this.selSquare && !taken) {
Log.move(this.selSquare, target);
this.move(this.selSquare, target);
this.selSquare = null; } } } }

Log.move(this.selSquare, target) }

Logging and privacy are typical examples of crosscutting concerns,
so that we can apply AOP techniques to specify these concerns sep-
arately from the code. In the next section we discuss the instrumen-
tation language Asil, a functional AOP language.

3. The Asil Instrumentation Language
The language Asil is a combinator language for writing down spec-
ifications Spec α as described in Section 1. It is a functional,
strongly-typed, monadic Haskell EDSL for expressing advice that
is conditionally applied at join points. Join points are predefined
locations in the code where control can be transferred to. Fig-
ure 3 lists the join points in our join point model [Cazzola 2006].
Our main join points are the conventional method entry and exit
from the caller and callee side as in AspectJ [Kiczales et al. 2001],
as well as sequential blocks of instructions [Juarez-Martinez and
Olmedo-Aguirre 2008]. Operationally, an Asil program is a value
of the type I () (explained below) that is applied to each encoun-
tered join point during execution.

Figure 3 Join points and their context.
Join point Context captured
Method entry name, parameters, and param types
Method exit name, return value, and return type
Method abort nane, and exception
Method call name, parameters, and param types
Method returned name, return value, and return type
Method failed name, and exception
Block entry id, cycle root, and preceding join points
Block exit id, cycle root, and preceding join points
Coercion call input, input type, and intended type
Coercion returned input, output, input type, and output type
Coercion failed input, exception, and intended type

We use combinators to construct monadic instrumentations of
type I a and (symbolic) expressions of type E a . A typed product
a of expressions is represented by the type E a . Figure 4 lists the
Asil combinators that are used in the example.

Instrumentations have a notion of success: a successfully ap-
plied instrumentation of type I a returns a value of type a ,

otherwise the instrumentation failed to apply. The operations
matchEnter , matchCall , and matchEnter ′ express matches
against join points. A successful match returns join-point informa-
tion. For example, after matchEnter we can access the values of
parameters to the call (symbolically). The operation call invokes
an ActionScript method, and returns the (symbolic) result value
that is returned by that method. Method calls succeed by default,
unless the method uses a special API routine to indicate an abort.

It is important to realize that the values that will only be avail-
able at run-time will only be represented symbolically: we can ma-
nipulate them only to a limited extent. Such values are the atomic
elements of our expressions E a that may also involve built-in op-
erations on these values, such asinteger arithmetic, comparisons,
boolean arithmetic, field dereference, and array indexing. Essen-
tially, a value of type E a represents a (symbolic) ActionScript
value of type a . We use Haskell to build such expressions. Not all
Haskell expressions (lambdas in particular) can masquerade as E -
expressions, nor can E -expressions be scrutinized with Haskell’s
case expressions. The reason is that AsilCore does not support these
types and expressions, and we chose not to provide translations for
them at this time. We may do so in the future, but in this first at-
tempt we prefer to introduce only those elements that are essential
and to decide later what else we might need. Only a few Haskell
values, such as integers and strings, are also E -expressions.

Figure 4 Excerpt from the Asil combinators.

-- instrumentations (I)
matchEnter :: Prop c (Method a b)→ I (Enter a)

matchCall :: Prop c (Method a b)→ I (Enter a)
matchEnter ′ :: I (Enter Any)

call :: E (Method a b)→ E a → I (E b)

guard :: E Bool → I ()
onPrevious :: I a → I a

param :: Enter Any → Int → I (E Any)

-- monadic combinators
(>>=) :: I a → (a → I b)→ I b

return :: a → I a
fail :: String → I a

-- alternative combinators
(⊕) :: I a → I a → I a

(�) :: I a → I a → I a

(⊗) :: I a → I a → I a

-- expression combinators (E)
(#) :: E c → Prop c t → E t

embed :: I a → E a
null :: E (Object t)
static :: E Static

param1 :: Enter (a, r) → E a

param2 :: Enter (a, (b, r)) → E b

-- match context
data Enter a = ME {name :: E String, params :: E a }

The primitive operations are composed with monadic and alter-
native combinators, shown at the bottom of Figure 4. The monadic
bind m >>= f composes instrumentations sequentially, and param-
eterizes the continuation f with the values returned by m , if m
succeeds. The monadic return return x is an always succeeding
instrumentation that is effectively a no-op, but returns x as value.
We use do-notation to conveniently write monadic sequences.

In the following example, the operation matchEnter matches
against the method entry (join) point of the clicked method of

A Functional Language for Action Script Instrumentation 3 2011/8/14

MyGame, and then calls the clicked method Log with information
that is extracted from the event-parameter (using #).

instrLogClick = do
m ← matchEnter k code MyGame clicked
let evt = param1 m

eX = evt # k flash events MouseEvent localX
eY = evt # k flash events MouseEvent localY

call (static # k code Log clicked) (eX , eY)
return ()

If the match succeeds, then the variable m contains information
about the joint point. Different types of join points typically provide
different information. In this case, we can use param1 to obtain a
typed reference evt to the first parameter of the method from m .
From evt we can obtain the coordinates of the mouse click and
pass these to the Log clicked method. For static properties, we use
the special name static as object reference.

On the other hand, matchEnter ′ can match against method-
entry join points that do not have a statically fixed name nor a
statically fixed signature. For example, with the following code,
we can match on any method-entry join point with a name that
contains "clicked" as substring, and has a first parameter of the
MouseEvent type.

do m ← matchEnter ′

guard (count (params m) ≡ 1)
guard (substr "clicked" (name m))
p1 ← param m 1
evt ← p1 ‘cast ‘ t flash events MouseEvent
...

In this example, params obtains a reference to the parameters
of the method from m . The guard instrumentation succeeds if
and only if its Boolean parameter is True . Remember that these
operators work on symbolic values E t instead of conventional
Haskell values of type t .

Similarly, we can instrument the call to move in the method
clicked. The operation onPrevious takes an instrumentation p
and applies it to the joint points that (directly) precede in the con-
trol flow graph, the matched join point (ignoring back edges). The
operation succeeds if p is successfully applied to such a preceding
join point (at runtime). With this operation, we declaratively spec-
ify contextual pattern matches.

instrLogMove = do
onPrevious $ matchEnter

k code MyGame clicked
m ← matchCall k code MyGame move
let from = param1 m

to = param2 m
call (class # k code Log move) (from, to)
return ()

In the context of having matched against clicked, we match
against a call to MyGame.move, and insert a call to Log.move.

The instrumentations instrLogMove and instrLogClick are
defined separately. Instrumentations can be combined with various
alternative operators. Given some continuation f , the meaning of
(p⊗ q)>>= f is that branch p>>= f and branch q >>= f are applied
to the join point (in that order). The meaning of (p ⊕ q) >>= f is
that p and q (in that order) are both applied, and the continuation
f is parametrized with the result of the last succeeding one of the
two. The strict alternative p � q applies q only if p fails.

The ability to fail raises the question how we deal with the
fact that our support library contains conventional ActionScript
methods that may exhibit side effects. At this time, we do not
attempt to revert these effects.

With conventional higher-order functions and parallel composi-
tion we combine the individual instrumentation.

myInstr :: I ()
myInstr = foldr (⊗) (fail "initial")

[instrLogClick , instrLogMove]

The fail operation is a unit of parallel composition.
Having specified the complete instrumentation myInstr we can

then interpret it for each join point in the Flash program according
to the semantics that we specified informally in this section. How-
ever, we actually implemented an instrumentation monad such that
its execution yields an AsilCore specification (Section 4) as an in-
termediate step. How and why we do this is the subject of the next
section.

4. The AsilCore Language
The monadic bind is an obstacle in the translation of Asil to Ac-
tionScript. The right-hand side of a bind is a function, thus it would
require a nontrivial translation of Haskell functions to ActionScript.
Therefore, we partially evaluate the monadic code to AsilCore,
which is sequential code. This step eliminates both functions and
monads.

Figure 5 AsilCore abstract syntax.

i ::=match m -- match against join point m
| call o v (x :: τ) -- call with args v , binds result x
| on previous i -- lift to preceeding join points
| abort -- aborts instrumentation
| nop -- no-op
| coerce v1 (x2 :: τ) -- coerce type of v1 to τ

| i1; i2 -- sequential composition
| i1 ⊕ i2 -- parallel composition
| i1 � i2 -- alternative composition

| static i -- error if i not statically resolved
| dynamic i -- defers eval of prims in i

m ::= entry (x1 :: String) x2 :: τ -- name x1, args x2
| exit (x1 :: String) (x2 :: τ) -- name x1, result x2
| call (x1 :: String) x2 :: τ -- name x1, args x2
| ... -- etc.

o ::= prim x -- primitive with the name x
| static s -- static property named s
| dynamic v1 v2 -- call closure v1 with v2 as this

v ::= x | c -- identifiers and constants

The AsilCore language (Figure 5) is an intermediate language
that can be mapped strightforwardly to ActionScript advice (to
be precise, we map directly to AVM2 byte code). An AsilCore
term has a statically fixed control flow graph, which simplifies the
injection into compiled ActionScript, since it can be represented
with conventional branching instructions of ActionScript.

In the translation to AsilCore (Figure 6), we implement the in-
strumentation monad in continuation passing style [Sussman 1975]
to deal with the ⊗ operator. The monadic binds are replaced with
static sequencing. Even if Asil programs cannot use Haskell code
to scrutinize E-values, we can parametrize a function f in the right-
hand side of a bind with the (typically) symbolic value v1 computed
in the left-hand side, and continue partial evaluation. As a result,
such a value v1 will be restricted in how it can be manipulated at
run-time.

We desugar Asil programs a bit further to simplify the AsilCore
representation. We express all branching with the local combinators

A Functional Language for Action Script Instrumentation 4 2011/8/14

Figure 6 Asil to Core execution.

type I a = Uid → -- unique id
(Uid → a → Core → (Core,Uid))→ -- continuation

(Core,Uid)) -- res. core

run f = fst $ f 1 (λn i → (i ,n)) -- I a → Core

instance Functor I where

fmap f g = λn k → g n (λm v → k m (f v))

instance Monad I where

return x = λn k → k n x nop

m1 >>= f = λn1 k → m1 n1 $ λn2 v1 i1 →
(f v1) n2 $ λn3 v2 i2 → k n3 v2 (i1; i2)

fail s = λn k → k n (error s) abort

instance Alternative I where

empty = λn1 k → k n1 ⊥ abort

m1 ⊕m2 = λn1 k → m1 n1 $ λn2 v1 i1 →
m2 n2 $ λn3 v2 i2 → k n3 v2 (i1 ⊕ i2)

m1 ⊗m2 = λn1 k → let (i1,n2) = m1 n1 k

(i2,n3) = m2 n2 k
in (i1 ⊕ i2,n3)

embed i = λn k → k n () i -- Core → I ()
fresh = λn k → k (n + 1) (ESym n) nop -- I (E a)

matchBlockEntry = do -- I Block
vId ← fresh

embed (match block guid (toCoreIdent vId))
return $ Block {blockGuid = vId }

⊕ and �. Values in AsilCore are either identifiers that symbolically
represent ActionScript objects, or constants that represent concrete
ActionScript objects. Matches introduce identifiers for the contex-
tual values of the match, and calls introduce identifiers for the result
value. Calls take values as argument, which are either constants or
identifiers. An identifier may only be introduced once, and must
be introduced before being used. This property holds for AsilCore
programs that are derived from well-typed Asil programs.

The following fragment shows the result of the translation of
the running (Asil) example to AsilCore. The abstractions offered
by Asil are seen to be expanded away.

{match entry
name x1 :: String
args x2 :: flash.events.MouseEvent

; call prim equals
args x1, "code.MyGame:clicked"
res x3 :: Boolean

; call prim guard
args x3
res x4 :: void

; call prim deref
args x2, "flash.events.MouseEvent:localX"
res x5 :: int

; call prim deref
args x2, "flash.events.MouseEvent:localY"
res x6 :: int

; call static "code.Log:clicked"

args x5, x6
res x7 :: void

} ⊕ -- composes the two instrumentations in parallel
{on previous
{match entry

name x8 :: String
inputs x9 :: flash.events.MouseEvent

; call prim equals
args x8, "code.MyGame:clicked"
res x10 :: Boolean

; call prim guard
args x10
res x11 :: void }

; match call
name x12 :: String
inputs x13 :: code.Square, x14 :: code.Square

; call prim equals
args x12, "code.MyGame:move"
res x15 :: Boolean

; call prim guard
args x15
res x16 :: void

; call static "code.Log:move"

args x13, x14
res x17 :: void

} ⊕ abort -- may be optimized away

The primitive deref takes an object and a fully qualified name as
string, and returns the associated property if it exists, otherwise it
fails. To call a property of an object, deref can be used to obtain
a closure of type Function , followed by a call dynamic. The
primitive guard succeeds if and only if its argument is true, and the
equals primitive has the same semantics as the ActionScript ==.

The declarative on previous instruction lifts its block to all
preceding join points in the static control flow graph of the method.
Operationally, it also introduces an additional local boolean that
keeps track whether the instrumentation was applied. If it was
applied, we can access its values via the local variables that the
lifted instrumentation introduced.

Figure 7 AsilCore to ActionScript translation.

JabortK thisJoinPoint .aborted = true

JnopK ;

Jcall o v (x :: τ) JxK = (τ) (JoKJvK);
Jmatch exit (x1 :: String) (x2 :: τ2)K
thisJoinPoint .aborted ∨= thisJoinPoint .isMethodExit ;

if (¬ thisJoinPoint .aborted) {
Jx1K = thisJoinPoint .nm; Jx2K = thisJoinPoint .ret }

Ji1; i2K Ji1K; if (¬ thisJoinPoint .aborted) {Ji2K}
Ji1 ⊕ i2K Ji1K; thisJoinPoint .aborted = false; Ji2K
Ji1 � i2K Ji1K; if (thisJoinPoint .aborted) {

thisJoinPoint .aborted = false; Ji2K}
Jprim xK as Primitives.JxK(as)
Jstatic C : xK as JC K.JxK(as)
Jdynamic v1 v2Kas v1.call (v2, as)

The obtained AsilCore instrumentation can be mapped to Ac-
tionScript code as defined in Figure 7, and can then be weaved in
at join points in the program. This requires an ActionScript method
for each primitive operation, and we need to construct a reflexive
thisJoinPoint value [Hilsdale and Hugunin 2004] at each join
point. For a typical join point, only a small part of the instrumenta-
tion is applicable (or even none at all). Therefore, our instrumenta-
tion weaver Asic (Section 5) partially evaluates the AsilCore term,
and only weaves in the residual term.

A Functional Language for Action Script Instrumentation 5 2011/8/14

5. The Instrumentation Weaver Asic
The Asic tool takes an AsilCore term and applies it to all join points
of the SUT. This involves yet another partial evaluation step. The
success of a match is always resolved statically, and results in static
bindings for identifiers related to the name of a method, unique id
of a block, and possibly also the types and number of arguments.
Calls to primitive methods may be performed statically, depending
on what is known statically about their parameters. Reachable calls
to non-primitive methods always result in a residual call in order to
cater for possible side effect.

AsilCore terms can be large when the instrumentation is gener-
ated from, e.g., the control-flow graph. For example, there may be
a dedicated AsilCore branch for each method in the SUT. Asic ap-
plies several optimizations to the AsilCore term before and after the
evaluation process. For example, for each AsilCore branch, we col-
lect the static constraints on the join points in a trie structure, such
that we can quickly obtain the branches that potentially match.

Aspect-weaving is an instance of syntax-directed translation.
Attribute Grammars (AGs) [Swierstra et al. 1998] provide a declar-
ative language to write composable implementations of such trans-
lations. Hence, we implemented Asic with AGs. An advantage of
the approach, compared to a monadic one, is that aspects of the
translation can be described seperately, e.g., the threading of envi-
ronments, location information and substitutions.

6. Reflection
Embedding. Haskell provides Asil’s abstraction facilities for
free. Also, we piggy back on Haskell’s type system to type check
Asil specifications. For the syntactic sugar related to E-expressions
and function calls we used GADTs and common type class ex-
tensions. The use of type classes was not always intuitive due to
confusing conflicts between overlapped instances and functional
dependencies.

In our embedding, join-point structures and the SUT’s run-
time values are represented by E-expressions. The syntax of E-
expressions is purposefully limited so that we can use Haskell’s
abstraction facilities, but refrain from embedding arbitrary Haskell
expressions in AsilCore and ActionScript.

Executable specifications. Specifications of Flash and the Ac-
tionScript bytecode format are publicly available. However, we dis-
covered that these specifications are incomplete with respect to new
Flash versions, and also contain errors that are hard to track down.
Therefore, we initially implemented a monadic binary parser with
uuparsing-lib [Swierstra 2009], which provides results lazily, in
combination with error correction. This provided us with sufficient
context to find bugs in our own implementation and the specifica-
tion itself. Our parser can actually serve as a formal specification,
in an executable, testable form.

Performance. Our use case, the Habbo application, is a large
SWF file that consists of 3,000 classes with 25,000 methods and
800,000 instructions. Simply parsing the application takes several
seconds, which is surprisingly long despite the size of the applica-
tion. We reimplemented our parser as a binary deserializer using the
Data.Binary.Get to no avail. Profiling showed us that garbage
collection takes about 60% of the time. Our hypothesis is that this
is an interplay between the large and relatively long lived AST that
we construct, and the short-lived closure-garbage produced by the
parsers. If it would be possible to allocate the AST (via an annota-
tion on the data constructors) directly in an older memory genera-
tion, we expect it to improve our parser’s performance. A modifi-
cation of the parser that only verified the structure of the SWF files
but does not construct the AST takes about half the time and seems
to confirm our hypothesis.

A more pressing problem is that GHC crashes on the huge
symbol file that we generate from the Habbo SWF. We consider
generating a separate Haskell module for each ActionScript class.

Proofs. The structure of Asil is based on the functor, monad, ap-
plicative and alternative interfaces [Mcbride and Paterson 2008].
This allows us to immediately use many of the convenient func-
tions that are written in terms of these interfaces. Also, these inter-
faces have to satisfy satisfy a number of laws. Proving that these
laws hold gives us more confidence and insight in our implementa-
tion. For example, our monad (Figure 6) satisfies the monad laws
semantically, but not structurally, since the monadic return intro-
duces no-ops. In our actual implementation, we directly eliminate
superfluous no-ops and trivially-dead branches as optimization.

7. Conclusion
We presented Asil, an expressive AOP EDSL for the instrumen-
tation of ActionScript programs. Its design and implementation is
based on well-known functional programming techniques, such as
monads. The implementation exploits Haskell’s facilities for ab-
straction, syntactic sugar and static typing.

Like AspectJ, Asil allows point cuts to be specified with
constrained patterns. In addition, Asil allows these constraints
to be specified as runtime ActionScript methods and possibly
instrumentation-time primitive functions. Finally, (higher-order)
functions can be used to abstract over instrumentations and to de-
rive instrumentations from others.

The possibility to write higher-order functions is an essential
feature that we sorely miss in many DSLs. Fortunately, this comes
for free for EDSLs in functional languages.

References
W. Cazzola. Semantic Join Point Models: Motivations, Notions and Re-

quirements. In SPLAT06, 2006.
E. Hilsdale and J. Hugunin. Advice Weaving in AspectJ. In AOSD’04,

pages 26–35, 2004.
A. Hudson-Smith. The future internet. Future Internet, 1(1):1–2, 2009.
U. Juarez-Martinez and J. O. Olmedo-Aguirre. A Join-point Model for

Fine-grained Aspects. In ECC’08, pages 126–131, 2008.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.

Loingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP’97,
pages 220–242, 1997.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In ECOOP’01, pages 327–353,
2001.

C. Mcbride and R. Paterson. Applicative Programming with Effects. JFP,
18:1–13, 2008.

Sulake. Habbo Hotel, 2004. http://www.habbo.com/.
G. J. Sussman. Scheme: An Interpreter for Extended Lambda Calculus. In

Memo 349, MIT AI Lab, 1975.
S. D. Swierstra. Combinator Parsing: A Short Tutorial. In Language

Engineering and Rigorous Software Development, pages 252–300, 2009.
S. D. Swierstra et al. UU Attribute Grammar System. http://www.cs.

uu.nl/wiki/HUT/AttributeGrammarSystem, 1998.
P. Wadler. Monads for Functional Programming. In AFP’95, pages 24–52,

1995.

A Functional Language for Action Script Instrumentation 6 2011/8/14

http://www.habbo.com/
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

	Introduction
	Example
	The Asil Instrumentation Language
	The AsilCore Language
	The Instrumentation Weaver Asic
	Reflection
	Conclusion

