
Programming
 ADOBE® ACTIONSCRIPT® 3.0 

Updated 11 February 2009



Copyright© 2008 Adobe Systems Incorporated. All rights reserved.

Programming Adobe® ActionScript® 3.0 for Adobe® Flash®

If this guide is distributed with software that includes an end-user agreement, this guide, as well as the software described in it, is furnished under license and 

may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored 

in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe 

Systems Incorporated. Please note that the content in this guide is protected under copyright law even if it is not distributed with software that includes an end-

user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Adobe 

Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational 

content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized 

incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required 

from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.

Adobe, the Adobe logo, Adobe AIR, ActionScript, Flash, Flash Lite, Flex, Flex Builder, MXML, and Pixel Bender are either registered trademarks or trademarks 

of Adobe Systems Incorporated in the United States and/or other countries.

ActiveX and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. Macintosh is a 

trademark of Apple Inc., registered in the United States and other countries. Java is a trademark or registered trademark of Sun Microsystems, Inc. in the United 

States and other countries. All other trademarks are the property of their respective owners. 

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

MPEG Layer-3 audio compression technology licensed by Fraunhofer IIS and Thomson Multimedia (http://www.mp3licensing.com)

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Video compression and decompression is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights Reserved. 

http://www.on2.com.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/).

This product contains either BSAFE and/or TIPEM software by RSA Security, Inc.

 Sorenson Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA

Notice to U.S. government end users. The software and documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of 

“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, 

as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and 

Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as Commercial items and (b) with only those rights 

as are granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright laws of the United States. 

Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable 

equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment 

Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 

60-250 ,and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

Updated 11 February 2009

http://www.apache.org/
http://www.mp3licensing.com
http://www.nellymoser.com
http://www.on2.com
http://www.opensymphony.com/


iii

Contents

Chapter 1: About this manual

Using this manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Accessing ActionScript documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ActionScript learning resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Introduction to ActionScript 3.0

About ActionScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Advantages of ActionScript 3.0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

What’s new in ActionScript 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Compatibility with previous versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 3: Getting started with ActionScript

Programming fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Working with objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Common program elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Example: Animation portfolio piece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Building applications with ActionScript  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Creating your own classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Example: Creating a basic application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Running subsequent examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4: ActionScript language and syntax

Language overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Objects and classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Packages and namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Data types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Conditionals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 5: Object-oriented programming in ActionScript

Basics of object-oriented programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Advanced topics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Example: GeometricShapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 6: Working with dates and times

Basics of dates and times  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Managing calendar dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Updated 11 February 2009



ivPROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Contents

Controlling time intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Example: Simple analog clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 7: Working with strings 

Basics of strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Creating strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

The length property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Working with characters in strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Comparing strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Obtaining string representations of other objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Concatenating strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Finding substrings and patterns in strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Converting strings between uppercase and lowercase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Example: ASCII art  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 8: Working with arrays

Basics of arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Indexed arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Associative arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Multidimensional arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Cloning arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Advanced topics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Example: PlayList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Chapter 9: Handling errors

Basics of error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Types of errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Error handling in ActionScript 3.0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Working with the debugger versions of Flash Player and AIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Handling synchronous errors in an application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Creating custom error classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Responding to error events and status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Comparing the Error classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Example: CustomErrors application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Chapter 10: Using regular expressions

Basics of regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Regular expression syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Methods for using regular expressions with strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Example: A Wiki parser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Chapter 11: Working with XML

Basics of XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

The E4X approach to XML processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

XML objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

XMLList objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Initializing XML variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Assembling and transforming XML objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Updated 11 February 2009



vPROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Contents

Traversing XML structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Using XML namespaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

XML type conversion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Reading external XML documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Example: Loading RSS data from the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Chapter 12: Handling events

Basics of handling events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

How ActionScript 3.0 event handling differs from earlier versions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

The event flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Event objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Event listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Example: Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Chapter 13: Display programming

Basics of display programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Core display classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Advantages of the display list approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Working with display objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Manipulating display objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Animating objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Loading display content dynamically  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Example: SpriteArranger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Chapter 14: Using the drawing API

Basics of using the drawing API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Understanding the Graphics class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Drawing lines and curves  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Drawing shapes using built-in methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Creating gradient lines and fills  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Using the Math class with drawing methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Animating with the drawing API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Example: Algorithmic Visual Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Advanced use of the drawing API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Drawing Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Defining winding rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Using graphics data classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

About using drawTriangles() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Chapter 15: Working with geometry

Basics of geometry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Using Point objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Using Rectangle objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Using Matrix objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Example: Applying a matrix transformation to a display object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Updated 11 February 2009



viPROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Contents

Chapter 16: Filtering display objects

Basics of filtering display objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Creating and applying filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Available display filters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Example: Filter Workbench  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Chapter 17: Working with Pixel Bender shaders

Basics of Pixel Bender shaders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Loading or embedding a shader  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Accessing shader metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Specifying shader input and parameter values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Using a shader  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Chapter 18: Working with movie clips

Basics of movie clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Working with MovieClip objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Controlling movie clip playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Creating MovieClip objects with ActionScript  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Loading an external SWF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Example: RuntimeAssetsExplorer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Chapter 19: Working with motion tweens

Basics of Motion Tweens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Copying motion tween scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Incorporating motion tween scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Describing the animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Adding filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Associating a motion tween with its display objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Chapter 20: Working with inverse kinematics

Basics of Inverse Kinematics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Animating IK Armatures Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Getting information about an IK armature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Instantiating an IK Mover and Limiting Its Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Moving an IK Armature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Using IK Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Chapter 21: Working with text

Basics of working with text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Using the TextField class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Using the Flash Text Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Chapter 22: Working with bitmaps

Basics of working with bitmaps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

The Bitmap and BitmapData classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Manipulating pixels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Copying bitmap data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Making textures with noise functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Updated 11 February 2009



viiPROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Contents

Scrolling bitmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Taking advantage of mipmapping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Example: Animated spinning moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Chapter 23: Working in three dimensions (3D)

Basics of 3D  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Understanding the 3D features of Flash Player and the AIR runtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Creating and moving 3D objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

Projecting 3D objects onto a 2D view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Example: Perspective projection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Performing complex 3D transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Using triangles for 3D effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Chapter 24: Working with video

Basics of video  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Understanding video formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Understanding the Video class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Loading video files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Controlling video playback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Playing video in full-screen mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Streaming video files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Understanding cue points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Writing callback methods for metadata and cue points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Using cue points and metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Capturing camera input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Sending video to a server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Advanced topics for FLV files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Example: Video Jukebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Chapter 25: Working with sound

Basics of working with sound  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

Understanding the sound architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Loading external sound files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Working with embedded sounds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Working with streaming sound files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Working with dynamically generated audio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Playing sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Security considerations when loading and playing sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Controlling sound volume and panning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Working with sound metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Accessing raw sound data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Capturing sound input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Example: Podcast Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

Chapter 26: Capturing user input

Basics of user input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

Capturing keyboard input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Updated 11 February 2009



viiiPROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Contents

Capturing mouse input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Example: WordSearch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Chapter 27: Networking and communication

Basics of networking and communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

Working with external data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Connecting to other Flash Player and AIR instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Socket connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Storing local data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

Working with data files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Example: Building a Telnet client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

Example: Uploading and downloading files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

Chapter 28: Client system environment

Basics of the client system environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Using the System class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Using the Capabilities class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Using the ApplicationDomain class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Using the IME class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Example: Detecting system capabilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

Chapter 29: Copy and paste

Copy-and-paste basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Reading from and writing to the system clipboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Clipboard data formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Chapter 30: Printing 

Basics of printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Printing a page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

Flash Player and AIR tasks and system printing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Setting size, scale, and orientation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

Example: Multiple-page printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Example: Scaling, cropping, and responding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Chapter 31: Using the external API

Basics of using the external API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

External API requirements and advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

Using the ExternalInterface class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Example: Using the external API with a web page container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

Example: Using the external API with an ActiveX container  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Chapter 32: Flash Player security

Flash Player security overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Security sandboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

Permission controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Restricting networking APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

Full-screen mode security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

Loading content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

Updated 11 February 2009



ixPROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Contents

Cross-scripting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Accessing loaded media as data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

Loading data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Loading embedded content from SWF files imported into a security domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Working with legacy content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Setting LocalConnection permissions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Controlling outbound URL access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Shared objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Camera, microphone, clipboard, mouse, and keyboard access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

Updated 11 February 2009



1

Chapter 1: About this manual

This manual provides a foundation for developing applications in Adobe® ActionScript® 3.0. To best understand the 

ideas and techniques described, you should already be familiar with general programming concepts such as data types, 

variables, loops, and functions. You should also understand basic object-oriented programming concepts such as 

classes and inheritance. Prior knowledge of ActionScript 1.0 or ActionScript 2.0 is helpful but not necessary.

Using this manual

The chapters in this manual are organized into the following logical groups to help you better find related areas of 

ActionScript documentation: 

This manual also contains numerous sample files that demonstrate application programming concepts for important 

or commonly used classes. Sample files are packaged in ways to make them easier to load and use with Adobe® Flash® 

CS4 Professional and may include wrapper files. However, the core sample code is pure ActionScript 3.0 that you can 

use in whichever development environment you prefer.

ActionScript 3.0 can be written and compiled a number of ways, including:

• Using the Adobe Flex Builder 3 development environment

• Using any text editor and a command-line compiler, such as the one provided with Flex Builder 3

• Using the Adobe® Flash® CS4 Professional authoring tool

For more information about ActionScript development environments, see “Introduction to ActionScript 3.0” on 

page 4

To understand the code samples in this manual, you don’t need to have prior experience using integrated development 

environments for ActionScript, such as Flex Builder or the Flash authoring tool. You will, however, want to refer to 

the documentation for those tools to learn how to use them to write and compile ActionScript 3.0 code. For more 

information, see “Accessing ActionScript documentation” on page 2.

Chapters Description

Chapters 2 through 5, overview of ActionScript 

programming

Discusses core ActionScript 3.0 concepts, including language syntax, statements 

and operators, and object-oriented ActionScript programming.

Chapters 6 through 11, core ActionScript 3.0 data types 

and classes

Describes top-level data types in ActionScript 3.0.

Chapters 12 through 32, Flash Player and Adobe AIR 

APIs

Describes important features that are implemented in packages and classes specific 

to Adobe Flash Player and Adobe AIR, including event handling, working with 

display objects and the display list, networking and communications, file input and 

output, the external interface, the application security model, and more.

Updated 11 February 2009



2PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

About this manual

Accessing ActionScript documentation

Because this manual focuses on describing ActionScript 3.0, which is a rich and powerful object-oriented 

programming language, it does not extensively cover the application development process or workflow within a 

particular tool or server architecture. So in addition to Programming ActionScript 3.0, you’ll want to consult other 

sources of documentation as you design, develop, test, and deploy ActionScript 3.0 applications.

ActionScript 3.0 documentation

This manual familiarizes you with the concepts behind the ActionScript 3.0 programming language and gives you 

implementation details and samples illustrating important language features. However, this manual is not a complete 

language reference. For that, see the ActionScript 3.0 Language and Components Reference, which describes every 

class, method, property, and event in the language. The ActionScript 3.0 Language and Components Reference 

provides detailed reference information about the core language, Flash authoring tool components (in the fl packages), 

and Flash Player and Adobe AIR APIs (in the flash packages).

Flash documentation

If you use the Flash authoring tool, you may want to consult these manuals:

Book Description

Using Flash Describes how to develop your dynamic web applications in the Flash authoring 

tool

Programming ActionScript 3.0 Describes specific usage of the ActionScript 3.0 language and core Flash Player 

and Adobe AIR API

ActionScript 3.0 Language and Components Reference Provides syntax, usage, and code examples for the Flash authoring tool 

components and ActionScript 3.0 API

Using ActionScript 3.0 Components Explains the details of using components to develop applications created by Flash

Developing Adobe AIR Applications with Flash CS4 

Professional

Describes how to develop and deploy Adobe AIR applications using ActionScript 

3.0 and the Adobe AIR API in Flash.

Learning ActionScript 2.0 in Adobe Flash Provides an overview of ActionScript 2.0 syntax and explains how to use 

ActionScript 2.0 when working with different types of objects

ActionScript 2.0 Language Reference Provides syntax, usage, and code examples for the Flash authoring tool 

components and ActionScript 2.0 API

Using ActionScript 2.0 Components Explains in detail how to use ActionScript 2.0 components to develop applications 

created by Flash

ActionScript 2.0 Components Language Reference Describes each component available in the Version 2 Adobe Component 

Architecture, along with its API

Extending Flash Describes the objects, methods, and properties available in the JavaScript API

Getting Started with Flash Lite 2.x Explains how to use Adobe® Flash® Lite™ 2.x to develop applications and provides 

syntax, usage, and code examples for the ActionScript features that are available 

with Flash Lite 2.x

Developing Flash Lite 2.x Applications Explains how to develop Flash Lite 2.x applications

Introduction to Flash Lite 2.x ActionScript Introduces how to develop applications with Flash Lite 2.x and describes all the 

ActionScript features available to Flash Lite 2.x developers

Updated 11 February 2009



3PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

About this manual

ActionScript learning resources

In addition to the content in these manuals, Adobe provides regularly updated articles, design ideas, and examples at 

the Adobe Developer Center and the Adobe Design Center.

Adobe Developer Center

The Adobe Developer Center is your resource for up-to-the-minute information on ActionScript, articles about real-

world application development, and information about important emerging issues. View the Developer Center at 

www.adobe.com/devnet/.

Adobe Design Center

Learn the latest in digital design and motion graphics. Browse work by leading artists, discover new design trends, and 

hone your skills with tutorials, key workflows, and advanced techniques. Check back twice a month for fresh tutorials 

and articles, and inspirational gallery pieces. View the Design Center at www.adobe.com/designcenter/.

Flash Lite 2.x ActionScript Language Reference Provides syntax, usage, and code examples for the ActionScript 2.0 API that is 

available in Flash Lite 2.x

Getting Started with Flash Lite 1.x Provides an introduction to Flash Lite 1.x and describes how to test your content 

using the Adobe® Device Central CS4 emulator

Developing Flash Lite 1.x Applications Describes how to develop applications for mobile devices using Flash Lite 1.x

Learning Flash Lite 1.x ActionScript Explains how to use ActionScript in Flash Lite 1.x applications and describes all the 

ActionScript features available with Flash Lite 1.x

Flash Lite 1.x ActionScript Language Reference Provides the syntax and usage of ActionScript elements that are available with 

Flash Lite 1.x

Book Description

Updated 11 February 2009

http://www.adobe.com/go/developer
http://www.adobe.com/go/designcenter


4

Chapter 2: Introduction to ActionScript 
3.0

This chapter provides an overview of Adobe® ActionScript® 3.0, the newest and most revolutionary version of 

ActionScript.

About ActionScript

ActionScript is the programming language for the Adobe® Flash® Player and Adobe® AIR™ run-time environments. It 

enables interactivity, data handling, and much more in Flash, Flex, and AIR content and applications. 

ActionScript is executed by the ActionScript Virtual Machine (AVM), which is part of Flash Player and AIR. 

ActionScript code is typically compiled into bytecode format (a sort of programming language that’s written and 

understood by computers) by a compiler, such as the one built into Adobe® Flash® CS4 Professional or Adobe® Flex™ 

Builder™, or that is available in the Adobe® Flex™ SDK. The bytecode is embedded in SWF files, which are executed by 

Flash Player and AIR.

ActionScript 3.0 offers a robust programming model that will be familiar to developers with a basic knowledge of 

object-oriented programming. Some of the key features of ActionScript 3.0 that improve over previous ActionScript 

versions include the following: 

• A new ActionScript Virtual Machine, called AVM2, that uses a new bytecode instruction set and provides 

significant performance improvements

• A more modern compiler code base that performs deeper optimizations than previous versions of the compiler

• An expanded and improved application programming interface (API), with low-level control of objects and a true 

object-oriented model

• An XML API based on the ECMAScript for XML (E4X) specification (ECMA-357 edition 2). E4X is a language 

extension to ECMAScript that adds XML as a native data type of the language.

• An event model based on the Document Object Model (DOM) Level 3 Events Specification

Advantages of ActionScript 3.0

ActionScript 3.0 goes beyond the scripting capabilities of previous versions of ActionScript. It is designed to facilitate 

the creation of highly complex applications with large data sets and object-oriented, reusable code bases. While 

ActionScript 3.0 is not required for content that runs in Adobe Flash Player, it opens the door to performance 

improvements that are only available with the AVM2, the new virtual machine. ActionScript 3.0 code can execute up 

to ten times faster than legacy ActionScript code.

The older version of ActionScript Virtual Machine, AVM1, executes ActionScript 1.0 and ActionScript 2.0 code. 

AVM1 is supported by Flash Player 9 and 10 for backward compatibility with existing and legacy content. For more 

information, see “Compatibility with previous versions” on page 7.

Updated 11 February 2009



5PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Introduction to ActionScript 3.0

What’s new in ActionScript 3.0

Although ActionScript 3.0 contains many classes and features that will be familiar to ActionScript programmers, 

ActionScript 3.0 is architecturally and conceptually different from previous versions of ActionScript. The 

enhancements in ActionScript 3.0 include new features of the core language and an improved Flash Player API that 

provides increased control of low-level objects.

Note: Adobe® AIR™ applications can also use the Flash Player APIs.

Core language features

The core language defines the basic building blocks of the programming language, such as statements, expressions, 

conditions, loops, and types. ActionScript 3.0 contains many new features that speed up the development process.

Run-time exceptions

ActionScript 3.0 reports more error conditions than previous versions of ActionScript. Run-time exceptions are used 

for common error conditions, improving the debugging experience and enabling you to develop applications that 

handle errors robustly. Run-time errors can provide stack traces annotated with source file and line number 

information, helping you quickly pinpoint errors.

Run-time types

In ActionScript 2.0, type annotations were primarily a developer aid; at run time, all values were dynamically typed. 

In ActionScript 3.0, type information is preserved at run time, and used for a number of purposes. Flash Player and 

Adobe AIR perform run-time type checking, improving the system’s type safety. Type information is also used to 

represent variables in native machine representations, improving performance and reducing memory usage. 

Sealed classes

ActionScript 3.0 introduces the concept of sealed classes. A sealed class possesses only the fixed set of properties and 

methods that were defined at compile time; additional properties and methods cannot be added. This enables stricter 

compile-time checking, resulting in more robust programs. It also improves memory usage by not requiring an 

internal hash table for each object instance. Dynamic classes are also possible using the dynamic keyword. All classes 

in ActionScript 3.0 are sealed by default, but can be declared to be dynamic with the dynamic keyword.

Method closures

ActionScript 3.0 enables a method closure to automatically remember its original object instance. This feature is useful 

for event handling. In ActionScript 2.0, method closures would not remember what object instance they were extracted 

from, leading to unexpected behavior when the method closure was invoked. The mx.utils.Delegate class was a popular 

workaround, but it is no longer needed. 

ECMAScript for XML (E4X)

ActionScript 3.0 implements ECMAScript for XML (E4X), recently standardized as ECMA-357. E4X offers a natural, 

fluent set of language constructs for manipulating XML. In contrast to traditional XML-parsing APIs, XML with E4X 

performs like a native data type of the language. E4X streamlines the development of applications that manipulate 

XML by drastically reducing the amount of code needed. For more information about the ActionScript 3.0 

implementation of E4X, see “Working with XML” on page 223. 

To view ECMA’s E4X specification, go to www.ecma-international.org.

Updated 11 February 2009

http://www.ecma-international.org/


6PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Introduction to ActionScript 3.0

Regular expressions

ActionScript 3.0 includes native support for regular expressions so that you can quickly search for and manipulate 

strings. ActionScript 3.0 implements support for regular expressions as they are defined in the ECMAScript (ECMA-

262) edition 3 language specification.

Namespaces

Namespaces are similar to the traditional access specifiers used to control visibility of declarations (public, private, 

protected). They work as custom access specifiers, which can have names of your choice. Namespaces are outfitted 

with a Universal Resource Identifier (URI) to avoid collisions, and are also used to represent XML namespaces when 

you work with E4X. 

New primitive types

ActionScript 2.0 has a single numeric type, Number, a double-precision, floating-point number. ActionScript 3.0 

contains the int and uint types. The int type is a 32-bit signed integer that lets ActionScript code take advantage of the 

fast integer math capabilities of the CPU. The int type is useful for loop counters and variables where integers are used. 

The uint type is an unsigned, 32-bit integer type that is useful for RGB color values, byte counts, and more.

Flash Player API features

The Flash Player APIs in ActionScript 3.0 contain many classes that allow you to control objects at a low level. The 

architecture of the language is designed to be more intuitive than previous versions. While there are too many new 

classes to cover in detail here, the following sections highlight some significant changes. 

Note: Adobe® AIR™ applications can also use the Flash Player APIs.

DOM3 event model 

Document Object Model Level 3 event model (DOM3) provides a standard way of generating and handling event 

messages so that objects within applications can interact and communicate, maintaining their state and responding to 

change. Patterned after the World Wide Web Consortium DOM Level 3 Events Specification, this model provides a 

clearer and more efficient mechanism than the event systems available in previous versions of ActionScript. 

Events and error events are located in the flash.events package. The Flash components framework uses the same event 

model as the Flash Player API, so the event system is unified across the Flash platform.

Display list API

The API for accessing the Flash Player and Adobe AIR display list—the tree that contains any visual elements in the 

application—consists of classes for working with visual primitives.

The new Sprite class is a lightweight building block, similar to the MovieClip class but more appropriate as a base class 

for UI components. The new Shape class represents raw vector shapes. These classes can be instantiated naturally with 

the new operator and can be dynamically re-parented at any time. 

Depth management is now automatic and built into Flash Player and Adobe AIR, rendering assignment of depth 

numbers unnecessary. New methods are provided for specifying and managing the z-order of objects.

Handling dynamic data and content

ActionScript 3.0 contains mechanisms for loading and handling assets and data in your application that are intuitive 

and consistent across the API. The new Loader class provides a single mechanism for loading SWF files and image 

assets and provides a way to access detailed information about loaded content. The URLLoaderclass provides a 

separate mechanism for loading text and binary data in data-driven applications. The Socket class provides a means to 

read and write binary data to server sockets in any format.

Updated 11 February 2009



7PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Introduction to ActionScript 3.0

Low-level data access

Various APIs provide low-level access to data that was never before available in ActionScript. For data that is being 

downloaded, the URLStream class, which is implemented by URLLoader, provides access to data as raw binary data 

while it is being downloaded. The ByteArray class lets you optimize reading, writing, and working with binary data. 

The new Sound API provides detailed control of sound through the SoundChannel and SoundMixer classes. New APIs 

dealing with security provide information about the security privileges of a SWF file or loaded content, enabling you 

to better handle security errors.

Working with text

ActionScript 3.0 contains a flash.text package for all text-related APIs. The TextLineMetrics class provides detailed 

metrics for a line of text within a text field; it replaces the TextFormat.getTextExtent() method in ActionScript 2.0. 

The TextField class contains a number of interesting new low-level methods that can provide specific information 

about a line of text or a single character in a text field. These methods include getCharBoundaries(), which returns 

a rectangle representing the bounding box of a character, getCharIndexAtPoint(), which returns the index of the 

character at a specified point, and getFirstCharInParagraph(), which returns the index of the first character in a 

paragraph. Line-level methods include getLineLength(), which returns the number of characters in a specified line 

of text, and getLineText(), which returns the text of the specified line. A new Font class provides a means to manage 

embedded fonts in SWF files.

Compatibility with previous versions

As always, Flash Player provides full backward compatibility with previously published content. Any content that ran 

in previous versions of Flash Player runs in Flash Player 9 and later. The introduction of ActionScript 3.0 in Flash 

Player 9, however, does present some challenges for interoperability between old and new content running in Flash 

Player 9 or later. The compatibility issues include the following:

• A single SWF file cannot combine ActionScript 1.0 or 2.0 code with ActionScript 3.0 code.

• ActionScript 3.0 code can load a SWF file written in ActionScript 1.0 or 2.0, but it cannot access the SWF file’s 

variables and functions.

• SWF files written in ActionScript 1.0 or 2.0 cannot load SWF files written in ActionScript 3.0. This means that SWF 

files authored in Flash 8 or Flex Builder 1.5 or earlier versions cannot load ActionScript 3.0 SWF files.

The only exception to this rule is that an ActionScript 2.0 SWF file can replace itself with an ActionScript 3.0 SWF 

file, as long as the ActionScript 2.0 SWF file hasn't previously loaded anything into any of its levels. An ActionScript 

2.0 SWF file can do this through a call to loadMovieNum(), passing a value of 0 to the level parameter.

• In general, SWF files written in ActionScript 1.0 or 2.0 must be migrated if they are to work together with SWF files 

written in ActionScript 3.0. For example, say you created a media player using ActionScript 2.0. The media player 

loads various content that was also created using ActionScript 2.0. You cannot create new content in ActionScript 

3.0 and load it in the media player. You must migrate the video player to ActionScript 3.0.

If, however, you create a media player in ActionScript 3.0, that media player can perform simple loads of your 

ActionScript 2.0 content.

The following tables summarize the limitations of previous versions of Flash Player in relation to loading new content 

and executing code, as well as the limitations for cross-scripting between SWF files written in different versions of 

ActionScript.

Updated 11 February 2009



8PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Introduction to ActionScript 3.0

In the following table, “Supported functionality” refers to content running in Flash Player 9 or later. Content running 

in Flash Player 8 or earlier can load, display, execute, and cross-script only ActionScript 1.0 and 2.0.

Supported functionality Flash Player 7 Flash Player 8 Flash Player 9 and 10

Can load SWFs published for 7 and earlier 8 and earlier 9 (or 10) and earlier

Contains this AVM AVM1 AVM1 AVM1 and AVM2

Runs SWFs written in ActionScript 1.0 and 2.0 1.0 and 2.0 1.0 and 2.0, and 3.0

Supported functionality Content created in ActionScript 1.0 and 2.0 Content created in ActionScript 3.0

Can load content and execute code in 

content created in

ActionScript 1.0 and 2.0 only ActionScript 1.0 and 2.0, and ActionScript 3.0

Can cross script content created in ActionScript 1.0 and 2.0 only (ActionScript 3.0 

through Local Connection)

ActionScript 1.0 and 2.0 through 

LocalConnection.

ActionScript 3.0

Updated 11 February 2009



9

Chapter 3: Getting started with 
ActionScript

This chapter is designed to get you started with ActionScript programming and give you the background you’ll need 

to understand the concepts and examples in the rest of this manual. We’ll begin with a discussion of basic 

programming concepts, described in the context of how to apply them in ActionScript. We’ll also cover the essentials 

of how to organize and build an ActionScript application.

Programming fundamentals

Since ActionScript is a programming language, it will help you learn ActionScript if you first understand a few general 

computer programming concepts.

What computer programs do

First of all, it’s useful to have a conceptual idea of what a computer program is and what it does. There are two main 

aspects to a computer program:

• A program is a series of instructions or steps for the computer to carry out.

• Each step ultimately involves manipulating some piece of information or data.

In a general sense, a computer program is just a list of step-by-step instructions that you give to the computer, which 

it performs one by one. Each individual instruction is known as a statement. As you’ll see throughout this manual, in 

ActionScript, each statement is written with a semicolon at the end.

In essence, all that a given instruction in a program does is manipulate some bit of data that’s stored in the computer’s 

memory. In a simple case, you might instruct the computer to add two numbers and store the result in its memory. In 

a more complex case, imagine there is a rectangle drawn on the screen, and you want to write a program to move it 

somewhere else on the screen. The computer is keeping track of certain information about the rectangle—the x, y 

coordinates where it’s located, how wide and tall it is, what color it is, and so forth. Each of those bits of information 

is stored somewhere in the computer’s memory. A program to move the rectangle to a different location would have 

steps like “change the x coordinate to 200; change the y coordinate to 150” (in other words, specifying new values to 

be used for the x and y coordinates). Of course, the computer does something with this data to actually turn those 

numbers into the image that appears on the computer screen; but for the level of detail we’re interested in, it’s enough 

to know that the process of “moving a rectangle on the screen” really just involves changing bits of data in the 

computer’s memory.

Variables and constants

Since programming mainly involves changing pieces of information in the computer’s memory, there needs to be a 

way to represent a single piece of information in the program. A variable is a name that represents a value in the 

computer’s memory. As you write statements to manipulate values, you write the variable’s name in place of the value; 

any time the computer sees the variable name in your program, it looks in its memory and uses the value it finds there. 

For example, if you have two variables named value1 and value2, each containing a number, to add those two 

numbers you could write the statement:

 value1 + value2

Updated 11 February 2009



10PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

When it’s actually carrying out the steps, the computer will look to see the values in each variable, and add them 

together.

In ActionScript 3.0, a variable actually consists of three different parts:

• The variable’s name

• The type of data that can be stored in the variable

• The actual value stored in the computer’s memory

We’ve just discussed how the computer uses the name as a placeholder for the value. The data type is also important. 

When you create a variable in ActionScript, you specify the specific type of data that it will hold; from that point on, 

your program’s instructions can store only that type of data in the variable, and you can manipulate the value using 

the particular characteristics associated with its data type. In ActionScript, to create a variable (known as declaring the 

variable), you use the var statement:

 var value1:Number;

In this case, we’ve told the computer to create a variable named value1, which will hold only Number data (“Number” 

is a specific data type defined in ActionScript). You can also store a value in the variable right away:

 var value2:Number = 17;

In Adobe Flash CS4 Professional, there is another way to declare a variable. When you place a movie clip symbol, 

button symbol, or text field on the Stage, you can give it an instance name in the Property inspector. Behind the scenes, 

Flash creates a variable with the same name as the instance name, which you can use in your ActionScript code to refer 

to that Stage item. So, for example, if you have a movie clip symbol on the Stage and you give it the instance name 

rocketShip, whenever you use the variable rocketShip in your ActionScript code, you will in fact be manipulating 

that movie clip.

A constant is very similar to a variable in the sense that it is a name that represents a value in the computer’s memory, 

with a specified data type. The difference is that a constant can only be assigned a value one time in the course of an 

ActionScript application. Once a constant’s value is assigned, it is the same throughout the application. The syntax for 

declaring a constant is the same as that for declaring a variable, except that you use the const keyword instead of the 

var keyword:

 const SALES_TAX_RATE:Number = 0.07;

A constant is useful for defining a value that is used in multiple places throughout a project, which won’t change under 

normal circumstances. Using a constant rather than a literal value makes your code more readable. For example, it’s 

easier to understand the purpose of a line of code that multiplies a price by SALES_TAX_RATE, compared to a line of 

code that muliplies the price by 0.07. In addition, if the value defined by a constant ever does need to change, if you 

use a constant to represent that value throughout your project you only need to change the value in one place (the 

constant declaration), instead of needing to change it in various places as you would if you use hard-coded literal 

values.

Data types

In ActionScript, there are many data types that you can use as the data type of the variables you create. Some of these 

can be thought of as “simple” or “fundamental” data types:

• String: a textual value, like a name or the text of a book chapter

• Numeric: ActionScript 3.0 includes three specific data types for numeric data:

• Number: any numeric value, including values with or without a fraction

• int: an integer (a whole number without a fraction)

Updated 11 February 2009



11PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

• uint: an “unsigned” integer, meaning a whole number that can’t be negative

• Boolean: a true-or-false value, such as whether a switch is on or whether two values are equal

The simple data types represent a single piece of information: for example, a single number or a single sequence of text. 

However, the majority of the data types defined in ActionScript could be described as complex data types, because they 

represent a set of values grouped together. For example, a variable with the data type Date represents a single value—

a moment in time. Nevertheless, that date value is actually represented as several values: the day, month, year, hours, 

minutes, seconds, and so on, all of which are individual numbers. So while we think of a date as a single value (and we 

can treat it as a single value by creating a Date variable), internally the computer thinks of it as a group of several values 

that, put together, define a single date.

Most of the built-in data types, as well as data types defined by programmers, are complex data types. Some of the 

complex data types you might recognize are:

• MovieClip: a movie clip symbol

• TextField: a dynamic or input text field

• SimpleButton: a button symbol

• Date: information about a single moment in time (a date and time)

Two words that are often used as synonyms for data type are class and object. A class is simply the definition of a data 

type—it’s like a template for all objects of the data type, like saying “all variables of the Example data type have these 

characteristics: A, B, and C.” An object, on the other hand, is just an actual instance of a class; a variable whose data 

type is MovieClip could be described as a MovieClip object. The following are different ways of saying the same thing:

• The data type of the variable myVariable is Number.

• The variable myVariable is a Number instance.

• The variable myVariable is a Number object.

• The variable myVariable is an instance of the Number class.

Working with objects

ActionScript is what’s known as an object-oriented programming language. Object-oriented programming is simply 

an approach to programming—really nothing more than a way to organize the code in a program, using objects.

Earlier we defined a computer program as a series of steps or instructions that the computer performs. Conceptually, 

then, we might imagine a computer program as just a single long list of instructions. However, in object-oriented 

programming, the program instructions are divided among different objects—the code is grouped into chunks of 

functionality, so related types of functionality or related pieces of information are grouped together in one container. 

In fact, if you’ve worked with symbols in Flash, you’re already used to working with objects. Imagine you’ve defined a 

movie clip symbol—let’s say it’s a drawing of a rectangle—and you’ve placed a copy of it on the Stage. That movie clip 

symbol is also (literally) an object in ActionScript; it’s an instance of the MovieClip class. 

There are various characteristics of the movie clip that you can modify. For example, when it’s selected there are values 

you can change in the Property inspector, like its x coordinate, or its width, or various color adjustments like changing 

its alpha (transparency), or applying a drop-shadow filter to it. Other Flash tools let you make more changes, like using 

the Free Transform tool to rotate the rectangle. All of these things that you can do to modify a movie clip symbol in 

the Flash authoring environment are also things you can do in ActionScript by changing the pieces of data that are all 

put together into a single bundle called a MovieClip object.

Updated 11 February 2009



12PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

In ActionScript object-oriented programming, there are three types of characteristics that any class can include:

• Properties

• Methods

• Events

Together, these elements are used to manage the pieces of data used by the program and to decide what actions are 

carried out and in what order.

Properties

A property represents one of the pieces of data that are bundled together in an object. A song object might have 

properties named artist and title; the MovieClip class has properties like rotation, x, width, and alpha. You 

work with properties like individual variables—in fact, you might think of properties as simply the “child” variables 

contained in an object. 

Here are some examples of ActionScript code that uses properties. This line of code moves the MovieClip named 

square to the x coordinate 100 pixels:

 square.x = 100;

This code uses the rotation property to make the square MovieClip rotate to match the rotation of the triangle 

MovieClip:

 square.rotation = triangle.rotation;

This code alters the horizontal scale of the square MovieClip so that it’s one-and-a-half times wider than it used to be:

 square.scaleX = 1.5;

Notice the common structure: you use a variable (square, triangle) as the name of the object, followed by a period 

(.) and then the name of the property (x, rotation, scaleX). The period, known as the dot operator, is used to 

indicate that you’re accessing one of the child elements of an object. The whole structure together, “variable name-dot-

property name,” is used like a single variable, as a name for a single value in the computer’s memory.

Methods

A method is an action that can be performed by an object. For example, if you’ve made a movie clip symbol in Flash 

with several keyframes and animation on its timeline, that movie clip can play, or stop, or be instructed to move the 

playhead to a particular frame.

This code instructs the MovieClip named shortFilm to start playing:

 shortFilm.play();

This line makes the MovieClip named shortFilm stop playing (the playhead stops in place, like pausing a video):

 shortFilm.stop();

This code makes a MovieClip named shortFilm move its playhead to Frame 1 and stop playing (like rewinding a 

video):

 shortFilm.gotoAndStop(1);

Updated 11 February 2009



13PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

As you can see, methods, like properties, are accessed by writing the object’s name (a variable), then a period, and then 

the name of the method followed by parentheses. The parentheses are the way that you indicate that you’re calling the 

method—or in other words, instructing the object to perform that action. Sometimes values (or variables) are placed 

in the parentheses, as a way to pass along additional information that is needed to carry out the action. These values 

are known as method parameters. For example, the gotoAndStop() method needs to know which frame it should go 

to, so it requires a single parameter in the parentheses. Other methods, like play() and stop(), are self-explanatory, 

so they don’t require extra information. Nevertheless, they are still written with parentheses.

Unlike properties (and variables), methods aren’t used as value placeholders. However, some methods can perform 

calculations and return a result that can be used like a variable. For example, the Number class’s toString() method 

converts the numeric value to its text representation:

 var numericData:Number = 9;  
 var textData:String = numericData.toString();

For instance, you would use the toString() method if you wanted to display the value of a Number variable in a text 

field on the screen. The TextField class’s text property (which represents the actual text content displayed on the 

screen) is defined as a String, so it can contain only text values. This line of code converts the numeric value in the 

variable numericData to text, and then makes it show up on the screen in the TextField object named 

calculatorDisplay:

 calculatorDisplay.text = numericData.toString();

Events

We’ve described a computer program as a series of instructions that the computer carries out step-by-step. Some simple 

computer programs consist of nothing more than that—a few steps which the computer carries out, at which point the 

program ends. However, ActionScript programs are designed to keep running, waiting for user input or other things to 

happen. Events are the mechanism that determines which instructions the computer carries out and when.

In essence, events are things that happen that ActionScript is aware of and can respond to. Many events are related to 

user interaction—like a user clicking a button, or pressing a key on the keyboard—but there are also other types of 

events. For example, if you use ActionScript to load an external image, there is an event that can let you know when 

the image has finished loading. In essence, when an ActionScript program is running, Adobe Flash Player and Adobe 

AIR just sit and wait for certain things to happen, and when those things happen, they run the specific ActionScript 

code that you’ve specified for those events.

Basic event handling

The technique for specifying certain actions that should be performed in response to particular events is known as 

event handling. When you are writing ActionScript code to perform event handling, there are three important 

elements you’ll want to identify:

• The event source: Which object is the one the event is going to happen to? For instance, which button will be 

clicked, or which Loader object is loading the image? The event source is also known as the event target, because it’s 

the object where the event is targeted by Flash Player or AIR (that is, where the event actually happens).

• The event: What is the thing that is going to happen, the thing that you want to respond to? This is important to 

identify, because many objects trigger several events.

• The response: What step(s) do you want performed when the event happens?

Any time you write ActionScript code to handle events, it will include these three elements, and the code will follow 

this basic structure (elements in bold are placeholders you’d fill in for your specific case):

Updated 11 February 2009



14PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

 function eventResponse(eventObject:EventType):void  
 {  
 // Actions performed in response to the event go here.  
 }  
    
 eventSource.addEventListener(EventType.EVENT_NAME, eventResponse);

This code does two things. First, it defines a function, which is the way to specify the actions you want performed in 

response to the event. Next, it calls the addEventListener() method of the source object, in essence “subscribing” 

the function to the specified event so that when the event happens, the function’s actions are carried out. We’ll consider 

each of these parts in more detail.

A function provides a way for you to group actions together, with a single name that is like a shortcut name to carry 

out the actions. A function is identical to a method except that it isn’t necessarily associated with a specific class (in 

fact, a method could be defined as a function that is associated with a particular class). When you're creating a function 

for event handling, you must choose the name for the function (named eventResponse in this case). You must also 

specify one parameter (named eventObject in this example). Specifying a function parameter is like declaring a 

variable, so you also have to indicate the data type of the parameter. (In this example, the parameter's data type is 

EventType.) 

Each type of event that you want to listen to has an ActionScript class associated with it. The data type you specify for 

the function parameter is always the associated class of the specific event you want to respond to. For example, a click 

event (triggered when the user clicks on an item with the mouse) is associated with the MouseEvent class. To write a 

listener function for a click event, you define the listener function with a parameter with the data type MouseEvent. 

Finally, between the opening and closing curly braces ({ ... }), you write the instructions you want the computer to 

carry out when the event happens.

Once you’ve written the event-handling function, you need to tell the event source object (the object that the event 

happens to—for example, the button) that you want your function to be called when the event happens. You do this 

by calling the addEventListener() method of that object (all objects that have events also have an 

addEventListener() method). The addEventListener() method takes two parameters:

• First, the name of the specific event you want to respond to. Once again, each event is affiliated with a specific class, 

and that class will have a special value predefined for each event—sort of like the event’s own unique name, which 

you should use for the first parameter.

• Second, the name of your event response function. Note that a function name is written without parentheses when 

it’s passed as a parameter.

Examining the event-handling process

The following is a step-by-step description of the process that happens when you create an event listener. In this case, 

it’s an example of creating a listener function that is called when an object named myButton is clicked.

The actual code written by the programmer is as follows:

 function eventResponse(event:MouseEvent):void  
 {  
 // Actions performed in response to the event go here.  
 }  
   
 myButton.addEventListener(MouseEvent.CLICK, eventResponse);

Updated 11 February 2009



15PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Here is how this code would actually work when it’s running in Flash Player. (The behavior is identical for Adobe AIR 

as well):

1 When the SWF file loads, Flash Player makes note of the fact that there’s a function named eventResponse(). 

2 Flash Player then runs the code (specifically, the lines of code that aren’t in a function). In this case that’s only one 

line of code: calling the addEventListener() method on the event source object (named myButton) and passing 

the eventResponse function as a parameter.

a Internally, myButton has a list of functions that are listening to each of its events, so when its 

addEventListener() method is called, myButton stores the eventResponse() function in its list of event 

listeners.

Updated 11 February 2009



16PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

3 At some point, the user clicks the myButton object, triggering its click event (identified as MouseEvent.CLICK in 

the code).

At that point, the following occurs:

a Flash Player creates an object, an instance of the class associated with the event in question (MouseEvent in this 

example). For many events this will be an instance of the Event class; for mouse events it will be a MouseEvent 

instance; and for other events it will be an instance of the class that’s associated with that event. This object that’s 

created is known as the event object, and it contains specific information about the event that happened: what 

type of event it is, where it happened, and other event-specific information if applicable.

b Flash Player then looks at the list of event listeners stored by myButton. It goes through these functions one by 

one, calling each function and passing the event object to the function as a parameter. Since the 

eventResponse() function is one of myButton’s listeners, as part of this process Flash Player calls the 

eventResponse() function.

Updated 11 February 2009



17PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

c When the eventResponse() function is called, the code in that function runs, so your specified actions are 

carried out.

Event-handling examples

Here are a few more concrete examples of events to give you an idea of some of the common event elements and 

possible variations available when you write event-handling code:

• Clicking a button to start the current movie clip playing. In the following example, playButton is the instance 

name of the button, and this is a special name meaning “the current object”:

 this.stop();  
   
 function playMovie(event:MouseEvent):void  
 {  
 this.play();  
 }  
   
 playButton.addEventListener(MouseEvent.CLICK, playMovie);

• Detecting typing in a text field. In this example, entryText is an input text field, and outputText is a dynamic text 

field:

 function updateOutput(event:TextEvent):void  
 {  
 var pressedKey:String = event.text;  
 outputText.text = "You typed: " + pressedKey;  
 }  
   
 entryText.addEventListener(TextEvent.TEXT_INPUT, updateOutput);

• Clicking a button to navigate to a URL. In this case, linkButton is the instance name of the button:

 function gotoAdobeSite(event:MouseEvent):void  
 {  
 var adobeURL:URLRequest = new URLRequest("http://www.adobe.com/");  
 navigateToURL(adobeURL);  
 }  
   
 linkButton.addEventListener(MouseEvent.CLICK, gotoAdobeSite);

Updated 11 February 2009



18PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Creating object instances

Of course, before you can use an object in ActionScript, the object has to exist in the first place. One part of creating 

an object is declaring a variable; however, declaring a variable only creates an empty place in the computer’s memory. 

You must assign an actual value to the variable—that is, create an object and store it in the variable—before you 

attempt to use or manipulate it. The process of creating an object is known as instantiating the object—in other words, 

creating an instance of a particular class.

One simple way to create an object instance doesn’t involve ActionScript at all. In Flash, when you place a movie clip 

symbol, button symbol, or text field on the Stage, and you assign it an instance name in the Property inspector, Flash 

automatically declares a variable with that instance name, creates an object instance, and stores that object in the 

variable. Likewise, in Adobe Flex Builder when you create a component in MXML (either by coding an MXML tag or 

by placing the component on the editor in Design mode) and assign an ID to that component (in the MXML markup 

or in the Flex Properties view), that ID becomes the name of an ActionScript variable, and an instance of the 

component is created and stored in the variable.

However, you won’t always want to create an object visually. There are also several ways you can create object instances 

using only ActionScript. First, with several ActionScript data types, you can create an instance using a literal 

expression—a value written directly into the ActionScript code. Here are some examples:

• Literal numeric value (enter the number directly):

 var someNumber:Number = 17.239;  
 var someNegativeInteger:int = -53;  
 var someUint:uint = 22;

• Literal String value (surround the text with double quotation marks):

 var firstName:String = "George";  
 var soliloquy:String = "To be or not to be, that is the question...";

• Literal Boolean value (use the literal values true or false):

 var niceWeather:Boolean = true;  
 var playingOutside:Boolean = false;

• Literal Array value (wrap a comma-separated list of values in square brackets):

 var seasons:Array = ["spring", "summer", "autumn", "winter"];

• Literal XML value (enter the XML directly):

 var employee:XML = <employee>  
 <firstName>Harold</firstName>  
 <lastName>Webster</lastName>  
 </employee>;

ActionScript also defines literal expressions for the Array, RegExp, Object, and Function data types. For details on 

these classes, see “Working with arrays” on page 153, “Using regular expressions” on page 203, and “Object data type” 

on page 58.

For any other data type, to create an object instance you use the new operator with the class name, like this:

 var raceCar:MovieClip = new MovieClip();  
 var birthday:Date = new Date(2006, 7, 9);

Creating an object using the new operator is often referred to as “calling the class’s constructor.” A constructor is a 

special method that is called as part of the process of creating an instance of a class. Notice that when you create an 

instance in this way, you put parentheses after the class name, and sometimes you specify parameter values—two 

things that you also do when calling a method.

Updated 11 February 2009



19PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Note that even for those data types that let you create instances using a literal expression, you can still use the new 

operator to create an object instance. For instance, these two lines of code do exactly the same thing:

var someNumber:Number = 6.33;  
var someNumber:Number = new Number(6.33);

It’s important to be familiar with the new ClassName() way of creating objects. If you need to create an instance of 

any ActionScript data type that doesn’t have a visual representation (and hence can’t be created by placing an item on 

the Flash Stage or the Design mode of Flex Builder’s MXML editor), you can only do so by creating the object directly 

in ActionScript using the new operator.

In Flash specifically, the new operator can also be used to create an instance of a movie clip symbol that is defined in 

the Library but isn’t placed on the Stage. For more about this, see “Creating MovieClip objects with ActionScript” on 

page 402.

Common program elements

In addition to declaring variables, creating object instances, and manipulating objects using their properties and 

methods, there are a few other building blocks that you use to create an ActionScript program.

Operators

Operators are special symbols (or occasionally words) that are used to perform calculations. They are mostly used for 

math operations, and also used when comparing values to each other. As a general rule, an operator uses one or more 

values and “works out” to a single result. For example:

• The addition operator (+) adds two values together, resulting in a single number:

 var sum:Number = 23 + 32;

• The multiplication operator (*) multiplies one value by another, resulting in a single number:

 var energy:Number = mass * speedOfLight * speedOfLight;

• The equality operator (==) compares two values to see if they are equal, resulting in a single true-or-false (Boolean) 

value:

 if (dayOfWeek == "Wednesday")  
 {  
 takeOutTrash();  
 }

As shown here, the equality operator and the other “comparison” operators are most commonly used with the if 

statement to determine if certain instructions should be carried out or not.

For more details and examples of using operators, see “Operators” on page 67.

Comments

As you’re writing ActionScript, you’ll often want to leave notes to yourself, perhaps explaining how certain lines of 

code work or why you made a particular choice. Code comments are a tool you can use to write text that the computer 

should ignore in your code. ActionScript includes two kinds of comments:

• Single-line comment: A single-line comment is designated by placing two slashes anywhere on a line. Everything 

after the slashes up to the end of that line is ignored by the computer:

Updated 11 February 2009



20PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

 // This is a comment; it's ignored by the computer.  
 var age:Number = 10; // Set the age to 10 by default.

• Multiline comments: A multiline comment includes a starting comment marker (/*), then the comment content, 

and an ending comment marker (*/). Everything between the starting and ending markers is ignored by the 

computer, regardless of how many lines the comment spans:

 /*  
 This might be a really long description, perhaps describing what  
 a particular function is used for or explaining a section of code.  
   
 In any case, these lines are all ignored by the computer.  
 */

Another common use of comments is to temporarily “turn off” one or more lines of code—for example, if you’re 

testing out a different way of doing something, or trying to figure out why certain ActionScript code isn’t working the 

way you expect.

Flow control

Many times in a program, you will want to repeat certain actions, perform only certain actions and not others, perform 

alternative actions depending on certain conditions, and so on. Flow control is the control over which actions are 

performed. There are several types of flow control elements available in ActionScript.

• Functions: Functions are like shortcuts—they provide a way to group a series of actions under a single name, and 

can be used to perform calculations. Functions are particularly important for handling events, but are also used as 

a general tool for grouping a series of instructions. For more on functions, see “Functions” on page 78.

• Loops: Loop structures let you designate a set of instructions that the computer will perform a set number of times 

or until some condition changes. Often loops are used to manipulate several related items, using a variable whose 

value changes each time the computer works through the loop. For more on loops, see “Looping” on page 75.

• Conditional statements: Conditional statements provide a way to designate certain instructions that are carried out 

only under certain circumstances or to provide alternative sets of instructions for different conditions. The most 

common type of conditional statement is the if statement. The if statement checks a value or expression in its 

parentheses. If the value is true, the lines of code in curly braces are carried out; otherwise, they are ignored. For 

example:

 if (age < 20)  
 {  
 // show special teenager-targeted content  
 }

The if statement’s companion, the else statement, lets you designate alternative instructions to be performed if 

the condition is not true:

 if (username == "admin")  
 {  
 // do some administrator-only things, like showing extra options  
 }  
 else  
 {  
 // do some non-administrator things  
 }

For more on conditional statements, see “Conditionals” on page 73.

Updated 11 February 2009



21PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Example: Animation portfolio piece

This example is designed to give you a first opportunity to see how you can piece together bits of ActionScript into a 

complete, if not ActionScript-heavy, application. The animation portfolio piece is an example of how you could take 

an existing linear animation (for example, a piece created for a client) and add some minor interactive elements 

appropriate for incorporating that animation into an online portfolio. The interactive behavior that we’ll add to the 

animation will include two buttons the viewer can click: one to start the animation, and one to navigate to a separate 

URL (such as the portfolio menu or the author’s home page).

The process of creating this piece can be divided into these main sections:

1 Prepare the FLA file for adding ActionScript and interactive elements.

2 Create and add the buttons.

3 Write the ActionScript code.

4 Test the application.

Preparing to add interactivity

Before we can add interactive elements to our animation, it’s helpful to set up the FLA file by creating some places to 

add our new content. This includes creating actual space on the Stage where buttons can be placed, and also creating 

“space” in the FLA file for keeping different items separate.

To set up your FLA for adding interactive elements:

1 If you don’t already have a linear animation to which you’ll be adding interactivity, create a new FLA file with a 

simple animation such as a single motion tween or shape tween. Otherwise, open the FLA file containing the 

animation that you’re showcasing in the project, and save it with a new name to create a new working file.

2 Decide where on the screen you’ll want the two buttons to appear (one to start the animation and one to link to the 

author portfolio or home page). If necessary, clear or add some space on the Stage for this new content. If the 

animation doesn’t already have one, you might want to create a splash screen on the first frame (you’ll probably 

want to shift the animation over so it starts on Frame 2 or later).

3 Add a new layer, above the other layers in the Timeline, and rename it buttons. This will be the layer where you’ll 

add the buttons.

4 Add a new layer, above the buttons layer, and name it actions. This will be where you’ll add ActionScript code to 

your application.

Creating and adding buttons

Next we’ll need to actually create and position the buttons that will form the center of our interactive application.

To create and add buttons to the FLA:

1 Using the drawing tools, create the visual appearance of your first button (the “play” button) on the buttons layer. 

For example, you might draw a horizontal oval with text on top of it.

2 Using the Selection tool, select all the graphic parts of the single button.

3 From the main menu, choose Modify > Convert To Symbol.

4 In the dialog box, choose Button as the symbol type, give the symbol a name, and click OK.

5 With the button selected, in the Property inspector give the button the instance name playButton.

Updated 11 February 2009



22PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

6 Repeat steps 1 through 5 to create the button that will take the viewer to the author’s home page. Name this button 

homeButton.

Writing the code

The ActionScript code for this application can be divided into three sets of functionality, although it will all be entered 

in the same place. The three things the code needs to do are:

• Stop the playhead as soon as the SWF file loads (when the playhead enters Frame 1).

• Listen for an event to start the SWF file playing when the user clicks the play button.

• Listen for an event to send the browser to the appropriate URL when the user clicks the author home page button. 

To create code to stop the playhead when it enters Frame 1:

1 Select the keyframe on Frame 1 of the actions layer.

2 To open the Actions panel, from the main menu, choose Window > Actions.

3 In the Script pane, enter the following code:

 stop();

To write code to start the animation when the play button is clicked:

1 At the end of the code entered in the previous steps, add two empty lines.

2 Enter the following code at the bottom of the script:

 function startMovie(event:MouseEvent):void  
 {  
 this.play();  
 }

This code defines a function called startMovie(). When startMovie() is called, itcauses the main timeline to 

start playing.

3 On the line following the code added in the previous step, enter this line of code:

 playButton.addEventListener(MouseEvent.CLICK, startMovie);

This line of code registers the startMovie() function as a listener for playButton’s click event. In other words, 

it makes it so that whenever the button named playButton is clicked, the startMovie() function is called.

To write code to send the browser to a URL when the home page button is clicked:

1 At the end of the code entered in the previous steps, add two empty lines.

2 Enter this code at the bottom of the script:

 function gotoAuthorPage(event:MouseEvent):void  
 {  
 var targetURL:URLRequest = new URLRequest("http://example.com/");  
 navigateToURL(targetURL);  
 }

This code defines a function called gotoAuthorPage(). This function first creates a URLRequest instance 

representing the URL http://example.com/, and then passes that URL to the navigateToURL() function, causing 

the user’s browser to open that URL.

3 On the line following the code added in the previous step, enter this line of code:

 homeButton.addEventListener(MouseEvent.CLICK, gotoAuthorPage);

Updated 11 February 2009



23PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

This line of code registers the gotoAuthorPage() function as a listener for homeButton’s click event. In other 

words, it makes it so that whenever the button named homeButton is clicked, the gotoAuthorPage() function is 

called.

Testing the application

At this point, the application should be completely functional. Let’s test it to make sure that’s the case.

To test the application:

1 From the main menu, choose Control > Test Movie. Flash creates the SWF file and opens it in a Flash Player 

window.

2 Try both the buttons to make sure they do what you expect them to.

3 If the buttons don’t work, here are some things to check for:

• Do the buttons both have distinct instance names?

• Do the addEventListener() method calls use the same names as the buttons’ instance names?

• Are the correct event names used in the addEventListener() method calls?

• Is the correct parameter specified for each of the functions? (Both should have a single parameter with the data 

type MouseEvent.)

All of these and most other possible mistakes should give an error message either when you choose the Test Movie 

command or when you click the button. Look in the Compiler Errors panel for compiler errors (the ones that 

happen when you first choose Test Movie), and check the Output panel for run-time errors (errors which happen 

while the SWF is playing—such as when you click a button).

Building applications with ActionScript

The process of writing ActionScript to build an application involves more than just knowing the syntax and the names 

of the classes you’ll use. While most of the information in this manual is geared towards those two topics (syntax and 

using ActionScript classes), you’ll also want to know some information such as what programs can be used for writing 

ActionScript, how ActionScript code can be organized and included in an application, and what steps you should 

follow in developing an ActionScript application.

Options for organizing your code

You can use ActionScript 3.0 code to power everything from simple graphics animations to complex client-server 

transaction processing systems. Depending on the type of application you’re building, you may prefer to use one or 

more of these different ways of including ActionScript in your project.

Storing code in frames in a Flash timeline

In the Flash authoring environment, you can add ActionScript code to any frame in a timeline. This code will be 

executed while the movie is playing back, when the playhead enters that frame.

Placing ActionScript code in frames provides a simple way to add behaviors to applications built in the Flash authoring 

tool. You can add code to any frame in the main timeline or to any frame in the timeline of any MovieClip symbol. 

However, this flexibility comes with a cost. When you build larger applications, it becomes easy to lose track of which 

frames contain which scripts. This can make the application more difficult to maintain over time.

Updated 11 February 2009



24PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Many developers simplify the organization of their ActionScript code in the Flash authoring tool by placing code only 

in the first frame of a timeline, or on a specific layer in the Flash document. This makes it easier to locate and maintain 

the code in your Flash FLA files. However, in order to use the same code in another Flash project, you must copy and 

paste the code into the new file.

If you want to be able to use your ActionScript code in other Flash projects in the future, you will want to store your 

code in external ActionScript files (text files with the .as extension).

Storing code in ActionScript files

If your project involves significant ActionScript code, the best way to organize your code is in separate ActionScript 

source files (text files with the .as extension). An ActionScript file can be structured in one of two ways, depending on 

how you intend to use it in your application.

• Unstructured ActionScript code: Lines of ActionScript code, including statements or function definitions, written 

as though they were entered directly in a timeline script, MXML file, and so on.

ActionScript written in this way can be accessed using the include statement in ActionScript, or the <mx:Script> 

tag in Adobe Flex MXML. The ActionScript include statement causes the contents of an external ActionScript file 

to be inserted at a specific location and within a given scope in a script, as if it were entered there directly. In the 

Flex MXML language, the <mx:Script> tag lets you specify a source attribute that identifies an external 

ActionScript file to be loaded at that point in the application. For example, the following tag will load an external 

ActionScript file named Box.as:

 <mx:Script source="Box.as" />

• ActionScript class definition: A definition of an ActionScript class, including its method and property definitions.

When you define a class, you can access the ActionScript code in the class by creating an instance of the class and 

using its properties, methods, and events, just as you would with any of the built-in ActionScript classes. This 

requires two parts:

• Use the import statement to specify the full name of the class, so the ActionScript compiler knows where to find 

it. For example, if you want to use the MovieClip class in ActionScript, you first need to import that class using 

its full name, including package and class:

 import flash.display.MovieClip;

Alternatively, you can import the package that contains the MovieClip class, which is equivalent to writing 

separate import statements for each class in the package:

 import flash.display.*;

The only exceptions to the rule that a class must be imported if you refer to that class in your code are the top-

level classes, which are not defined in a package.

Note: In Flash, for scripts attached to frames on the Timeline, the built-in classes (in the flash.* packages) are 

automatically imported. However, when you write your own classes, or if you’re working with Flash authoring 

components (the fl.* packages) or if you’re working in Flex, you will need to explicitly import any class in order to 

write code that creates instances of that class.

• Write code which specifically refers to the class name (usually declaring a variable with that class as its data type, 

and creating an instance of the class to store in the variable). By referring to another class name in ActionScript 

code, you tell the compiler to load the definition of that class. For example, given an external class called Box, 

this statement causes a new instance of the Box class to be created:

 var smallBox:Box = new Box(10,20);

Updated 11 February 2009



25PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

When the compiler comes across the reference to the Box class for the first time, it searches the loaded source 

code to locate the Box class definition. 

Choosing the right tool

Depending on the needs of your project and the resources you have available to you, you may want to use one of several 

tools (or multiple tools in conjunction with each other) for writing and editing your ActionScript code.

Flash authoring tool

In addition to its graphics and animation creation capabilities, Adobe Flash CS4 Professional includes tools for 

working with ActionScript code, either attached to elements in a FLA file or in external ActionScript-only files. The 

Flash authoring tool is ideal for projects that involve significant animation or video or where you want to create most 

of the graphic assets yourself, particularly projects with minimal user interaction or functionality requiring 

ActionScript. Another reason you may choose to use the Flash authoring tool to develop your ActionScript project is 

if you prefer to create visual assets and write code in the same application. You may also want to use Flash authoring 

if you want to use pre-built user interface components, but smaller SWF size or easier visual skinning are key priorities 

for your project.

Adobe Flash CS4 Professional includes two tools for writing ActionScript code:

• Actions panel: Available when working in a FLA file, this panel allows you to write ActionScript code attached to 

frames on a timeline.

• Script window: The Script window is a dedicated text editor for working with ActionScript (.as) code files.

Flex Builder

Adobe Flex Builder is the premier tool for creating projects with the Flex framework. In addition to its visual layout 

and MXML editing tools, Flex Builder also includes a full-featured ActionScript editor, so it can be used to create Flex 

or ActionScript-only projects. Flex applications have several benefits, including a rich set of pre-built user interface 

controls, flexible dynamic layout controls, and built-in mechanisms for working with external data sources and linking 

external data to user interface elements. However, because of the additional code required to provide these features, 

Flex applications can have a larger SWF file size and can’t be completely re-skinned as easily as their Flash 

counterparts.

Use Flex Builder if you are creating full-featured, data-driven rich Internet applications with Flex, and you want to edit 

ActionScript code, edit MXML code, and lay out your application visually, all within a single tool.

Third-party ActionScript editor

Because ActionScript (.as) files are stored as simple text files, any program that is capable of editing plain text files can 

be used to write ActionScript files. In addition to Adobe’s ActionScript products, several third-party text editing 

programs with ActionScript-specific capabilities have been created. You can write an MXML file or ActionScript 

classes using any text editor program. You can then create a SWF application (either a Flex or an ActionScript-only 

application) from those files using the Flex SDK, which includes the Flex framework classes as well as the Flex 

compiler. Alternatively, many developers use a third-party ActionScript editor for writing ActionScript classes, in 

combination with the Flash authoring tool for creating graphical content.

You might choose to use a third-party ActionScript editor if:

• You prefer to write ActionScript code in a separate program in conjunction with designing visual elements in Flash.

• You use an application for non-ActionScript programming (such as creating HTML pages or building applications 

in another programming language), and you want to use the same application for your ActionScript coding as well.

Updated 11 February 2009



26PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

• You want to create ActionScript-only or Flex projects using the Flex SDK without the expense of Flash or Flex 

Builder.

Some of the notable code editors providing ActionScript-specific support include:

• Adobe Dreamweaver® CS4

• ASDT

• FDT

• FlashDevelop

• PrimalScript

• SE|PY

The ActionScript development process

No matter whether your ActionScript project is large or small, using a process to design and develop your application 

will help you work more efficiently and effectively. The following steps describe a basic development process for 

building an application that uses ActionScript 3.0:

1 Design your application.

You should describe your application in some way before you start building it.

2 Compose your ActionScript 3.0 code.

You can create ActionScript code using Flash, Flex Builder, Dreamweaver, or a text editor. 

3 Create a Flash or Flex application file to run your code. 

In the Flash authoring tool, this involves creating a new FLA file, setting up the publish settings, adding user 

interface components to the application, and referencing the ActionScript code. In the Flex development 

environment, creating a new application file involves defining the application and adding user interface 

components using MXML, and referencing the ActionScript code.

4 Publish and test your ActionScript application. 

This involves running your application from within the Flash authoring or Flex development environment, and 

making sure it does everything you intended.

Note that you don’t necessarily have to follow these steps in order, or completely finish one step before working on 

another. For example, you might design one screen of your application (step 1), and then create the graphics, buttons, 

and so forth (step 3), before writing ActionScript code (step 2) and testing (step 4). Or you might design part of it, and 

then add one button or interface element at a time, writing ActionScript for each one and testing it as it’s built. 

Although it’s helpful to remember these four stages of the development process, in real-world development it’s usually 

more effective to move back and forth among the stages as appropriate.

Creating your own classes

The process of creating classes for use in your projects can seem daunting. However, the more difficult part of creating 

a class is the task of designing the class—identifying the methods, properties, and events that it will include.

Updated 11 February 2009

http://www.adobe.com/products/dreamweaver/
http://sourceforge.net/projects/aseclipseplugin/
http://fdt.powerflasher.com/
http://www.flashdevelop.org/
http://www.primalscript.com/
http://www.sephiroth.it/python/sepy.php


27PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Strategies for designing a class

The topic of object-oriented design is a complex one; entire careers have been devoted to the academic study and 

professional practice of this discipline. Nevertheless, here are a few suggested approaches that can help you get started.

1 Think about the role that the instances of this class will play in the application. Generally, objects serve one of these 

three roles:

• Value object: These objects serve primarily as containers of data—that is, they likely have several properties and 

fewer methods (or sometimes no methods). They are generally code representations of clearly defined items, 

such as a Song class (representing a single real-world song) or Playlist class (representing a conceptual group of 

songs) in a music player application.

• Display object: These are objects that actually appear on the screen. Examples include user-interface elements 

like a drop-down list or status readout, graphical elements like creatures in a video game, and so forth.

• Application structure: These objects play a broad range of supporting roles in the logic or processing performed 

by applications. Examples include an object that performs certain calculations in a biology simulation; one that 

is responsible for synchronizing values between a dial control and a volume readout in a music player 

application; one that manages the rules in a video game; or one that loads a saved picture in a drawing 

application.

2 Decide the specific functionality that the class will need. The different types of functionality often become the 

methods of the class.

3 If the class is intended to serve as a value object, decide the data that the instances will include. These items are good 

candidates for properties.

4 Since your class is being designed specifically for your project, what’s most important is that you provide the 

functionality that your application needs. It might help to answer these questions for yourself:

• What pieces of information will your application be storing, tracking, and manipulating? Deciding this helps 

you identify any value objects and properties you may want.

• What sets of actions will need to be performed—for example, when the application first loads, when a particular 

button is clicked, when a movie stops playing, and so forth? These are good candidates for methods (or 

properties, if the “actions” just involve changing individual values).

• For any given action, what information will the class need to know in order to perform that action? Those pieces 

of information become the parameters of the method.

• As the application proceeds to do its work, what things will change in your class that other parts of your 

application will need to know about? These are good candidates for events.

5 If there is an existing object that is similar to the object you need, except that it’s lacking some additional 

functionality you want to add, consider creating a subclass (a class which builds on the functionality of an existing 

class, rather than defining all of its own functionality). For example, if you want to create a class that will be a visual 

object on the screen, you’ll want to use the behavior of one of the existing display objects (for example, Sprite or 

MovieClip) as a basis for your class. In that case, MovieClip (or Sprite) would be the base class, and your class would 

extend that class. For more information about creating a subclass, see “Inheritance” on page 107.

Writing the code for a class

Once you have a design plan for your class, or at least some idea of what information it will need to keep track of and 

what actions it will need to carry out, the actual syntax of writing a class is fairly straightforward.

Updated 11 February 2009



28PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Here are the minimum steps to create your own ActionScript class:

1 Open a new text document, in an ActionScript-specific program such as Flex Builder or Flash, in a general 

programming tool such as Dreamweaver, or in any program that allows you to work with plain text documents.

2 Enter a class statement to define the name of the class. To do this, enter the words public class, and then the 

class’s name, followed by opening and closing curly braces that will surround the contents of the class (the method 

and property definitions). For example:

 public class MyClass  
 {  
 }

The word public indicates that the class can be accessed from any other code. For other alternatives, see “Access 

control namespace attributes” on page 94.

3 Type a package statement to indicate the name of the package in which your class will be found. The syntax is the 

word package, followed by the full package name, followed by opening and closing curly braces (which will 

surround the class statement block). For example, we’d change the code in the previous step to this:

 package mypackage  
 {  
 public class MyClass  
 {  
 }  
 }

4 Define each property in the class using the var statement within the class body; the syntax is the same as you use 

to declare any variable (with the addition of the public modifier). For example, adding these lines between the 

opening and closing curly braces of the class definition will create properties named textVariable, 

numericVariable, and dateVariable:

 public var textVariable:String = "some default value";  
 public var numericVariable:Number = 17;  
 public var dateVariable:Date;

5 Define each method in the class using the same syntax that’s used to define a function. For example:

• To create a myMethod() method, enter:

 public function myMethod(param1:String, param2:Number):void  
 {  
 // do something with parameters  
 }

• To create a constructor (the special method that is called as part of the process of creating an instance of a class), 

create a method whose name matches exactly the name of the class:

 public function MyClass()  
 {  
 // do stuff to set initial values for properties  
 // and otherwise set up the object  
 textVariable = "Hello there!";  
 dateVariable = new Date(2001, 5, 11);  
 }

If you don’t include a constructor method in your class, the compiler will automatically create an empty 

constructor (one with no parameters and no statements) in your class.

Updated 11 February 2009



29PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

There are a few more class elements that you can define.These elements are more involved.

• Accessors are a special cross between a method and a property. When you write the code to define the class, you 

write the accessor like a method so you can perform multiple actions (rather than just reading or assigning a 

value, which is all you can do when you define a property). However, when you create an instance of your class, 

you treat the accessor like a property—using just the name to read or assign the value. For more information, 

see “Get and set accessor methods” on page 100.

• Events in ActionScript aren’t defined using a specific syntax. Instead, you define events in your class by using 

the functionality of the EventDispatcher class to keep track of event listeners and notify them of events. For more 

on creating events in your own classes, see “Handling events” on page 244.

Example: Creating a basic application

You can create external ActionScript source files with an .as extension using Flash, Flex Builder, Dreamweaver, or any 

text editor.

ActionScript 3.0 can be used within a number of application development environments, including the Flash 

authoring and Flex Builder tools. 

This section walks through the steps in creating and enhancing a simple ActionScript 3.0 application using the Flash 

authoring tool or Flex Builder. The application you’ll build presents a simple pattern for using external ActionScript 

3.0 class files in Flash and Flex applications. That pattern will apply to all of the other sample applications in this 

manual.

Designing your ActionScript application

You should have some idea about the application you want to build before you start building it.

The representation of your design can be as simple as the name of the application and a brief statement of its purpose, 

or as complicated as a set of requirements documents containing numerous Unified Modeling Language (UML) 

diagrams. This manual doesn’t discuss the discipline of software design in detail, but it’s important to keep in mind 

that application design is an essential step in the development of ActionScript applications.

Our first example of an ActionScript application will be a standard “Hello World” application, so its design is very 

simple:

• The application will be called HelloWorld. 

• It will display a single text field containing the words “Hello World!” 

• In order to be easily reused, it will use a single object-oriented class, named Greeter, which can be used from within 

a Flash document or a Flex application.

• After you create a basic version of the application, you will add new functionality to have the user enter a user name 

and have the application check the name against a list of known users.

With that concise definition in place, you can start building the application itself.

Creating the HelloWorld project and the Greeter class

The design statement for the Hello World application said that its code should be easy to reuse. With this goal in mind, 

the application uses a single object-oriented class, named Greeter, which is used from within an application that you 

create in Flex Builder or the Flash authoring tool.

Updated 11 February 2009



30PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

To create the Greeter class in the Flash authoring tool:

1 In the Flash authoring tool, select File > New.

2 In the New Document dialog box, select ActionScript file, and click OK.

A new ActionScript editing window is displayed.

3 Select File > Save. Select a folder to contain your application, name the ActionScript file Greeter.as, and then click OK.

Continue with “Adding code to the Greeter class” on page 30.

Adding code to the Greeter class

The Greeter class defines an object, Greeter, that you will be able to use in your HelloWorld application.

To add code to the Greeter class:

1 Type the following code into the new file:

 package  
 {  
 public class Greeter  
 {  
 public function sayHello():String  
 {  
 var greeting:String;  
 greeting = "Hello World!";  
 return greeting;  
 }  
 }  
 }

The Greeter class includes a single sayHello() method, which returns a string that says “Hello World!”.

2 Select File > Save to save this ActionScript file. 

The Greeter class is now ready to be used in an application.

Creating an application that uses your ActionScript code

The Greeter class that you have built defines a self-contained set of software functions, but it does not represent a 

complete application. To use the class, you need to create a Flash document or Flex application.

The HelloWorld application creates an new instance of the Greeter class. Here’s how to attach the Greeter class to your 

application.

To create an ActionScript application using the Flash authoring tool:

1 Select File > New.

2 In the New Document dialog box, select Flash Document, and click OK.

A new Flash window is displayed.

3 Select File > Save. Select the same folder that contains the Greeter.as class file, name the Flash document 

HelloWorld.fla, and click OK.

4 In the Flash Tools palette, select the Text tool, and drag across the Stage to define a new text field, approximately 

300 pixels wide and 100 pixels high.

Updated 11 February 2009



31PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

5 In the Properties panel, with the text field still selected on the Stage, set the text type to “Dynamic Text” and type 

mainText as the instance name of the text field. 

6 Click the first frame of the main timeline.

7 In the Actions panel, type the following script:

 var myGreeter:Greeter = new Greeter();  
 mainText.text = myGreeter.sayHello();

8 Save the file.

Continue with “Publishing and testing your ActionScript application” on page 31.

Publishing and testing your ActionScript application

Software development is an iterative process. You write some code, try to compile it, and edit the code until it compiles 

cleanly. You run the compiled application, test it to see if it fulfills the intended design, and if it doesn’t, you edit the 

code again until it does. The Flash and Flex Builder development environments offer a number of ways to publish, test, 

and debug your applications. 

Here are the basic steps for testing the HelloWorld application in each environment.

To publish and test an ActionScript application using the Flash authoring tool:

1 Publish your application and watch for compilation errors. In the Flash authoring tool, select Control > Test Movie 

to compile your ActionScript code and run the HelloWorld application. 

2 If any errors or warnings are displayed in the Output window when you test your application, fix the causes of these 

errors in the HelloWorld.fla or HelloWorld.as files, and then try testing the application again.

3 If there are no compilation errors, you will see a Flash Player window showing the Hello World application.

You have just created a simple but complete object-oriented application that uses ActionScript 3.0. Continue with 

“Enhancing the HelloWorld application” on page 31.

Enhancing the HelloWorld application

To make the application a little more interesting, you’ll now make it ask for and validate a user name against a 

predefined list of names.

First, you will update the Greeter class to add new functionality. Then you will update the application to use the new 

functionality.

To update the Greeter.as file:

1 Open the Greeter.as file.

2 Change the contents of the file to the following (new and changed lines are shown in boldface):

Updated 11 February 2009



32PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

 package  
 {  
 public class Greeter  
 {  
 /**  
  * Defines the names that should receive a proper greeting.  
  */  
 public static var validNames:Array = ["Sammy", "Frank", "Dean"];  
   
 /**  
  * Builds a greeting string using the given name.  
  */  
 public function sayHello(userName:String = ""):String  
 {  
 var greeting:String;  
 if (userName == "")   
 {  
 greeting = "Hello. Please type your user name, and then press "  

+ "the Enter key.";  
 }   
 else if (validName(userName))   
 {  
 greeting = "Hello, " + userName + ".";  
 }   
 else   
 {  
 greeting = "Sorry " + userName + ", you are not on the list.";  
 }  
 return greeting;  
 }  
   
 /**  
  * Checks whether a name is in the validNames list.  
  */  
 public static function validName(inputName:String = ""):Boolean   
 {  
 if (validNames.indexOf(inputName) > -1)   
 {  
 return true;  
 }   
 else   
 {  
 return false;  
 }  
 }  
 }  
 }

The Greeter class now has a number of new features:

• The validNames array lists valid user names. The array is initialized to a list of three names when the Greeter class 

is loaded.

• The sayHello() method now accepts a user name and changes the greeting based on some conditions. If the 

userName is an empty string (""), the greeting property is set to prompt the user for a name. If the user name is 

valid, the greeting becomes "Hello, userName."  Finally, if either of those two conditions are not met, the 

greeting variable is set to "Sorry userName, you are not on the list."

Updated 11 February 2009



33PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

• The validName() method returns true if the inputName is found in the validNames array, and false if it is not 

found. The statement validNames.indexOf(inputName) checks each of the strings in the validNames array 

against the inputName string. The Array.indexOf() method returns the index position of the first instance of an 

object in an array, or the value -1 if the object is not found in the array.

Next you will edit the Flash or Flex file that references this ActionScript class.

To modify the application using the Flash authoring tool:

1 Open the HelloWorld.fla file. 

2 Modify the script in Frame 1 so that an empty string ("") is passed to the Greeter class’s sayHello() method: 

 var myGreeter:Greeter = new Greeter();  
 mainText.text = myGreeter.sayHello("");

3 Select the Text tool in the Tools palette, and then create two new text fields on the Stage, side-by-side and directly 

under the existing mainText text field.

4 In the first new text field, type the text User Name: to serve as a label.

5 Select the other new text field, and in the Property inspector, select InputText as the type of text field. Select Single 

line as the Line type. Type textIn as the instance name.

6 Click the first frame of the main timeline.

7 In the Actions panel, add the following lines to the end of the existing script:

 mainText.border = true;  
 textIn.border = true;  
   
 textIn.addEventListener(KeyboardEvent.KEY_DOWN, keyPressed);  
   
 function keyPressed(event:KeyboardEvent):void  
 {  
 if (event.keyCode == Keyboard.ENTER)  
 {  
 mainText.text = myGreeter.sayHello(textIn.text);  
 }  
 }

The new code adds the following functionality:

• The first two lines simply define borders for two text fields.

• An input text field, such as the textIn field, has a set of events that it can dispatch. The addEventListener() 

method lets you define a function that runs when a type of event occurs. In this case, that event is the pressing 

of a key on the keyboard.

• The keyPressed() custom function checks if the key that was pressed is the Enter key. If so it calls the 

sayHello() method of the myGreeter object, passing the text from the textIn text field as a parameter. That 

method returns a string greeting based on the value passed in. The returned string is then assigned to the text 

property of the mainText text field.

The complete script for Frame 1 is the following:

Updated 11 February 2009



34PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

 var myGreeter:Greeter = new Greeter();  
 mainText.text = myGreeter.sayHello("");  
   
 mainText.border = true;  
 textIn.border = true;  
   
 textIn.addEventListener(KeyboardEvent.KEY_DOWN, keyPressed);  
   
 function keyPressed(event:KeyboardEvent):void  
 {  
 if (event.keyCode == Keyboard.ENTER)  
 {  
 mainText.text = myGreeter.sayHello(textIn.text);  
 }  
 }

8 Save the file.

9 Select Control > Test Movie to run the application. 

When you run the application, you will be prompted to enter a user name. If it is valid (Sammy, Frank, or Dean), 

the application displays the “hello” confirmation message.

Running subsequent examples

Now that you’ve developed and run the “Hello World” ActionScript 3.0 application, you should have the basic 

knowledge you need to run the other code examples presented in this manual.

Testing in-chapter example code listings

As you’re working through this manual, you may want to try out the example code listings that are used to illustrate the 

various topics. That testing may involve displaying the value of variables at certain points in the program, or it may 

involve viewing or interacting with on-screen content. For testing visual content or interaction, the necessary elements 

will be described before or within the code listing—you’ll just need to create a document with the elements as described 

in order to test the code. In the case where you want to view the value of a variable at a given point in the program, there 

are a few ways you can accomplish this. One way is to use a debugger, such as the ones built into Flex Builder and Flash. 

For simple testing, however, it might be easiest to just print variable values out to some place where you can view them.

The following steps will help you create a Flash document that you can use for testing a code listing and viewing 

variable values:

To create a Flash document for testing in-chapter examples:

1 Create a new Flash document and save it on your hard drive.

2 To display test values in a text field on the Stage, activate the Text tool and create a new Dynamic text field on the 

Stage. A wide, tall text field with the Line type set to Multiline and the border turned on will be most useful. In the 

Property inspector, give the text field an instance name (for example “outputText”). To write values into the text 

field, you will add code that calls the appendText() method to the example code (described below).

3 Alternatively, you can add a trace() function call to the code listing (as described below) to view the results of the 

example.

4 To test a given example, copy the code listing into the Actions panel; if necessary, add a trace() function call or 

add a value to the text field using its appendText() method.

Updated 11 February 2009



35PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

5 From the main menu, choose Control > Test Movie to create a SWF file and view the results.

Since this approach is for viewing values of variables, there are two ways that you can easily view the values of variables 

as you’re trying out the examples: write values into a text field instance on the Stage, or use the trace() function to 

print values to the Output panel.

• The trace() function: The ActionScript trace() function writes the values of any parameters passed to it (either 

variables or literal expressions) to the Output panel. Many of the example listings in this manual already include a 

trace() function call, so for those listings you’ll only need to copy the code into your document and test the 

project. If you want to use trace() to test the value of a variable in a code listing that doesn’t already include it, just 

add a trace() call to the code listing, passing the variable as a parameter. For example, if you encountered a code 

listing such as this one in the chapter,

 var albumName:String = "Three for the money";

you could copy the code into the Actions panel, then add a call to the trace() function such as this one to test the 

outcome of the code listing:

 var albumName:String = "Three for the money";  
 trace("albumName =", albumName);

When you run the program, this line will print out:

 albumName = Three for the money

Each trace() function call can take multiple parameters, which are all strung together as a single printed line. A 

line break is added to the end of each trace() function call, so separate trace() calls print out on separate lines.

• A text field on the Stage: If you prefer not to use the trace() function, you can add a Dynamic text field to the Stage 

using the Text tool, and write out values to that text field to view the results of a code listing. The appendText() 

method of the TextField class can be used to add a String value to the end of the text field’s contents. To access the 

text field using ActionScript, you must give it an instance name in the Property inspector. For instance, if your text 

field has the instance name outputText, the following code could be used to check the value of the variable 

albumName:

 var albumName:String = "Three for the money";  
 outputText.appendText("albumName = ");  
 outputText.appendText(albumName);

This code would write the following text to the text field named outputText:

 albumName = Three for the money

As the example shows, the appendText() method will add the text to the same line as the previous contents, so 

multiple values can be added to the same line of text using multiple appendText() calls. To force the text to the 

next line you can append a newline character ("\n"):

 outputText.appendText("\n"); // adds a line break to the text field

Unlike the trace() function, the appendText() method only accepts one value as a parameter. That value must 

be a string (either a String instance or a string literal). To print out the value of a non-string variable, you must first 

convert the value to a String. The easiest way to do that is to call the object’s toString() method:

 var albumYear:int = 1999;  
 outputText.appendText("albumYear = ");  
 outputText.appendText(albumYear.toString());

Updated 11 February 2009



36PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Getting started with ActionScript

Working with end-of-chapter examples

Like this chapter, most chapters in this manual include a significant end-of-chapter example that ties together many 

of the concepts discussed in the chapter. However, unlike the Hello World example in this chapter, those examples will 

not be presented in a step-by-step tutorial format. The relevant ActionScript 3.0 code in each example will be 

highlighted and discussed, but instructions about running the examples in specific development environments won’t 

be provided. However, the example files distributed with this manual will include all of the files you need to compile 

and run the examples easily in your chosen development environment.

Updated 11 February 2009



37

Chapter 4: ActionScript language and 
syntax

ActionScript 3.0 comprises both the core ActionScript language and the Adobe Flash Player Application 

Programming Interface (API). The core language is the part of ActionScript that defines the syntax of the language as 

well as the top-level data types. ActionScript 3.0 provides programmatic access to Flash Player.

This chapter provides a brief introduction to the core ActionScript language and syntax. After reading this chapter, 

you should have a basic understanding of how to work with data types and variables, how to use proper syntax, and 

how to control the flow of data in your program.

Language overview

Objects lie at the heart of the ActionScript 3.0 language—they are its fundamental building blocks. Every variable you 

declare, every function you write, and every class instance you create is an object. You can think of an ActionScript 3.0 

program as a group of objects that carry out tasks, respond to events, and communicate with one another. 

Programmers familiar with object-oriented programming (OOP) in Java or C++ may think of objects as modules that 

contain two kinds of members: data stored in member variables or properties, and behavior accessible through 

methods. ActionScript 3.0 defines objects in a similar but slightly different way. In ActionScript 3.0, objects are simply 

collections of properties. These properties are containers that can hold not only data, but also functions or other 

objects. If a function is attached to an object in this way, it is called a method. 

While the ActionScript 3.0 definition may seem a little odd to programmers with a Java or C++ background, in 

practice, defining object types with ActionScript 3.0 classes is very similar to the way classes are defined in Java or C++. 

The distinction between the two definitions of object is important when discussing the ActionScript object model and 

other advanced topics, but in most other situations the term properties means class member variables as opposed to 

methods. The ActionScript 3.0 Language and Components Reference, for example, uses the term properties to mean 

variables or getter-setter properties. It uses the term methods to mean functions that are part of a class.

One subtle difference between classes in ActionScript and classes in Java or C++ is that in ActionScript, classes are not 

just abstract entities. ActionScript classes are represented by class objects that store the class’s properties and methods. 

This allows for techniques that may seem alien to Java and C++ programmers, such as including statements or 

executable code at the top level of a class or package.

Another difference between ActionScript classes and Java or C++ classes is that every ActionScript class has something 

called a prototypeobject. In previous versions of ActionScript, prototype objects, linked together into prototype chains, 

served collectively as the foundation of the entire class inheritance hierarchy. In ActionScript 3.0, however, prototype 

objects play only a small role in the inheritance system. The prototype object can still be useful, however, as an 

alternative to static properties and methods if you want to share a property and its value among all the instances of a 

class.

In the past, advanced ActionScript programmers could directly manipulate the prototype chain with special built-in 

language elements. Now that the language provides a more mature implementation of a class-based programming 

interface, many of these special language elements, such as __proto__ and __resolve, are no longer part of the 

language. Moreover, optimizations of the internal inheritance mechanism that provide significant Flash Player and 

Adobe AIR performance improvements preclude direct access to the inheritance mechanism. 

Updated 11 February 2009



38PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Objects and classes

In ActionScript 3.0, every object is defined by a class. A class can be thought of as a template or a blueprint for a type 

of object. Class definitions can include variables and constants, which hold data values, and methods, which are 

functions that encapsulate behavior bound to the class. The values stored in properties can be primitive values or other 

objects. Primitive values are numbers, strings, or Boolean values. 

ActionScript contains a number of built-in classes that are part of the core language. Some of these built-in classes, 

such as Number, Boolean and String, represent the primitive values available in ActionScript. Others, such as the 

Array, Math, and XML classes, define more complex objects.

All classes, whether built-in or user-defined, derive from the Object class. For programmers with previous 

ActionScript experience, it is important to note that the Object data type is no longer the default data type, even though 

all other classes still derive from it. In ActionScript 2.0, the following two lines of code were equivalent because the lack 

of a type annotation meant that a variable would be of type Object:

 var someObj:Object;  
 var someObj;

ActionScript 3.0, however, introduces the concept of untyped variables, which can be designated in the following two ways:

 var someObj:*;  
 var someObj;

An untyped variable is not the same as a variable of type Object. The key difference is that untyped variables can hold 

the special value undefined, while a variable of type Object cannot hold that value. 

You can define your own classes using the class keyword. You can declare class properties in three ways: constants 

can be defined with the const keyword, variables are defined with the var keyword, and getter and setter properties 

are defined by using the get and set attributes in a method declaration. You can declare methods with the function 

keyword. 

You create an instance of a class by using the new operator. The following example creates an instance of the Date class 

called myBirthday.

 var myBirthday:Date = new Date();

Packages and namespaces

Packages and namespaces are related concepts. Packages allow you to bundle class definitions together in a way that 

facilitates code sharing and minimizes naming conflicts. Namespaces allow you to control the visibility of identifiers, 

such as property and method names, and can be applied to code whether it resides inside or outside a package. 

Packages let you organize your class files, and namespaces let you manage the visibility of individual properties and 

methods. 

Packages

Packages in ActionScript 3.0 are implemented with namespaces, but are not synonymous with them. When you 

declare a package, you are implicitly creating a special type of namespace that is guaranteed to be known at compile 

time. Namespaces, when created explicitly, are not necessarily known at compile time. 

The following example uses the package directive to create a simple package containing one class: 

Updated 11 February 2009



39PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 package samples  
 {  
 public class SampleCode  
 {  
 public var sampleGreeting:String;  
 public function sampleFunction()  
 {  
 trace(sampleGreeting + " from sampleFunction()");  
 }  
 }  
 }

The name of the class in this example is SampleCode. Because the class is inside the samples package, the compiler 

automatically qualifies the class name at compile time into its fully qualified name: samples.SampleCode. The compiler 

also qualifies the names of any properties or methods, so that sampleGreeting and sampleFunction() become 

samples.SampleCode.sampleGreeting and samples.SampleCode.sampleFunction(), respectively.

Many developers, especially those with Java programming backgrounds, may choose to place only classes at the top 

level of a package. ActionScript 3.0, however, supports not only classes at the top level of a package, but also variables, 

functions, and even statements. One advanced use of this feature is to define a namespace at the top level of a package 

so that it will be available to all classes in that package. Note, however, that only two access specifiers, public and 

internal, are allowed at the top level of a package. Unlike Java, which allows you to declare nested classes as private, 

ActionScript 3.0 supports neither nested nor private classes.

In many other ways, however, ActionScript 3.0 packages are similar to packages in the Java programming language. 

As you can see in the previous example, fully qualified package references are expressed using the dot operator (.), just 

as they are in Java. You can use packages to organize your code into an intuitive hierarchical structure for use by other 

programmers. This facilitates code sharing by allowing you to create your own package to share with others, and to 

use packages created by others in your code. 

The use of packages also helps to ensure that the identifier names that you use are unique and do not conflict with other 

identifier names. In fact, some would argue that this is the primary benefit of packages. For example, two programmers 

who wish to share their code with each other may have each created a class called SampleCode. Without packages, this 

would create a name conflict, and the only resolution would be to rename one of the classes. With packages, however, 

the name conflict is easily avoided by placing one, or preferably both, of the classes in packages with unique names.

You can also include embedded dots in your package name to create nested packages. This allows you to create a 

hierarchical organization of packages. A good example of this is the flash.xml package provided by ActionScript 3.0. 

The flash.xml package is nested inside the flash package. 

The flash.xml package contains the legacy XML parser that was used in previous versions of ActionScript. One reason 

that it now resides in the flash.xml package is that the name of the legacy XML class conflicts with the name of the new 

XML class that implements the XML for ECMAScript (E4X) specification functionality available in ActionScript 3.0. 

Although moving the legacy XML class into a package is a good first step, most users of the legacy XML classes will 

import the flash.xml package, which will generate the same name conflict unless you remember to always use the fully 

qualified name of the legacy XML class (flash.xml.XML). To avoid this situation, the legacy XML class is now named 

XMLDocument, as the following example shows: 

 package flash.xml  
 {  
 class XMLDocument {}  
 class XMLNode {}  
 class XMLSocket {}  
 }

Updated 11 February 2009



40PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Most of ActionScript 3.0 is organized under the flash package. For example, the flash.display package contains the 

display list API, and the flash.events package contains the new event model.

Creating packages

ActionScript 3.0 provides significant flexibility in the way you organize your packages, classes, and source files. 

Previous versions of ActionScript allowed only one class per source file and required that the name of the source file 

match the name of the class. ActionScript 3.0 allows you to include multiple classes in one source file, but only one 

class in each file can be made available to code that is external to that file. In other words, only one class in each file 

can be declared inside a package declaration. You must declare any additional classes outside your package definition, 

which makes those classes invisible to code outside that source file. The name of the class declared inside the package 

definition must match the name of the source file.

ActionScript 3.0 also provides more flexibility in the way you declare packages. In previous versions of ActionScript, 

packages merely represented directories in which you placed source files, and you didn’t declare packages with the 

package statement, but rather included the package name as part of the fully qualified class name in your class 

declaration. Although packages still represent directories in ActionScript 3.0, packages can contain more than just 

classes. In ActionScript 3.0, you use the package statement to declare a package, which means that you can also declare 

variables, functions, and namespaces at the top level of a package. You can even include executable statements at the 

top level of a package. If you do declare variables, functions, or namespaces at the top level of a package, the only 

attributes available at that level are public and internal, and only one package-level declaration per file can use the 

public attribute, whether that declaration is a class, variable, function, or namespace. 

Packages are useful for organizing your code and for preventing name conflicts. You should not confuse the concept 

of packages with the unrelated concept of class inheritance. Two classes that reside in the same package will have a 

namespace in common, but are not necessarily related to each other in any other way. Likewise, a nested package may 

have no semantic relationship to its parent package.

Importing packages

If you want to use a class that is inside a package, you must import either the package or the specific class. This differs 

from ActionScript 2.0, where importing classes was optional. 

For example, consider the SampleCode class example from earlier in this chapter. If the class resides in a package 

named samples, you must use one of the following import statements before using the SampleCode class:

 import samples.*;

or

 import samples.SampleCode;

In general, import statements should be as specific as possible. If you plan to use only the SampleCode class from the 

samplespackage, you should import only the SampleCode class rather than the entire package to which it belongs. 

Importing entire packages may lead to unexpected name conflicts.

You must also place the source code that defines the package or class within your classpath. The classpath is a user-

defined list of local directory paths that determines where the compiler will search for imported packages and classes. 

The classpath is sometimes called the build path or source path. 

After you have properly imported the class or package, you can use either the fully qualified name of the class 

(samples.SampleCode) or merely the class name by itself (SampleCode).

Updated 11 February 2009



41PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Fully qualified names are useful when identically named classes, methods, or properties result in ambiguous code, but 

can be difficult to manage if used for all identifiers. For example, the use of the fully qualified name results in verbose 

code when you instantiate a SampleCode class instance:

 var mySample:samples.SampleCode = new samples.SampleCode();

As the levels of nested packages increase, the readability of your code decreases. In situations where you are confident 

that ambiguous identifiers will not be a problem, you can make your code easier to read by using simple identifiers. 

For example, instantiating a new instance of the SampleCode class is much less verbose if you use only the class 

identifier:

 var mySample:SampleCode = new SampleCode();

If you attempt to use identifier names without first importing the appropriate package or class, the compiler will not 

be able to find the class definitions. On the other hand, if you do import a package or class, any attempt to define a 

name that conflicts with an imported name will generate an error.

When a package is created, the default access specifier for all members of that package is internal, which means that, 

by default, package members are only visible to other members of that package. If you want a class to be available to 

code outside the package, you must declare that class to be public. For example, the following package contains two 

classes, SampleCode and CodeFormatter: 

 // SampleCode.as file  
 package samples  
 {  
 public class SampleCode {}  
 }  
   
 // CodeFormatter.as file  
 package samples  
 {  
 class CodeFormatter {}  
 }

The SampleCode class is visible outside the package because it is declared as a public class. The CodeFormatter class, 

however, is visible only within the samples package itself. If you attempt to access the CodeFormatter class outside the 

samples package, you will generate an error, as the following example shows:

 import samples.SampleCode;  
 import samples.CodeFormatter;  
 var mySample:SampleCode = new SampleCode(); // okay, public class  
 var myFormatter:CodeFormatter = new CodeFormatter(); // error

If you want both classes to be available outside the package, you must declare both classes to be public. You cannot 

apply the public attribute to the package declaration. 

Fully qualified names are useful for resolving name conflicts that may occur when using packages. Such a scenario may 

arise if you import two packages that define classes with the same identifier. For example, consider the following 

package, which also has a class named SampleCode:

 package langref.samples  
 {  
 public class SampleCode {}  
 }

If you import both classes, as follows, you will have a name conflict when referring to the SampleCode class:

Updated 11 February 2009



42PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 import samples.SampleCode;  
 import langref.samples.SampleCode;  
 var mySample:SampleCode = new SampleCode(); // name conflict

The compiler has no way of knowing which SampleCode class to use. To resolve this conflict, you must use the fully 

qualified name of each class, as follows:

 var sample1:samples.SampleCode = new samples.SampleCode();  
 var sample2:langref.samples.SampleCode = new langref.samples.SampleCode();

Note: Programmers with a C++ background often confuse the import statement with #include. The #include 

directive is necessary in C++ because C++ compilers process one file at a time, and will not look in other files for class 

definitions unless a header file is explicitly included. ActionScript 3.0 has an include directive, but it is not designed to 

import classes and packages. To import classes or packages in ActionScript 3.0, you must use the import statement and 

place the source file that contains the package in the class path.

Namespaces

Namespaces give you control over the visibility of the properties and methods that you create. Think of the public, 

private, protected, and internal access control specifiers as built-in namespaces. If these predefined access 

control specifiers do not suit your needs, you can create your own namespaces. 

If you are familiar with XML namespaces, much of this discussion will not be new to you, although the syntax and 

details of the ActionScript implementation are slightly different from those of XML. If you have never worked with 

namespaces before, the concept itself is straightforward, but the implementation has specific terminology that you will 

need to learn. 

To understand how namespaces work, it helps to know that the name of a property or method always contains two 

parts: an identifier and a namespace. The identifier is what you generally think of as a name. For example, the 

identifiers in the following class definition are sampleGreeting and sampleFunction():

 class SampleCode  
 {  
 var sampleGreeting:String;  
 function sampleFunction () {  
 trace(sampleGreeting + " from sampleFunction()");  
 }  
 }

Whenever definitions are not preceded by a namespace attribute, their names are qualified by the default internal 

namespace, which means they are visible only to callers in the same package. If the compiler is set to strict mode, the 

compiler issues a warning that the internal namespace applies to any identifier without a namespace attribute. To 

ensure that an identifier is available everywhere, you must specifically precede the identifier name with the public 

attribute. In the previous example code, both sampleGreeting and sampleFunction() have a namespace value of 

internal.

There are three basic steps to follow when using namespaces. First, you must define the namespace using the 

namespace keyword. For example, the following code defines the version1 namespace: 

 namespace version1;

Second, you apply your namespace by using it instead of an access control specifier in a property or method 

declaration. The following example places a function named myFunction() into the version1 namespace:

 version1 function myFunction() {}

Third, once you’ve applied the namespace, you can reference it with the use directive or by qualifying the name of an 

identifier with a namespace. The following example references the myFunction() function through the use directive:

Updated 11 February 2009



43PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 use namespace version1;  
 myFunction();

You can also use a qualified name to reference the myFunction() function, as the following example shows:

 version1::myFunction();

Defining namespaces

Namespaces contain one value, the Uniform Resource Identifier (URI), which is sometimes called the namespace 

name. A URI allows you to ensure that your namespace definition is unique. 

You create a namespace by declaring a namespace definition in one of two ways. You can either define a namespace 

with an explicit URI, as you would define an XML namespace, or you can omit the URI. The following example shows 

how a namespace can be defined using a URI:

 namespace flash_proxy = "http://www.adobe.com/flash/proxy";

The URI serves as a unique identification string for that namespace. If you omit the URI, as in the following example, 

the compiler will create a unique internal identification string in place of the URI. You do not have access to this 

internal identification string.

 namespace flash_proxy;

Once you define a namespace, with or without a URI, that namespace cannot be redefined in the same scope. An 

attempt to define a namespace that has been defined earlier in the same scope results in a compiler error. 

If a namespace is defined within a package or a class, the namespace may not be visible to code outside that package 

or class unless the appropriate access control specifier is used. For example, the following code shows the 

flash_proxy namespace defined within the flash.utils package. In the following example, the lack of an access control 

specifier means that the flash_proxy namespace would be visible only to code within the flash.utils package and 

would not be visible to any code outside the package:

 package flash.utils  
 {  
 namespace flash_proxy;  
 }

The following code uses the public attribute to make the flash_proxy namespace visible to code outside the package:

 package flash.utils  
 {  
 public namespace flash_proxy;  
 }

Applying namespaces

Applying a namespace means placing a definition into a namespace. Definitions that can be placed into namespaces 

include functions, variables, and constants (you cannot place a class into a custom namespace). 

Consider, for example, a function declared using the public access control namespace. Using the public attribute in 

a function definition places the function into the public namespace, which makes the function available to all code. 

Once you have defined a namespace, you can use the namespace that you defined the same way you would use the 

public attribute, and the definition will be available to code that can reference your custom namespace. For example, 

if you define a namespace example1, you can add a method called myFunction() using example1 as an attribute, as 

the following example shows:

Updated 11 February 2009



44PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 namespace example1;  
 class someClass  
 {  
 example1 myFunction() {}  
 }

Declaring the myFunction() method using the namespace example1 as an attribute means that the method belongs 

to the example1 namespace. 

You should bear in mind the following when applying namespaces:

• You can apply only one namespace to each declaration. 

• There is no way to apply a namespace attribute to more than one definition at a time. In other words, if you want 

to apply your namespace to ten different functions, you must add your namespace as an attribute to each of the ten 

function definitions. 

• If you apply a namespace, you cannot also specify an access control specifier because namespaces and access control 

specifiers are mutually exclusive. In other words, you cannot declare a function or property as public, private, 

protected, or internal in addition to applying your namespace.

Referencing namespaces

There is no need to explicitly reference a namespace when you use a method or property declared with any of the access 

control namespaces, such as public, private, protected, and internal. This is because access to these special 

namespaces is controlled by context. For example, definitions placed into the private namespace are automatically 

available to code within the same class. For namespaces that you define, however, such context sensitivity does not 

exist. In order to use a method or property that you have placed into a custom namespace, you must reference the 

namespace.

You can reference namespaces with the use namespace directive or you can qualify the name with the namespace 

using the name qualifier (::) punctuator. Referencing a namespace with the use namespace directive “opens” the 

namespace, so that it can apply to any identifiers that are not qualified. For example, if you have defined the example1 

namespace, you can access names in that namespace by using use namespace example1:

 use namespace example1;  
 myFunction();

You can open more than one namespace at a time. Once you open a namespace with use namespace, it remains open 

throughout the block of code in which it was opened. There is no way to explicitly close a namespace.

Having more than one open namespace, however, increases the likelihood of name conflicts. If you prefer not to open 

a namespace, you can avoid the use namespace directive by qualifying the method or property name with the 

namespace and the name qualifier punctuator. For example, the following code shows how you can qualify the name 

myFunction() with the example1 namespace:

 example1::myFunction();

Using namespaces

You can find a real-world example of a namespace that is used to prevent name conflicts in the flash.utils.Proxy class 

that is part of ActionScript 3.0. The Proxy class, which is the replacement for the Object.__resolve property from 

ActionScript 2.0, allows you to intercept references to undefined properties or methods before an error occurs. All of 

the methods of the Proxy class reside in the flash_proxy namespace in order to prevent name conflicts.

Updated 11 February 2009



45PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

To better understand how the flash_proxy namespace is used, you need to understand how to use the Proxy class. 

The functionality of the Proxy class is available only to classes that inherit from it. In other words, if you want to use 

the methods of the Proxy class on an object, the object’s class definition must extend the Proxy class. For example, if 

you want to intercept attempts to call an undefined method, you would extend the Proxy class and then override the 

callProperty() method of the Proxy class. 

You may recall that implementing namespaces is usually a three-step process of defining, applying, and then 

referencing a namespace. Because you never explicitly call any of the Proxy class methods, however, the flash_proxy 

namespace is only defined and applied, but never referenced. ActionScript 3.0 defines the flash_proxy namespace 

and applies it in the Proxy class. Your code only needs to apply the flash_proxy namespace to classes that extend the 

Proxy class. 

The flash_proxy namespace is defined in the flash.utils package in a manner similar to the following:

 package flash.utils  
 {  
 public namespace flash_proxy;  
 }

The namespace is applied to the methods of the Proxy class as shown in the following excerpt from the Proxy class:

 public class Proxy  
 {  
 flash_proxy function callProperty(name:*, ... rest):*  
 flash_proxy function deleteProperty(name:*):Boolean  
 ...  
 }

As the following code shows, you must first import both the Proxy class and the flash_proxy namespace. You must 

then declare your class such that it extends the Proxy class (you must also add the dynamic attribute if you are 

compiling in strict mode). When you override the callProperty() method, you must use the flash_proxy 

namespace.

 package  
 {  
 import flash.utils.Proxy;  
 import flash.utils.flash_proxy;  
   
 dynamic class MyProxy extends Proxy  
 {  
 flash_proxy override function callProperty(name:*, ...rest):*  
 {  
 trace("method call intercepted: " + name);  
 }  
 }  
 }

If you create an instance of the MyProxy class and call an undefined method, such as the testing() method called in 

the following example, your Proxy object intercepts the method call and executes the statements inside the overridden 

callProperty() method (in this case, a simple trace() statement).

 var mySample:MyProxy = new MyProxy();  
 mySample.testing(); // method call intercepted: testing

Updated 11 February 2009



46PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

There are two advantages to having the methods of the Proxy class inside the flash_proxy namespace. First, having 

a separate namespace reduces clutter in the public interface of any class that extends the Proxy class. (There are about 

a dozen methods in the Proxy class that you can override, all of which are not designed to be called directly. Placing all 

of them in the public namespace could be confusing.) Second, use of the flash_proxy namespace avoids name 

conflicts in case your Proxy subclass contains instance methods with names that match any of the Proxy class methods. 

For example, you may want to name one of your own methods callProperty(). The following code is acceptable, 

because your version of the callProperty() method is in a different namespace:

 dynamic class MyProxy extends Proxy  
 {  
 public function callProperty() {}  
 flash_proxy override function callProperty(name:*, ...rest):*  
 {  
 trace("method call intercepted: " + name);  
 }  
 }

Namespaces can also be helpful when you want to provide access to methods or properties in a way that cannot be 

accomplished with the four access control specifiers (public, private, internal, and protected). For example, you 

may have a few utility methods that are spread out across several packages. You want these methods available to all of 

your packages, but you don’t want the methods to be public. To accomplish this, you can create a new namespace and 

use it as your own special access control specifier. 

The following example uses a user-defined namespace to group together two functions that reside in different 

packages. By grouping them into the same namespace, you can make both functions visible to a class or package 

through a single use namespace statement.

This example uses four files to demonstrate the technique. All of the files must be within your classpath. The first file, 

myInternal.as, is used to define the myInternal namespace. Because the file is in a package named example, you must 

place the file into a folder named example. The namespace is marked as public so that it can be imported into other 

packages. 

 // myInternal.as in folder example  
 package example  
 {  
 public namespace myInternal = "http://www.adobe.com/2006/actionscript/examples";  
 }

The second and third files, Utility.as and Helper.as, define the classes that contain methods that should be available to 

other packages. The Utility class is in the example.alpha package, which means that the file should be placed inside a 

folder named alpha that is a subfolder of the example folder. The Helper class is in the example.beta package, which 

means that the file should be placed inside a folder named beta that is also a subfolder of the example folder. Both of 

these packages, example.alpha and example.beta, must import the namespace before using it.

Updated 11 February 2009



47PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 // Utility.as in the example/alpha folder  
 package example.alpha  
 {  
 import example.myInternal;  
   
 public class Utility  
 {  
 private static var _taskCounter:int = 0;  
   
 public static function someTask()  
 {  
 _taskCounter++;  
 }  
   
 myInternal static function get taskCounter():int  
 {  
 return _taskCounter;  
 }  
 }  
 }  
   
 // Helper.as in the example/beta folder  
 package example.beta  
 {  
 import example.myInternal;  
   
 public class Helper  
 {  
 private static var _timeStamp:Date;  
   
 public static function someTask()  
 {  
 _timeStamp = new Date();  
 }  
   
 myInternal static function get lastCalled():Date  
 {  
 return _timeStamp;  
 }  
 }  
 }

The fourth file, NamespaceUseCase.as, is the main application class, and should be a sibling to the example folder. In 

Adobe Flash CS4 Professional, this class would be used as the document class for the FLA. The NamespaceUseCase 

class also imports the myInternal namespace and uses it to call the two static methods that reside in the other 

packages. The example uses static methods only to simplify the code. Both static and instance methods can be placed 

in the myInternal namespace.

Updated 11 February 2009



48PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 // NamespaceUseCase.as  
 package  
 {  
 import flash.display.MovieClip;  
 import example.myInternal; // import namespace  
 import example.alpha.Utility;// import Utility class  
 import example.beta.Helper;// import Helper class  
   
 public class NamespaceUseCase extends MovieClip  
 {  
 public function NamespaceUseCase()  
 {  
 use namespace myInternal;  
   
 Utility.someTask();  
 Utility.someTask();  
 trace(Utility.taskCounter); // 2  
   
 Helper.someTask();  
 trace(Helper.lastCalled); // [time someTask() was last called]  
 }  
 }  
 }

Variables

Variables allow you to store values that you use in your program. To declare a variable, you must use the var statement 

with the variable name. In ActionScript 2.0, use of the var statement is only required if you use type annotations. In 

ActionScript 3.0, use of the var statement is always required. For example, the following line of ActionScript declares 

a variable named i: 

 var i;

If you omit the var statement when declaring a variable, you will get a compiler error in strict mode and run-time error 

in standard mode. For example, the following line of code will result in an error if the variable i has not been previously 

defined:

 i; // error if i was not previously defined

To associate a variable with a data type, you must do so when you declare the variable. Declaring a variable without 

designating the variable’s type is legal, but will generate a compiler warning in strict mode. You designate a variable’s 

type by appending the variable name with a colon (:), followed by the variable’s type. For example, the following code 

declares a variable i that is of type int:

 var i:int;

You can assign a value to a variable using the assignment operator (=). For example, the following code declares a 

variable i and assigns the value 20 to it:

 var i:int;  
 i = 20;

You may find it more convenient to assign a value to a variable at the same time that you declare the variable, as in the 

following example:

 var i:int = 20;

Updated 11 February 2009



49PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

The technique of assigning a value to a variable at the time it is declared is commonly used not only when assigning 

primitive values such as integers and strings, but also when creating an array or instantiating an instance of a class. The 

following example shows an array that is declared and assigned a value using one line of code.

 var numArray:Array = ["zero", "one", "two"];

You can create an instance of a class by using the new operator. The following example creates an instance of a named 

CustomClass, and assigns a reference to the newly created class instance to the variable named customItem:

 var customItem:CustomClass = new CustomClass();

If you have more than one variable to declare, you can declare them all on one line of code by using the comma 

operator (,) to separate the variables. For example, the following code declares three variables on one line of code:

 var a:int, b:int, c:int;

You can also assign values to each of the variables on the same line of code. For example, the following code declares 

three variables (a, b, and c) and assigns each a value:

 var a:int = 10, b:int = 20, c:int = 30;

Although you can use the comma operator to group variable declarations into one statement, doing so may reduce the 

readability of your code.

Understanding variable scope

The scope of a variable is the area of your code where the variable can be accessed by a lexical reference. A global 

variable is one that is defined in all areas of your code, whereas a local variable is one that is defined in only one part 

of your code. In ActionScript 3.0, variables are always assigned the scope of the function or class in which they are 

declared. A global variable is a variable that you define outside of any function or class definition. For example, the 

following code creates a global variable strGlobal by declaring it outside of any function. The example shows that a 

global variable is available both inside and outside the function definition. 

 var strGlobal:String = "Global";  
 function scopeTest()  
 {  
 trace(strGlobal); // Global  
 }  
 scopeTest();  
 trace(strGlobal); // Global

You declare a local variable by declaring the variable inside a function definition. The smallest area of code for which 

you can define a local variable is a function definition. A local variable declared within a function will exist only in that 

function. For example, if you declare a variable named str2 within a function named localScope(), that variable will 

not be available outside the function.

 function localScope()  
 {  
 var strLocal:String = "local";  
 }  
 localScope();  
 trace(strLocal); // error because strLocal is not defined globally

If the variable name you use for your local variable is already declared as a global variable, the local definition hides (or 

shadows) the global definition while the local variable is in scope. The global variable will still exist outside of the 

function. For example, the following code creates a global string variable named str1, and then creates a local variable 

of the same name inside the scopeTest() function. The trace statement inside the function outputs the local value 

of the variable, but the trace statement outside the function outputs the global value of the variable.

Updated 11 February 2009



50PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var str1:String = "Global";  
 function scopeTest ()  
 {  
 var str1:String = "Local";  
 trace(str1); // Local  
 }  
 scopeTest();  
 trace(str1); // Global

ActionScript variables, unlike variables in C++ and Java, do not have block-level scope. A block of code is any group 

of statements between an opening curly brace ( { ) and a closing curly brace ( } ). In some programming languages, 

such as C++ and Java, variables declared inside a block of code are not available outside that block of code. This 

restriction of scope is called block-level scope, and does not exist in ActionScript. If you declare a variable inside a 

block of code, that variable will be available not only in that block of code, but also in any other parts of the function 

to which the code block belongs. For example, the following function contains variables that are defined in various 

block scopes. All the variables are available throughout the function. 

 function blockTest (testArray:Array)  
 {  
 var numElements:int = testArray.length;  
 if (numElements > 0)  
 {  
 var elemStr:String = "Element #";  
 for (var i:int = 0; i < numElements; i++)  
 {  
 var valueStr:String = i + ": " + testArray[i];  
 trace(elemStr + valueStr);  
 }  
 trace(elemStr, valueStr, i); // all still defined  
 }  
 trace(elemStr, valueStr, i); // all defined if numElements > 0  
 }  
   
 blockTest(["Earth", "Moon", "Sun"]);

An interesting implication of the lack of block-level scope is that you can read or write to a variable before it is declared, 

as long as it is declared before the function ends. This is because of a technique called hoisting, which means that the 

compiler moves all variable declarations to the top of the function. For example, the following code compiles even 

though the initial trace() function for the num variable happens before the num variable is declared:

 trace(num); // NaN  
 var num:Number = 10;  
 trace(num); // 10

The compiler will not, however, hoist any assignment statements. This explains why the initial trace() of num results 

in NaN (not a number), which is the default value for variables of the Number data type. This means that you can assign 

values to variables even before they are declared, as shown in the following example:

 num = 5;  
 trace(num); // 5  
 var num:Number = 10;  
 trace(num); // 10

Updated 11 February 2009



51PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Default values

A default value is the value that a variable contains before you set its value. You initialize a variable when you set its 

value for the first time. If you declare a variable, but do not set its value, that variable is uninitialized. The value of an 

uninitialized variable depends on its data type. The following table describes the default values of variables, organized 

by data type:

For variables of type Number, the default value is NaN (not a number), which is a special value defined by the IEEE-

754 standard to mean a value that does not represent a number. 

If you declare a variable, but do not declare its data type, the default data type * will apply, which actually means that 

the variable is untyped. If you also do not initialize an untyped variable with a value, its default value is undefined.

For data types other than Boolean, Number, int, and uint, the default value of any uninitialized variable is null. This 

applies to all the classes defined by ActionScript 3.0, as well as any custom classes that you create. 

The value null is not a valid value for variables of type Boolean, Number, int, or uint. If you attempt to assign a value 

of null to a such a variable, the value is converted to the default value for that data type. For variables of type Object, 

you can assign a value of null. If you attempt to assign the value undefined to a variable of type Object, the value is 

converted to null. 

For variables of type Number, there is a special top-level function named isNaN() that returns the Boolean value true 

if the variable is not a number, and false otherwise.

Data types

A data type defines a set of values. For example, the Boolean data type is the set of exactly two values: true and false. 

In addition to the Boolean data type, ActionScript 3.0 defines several more commonly used data types, such as String, 

Number, and Array. You can define your own data types by using classes or interfaces to define a custom set of values. 

All values in ActionScript 3.0, whether they are primitive or complex, are objects. 

A primitive value is a value that belongs to one of the following data types: Boolean, int, Number, String, and uint. 

Working with primitive values is usually faster than working with complex values, because ActionScript stores 

primitive values in a special way that makes memory and speed optimizations possible. 

Note: For readers interested in the technical details, ActionScript stores primitive values internally as immutable objects. 

The fact that they are stored as immutable objects means that passing by reference is effectively the same as passing by 

value. This cuts down on memory usage and increases execution speed, because references are usually significantly 

smaller than the values themselves.

Data type Default value

Boolean false

int 0

Number NaN

Object null

String null

uint 0

Not declared (equivalent to type annotation *) undefined

All other classes, including user-defined classes. null

Updated 11 February 2009



52PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

A complex value is a value that is not a primitive value. Data types that define sets of complex values include Array, 

Date, Error, Function, RegExp, XML, and XMLList. 

Many programming languages distinguish between primitive values and their wrapper objects. Java, for example, has 

an int primitive and the java.lang.Integer class that wraps it. Java primitives are not objects, but their wrappers are, 

which makes primitives useful for some operations, and wrapper objects better suited for other operations. In 

ActionScript 3.0, primitive values and their wrapper objects are, for practical purposes, indistinguishable. All values, 

even primitive values, are objects. Flash Player and Adobe AIR treat these primitive types as special cases that behave 

like objects but that don’t require the normal overhead associated with creating objects. This means that the following 

two lines of code are equivalent:

 var someInt:int = 3;  
 var someInt:int = new int(3);

All the primitive and complex data types listed above are defined by the ActionScript 3.0 core classes. The core classes 

allow you to create objects using literal values instead of using the new operator. For example, you can create an array 

using a literal value or the Array class constructor, as follows:

 var someArray:Array = [1, 2, 3]; // literal value  
 var someArray:Array = new Array(1,2,3); // Array constructor

Type checking

Type checking can occur at either compile time or run time. Statically typed languages, such as C++ and Java, do type 

checking at compile time. Dynamically typed languages, such as Smalltalk and Python, handle type checking at run 

time. As a dynamically typed language, ActionScript 3.0 has run-time type checking, but also supports compile-time 

type checking with a special compiler mode called strict mode. In strict mode, type checking occurs at both compile 

time and run time, but in standard mode, type checking occurs only at run time.

Dynamically typed languages offer tremendous flexibility when you structure your code, but at the cost of allowing 

type errors to manifest at run time. Statically typed languages report type errors at compile time, but at the cost of 

requiring that type information be known at compile time.

Compile-time type checking

Compile-time type checking is often favored in larger projects because as the size of a project grows, data type 

flexibility usually becomes less important than catching type errors as early as possible. This is why, by default, the 

ActionScript compiler in Adobe Flash CS4 Professional and Adobe Flex Builder is set to run in strict mode. 

In order to provide compile-time type checking, the compiler needs to know the data type information for the variables 

or expressions in your code. To explicitly declare a data type for a variable, add the colon operator (:) followed by the 

data type as a suffix to the variable name. To associate a data type with a parameter, use the colon operator followed 

by the data type. For example, the following code adds data type information to the xParam parameter, and declares a 

variable myParam with an explicit data type:

 function runtimeTest(xParam:String)  
 {  
 trace(xParam);  
 }  
 var myParam:String = "hello";  
 runtimeTest(myParam);

In strict mode, the ActionScript compiler reports type mismatches as compiler errors. For example, the following code 

declares a function parameter xParam, of type Object, but later attempts to assign values of type String and Number to 

that parameter. This produces a compiler error in strict mode.

Updated 11 February 2009



53PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 function dynamicTest(xParam:Object)  
 {  
 if (xParam is String)  
 {  
 var myStr:String = xParam; // compiler error in strict mode  
 trace("String: " + myStr);  
 }  
 else if (xParam is Number)  
 {  
 var myNum:Number = xParam; // compiler error in strict mode  
 trace("Number: " + myNum);  
 }  
 }

Even in strict mode, however, you can selectively opt of out compile-time type checking by leaving the right side of an 

assignment statement untyped. You can mark a variable or expression as untyped by either omitting a type annotation, 

or using the special asterisk (*) type annotation. For example, if the xParam parameter in the previous example is 

modified so that it no longer has a type annotation, the code will compile in strict mode:

 function dynamicTest(xParam)  
 {  
 if (xParam is String)  
 {  
 var myStr:String = xParam;  
 trace("String: " + myStr);  
 }  
 else if (xParam is Number)  
 {  
 var myNum:Number = xParam;  
 trace("Number: " + myNum);  
 }  
 }  
 dynamicTest(100)  
 dynamicTest("one hundred");

Run-time type checking

Run-time type checking occurs in ActionScript 3.0 whether you compile in strict mode or standard mode. Consider a 

situation in which the value 3 is passed as an argument to a function that expects an array. In strict mode, the compiler 

will generate an error, because the value 3 is not compatible with the data type Array. If you disable strict mode, and 

run in standard mode, the compiler does not complain about the type mismatch, but run-time type checking by Flash 

Player and Adobe AIR results in a run-time error. 

The following example shows a function named typeTest() that expects an Array argument but is passed a value of 

3. This causes a run-time error in standard mode, because the value 3 is not a member of the parameter’s declared data 

type (Array).

 function typeTest(xParam:Array)  
 {  
 trace(xParam);  
 }  
 var myNum:Number = 3;  
 typeTest(myNum);   
 // run-time error in ActionScript 3.0 standard mode

Updated 11 February 2009



54PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

There may also be situations where you get a run-time type error even when you are operating in strict mode. This is 

possible if you use strict mode, but opt out of compile-time type checking by using an untyped variable. When you use 

an untyped variable, you are not eliminating type checking but rather deferring it until run time. For example, if the 

myNum variable in the previous example does not have a declared data type, the compiler cannot detect the type mismatch, 

but Flash Player and Adobe AIR will generate a run-time error because it compares the run-time value of myNum, which 

is set to 3 as a result of the assignment statement, with the type of xParam, which is set to the Array data type.

 function typeTest(xParam:Array)  
 {  
 trace(xParam);  
 }  
 var myNum = 3;  
 typeTest(myNum);   
 // run-time error in ActionScript 3.0

Run-time type checking also allows more flexible use of inheritance than does compile-time checking. By deferring 

type checking to run time, standard mode allows you to reference properties of a subclass even if you upcast. An upcast 

occurs when you use a base class to declare the type of a class instance but use a subclass to instantiate it. For example, 

you can create a class named ClassBase that can be extended (classes with the final attribute cannot be extended):

 class ClassBase  
 {  
 }

You can subsequently create a subclass of ClassBase named ClassExtender, which has one property named 

someString, as follows:

 class ClassExtender extends ClassBase  
 {  
 var someString:String;  
 }

Using both classes, you can create a class instance that is declared using the ClassBase data type, but instantiated using 

the ClassExtender constructor. An upcast is considered a safe operation, because the base class does not contain any 

properties or methods that are not in the subclass.

 var myClass:ClassBase = new ClassExtender();

A subclass, however, does contain properties or methods that its base class does not. For example, the ClassExtender 

class contains the someString property, which does not exist in the ClassBase class. In ActionScript 3.0 standard 

mode, you can reference this property using the myClass instance without generating a compile-time error, as shown 

in the following example: 

 var myClass:ClassBase = new ClassExtender();  
 myClass.someString = "hello";  
 // no error in ActionScript 3.0 standard mode

The is operator

The is operator, which is new for ActionScript 3.0, allows you to test whether a variable or expression is a member of 

a given data type. In previous versions of ActionScript, the instanceof operator provided this functionality, but in 

ActionScript 3.0 the instanceof operator should not be used to test for data type membership. The is operator 

should be used instead of the instanceof operator for manual type checking, because the expression x instanceof 

y merely checks the prototype chain of x for the existence of y (and in ActionScript 3.0, the prototype chain does not 

provide a complete picture of the inheritance hierarchy). 

Updated 11 February 2009



55PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

The is operator examines the proper inheritance hierarchy and can be used to check not only whether an object is an 

instance of a particular class, but also whether an object is an instance of a class that implements a particular interface. 

The following example creates an instance of the Sprite class named mySprite and uses the is operator to test whether 

mySprite is an instance of the Sprite and DisplayObject classes, and whether it implements the IEventDispatcher 

interface: 

 var mySprite:Sprite = new Sprite();  
 trace(mySprite is Sprite); // true  
 trace(mySprite is DisplayObject);// true  
 trace(mySprite is IEventDispatcher); // true

The is operator checks the inheritance hierarchy and properly reports that mySprite is compatible with the Sprite 

and DisplayObject classes (the Sprite class is a subclass of the DisplayObject class). The is operator also checks 

whether mySprite inherits from any classes that implement the IEventDispatcher interface. Because the Sprite class 

inherits from the EventDispatcher class, which implements the IEventDispatcher interface, the is operator correctly 

reports that mySprite implements the same interface. 

The following example shows the same tests from the previous example, but with instanceof instead of the is 

operator. The instanceof operator correctly identifies that mySprite is an instance of Sprite or DisplayObject, but it 

returns false when used to test whether mySprite implements the IEventDispatcher interface.

 trace(mySprite instanceof Sprite); // true  
 trace(mySprite instanceof DisplayObject);// true  
 trace(mySprite instanceof IEventDispatcher); // false

The as operator

The as operator, which is new in ActionScript 3.0, also allows you to check whether an expression is a member of a 

given data type. Unlike the is operator, however, the as operator does not return a Boolean value. Rather, the as 

operator returns the value of the expression instead of true, and null instead of false. The following example shows 

the results of using the as operator instead of the is operator in the simple case of checking whether a Sprite instance 

is a member of the DisplayObject, IEventDispatcher, and Number data types.

 var mySprite:Sprite = new Sprite();  
 trace(mySprite as Sprite); // [object Sprite]  
 trace(mySprite as DisplayObject); // [object Sprite]  
 trace(mySprite as IEventDispatcher); // [object Sprite]  
 trace(mySprite as Number);   // null

When you use the as operator, the operand on the right must be a data type. An attempt to use an expression other 

than a data type as the operand on the right will result in an error.

Dynamic classes

A dynamic class defines an object that can be altered at run time by adding or changing properties and methods. A 

class that is not dynamic, such as the String class, is a sealed class. You cannot add properties or methods to a sealed 

class at run time. 

You create dynamic classes by using the dynamic attribute when you declare a class. For example, the following code 

creates a dynamic class named Protean: 

Updated 11 February 2009



56PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 dynamic class Protean  
 {  
 private var privateGreeting:String = "hi";  
 public var publicGreeting:String = "hello";  
 function Protean()  
 {  
 trace("Protean instance created");  
 }  
 }

If you subsequently instantiate an instance of the Protean class, you can add properties or methods to it outside the 

class definition. For example, the following code creates an instance of the Protean class and adds a property named 

aString and a property named aNumber to the instance:

 var myProtean:Protean = new Protean();  
 myProtean.aString = "testing";  
 myProtean.aNumber = 3;  
 trace(myProtean.aString, myProtean.aNumber); // testing 3

Properties that you add to an instance of a dynamic class are run-time entities, so any type checking is done at run 

time. You cannot add a type annotation to a property that you add in this manner.

You can also add a method to the myProtean instance by defining a function and attaching the function to a property 

of the myProtean instance. The following code moves the trace statement into a method named traceProtean():

 var myProtean:Protean = new Protean();  
 myProtean.aString = "testing";  
 myProtean.aNumber = 3;  
 myProtean.traceProtean = function ()  
 {  
 trace(this.aString, this.aNumber);  
 };  
 myProtean.traceProtean(); // testing 3

Methods created in this way, however, do not have access to any private properties or methods of the Protean class. 

Moreover, even references to public properties or methods of the Protean class must be qualified with either the this 

keyword or the class name. The following example shows the traceProtean() method attempting to access the 

private and public variables of the Protean class. 

 myProtean.traceProtean = function ()  
 {  
 trace(myProtean.privateGreeting); // undefined  
 trace(myProtean.publicGreeting); // hello  
 };  
 myProtean.traceProtean();

Data type descriptions

The primitive data types include Boolean, int, Null, Number, String, uint, and void. The ActionScript core classes also 

define the following complex data types: Object, Array, Date, Error, Function, RegExp, XML, and XMLList. 

Boolean data type 

The Boolean data type comprises two values: true and false. No other values are valid for variables of Boolean type. 

The default value of a Boolean variable that has been declared but not initialized is false.

Updated 11 February 2009



57PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

int data type

The int data type is stored internally as a 32-bit integer and comprises the set of integers from 

-2,147,483,648 (-231) to 2,147,483,647 (231 - 1), inclusive. Previous versions of ActionScript offered only the Number 

data type, which was used for both integers and floating-point numbers. In ActionScript 3.0, you now have access to 

low-level machine types for 32-bit signed and unsigned integers. If your variable will not use floating-point numbers, 

using the int data type instead of the Number data type should be faster and more efficient. 

For integer values outside the range of the minimum and maximum int values, use the Number data type, which can 

handle values between positive and negative 9,007,199,254,740,992 (53-bit integer values). The default value for 

variables that are of the data type int is 0.

Null data type

The Null data type contains only one value, null. This is the default value for the String data type and all classes that 

define complex data types, including the Object class. None of the other primitive data types, such as Boolean, 

Number, int and uint, contain the value null. Flash Player and Adobe AIR will convert the value null to the 

appropriate default value if you attempt to assign null to variables of type Boolean, Number, int, or uint. You cannot 

use this data type as a type annotation.

Number data type

In ActionScript 3.0, the Number data type can represent integers, unsigned integers, and floating-point numbers. 

However, to maximize performance, you should use the Number data type only for integer values larger than the 32-

bit int and uint types can store or for floating-point numbers. To store a floating-point number, include a decimal 

point in the number. If you omit a decimal point, the number will be stored as an integer.

The Number data type uses the 64-bit double-precision format as specified by the IEEE Standard for Binary Floating-

Point Arithmetic (IEEE-754). This standard dictates how floating-point numbers are stored using the 64 available bits. 

One bit is used to designate whether the number is positive or negative. Eleven bits are used for the exponent, which 

is stored as base 2. The remaining 52 bits are used to store the significand (also called the mantissa), which is the 

number that is raised to the power indicated by the exponent.

By using some of its bits to store an exponent, the Number data type can store floating-point numbers significantly 

larger than if it used all of its bits for the significand. For example, if the Number data type used all 64 bits to store the 

significand, it could store a number as large as 265 - 1. By using 11 bits to store an exponent, the Number data type can 

raise its significand to a power of 21023. 

The maximum and minimum values that the Number type can represent are stored in static properties of the Number 

class called Number.MAX_VALUE and Number.MIN_VALUE.

 Number.MAX_VALUE == 1.79769313486231e+308  
 Number.MIN_VALUE == 4.940656458412467e-324

Although this range of numbers is enormous, the cost of this range is precision. The Number data type uses 52 bits to 

store the significand, with the result that numbers that require more than 52 bits to represent precisely, such as the 

fraction 1/3, are only approximations. If your application requires absolute precision with decimal numbers, you need 

to use software that implements decimal floating-point arithmetic as opposed to binary floating-point arithmetic.

When you store integer values with the Number data type, only the 52 bits of the significand are used. The Number 

data type uses these 52 bits and a special hidden bit to represent integers from -9,007,199,254,740,992 (-253) to 

9,007,199,254,740,992 (253).

Updated 11 February 2009



58PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Flash Player and Adobe AIR use the NaN value not only as the default value for variables of type Number, but also as the 

result of any operation that should return a number but does not. For example, if you attempt to calculate the square 

root of a negative number, the result will be NaN. Other special Number values include positive infinity and negative 

infinity.

Note: The result of division by 0 is only NaN if the divisor is also 0. Division by 0 produces infinity when the dividend 

is positive or -infinity when the dividend is negative.

String data type

The String data type represents a sequence of 16-bit characters. Strings are stored internally as Unicode characters, 

using the UTF-16 format. Strings are immutable values, just as they are in the Java programming language. An 

operation on a String value returns a new instance of the string. The default value for a variable declared with the String 

data type is null. The value null is not the same as the empty string (""), even though they both represent the absence 

of any characters.

uint data type

The uint data type is stored internally as a 32-bit unsigned integer and comprises the set of integers from 0 to 

4,294,967,295 (232 - 1), inclusive. Use the uint data type for special circumstances that call for non-negative integers. For 

example, you must use the uint data type to represent pixel color values, because the int data type has an internal sign 

bit that is not appropriate for handling color values. For integer values larger than the maximum uint value, use the 

Number data type, which can handle 53-bit integer values. The default value for variables that are of data type uint is 0.

void data type

The void data type contains only one value, undefined. In previous versions of ActionScript, undefined was the 

default value for instances of the Object class. In ActionScript 3.0, the default value for Object instances is null. If you 

attempt to assign the value undefined to an instance of the Object class, Flash Player or Adobe AIR will convert the 

value to null. You can only assign a value of undefined to variables that are untyped. Untyped variables are variables 

that either lack any type annotation, or use the asterisk (*) symbol for type annotation. You can use void only as a 

return type annotation.

Object data type

The Object data type is defined by the Object class. The Object class serves as the base class for all class definitions in 

ActionScript. The ActionScript 3.0 version of the Object data type differs from that of previous versions in three ways. 

First, the Object data type is no longer the default data type assigned to variables with no type annotation. Second, the 

Object data type no longer includes the value undefined, which used to be the default value of Object instances. Third, 

in ActionScript 3.0, the default value for instances of the Object class is null.

In previous versions of ActionScript, a variable with no type annotation was automatically assigned the Object data 

type. This is no longer true in ActionScript 3.0, which now includes the idea of a truly untyped variable. Variables with 

no type annotation are now considered untyped. If you prefer to make it clear to readers of your code that your 

intention is to leave a variable untyped, you can use the new asterisk (*) symbol for the type annotation, which is 

equivalent to omitting a type annotation. The following example shows two equivalent statements, both of which 

declare an untyped variable x:

 var x  
 var x:*

Only untyped variables can hold the value undefined. If you attempt to assign the value undefined to a variable that 

has a data type, Flash Player or Adobe AIR will convert the value undefined to the default value of that data type. For 

instances of the Object data type, the default value is null, which means that Flash Player or Adobe AIR will convert 

the value undefined to null if you attempt to assign undefined to an Object instance.

Updated 11 February 2009



59PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Type conversions

A type conversion is said to occur when a value is transformed into a value of a different data type. Type conversions 

can be either implicit or explicit. Implicit conversion, which is also called coercion, is sometimes performed by Flash 

Player or Adobe AIR at run time. For example, if the value 2 is assigned to a variable of the Boolean data type, Flash 

Player or Adobe AIR converts the value 2 to the Boolean value true before assigning the value to the variable. Explicit 

conversion, which is also called casting, occurs when your code instructs the compiler to treat a variable of one data 

type as if it belongs to a different data type. When primitive values are involved, casting actually converts values from 

one data type to another. To cast an object to a different type, you wrap the object name in parentheses and precede it 

with the name of the new type. For example, the following code takes a Boolean value and casts it to an integer:

 var myBoolean:Boolean = true;  
 var myINT:int = int(myBoolean);  
 trace(myINT); // 1

Implicit conversions

Implicit conversions happen at run time in a number of contexts:

• In assignment statements

• When values are passed as function arguments

• When values are returned from functions

• In expressions using certain operators, such as the addition (+) operator

For user-defined types, implicit conversions succeed when the value to be converted is an instance of the 

destination class or a class that derives from the destination class. If an implicit conversion is unsuccessful, an error 

occurs. For example, the following code contains a successful implicit conversion and an unsuccessful implicit 

conversion:

 class A {}  
 class B extends A {}  
   
 var objA:A = new A();  
 var objB:B = new B();  
 var arr:Array = new Array();  
   
 objA = objB; // Conversion succeeds.  
 objB = arr; // Conversion fails.

For primitive types, implicit conversions are handled by calling the same internal conversion algorithms that are 

called by the explicit conversion functions. The following sections discuss these primitive type conversions in detail.

Explicit conversions

It’s helpful to use explicit conversions, or casting, when you compile in strict mode, because there may be times when 

you do not want a type mismatch to generate a compile-time error. This may be the case when you know that coercion 

will convert your values correctly at run time. For example, when working with data received from a form, you may 

want to rely on coercion to convert certain string values to numeric values. The following code generates a compile-

time error even though the code would run correctly in standard mode:

 var quantityField:String = "3";  
 var quantity:int = quantityField; // compile time error in strict mode

If you want to continue using strict mode, but would like the string converted to an integer, you can use explicit 

conversion, as follows:

Updated 11 February 2009



60PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var quantityField:String = "3";  
 var quantity:int = int(quantityField); // Explicit conversion succeeds.

Casting to int, uint, and Number

You can cast any data type into one of the three number types: int, uint, and Number. If Flash Player or Adobe AIR is 

unable to convert the number for some reason, the default value of 0 is assigned for the int and uint data types, and the 

default value of NaN is assigned for the Number data type. If you convert a Boolean value to a number, true becomes 

the value 1 and false becomes the value 0.

 var myBoolean:Boolean = true;  
 var myUINT:uint = uint(myBoolean);  
 var myINT:int = int(myBoolean);  
 var myNum:Number = Number(myBoolean);  
 trace(myUINT, myINT, myNum); // 1 1 1  
 myBoolean = false;  
 myUINT = uint(myBoolean);  
 myINT = int(myBoolean);  
 myNum = Number(myBoolean);  
 trace(myUINT, myINT, myNum); // 0 0 0

String values that contain only digits can be successfully converted into one of the number types. The number types 

can also convert strings that look like negative numbers or strings that represent a hexadecimal value (for example, 

0x1A). The conversion process ignores leading and trailing white space characters in the string value. You can also cast 

strings that look like floating-point numbers using Number(). The inclusion of a decimal point causes uint() and 

int() to return an integer, truncating the decimal and the characters following it. For example, the following string 

values can be cast into numbers:

 trace(uint("5")); // 5  
 trace(uint("-5")); // 4294967291. It wraps around from MAX_VALUE  
 trace(uint(" 27 ")); // 27  
 trace(uint("3.7")); // 3  
 trace(int("3.7")); // 3  
 trace(int("0x1A")); // 26  
 trace(Number("3.7")); // 3.7

String values that contain non-numeric characters return 0 when cast with int() or uint() and NaN when cast with 

Number(). The conversion process ignores leading and trailing white space, but returns 0 or NaN if a string has white 

space separating two numbers.

 trace(uint("5a")); // 0  
 trace(uint("ten")); // 0  
 trace(uint("17 63")); // 0

In ActionScript 3.0, the Number() function no longer supports octal, or base 8, numbers. If you supply a string with a 

leading zero to the ActionScript 2.0 Number() function, the number is interpreted as an octal number, and converted 

to its decimal equivalent. This is not true with the Number() function in ActionScript 3.0, which instead ignores the 

leading zero. For example, the following code generates different output when compiled using different versions of 

ActionScript:

 trace(Number("044"));   
 // ActionScript 3.0 44  
 // ActionScript 2.0 36

Casting is not necessary when a value of one numeric type is assigned to a variable of a different numeric type. Even 

in strict mode, the numeric types are implicitly converted to the other numeric types. This means that in some cases, 

unexpected values may result when the range of a type is exceeded. The following examples all compile in strict mode, 

though some will generate unexpected values:

Updated 11 February 2009



61PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var myUInt:uint = -3; // Assign int/Number value to uint variable  
 trace(myUInt); // 4294967293  
   
 var myNum:Number = sampleUINT; // Assign int/uint value to Number variable  
 trace(myNum) // 4294967293  
   
 var myInt:int = uint.MAX_VALUE + 1; // Assign Number value to uint variable  
 trace(myInt); // 0  
   
 myInt = int.MAX_VALUE + 1; // Assign uint/Number value to int variable  
 trace(myInt); // -2147483648

The following table summarizes the results of casting to the Number, int, or uint data type from other data types.

Casting to Boolean

Casting to Boolean from any of the numeric data types (uint, int, and Number) results in false if the numeric value 

is 0, and true otherwise. For the Number data type, the value NaN also results in false. The following example shows 

the results of casting the numbers -1, 0, and 1:

 var myNum:Number;  
 for (myNum = -1; myNum<2; myNum++)  
 {  
 trace("Boolean(" + myNum +") is " + Boolean(myNum));  
 }

The output from the example shows that, of the three numbers, only 0 returns a value of false:

 Boolean(-1) is true  
 Boolean(0) is false  
 Boolean(1) is true

Casting to Boolean from a String value returns false if the string is either null or an empty string (""). Otherwise, it 

returns true.

 var str1:String; // Uninitialized string is null.  
 trace(Boolean(str1)); // false  
   
 var str2:String = ""; // empty string  
 trace(Boolean(str2)); // false  
   
 var str3:String = " "; // white space only  
 trace(Boolean(str3)); // true

Casting to Boolean from an instance of the Object class returns false if the instance is null; otherwise, it returns true:

Data type or value Result of conversion to Number, int or uint

Boolean If the value is true, 1; otherwise, 0.

Date The internal representation of the Date object, which is the number of milliseconds since midnight January 1, 

1970, universal time.

null 0

Object If the instance is null and converted to Number, NaN; otherwise, 0.

String A number if Flash Player or Adobe AIR can convert the string to a number; otherwise, NaN if converted to 

Number, or 0 if converted to int or uint.

undefined If converted to Number, NaN; if converted to int or uint, 0.

Updated 11 February 2009



62PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var myObj:Object; // Uninitialized object is null.  
 trace(Boolean(myObj)); // false  
   
 myObj = new Object(); // instantiate   
 trace(Boolean(myObj)); // true

Boolean variables get special treatment in strict mode in that you can assign values of any data type to a Boolean 

variable without casting. Implicit coercion from all data types to the Boolean data type occurs even in strict mode. In 

other words, unlike almost all other data types, casting to Boolean is not necessary to avoid strict mode errors. The 

following examples all compile in strict mode and behave as expected at run time:

 var myObj:Object = new Object(); // instantiate   
 var bool:Boolean = myObj;  
 trace(bool); // true  
 bool = "random string";  
 trace(bool); // true  
 bool = new Array();  
 trace(bool); // true  
 bool = NaN;  
 trace(bool); // false

The following table summarizes the results of casting to the Boolean data type from other data types:

Casting to String

Casting to the String data type from any of the numeric data types returns a string representation of the number. 

Casting to the String data type from a Boolean value returns the string "true" if the value is true, and returns the 

string "false"  if the value is false.

Casting to the String data type from an instance of the Object class returns the string "null"  if the instance is null. 

Otherwise, casting to the String type from the Object class returns the string "[object Object]" .

Casting to String from an instance of the Array class returns a string comprising a comma-delimited list of all the array 

elements. For example, the following cast to the String data type returns one string containing all three elements of the 

array:

 var myArray:Array = ["primary", "secondary", "tertiary"];  
 trace(String(myArray)); // primary,secondary,tertiary

Casting to String from an instance of the Date class returns a string representation of the date that the instance 

contains. For example, the following example returns a string representation of the Date class instance (the output 

shows result for Pacific Daylight Time):

 var myDate:Date = new Date(2005,6,1);  
 trace(String(myDate)); // Fri Jul 1 00:00:00 GMT-0700 2005

The following table summarizes the results of casting to the String data type from other data types.

Data type or value Result of conversion to Boolean

String false if the value is null or the empty string (""); true otherwise.

null false

Number, int or uint false if the value is NaN or 0; true otherwise.

Object false if the instance is null; true otherwise.

Updated 11 February 2009



63PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Syntax

The syntax of a language defines a set of rules that must be followed when writing executable code.

Case sensitivity 

ActionScript 3.0 is a case-sensitive language. Identifiers that differ only in case are considered different identifiers. For 

example, the following code creates two different variables:

 var num1:int;  
 var Num1:int;

Dot syntax

The dot operator (.) provides a way to access the properties and methods of an object. Using dot syntax, you can refer 

to a class property or method by using an instance name, followed by the dot operator and name of the property or 

method. For example, consider the following class definition:

 class DotExample  
 {  
 public var prop1:String;  
 public function method1():void {}  
 }

Using dot syntax, you can access the prop1 property and the method1() method by using the instance name created 

in the following code:

 var myDotEx:DotExample = new DotExample();  
 myDotEx.prop1 = "hello";  
 myDotEx.method1();

You can use dot syntax when you define packages. You use the dot operator to refer to nested packages. For example, 

the EventDispatcher class resides in a package named events that is nested within the package named flash. You can 

refer to the events package using the following expression:

 flash.events

You can also refer to the EventDispatcher class using this expression:

 flash.events.EventDispatcher

Data type or value Result of conversion to string

Array A string comprising all array elements.

Boolean "true" or "false"

Date A string representation of the Date object.

null "null"

Number, int or uint A string representation of the number.

Object If the instance is null, "null"; otherwise, "[object Object]".

Updated 11 February 2009



64PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Slash syntax

Slash syntax is not supported in ActionScript 3.0. Slash syntax was used in earlier versions of ActionScript to indicate 

the path of a movie clip or variable.

Literals

A literal is a value that appears directly in your code. The following examples are all literals:

 17  
 "hello"  
 -3  
 9.4  
 null  
 undefined  
 true  
 false

Literals can also be grouped to form compound literals. Array literals are enclosed in bracket characters ([]) and use 

the comma to separate array elements. 

An array literal can be used to initialize an array. The following examples show two arrays that are initialized using 

array literals. You can use the new statement and pass the compound literal as a parameter to the Array class 

constructor, but you can also assign literal values directly when instantiating instances of the following ActionScript 

core classes: Object, Array, String, Number, int, uint, XML, XMLList and Boolean.

 // Use new statement.  
 var myStrings:Array = new Array(["alpha", "beta", "gamma"]);  
 var myNums:Array = new Array([1,2,3,5,8]);  
   
 // Assign literal directly.  
 var myStrings:Array = ["alpha", "beta", "gamma"];  
 var myNums:Array = [1,2,3,5,8];

Literals can also be used to initialize a generic object. A generic object is an instance of the Object class. Object literals 

are enclosed in curly braces ({}) and use the comma to separate object properties. Each property is declared with the 

colon character (:), which separates the name of the property from the value of the property. 

You can create a generic object using the new statement, and pass the object literal as a parameter to the Object class 

constructor, or you can assign the object literal directly to the instance you are declaring. The following example 

demonstrates two alternative ways to create a new generic object and initialize the object with three properties (propA, 

propB, and propC), each with values set to 1, 2, and 3, respectively:

 // Use new statement and add properties.  
 var myObject:Object = new Object();  
 myObject.propA = 1;  
 myObject.propB = 2;  
 myObject.propC = 3;  
   
 // Assign literal directly.  
 var myObject:Object = {propA:1, propB:2, propC:3};

For more information, see “Basics of strings” on page 139, “Basics of regular expressions” on page 203, and 

“Initializing XML variables” on page 231.

Updated 11 February 2009



65PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Semicolons

You can use the semicolon character (;) to terminate a statement. Alternatively, if you omit the semicolon character, 

the compiler will assume that each line of code represents a single statement. Because many programmers are 

accustomed to using the semicolon to denote the end of a statement, your code may be easier to read if you consistently 

use semicolons to terminate your statements.

Using a semicolon to terminate a statement allows you to place more than one statement on a single line, but this may 

make your code more difficult to read.

Parentheses 

You can use parentheses (()) in three ways in ActionScript 3.0. First, you can use parentheses to change the order of 

operations in an expression. Operations that are grouped inside parentheses are always executed first. For example, 

parentheses are used to alter the order of operations in the following code:

 trace(2 + 3 * 4); // 14  
 trace((2 + 3) * 4); // 20

Second, you can use parentheses with the comma operator (,) to evaluate a series of expressions and return the result 

of the final expression, as shown in the following example:

 var a:int = 2;  
 var b:int = 3;  
 trace((a++, b++, a+b)); // 7

Third, you can use parentheses to pass one or more parameters to functions or methods, as shown in the following 

example, which passes a String value to the trace() function:

 trace("hello"); // hello

Comments 

ActionScript 3.0 code supports two types of comments: single-line comments and multiline comments. These 

commenting mechanisms are similar to the commenting mechanisms in C++ and Java. The compiler will ignore text 

that is marked as a comment. 

Single-line comments begin with two forward slash characters (//) and continue until the end of the line. For example, 

the following code contains a single-line comment: 

 var someNumber:Number = 3; // a single line comment

Multiline comments begin with a forward slash and asterisk (/*) and end with an asterisk and forward slash (*/). 

 /* This is multiline comment that can span  
 more than one line of code. */

Keywords and reserved words 

Reserved words are words that you cannot use as identifiers in your code because the words are reserved for use by 

ActionScript. Reserved words include lexical keywords, which are removed from the program namespace by the 

compiler. The compiler will report an error if you use a lexical keyword as an identifier. The following table lists 

ActionScript 3.0 lexical keywords. 

Updated 11 February 2009



66PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

There is a small set of keywords, called syntactic keywords, that can be used as identifiers, but that have special meaning 

in certain contexts. The following table lists ActionScript 3.0 syntactic keywords.

There are also several identifiers that are sometimes referred to as future reserved words. These identifiers are not 

reserved by ActionScript 3.0, though some of them may be treated as keywords by software that incorporates 

ActionScript 3.0. You might be able to use many of these identifiers in your code, but Adobe recommends that you do 

not use them because they may appear as keywords in a subsequent version of the language. 

Constants

ActionScript 3.0 supports the const statement, which you can use to create constants. Constants are properties with 

a fixed value that cannot be altered. You can assign a value to a constant only once, and the assignment must occur in 

close proximity to the declaration of the constant. For example, if a constant is declared as a member of a class, you 

can assign a value to that constant only as part of the declaration or inside the class constructor. 

The following code declares two constants. The first constant, MINIMUM, has a value assigned as part of the declaration 

statement. The second constant, MAXIMUM, has a value assigned in the constructor. Note that this example only 

compiles in standard mode because strict mode only allows a constant’s value to be assigned at initialization time.

as break case catch

class const continue default

delete do else extends

false finally for function

if implements import in

instanceof interface internal is

native new null package

private protected public return

super switch this throw

to true try typeof

use var void while

with

each get set namespace

include dynamic final native

override static

abstract boolean byte cast

char debugger double enum

export float goto intrinsic

long prototype short synchronized

throws to transient type

virtual volatile

Updated 11 February 2009



67PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 class A  
 {  
 public const MINIMUM:int = 0;  
 public const MAXIMUM:int;  
   
 public function A()  
 {  
 MAXIMUM = 10;  
 }  
 }  
   
 var a:A = new A();  
 trace(a.MINIMUM); // 0  
 trace(a.MAXIMUM); // 10

An error results if you attempt to assign an initial value to a constant in any other way. For example, if you attempt to 

set the initial value of MAXIMUM outside the class, a run-time error will occur.

 class A  
 {  
 public const MINIMUM:int = 0;  
 public const MAXIMUM:int;  
 }  
   
 var a:A = new A();  
 a["MAXIMUM"] = 10; // run-time error

ActionScript 3.0 defines a wide range of constants for your use. By convention, constants in ActionScript use all capital 

letters, with words separated by the underscore character (_). For example, the MouseEvent class definition uses this 

naming convention for its constants, each of which represents an event related to mouse input:

 package flash.events  
 {  
 public class MouseEvent extends Event  
 {  
 public static const CLICK:String = "click";  
 public static const DOUBLE_CLICK:String = "doubleClick";  
 public static const MOUSE_DOWN:String = "mouseDown";  
 public static const MOUSE_MOVE:String = "mouseMove";  
 ...  
 }  
 }

Operators

Operators are special functions that take one or more operands and return a value. An operand is a value—usually a 

literal, a variable, or an expression—that an operator uses as input. For example, in the following code, the addition 

(+) and multiplication (*) operators are used with three literal operands (2, 3, and 4) to return a value. This value is 

then used by the assignment (=) operator to assign the returned value, 14, to the variable sumNumber.

 var sumNumber:uint = 2 + 3 * 4; // uint = 14

Updated 11 February 2009



68PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Operators can be unary, binary, or ternary. A unary operator takes one operand. For example, the increment (++) 

operator is a unary operator, because it takes only one operand. A binary operator takes two operands. For example, 

the division (/) operator takes two operands. A ternary operator takes three operands. For example, the conditional 

(?:) operator takes three operands.

Some operators are overloaded, which means that they behave differently depending on the type or quantity of 

operands passed to them. The addition (+) operator is an example of an overloaded operator that behaves differently 

depending on the data type of the operands. If both operands are numbers, the addition operator returns the sum of 

the values. If both operands are strings, the addition operator returns the concatenation of the two operands. The 

following example code shows how the operator behaves differently depending on the operands:

 trace(5 + 5); // 10  
 trace("5" + "5"); // 55

Operators can also behave differently based on the number of operands supplied. The subtraction (-) operator is both 

a unary and binary operator. When supplied with only one operand, the subtraction operator negates the operand and 

returns the result. When supplied with two operands, the subtraction operator returns the difference between the 

operands. The following example shows the subtraction operator used first as a unary operator, and then as a binary 

operator.

 trace(-3); // -3  
 trace(7 - 2); // 5

Operator precedence and associativity

Operator precedence and associativity determine the order in which operators are processed. Although it may seem 

natural to those familiar with arithmetic that the compiler processes the multiplication (*) operator before the addition 

(+) operator, the compiler needs explicit instructions about which operators to process first. Such instructions are 

collectively referred to as operator precedence. ActionScript defines a default operator precedence that you can alter 

using the parentheses (()) operator. For example, the following code alters the default precedence in the previous 

example to force the compiler to process the addition operator before the multiplication operator:

 var sumNumber:uint = (2 + 3) * 4; // uint == 20

You may encounter situations in which two or more operators of the same precedence appear in the same expression. 

In these cases, the compiler uses the rules of associativity to determine which operator to process first. All of the binary 

operators, except the assignment operators, are left-associative, which means that operators on the left are processed 

before operators on the right. The assignment operators and the conditional (?:) operator are right-associative, which 

means that the operators on the right are processed before operators on the left.

For example, consider the less-than (<) and greater-than (>) operators, which have the same precedence. If both 

operators are used in the same expression, the operator on the left is processed first because both operators are left-

associative. This means that the following two statements produce the same output:

 trace(3 > 2 < 1); // false  
 trace((3 > 2) < 1); // false

The greater-than operator is processed first, which results in a value of true, because the operand 3 is greater than the 

operand 2. The value true is then passed to the less-than operator along with the operand 1. The following code 

represents this intermediate state: 

 trace((true) < 1); 

The less-than operator converts the value true to the numeric value 1 and compares that numeric value to the second 

operand 1 to return the value false (the value 1 is not less than 1).

 trace(1 < 1); // false

Updated 11 February 2009



69PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

You can alter the default left associativity with the parentheses operator. You can instruct the compiler to process the 

less-than operator first by enclosing that operator and its operands in parentheses. The following example uses the 

parentheses operator to produce a different output using the same numbers as the previous example:

 trace(3 > (2 < 1)); // true

The less-than operator is processed first, which results in a value of false because the operand 2 is not less than the 

operand 1. The value false is then passed to the greater-than operator along with the operand 3. The following code 

represents this intermediate state: 

 trace(3 > (false)); 

The greater-than operator converts the value false to the numeric value 0 and compares that numeric value to the 

other operand 3 to return true (the value 3 is greater than 0).

 trace(3 > 0); // true

The following table lists the operators for ActionScript 3.0 in order of decreasing precedence. Each row of the table 

contains operators of the same precedence. Each row of operators has higher precedence than the row appearing below 

it in the table.

Primary operators 

The primary operators include those used for creating Array and Object literals, grouping expressions, calling 

functions, instantiating class instances, and accessing properties. 

All the primary operators, as listed in the following table, have equal precedence. Operators that are part of the E4X 

specification are indicated by the (E4X) notation.

Group Operators

Primary [] {x:y} () f(x) new x.y x[y] <></> @ :: ..

Postfix x++ x--

Unary ++x --x + - ~ ! delete typeof void

Multiplicative * / %

Additive + -

Bitwise shift << >> >>>

Relational < > <= >= as in instanceof is

Equality == != === !==

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Logical AND &&

Logical OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= >>>= &= ^= |=

Comma ,

Updated 11 February 2009



70PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Postfix operators 

The postfix operators take one operator and either increment or decrement the value. Although these operators are 

unary operators, they are classified separately from the rest of the unary operators because of their higher precedence 

and special behavior. When a postfix operator is used as part of a larger expression, the expression’s value is returned 

before the postfix operator is processed. For example, the following code shows how the value of the expression 

xNum++ is returned before the value is incremented:

 var xNum:Number = 0;  
 trace(xNum++); // 0  
 trace(xNum); // 1

All the postfix operators, as listed in the following table, have equal precedence:

Unary operators 

The unary operators take one operand. The increment (++) and decrement (--) operators in this group are 

prefixoperators, which means that they appear before the operand in an expression. The prefix operators differ from 

their postfix counterparts in that the increment or decrement operation is completed before the value of the overall 

expression is returned. For example, the following code shows how the value of the expression ++xNum is returned after 

the value is incremented:

 var xNum:Number = 0;  
 trace(++xNum); // 1  
 trace(xNum); // 1

All the unary operators, as listed in the following table, have equal precedence:

Operator Operation performed

[] Initializes an array

{x:y} Initializes an object

() Groups expressions

f(x) Calls a function

new Calls a constructor

x.y x[y] Accesses a property

<></> Initializes an XMLList object (E4X)

@ Accesses an attribute (E4X)

:: Qualifies a name (E4X)

.. Accesses a descendant XML element (E4X)

Operator Operation performed

++ Increments (postfix)

-- Decrements (postfix)

Updated 11 February 2009



71PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Multiplicative operators 

The multiplicative operators take two operands and perform multiplication, division, or modulo calculations.

All the multiplicative operators, as listed in the following table, have equal precedence:

Additive operators

The additive operators take two operands and perform addition or subtraction calculations. All the additive operators, 

as listed in the following table, have equal precedence:

Bitwise shift operators 

The bitwise shift operators take two operands and shift the bits of the first operand to the extent specified by the second 

operand. All the bitwise shift operators, as listed in the following table, have equal precedence: 

Operator Operation performed

++ Increments (prefix)

-- Decrements (prefix)

+ Unary +

- Unary - (negation)

! Logical NOT

~ Bitwise NOT

delete Deletes a property

typeof Returns type information

void Returns undefined value

Operator Operation performed

* Multiplication

/ Division

% Modulo

Operator Operation performed

+ Addition

- Subtraction

Operator Operation performed

<< Bitwise left shift

>> Bitwise right shift

>>> Bitwise unsigned right shift

Updated 11 February 2009



72PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Relational operators

The relational operators take two operands, compare their values, and return a Boolean value. All the relational 

operators, as listed in the following table, have equal precedence:

Equality operators 

The equality operators take two operands, compare their values, and return a Boolean value. All the equality operators, 

as listed in the following table, have equal precedence:

Bitwise logical operators 

The bitwise logical operators take two operands and perform bit-level logical operations. The bitwise logical operators 

differ in precedence and are listed in the following table in order of decreasing precedence:

Logical operators 

The logical operators take two operands and return a Boolean result. The logical operators differ in precedence and 

are listed in the following table in order of decreasing precedence:

Operator Operation performed

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

as Checks data type

in Checks for object properties

instanceof Checks prototype chain

is Checks data type

Operator Operation performed

== Equality

!= Inequality

=== Strict equality

!== Strict inequality

Operator Operation performed

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

Updated 11 February 2009



73PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Conditional operator

The conditional operator is a ternary operator, which means that it takes three operands. The conditional operator is 

a shorthand method of applying the if..else conditional statement.

Assignment operators

The assignment operators take two operands and assign a value to one operand, based on the value of the other 

operand. All the assignment operators, as listed in the following table, have equal precedence:

Conditionals

ActionScript 3.0 provides three basic conditional statements that you can use to control program flow.

if..else

The if..else conditional statement allows you to test a condition and execute a block of code if that condition exists, 

or execute an alternative block of code if the condition does not exist. For example, the following code tests whether the 

value of x exceeds 20, generates a trace() function if it does, or generates a different trace() function if it does not:

Operator Operation performed

&& Logical AND

|| Logical OR

Operator Operation performed

?: Conditional

Operator Operation performed

= Assignment

*= Multiplication assignment

/= Division assignment

%= Modulo assignment

+= Addition assignment

-= Subtraction assignment

<<= Bitwise left shift assignment

>>= Bitwise right shift assignment

>>>= Bitwise unsigned right shift assignment

&= Bitwise AND assignment

^= Bitwise XOR assignment

|= Bitwise OR assignment

Updated 11 February 2009



74PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 if (x > 20)  
 {  
 trace("x is > 20");  
 }  
 else  
 {  
 trace("x is <= 20");  
 }

If you do not want to execute an alternative block of code, you can use the if statement without the else statement.

if..else if

You can test for more than one condition using the if..else if conditional statement. For example, the following 

code not only tests whether the value of x exceeds 20, but also tests whether the value of x is negative:

 if (x > 20)  
 {  
 trace("x is > 20");  
 }  
 else if (x < 0)  
 {  
 trace("x is negative");  
 }

If an if or else statement is followed by only one statement, the statement does not need to be enclosed in braces. For 

example, the following code does not use braces:

 if (x > 0)  
 trace("x is positive");  
 else if (x < 0)   
 trace("x is negative");  
 else  
 trace("x is 0");

However, Adobe recommends that you always use braces, because unexpected behavior can occur if statements are 

later added to a conditional statement that lacks braces. For example, in the following code the value of positiveNums 

increases by 1 whether or not the condition evaluates to true:

 var x:int;  
 var positiveNums:int = 0;  
   
 if (x > 0)  
 trace("x is positive");  
 positiveNums++;  
   
 trace(positiveNums); // 1

switch

The switch statement is useful if you have several execution paths that depend on the same condition expression. It 

provides functionality similar to a long series of if..else if statements, but is somewhat easier to read. Instead of 

testing a condition for a Boolean value, the switch statement evaluates an expression and uses the result to determine 

which block of code to execute. Blocks of code begin with a case statement and end with a break statement. For 

example, the following switch statement prints the day of the week, based on the day number returned by the 

Date.getDay() method:

Updated 11 February 2009



75PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var someDate:Date = new Date();  
 var dayNum:uint = someDate.getDay();  
 switch(dayNum)  
 {  
 case 0:  
 trace("Sunday");  
 break;  
 case 1:  
 trace("Monday");  
 break;  
 case 2:  
 trace("Tuesday");  
 break;  
 case 3:  
 trace("Wednesday");  
 break;  
 case 4:  
 trace("Thursday");  
 break;  
 case 5:  
 trace("Friday");  
 break;  
 case 6:  
 trace("Saturday");  
 break;  
 default:  
 trace("Out of range");  
 break;  
 }

Looping

Looping statements allow you to perform a specific block of code repeatedly using a series of values or variables. Adobe 

recommends that you always enclose the block of code in braces ({}). Although you can omit the braces if the block 

of code contains only one statement, this practice is not recommended for the same reason that it is not recommended 

for conditionals: it increases the likelihood that statements added later will be inadvertently excluded from the block 

of code. If you later add a statement that you want to include in the block of code, but forget to add the necessary braces, 

the statement will not be executed as part of the loop.

for

The for loop allows you to iterate through a variable for a specific range of values. You must supply three expressions 

in a for statement: a variable that is set to an initial value, a conditional statement that determines when the looping 

ends, and an expression that changes the value of the variable with each loop. For example, the following code loops 

five times. The value of the variable i starts at 0 and ends at 4, and the output will be the numbers 0 through 4, each 

on its own line.

 var i:int;  
 for (i = 0; i < 5; i++)  
 {  
 trace(i);  
 }

Updated 11 February 2009



76PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

for..in

The for..in loop iterates through the properties of an object, or the elements of an array. For example, you can use 

a for..in loop to iterate through the properties of a generic object (object properties are not kept in any particular 

order, so properties may appear in a seemingly random order):

 var myObj:Object = {x:20, y:30};  
 for (var i:String in myObj)  
 {  
 trace(i + ": " + myObj[i]);  
 }  
 // output:  
 // x: 20  
 // y: 30

You can also iterate through the elements of an array:

 var myArray:Array = ["one", "two", "three"];  
 for (var i:String in myArray)  
 {  
 trace(myArray[i]);  
 }  
 // output:  
 // one  
 // two  
 // three

What you cannot do is iterate through the properties of an object if it is an instance of a user-defined class, unless the 

class is a dynamic class. Even with instances of dynamic classes, you will be able to iterate only through properties that 

are added dynamically.

for each..in

The for each..in loop iterates through the items of a collection, which can be tags in an XML or XMLList object, 

the values held by object properties, or the elements of an array. For example, as the following excerpt shows, you can 

use a for each..in loop to iterate through the properties of a generic object, but unlike the for..in loop, the iterator 

variable in a for each..in loop contains the value held by the property instead of the name of the property:

 var myObj:Object = {x:20, y:30};  
 for each (var num in myObj)  
 {  
 trace(num);  
 }  
 // output:  
 // 20  
 // 30

You can iterate through an XML or XMLList object, as the following example shows:

Updated 11 February 2009



77PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var myXML:XML = <users>  
 <fname>Jane</fname>  
 <fname>Susan</fname>  
 <fname>John</fname>  
 </users>;  
   
 for each (var item in myXML.fname)  
 {  
 trace(item);  
 }  
 /* output  
 Jane  
 Susan  
 John  
 */

You can also iterate through the elements of an array, as this example shows:

 var myArray:Array = ["one", "two", "three"];  
 for each (var item in myArray)  
 {  
 trace(item);  
 }  
 // output:  
 // one  
 // two  
 // three

You cannot iterate through the properties of an object if the object is an instance of a sealed class. Even for instances 

of dynamic classes, you cannot iterate through any fixed properties, which are properties defined as part of the class 

definition.

while

The while loop is like an if statement that repeats as long as the condition is true. For example, the following code 

produces the same output as the for loop example:

 var i:int = 0;  
 while (i < 5)  
 {  
 trace(i);  
 i++;  
 }

One disadvantage of using a while loop instead of a for loop is that infinite loops are easier to write with while loops. 

The for loop example code does not compile if you omit the expression that increments the counter variable, but the 

while loop example does compile if you omit that step. Without the expression that increments i, the loop becomes 

an infinite loop.

do..while

The do..while loop is a while loop that guarantees that the code block is executed at least once, because the condition 

is checked after the code block is executed. The following code shows a simple example of a do..while loop that 

generates output even though the condition is not met:

Updated 11 February 2009



78PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var i:int = 5;  
 do  
 {  
 trace(i);  
 i++;  
 } while (i < 5);  
 // output: 5

Functions

Functions are blocks of code that carry out specific tasks and can be reused in your program. There are two types of 

functions in ActionScript 3.0: methods and function closures. Whether a function is a called a method or a function 

closure depends on the context in which the function is defined. A function is called a method if you define it as part 

of a class definition or attach it to an instance of an object. A function is called a function closure if it is defined in any 

other way. 

Functions have always been extremely important in ActionScript. In ActionScript 1.0, for example, the class keyword 

did not exist, so “classes” were defined by constructor functions. Although the class keyword has since been added 

to the language, a solid understanding of functions is still important if you want to take full advantage of what the 

language has to offer. This can be a challenge for programmers who expect ActionScript functions to behave similarly 

to functions in languages such as C++ or Java. Although basic function definition and invocation should not present 

a challenge to experienced programmers, some of the more advanced features of ActionScript functions require some 

explanation.

Basic function concepts

This section discusses basic function definition and invocation techniques.

Calling functions

You call a function by using its identifier followed by the parentheses operator (()). You use the parentheses operator 

to enclose any function parameters you want to send to the function. For example, the trace() function, which is a 

top-level function in ActionScript 3.0, is used throughout this book:

 trace("Use trace to help debug your script");

If you are calling a function with no parameters, you must use an empty pair of parentheses. For example, you can use 

the Math.random() method, which takes no parameters, to generate a random number:

 var randomNum:Number = Math.random();

Defining your own functions

There are two ways to define a function in ActionScript 3.0: you can use a function statement or a function expression. 

The technique you choose depends on whether you prefer a more static or dynamic programming style. Define your 

functions with function statements if you prefer static, or strict mode, programming. Define your functions with 

function expressions if you have a specific need to do so. Function expressions are more often used in dynamic, or 

standard mode, programming.

Updated 11 February 2009



79PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Function statements

Function statements are the preferred technique for defining functions in strict mode. A function statement begins 

with the function keyword, followed by:

• The function name

• The parameters, in a comma-delimited list enclosed in parentheses

• The function body—that is, the ActionScript code to be executed when the function is invoked, enclosed in curly 

braces

For example, the following code creates a function that defines a parameter and then invokes the function using the 

string “ hello"  as the parameter value:

 function traceParameter(aParam:String)  
 {  
 trace(aParam);  
 }  
   
 traceParameter("hello"); // hello

Function expressions

The second way to declare a function is to use an assignment statement with a function expression, which is also 

sometimes called a function literal or an anonymous function. This is a more verbose method that is widely used in 

earlier versions of ActionScript. 

An assignment statement with a function expression begins with the var keyword, followed by:

• The function name

• The colon operator (:)

• The Function class to indicate the data type

• The assignment operator (=)

• The function keyword

• The parameters, in a comma-delimited list enclosed in parentheses

• The function body—that is, the ActionScript code to be executed when the function is invoked, enclosed in curly 

braces

For example, the following code declares the traceParameter function using a function expression:

 var traceParameter:Function = function (aParam:String)  
 {  
 trace(aParam);  
 };  
 traceParameter("hello"); // hello

Notice that you do not specify a function name, as you do in a function statement. Another important difference 

between function expressions and function statements is that a function expression is an expression rather than a 

statement. This means that a function expression cannot stand on its own as a function statement can. A function 

expression can be used only as a part of a statement, usually an assignment statement. The following example shows 

a function expression assigned to an array element:

Updated 11 February 2009



80PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 var traceArray:Array = new Array();  
 traceArray[0] = function (aParam:String)  
 {  
 trace(aParam);  
 };  
 traceArray[0]("hello");

Choosing between statements and expressions

As a general rule, use a function statement unless specific circumstances call for the use of an expression. Function 

statements are less verbose, and they provide a more consistent experience between strict mode and standard mode 

than function expressions. 

Function statements are easier to read than assignment statements that contain function expressions. Function 

statements make your code more concise; they are less confusing than function expressions, which require you to use 

both the var and function keywords. 

Function statements provide a more consistent experience between the two compiler modes in that you can use dot 

syntax in both strict and standard mode to invoke a method declared using a function statement. This is not necessarily 

true for methods declared with a function expression. For example, the following code defines a class named Example 

with two methods: methodExpression(), which is declared with a function expression, and methodStatement(), 

which is declared with a function statement. In strict mode, you cannot use dot syntax to invoke the 

methodExpression() method.

 class Example  
 {  
 var methodExpression = function() {}  
 function methodStatement() {}  
 }  
   
 var myEx:Example = new Example();  
 myEx.methodExpression(); // error in strict mode; okay in standard mode  
 myEx.methodStatement(); // okay in strict and standard modes

Function expressions are considered better suited to programming that focuses on run-time, or dynamic, behavior. If 

you prefer to use strict mode, but also need to call a method declared with a function expression, you can use either of 

two techniques. First, you can call the method using square brackets ([]) instead of the dot (.) operator. The following 

method call succeeds in both strict mode and standard mode:

 myExample["methodLiteral"]();

Second, you can declare the entire class as a dynamic class. Although this allows you to call the method using the dot 

operator, the downside is that you sacrifice some strict mode functionality for all instances of that class. For example, 

the compiler does not generate an error if you attempt to access an undefined property on an instance of a dynamic 

class. 

There are some circumstances in which function expressions are useful. One common use of function expressions is 

for functions that are used only once and then discarded. Another less common use is for attaching a function to a 

prototype property. For more information, see “The prototype object” on page 119.

Updated 11 February 2009



81PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

There are two subtle differences between function statements and function expressions that you should take into 

account when choosing which technique to use. The first difference is that function expressions do not exist 

independently as objects with regard to memory management and garbage collection. In other words, when you assign 

a function expression to another object, such as an array element or an object property, you create the only reference 

to that function expression in your code. If the array or object to which your function expression is attached goes out 

of scope or is otherwise no longer available, you will no longer have access to the function expression. If the array or 

object is deleted, the memory that the function expression uses will become eligible for garbage collection, which 

means that the memory is eligible to be reclaimed and reused for other purposes.

The following example shows that for a function expression, once the property to which the expression is assigned is 

deleted, the function is no longer available. The class Test is dynamic, which means that you can add a property named 

functionExp that holds a function expression. The functionExp() function can be called with the dot operator, but 

once the functionExp property is deleted, the function is no longer accessible.

 dynamic class Test {}  
 var myTest:Test = new Test();  
   
 // function expression   
 myTest.functionExp = function () { trace("Function expression") };  
 myTest.functionExp(); // Function expression  
 delete myTest.functionExp;  
 myTest.functionExp(); // error

If, on the other hand, the function is first defined with a function statement, it exists as its own object and continues 

to exist even after you delete the property to which it is attached. The delete operator only works on properties of 

objects, so even a call to delete the function stateFunc() itself does not work.

 dynamic class Test {}  
 var myTest:Test = new Test();  
   
 // function statement  
 function stateFunc() { trace("Function statement") }  
 myTest.statement = stateFunc;  
 myTest.statement(); // Function statement  
 delete myTest.statement;  
 delete stateFunc; // no effect  
 stateFunc();// Function statement  
 myTest.statement(); // error

The second difference between function statements and function expressions is that function statements exist 

throughout the scope in which they are defined, including in statements that appear before the function statement. 

Function expressions, by contrast, are defined only for subsequent statements. For example, the following code 

successfully calls the scopeTest() function before it is defined:

 statementTest(); // statementTest  
   
 function statementTest():void  
 {  
 trace("statementTest");  
 }

Function expressions are not available before they are defined, so the following code results in a run-time error:

Updated 11 February 2009



82PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 expressionTest(); // run-time error  
   
 var expressionTest:Function = function ()  
 {  
 trace("expressionTest");  
 }

Returning values from functions

To return a value from your function, use the return statement followed by the expression or literal value that you 

want to return. For example, the following code returns an expression representing the parameter: 

 function doubleNum(baseNum:int):int  
 {  
 return (baseNum * 2);  
 }

Notice that the return statement terminates the function, so that any statements below a return statement will not 

be executed, as follows:

 function doubleNum(baseNum:int):int {  
 return (baseNum * 2);  
 trace("after return"); // This trace statement will not be executed.  
 }

In strict mode, you must return a value of the appropriate type if you choose to specify a return type. For example, the 

following code generates an error in strict mode, because it does not return a valid value:

 function doubleNum(baseNum:int):int  
 {  
 trace("after return");  
 }

Nested functions

You can nest functions, which means that functions can be declared within other functions. A nested function is 

available only within its parent function unless a reference to the function is passed to external code. For example, the 

following code declares two nested functions inside the getNameAndVersion() function:

 function getNameAndVersion():String  
 {  
 function getVersion():String  
 {  
 return "10";  
 }  
 function getProductName():String  
 {  
 return "Flash Player";  
 }  
 return (getProductName() + " " + getVersion());  
 }  
 trace(getNameAndVersion()); // Flash Player 10

When nested functions are passed to external code, they are passed as function closures, which means that the function 

retains any definitions that are in scope when the function is defined. For more information, see “Function scope” on 

page 88.

Updated 11 February 2009



83PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Function parameters

ActionScript 3.0 provides some functionality for function parameters that may seem novel for programmers new to 

the language. Although the idea of passing parameters by value or reference should be familiar to most programmers, 

the arguments object and the ... (rest)parameter may be new to many of you.

Passing arguments by value or by reference

In many programming languages, it’s important to understand the distinction between passing arguments by value or 

by reference; the distinction can affect the way code is designed. 

To be passed by value means that the value of the argument is copied into a local variable for use within the function. 

To be passed by reference means that only a reference to the argument is passed instead of the actual value. No copy 

of the actual argument is made. Instead, a reference to the variable passed as an argument is created and assigned to a 

local variable for use within the function. As a reference to a variable outside the function, the local variable gives you 

the ability to change the value of the original variable.

In ActionScript 3.0, all arguments are passed by reference, because all values are stored as objects. However, objects 

that belong to the primitive data types, which includes Boolean, Number, int, uint, and String, have special operators 

that make them behave as if they were passed by value. For example, the following code creates a function named 

passPrimitives() that defines two parameters named xParam and yParam, both of type int. These parameters are 

similar to local variables declared inside the body of the passPrimitives() function. When the function is called with 

the arguments xValue and yValue, the parameters xParam and yParam are initialized with references to the int objects 

represented by xValue and yValue. Because the arguments are primitives, they behave as if passed by value. Although 

xParam and yParam initially contain only references to the xValue and yValue objects, any changes to the variables 

within the function body generate new copies of the values in memory.

 function passPrimitives(xParam:int, yParam:int):void  
 {  
 xParam++;  
 yParam++;  
 trace(xParam, yParam);  
 }  
   
 var xValue:int = 10;  
 var yValue:int = 15;  
 trace(xValue, yValue);// 10 15  
 passPrimitives(xValue, yValue); // 11 16  
 trace(xValue, yValue);// 10 15

Within the passPrimitives() function, the values of xParam and yParam are incremented, but this does not affect 

the values of xValue and yValue, as shown in the last trace statement. This would be true even if the parameters 

were named identically to the variables, xValue and yValue, because the xValue and yValue inside the function 

would point to new locations in memory that exist separately from the variables of the same name outside the function.

All other objects—that is, objects that do not belong to the primitive data types—are always passed by reference, which 

gives you ability to change the value of the original variable. For example, the following code creates an object named 

objVar with two properties, x and y. The object is passed as an argument to the passByRef() function. Because the 

object is not a primitive type, the object is not only passed by reference, but also stays a reference. This means that 

changes made to the parameters within the function will affect the object properties outside the function.

Updated 11 February 2009



84PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 function passByRef(objParam:Object):void  
 {  
 objParam.x++;  
 objParam.y++;  
 trace(objParam.x, objParam.y);  
 }  
 var objVar:Object = {x:10, y:15};  
 trace(objVar.x, objVar.y); // 10 15  
 passByRef(objVar); // 11 16  
 trace(objVar.x, objVar.y); // 11 16

The objParam parameter references the same object as the global objVar variable. As you can see from the trace 

statements in the example, changes to the x and y properties of the objParam object are reflected in the objVar object.

Default parameter values

New in ActionScript 3.0 is the ability to declare default parameter values for a function. If a call to a function with 

default parameter values omits a parameter with default values, the value specified in the function definition for that 

parameter is used. All parameters with default values must be placed at the end of the parameter list. The values 

assigned as default values must be compile-time constants. The existence of a default value for a parameter effectively 

makes that parameter an optional parameter. A parameter without a default value is considered a required parameter.

For example, the following code creates a function with three parameters, two of which have default values. When the 

function is called with only one parameter, the default values for the parameters are used. 

 function defaultValues(x:int, y:int = 3, z:int = 5):void  
 {  
 trace(x, y, z);  
 }  
 defaultValues(1); // 1 3 5

The arguments object

When parameters are passed to a function, you can use the arguments object to access information about the 

parameters passed to your function. Some important aspects of the arguments object include the following:

• The arguments object is an array that includes all the parameters passed to the function.

• The arguments.length property reports the number of parameters passed to the function.

• The arguments.callee property provides a reference to the function itself, which is useful for recursive calls to 

function expressions.

Note: The arguments object is not available if any parameter is named arguments or if you use the ... (rest) 

parameter.

If the the arguments object is referenced in the body of a function, ActionScript 3.0 allows function calls to include 

more parameters than those defined in the function definition, but will generate a compiler error in strict mode if 

the number of parameters doesn’t match the number of required parameters (and optionally, any optional 

parameters). You can use the array aspect of the arguments object to access any parameter passed to the function, 

whether or not that parameter is defined in the function definition. The following example, which only compiles in 

standard mode, uses the arguments array along with the arguments.length property to trace all the parameters 

passed to the traceArgArray() function:

Updated 11 February 2009



85PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

 function traceArgArray(x:int):void  
 {  
 for (var i:uint = 0; i < arguments.length; i++)  
 {  
 trace(arguments[i]);  
 }  
 }  
   
 traceArgArray(1, 2, 3);  
   
 // output:  
 // 1  
 // 2  
 // 3

The arguments.callee property is often used in anonymous functions to create recursion. You can use it to add 

flexibility to your code. If the name of a recursive function changes over the course of your development cycle, you 

need not worry about changing the recursive call in your function body if you use arguments.callee instead of 

the function name. The arguments.callee property is used in the following function expression to enable 

recursion:

 var factorial:Function = function (x:uint)  
 {  
 if(x == 0)  
 {  
 return 1;  
 }  
 else  
 {  
 return (x * arguments.callee(x - 1));  
 }  
 }  
   
 trace(factorial(5)); // 120

If you use the ... (rest) parameter in your function declaration, the arguments object will not be available to you. 

Instead, you must access the parameters using the parameter names that you declared for them. 

You should also be careful to avoid using the string "arguments"  as a parameter name, because it will shadow the 

arguments object. For example, if the function traceArgArray() is rewritten so that an arguments parameter is 

added, the references to arguments in the function body refer to the parameter rather than the arguments object. 

The following code produces no output:

 function traceArgArray(x:int, arguments:int):void  
 {  
 for (var i:uint = 0; i < arguments.length; i++)  
 {  
 trace(arguments[i]);  
 }  
 }  
   
 traceArgArray(1, 2, 3);  
   
 // no output

Updated 11 February 2009



86PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

The arguments object in previous versions of ActionScript also contained a property named caller, which is a 

reference to the function that called the current function. The caller property is not present in ActionScript 3.0, 

but if you need a reference to the calling function, you can alter the calling function so that it passes an extra 

parameter that is a reference to itself.

The ... (rest) parameter

ActionScript 3.0 introduces a new parameter declaration called the ... (rest) parameter. This parameter allows you to 

specify an array parameter that accepts any number of comma- delimited arguments. The parameter can have any 

name that is not a reserved word. This parameter declaration must be the last parameter specified. Use of this 

parameter makes the arguments object unavailable. Although the ... (rest) parameter gives you the same functionality 

as the arguments array and arguments.length property, it does not provide functionality similar to that provided 

by arguments.callee. You should ensure that you do not need to use arguments.callee before using the ... (rest) 

parameter.

The following example rewrites the traceArgArray() function using the ... (rest) parameter instead of the arguments 

object:

 function traceArgArray(... args):void  
 {  
 for (var i:uint = 0; i < args.length; i++)  
 {  
 trace(args[i]);  
 }  
 }  
   
 traceArgArray(1, 2, 3);  
   
 // output:  
 // 1  
 // 2  
 // 3

The ... (rest) parameter can also be used with other parameters, as long as it is the last parameter listed. The following 

example modifies the traceArgArray() function so that its first parameter, x, is of type int, and the second parameter 

uses the ... (rest) parameter. The output skips the first value, because the first parameter is no longer part of the array 

created by the ... (rest) parameter.

 function traceArgArray(x: int, ... args)  
 {  
 for (var i:uint = 0; i < args.length; i++)  
 {  
 trace(args[i]);  
 }  
 }  
   
 traceArgArray(1, 2, 3);  
   
 // output:  
 // 2  
 // 3

Functions as objects

Functions in ActionScript 3.0 are objects. When you create a function, you are creating an object that can not only be 

passed as a parameter to another function, but also have properties and methods attached to it.

Updated 11 February 2009



87PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Functions passed as arguments to another function are passed by reference and not by value. When you pass a function 

as an argument, you use only the identifier and not the parentheses operator that you use to call the method. For 

example, the following code passes a function named clickListener() as an argument to the addEventListener() 

method:

 addEventListener(MouseEvent.CLICK, clickListener);

The Array.sort() method also defines a parameter that accepts a function. For an example of a custom sort function 

that is used as an argument to the Array.sort() function, see “Sorting an array” on page 160.

Although it may seem strange to programmers new to ActionScript, functions can have properties and methods, just 

as any other object can. In fact, every function has a read-only property named length that stores the number of 

parameters defined for the function. This is different from the arguments.length property, which reports the 

number of arguments sent to the function. Recall that in ActionScript, the number of arguments sent to a function can 

exceed the number of parameters defined for that function. The following example, which compiles only in standard 

mode because strict mode requires an exact match between the number of arguments passed and the number of 

parameters defined, shows the difference between the two properties:

 // Compiles only in standard mode  
 function traceLength(x:uint, y:uint):void  
 {  
 trace("arguments received: " + arguments.length);  
 trace("arguments expected: " + traceLength.length);  
 }  
   
 traceLength(3, 5, 7, 11);  
 /* output:  
 arguments received: 4  
 arguments expected: 2 */

In standard mode you can define your own function properties by defining them outside your function body. Function 

properties can serve as quasi-static properties that allow you to save the state of a variable related to the function. For 

example, you may want to track the number of times a particular function is called. Such functionality could be useful 

if you are writing a game and want to track the number of times a user uses a specific command, although you could 

also use a static class property for this. The following example, which compiles only in standard mode because strict 

mode does not allow you to add dynamic properties to functions, creates a function property outside the function 

declaration and increments the property each time the function is called:

 // Compiles only in standard mode  
 var someFunction:Function = function ():void  
 {  
 someFunction.counter++;  
 }  
   
 someFunction.counter = 0;  
   
 someFunction();  
 someFunction();  
 trace(someFunction.counter); // 2

Updated 11 February 2009



88PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Function scope

A function’s scope determines not only where in a program that function can be called, but also what definitions the 

function can access. The same scope rules that apply to variable identifiers apply to function identifiers. A function 

declared in the global scope is available throughout your code. For example, ActionScript 3.0 contains global functions, 

such as isNaN() and parseInt(), that are available anywhere in your code. A nested function—a function declared 

within another function—can be used anywhere in the function in which it was declared.

The scope chain

Any time a function begins execution, a number of objects and properties are created. First, a special object called an 

activation object is created that stores the parameters and any local variables or functions declared in the function 

body. You cannot access the activation object directly, because it is an internal mechanism. Second, a scope chain is 

created that contains an ordered list of objects that Flash Player or Adobe AIR checks for identifier declarations. Every 

function that executes has a scope chain that is stored in an internal property. For a nested function, the scope chain 

starts with its own activation object, followed by its parent function’s activation object. The chain continues in this 

manner until it reaches the global object. The global object is created when an ActionScript program begins, and 

contains all global variables and functions. 

Function closures

A function closure is an object that contains a snapshot of a function and its lexical environment. A function’s lexical 

environment includes all the variables, properties, methods, and objects in the function’s scope chain, along with their 

values. Function closures are created any time a function is executed apart from an object or a class. The fact that 

function closures retain the scope in which they were defined creates interesting results when a function is passed as 

an argument or a return value into a different scope. 

For example, the following code creates two functions: foo(), which returns a nested function named rectArea() 

that calculates the area of a rectangle, and bar(), which calls foo() and stores the returned function closure in a 

variable named myProduct. Even though the bar() function defines its own local variable x (with a value of 2), when 

the function closure myProduct() is called, it retains the variable x (with a value of 40) defined in function foo(). 

The bar() function therefore returns the value 160 instead of 8.

 function foo():Function  
 {  
 var x:int = 40;  
 function rectArea(y:int):int // function closure defined  
 {  
 return x * y  
 }   
 return rectArea;  
 }  
 function bar():void  
 {  
 var x:int = 2;  
 var y:int = 4;  
 var myProduct:Function = foo();  
 trace(myProduct(4)); // function closure called  
 }  
 bar(); // 160

Updated 11 February 2009



89PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

ActionScript language and syntax

Methods behave similarly in that they also retain information about the lexical environment in which they were 

created. This characteristic is most noticeable when a method is extracted from its instance, which creates a bound 

method. The main difference between a function closure and a bound method is that the value of the this keyword 

in a bound method always refers to the instance to which it was originally attached, whereas in a function closure the 

value of the this keyword can change. For more information, see “Methods” on page 97.

Updated 11 February 2009



90

Chapter 5: Object-oriented programming 
in ActionScript

This chapter describes the elements of ActionScript that support object-oriented programming (OOP). The chapter 

does not describe general OOP principles such as object design, abstraction, encapsulation, inheritance, and 

polymorphism. The chapter focuses on how to apply these principles using ActionScript 3.0.

Because of ActionScript’s roots as a scripting language, ActionScript 3.0 OOP support is optional. This affords 

programmers flexibility in choosing the best approach for projects of varying scope and complexity. For small tasks, 

you may find that using ActionScript with a procedural programming paradigm is all you need. For larger projects, 

applying OOP principles can make your code easier to understand, maintain, and extend. 

Basics of object-oriented programming

Introduction to object-oriented programming

Object-oriented programming (OOP) is a way of organizing the code in a program by grouping it into objects—

individual elements that include information (data values) and functionality. Using an object-oriented approach to 

organizing a program allows you to group particular pieces of information (for example, music information like album 

title, track title, or artist name) together with common functionality or actions associated with that information (such 

as “add track to playlist” or “play all songs by this artist”). These items are combined into a single item, an object (for 

example, an “Album” or “MusicTrack”). Being able to bundle these values and functions together provides several 

benefits, including only needing to keep track of a single variable rather than multiple ones, organizing related 

functionality together, and being able to structure programs in ways that more closely match the real world.

Common object-oriented programming tasks

In practice, object-oriented programming has two parts. One part is the strategies and techniques for designing a 

program (often called object-oriented design). This is a broad subject and is not discussed in this chapter. The other 

part of OOP is the actual programming structures that are available in a given programming language to build a 

program using an object-oriented approach. This chapter covers the following common tasks in OOP:

• Defining classes

• Creating properties, methods, and get and set accessors (accessor methods)

• Controlling access to classes, properties, methods, and accessors

• Creating static properties and methods

• Creating enumeration-like structures

• Defining and using interfaces

• Working with inheritance, including overriding class elements

Updated 11 February 2009



91PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Attribute: A characteristic assigned to a class element (such as a property or method) in the class definition. 

Attributes are commonly used to define whether the property or method will be available for access by code in other 

parts of the program. For example, private and public are attributes. A private method can be called only by code 

within the class, while a public method can be called by any code in the program.

• Class: The definition of the structure and behavior of objects of a certain type (like a template or blueprint for 

objects of that data type).

• Class hierarchy: The structure of multiple related classes, specifying which classes inherit functionality from other 

classes.

• Constructor: A special method you can define in a class, which is called when an instance of the class is created. A 

constructor is commonly used to specify default values or otherwise perform setup operations for the object.

• Data type: The type of information that a particular variable can store. In general, data type means the same thing 

as class.

• Dot operator: The period sign (.), which in ActionScript (and many other programming languages) is used to 

indicate that a name refers to a child element of an object (such as a property or method). For instance, in the 

expression myObject.myProperty, the dot operator indicates that the term myProperty is referring to some value 

that is an element of the object named myObject.

• Enumeration: A set of related constant values, grouped together for convenience as properties of a single class.

• Inheritance: The OOP mechanism that allows one class definition to include all the functionality of a different class 

definition (and generally add to that functionality).

• Instance: An actual object created in a program.

• Namespace: Essentially a custom attribute, allowing more refined control over which code can access other code.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Because 

the code listings in this chapter deal primarily with defining and manipulating data types, testing the examples will 

involve creating an instance of the class being defined, manipulating that instance using its properties or methods, and 

then viewing the values of the that instance’s properties. For viewing those values, you’ll want to write values into a text 

field instance on the Stage, or use the trace() function to print values to the Output panel. These techniques are 

described in detail in “Testing in-chapter example code listings” on page 34.

Classes

A class is an abstract representation of an object. A class stores information about the types of data that an object can 

hold and the behaviors that an object can exhibit. The usefulness of such an abstraction may not be apparent when you 

write small scripts that contain only a few objects interacting with one another. As the scope of a program grows, 

however, and the number of objects that must be managed increases, you may find that classes allow you to better 

control how objects are created and how they interact with one another.

Updated 11 February 2009



92PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

As far back as ActionScript 1.0, ActionScript programmers could use Function objects to create constructs that 

resembled classes. ActionScript 2.0 added formal support for classes with keywords such as class and extends. 

ActionScript 3.0 not only continues to support the keywords introduced in ActionScript 2.0, but also adds some new 

capabilities, such as enhanced access control with the protected and internal attributes, and better control over 

inheritance with the final and override keywords.

If you have ever created classes in programming languages like Java, C++, or C#, you will find that ActionScript 

provides a familiar experience. ActionScript shares many of the same keywords and attribute names, such as class, 

extends, and public, all of which are discussed in the following sections.

Note: In this chapter, the term property means any member of an object or class, including variables, constants, and 

methods. In addition, although the terms class and static are often used interchangeably, in this chapter these terms are 

distinct. For example, in this chapter the phrase class properties refers to all the members of a class, rather than only the 

static members.

Class definitions

ActionScript 3.0 class definitions use syntax that is similar to that used in ActionScript 2.0 class definitions. Proper 

syntax for a class definition calls for the class keyword followed by the class name. The class body, which is enclosed 

by curly braces ({}), follows the class name. For example, the following code creates a class named Shape that contains 

one variable, named visible: 

 public class Shape  
 {  
 var visible:Boolean = true;  
 }

One significant syntax change involves class definitions that are inside a package. In ActionScript 2.0, if a class is inside 

a package, the package name must be included in the class declaration. In ActionScript 3.0, which introduces the 

package statement, the package name must be included in the package declaration instead of in the class declaration. 

For example, the following class declarations show how the BitmapData class, which is part of the flash.display 

package, is defined in ActionScript 2.0 and ActionScript 3.0:

 // ActionScript 2.0  
 class flash.display.BitmapData {}  
   
 // ActionScript 3.0  
 package flash.display  
 {  
 public class BitmapData {}  
 }

Class attributes

ActionScript 3.0 allows you to modify class definitions using one of the following four attributes:

Attribute Definition

dynamic Allow properties to be added to instances at run time.

final Must not be extended by another class.

internal (default) Visible to references inside the current package.

public Visible to references everywhere.

Updated 11 February 2009



93PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

For each of these attributes, except for internal, you must explicitly include the attribute to get the associated 

behavior. For example, if you do not include the dynamic attribute when defining a class, you will not be able to add 

properties to a class instance at run time. You explicitly assign an attribute by placing it at the beginning of the class 

definition, as the following code demonstrates:

 dynamic class Shape {}

Notice that the list does not include an attribute named abstract. This is because abstract classes are not supported 

in ActionScript 3.0. Notice also that the list does not include attributes named private and protected. These 

attributes have meaning only inside a class definition, and cannot be applied to classes themselves. If you do not want 

a class to be publicly visible outside a package, place the class inside a package and mark the class with the internal 

attribute. Alternatively, you can omit both the internal and public attributes, and the compiler will automatically 

add the internal attribute for you. If you do not want a class to be visible outside the source file in which it is defined, 

place the class at the bottom of your source file, below the closing curly brace of the package definition.

Class body

The class body, which is enclosed by curly braces, is used to define the variables, constants, and methods of your class. 

The following example shows the declaration for the Accessibility class in the Adobe Flash Player API:

 public final class Accessibility  
 {  
 public static function get active():Boolean;  
 public static function updateProperties():void;  
 }

You can also define a namespace inside a class body. The following example shows how a namespace can be defined 

within a class body and used as an attribute of a method in that class:

 public class SampleClass  
 {  
 public namespace sampleNamespace;  
 sampleNamespace function doSomething():void;  
 }

ActionScript 3.0 allows you to include not only definitions in a class body, but also statements. Statements that are 

inside a class body, but outside a method definition, are executed exactly once—when the class definition is first 

encountered and the associated class object is created. The following example includes a call to an external function, 

hello(), and a trace statement that outputs a confirmation message when the class is defined:

 function hello():String  
 {  
 trace("hola");  
 }  
 class SampleClass  
 {  
 hello();  
 trace("class created");  
 }  
 // output when class is created  
 hola  
 class created

In contrast to previous versions of ActionScript, in ActionScript 3.0 it is permissible to define a static property and an 

instance property with the same name in the same class body. For example, the following code declares a static variable 

named message and an instance variable of the same name: 

Updated 11 February 2009



94PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 class StaticTest  
 {  
 static var message:String = "static variable";  
 var message:String = "instance variable";  
 }  
 // In your script  
 var myST:StaticTest = new StaticTest();  
 trace(StaticTest.message); // output: static variable  
 trace(myST.message); // output: instance variable

Class property attributes

In discussions of the ActionScript object model, the term property means anything that can be a member of a class, 

including variables, constants, and methods. This differs from the way the term is used in the ActionScript 3.0 

Language and Components Reference, where the term is used more narrowly and includes only class members that 

are variables or are defined by a getter or setter method. In ActionScript 3.0, there is a set of attributes that can be used 

with any property of a class. The following table lists this set of attributes.

Access control namespace attributes

ActionScript 3.0 provides four special attributes that control access to properties defined inside a class: public, 

private, protected, and internal. 

The public attribute makes a property visible anywhere in your script. For example, to make a method available to 

code outside its package, you must declare the method with the public attribute. This is true for any property, whether 

it is declared using the var, const, or function keywords.

The private attribute makes a property visible only to callers within the property’s defining class. This behavior 

differs from that of the private attribute in ActionScript 2.0, which allowed a subclass to access a private property in 

a superclass. Another significant change in behavior has to do with run-time access. In ActionScript 2.0, the private 

keyword prohibited access only at compile time and was easily circumvented at run time. In ActionScript 3.0, this is 

no longer true. Properties that are marked as private are unavailable at both compile time and run time. 

For example, the following code creates a simple class named PrivateExample with one private variable, and then 

attempts to access the private variable from outside the class. In ActionScript 2.0, compile-time access was prohibited, 

but the prohibition was easily circumvented by using the property access operator ([]), which does the property 

lookup at run time rather than at compile time.

Attribute Definition

internal (default) Visible to references inside the same package.

private Visible to references in the same class.

protected Visible to references in the same class and derived classes.

public Visible to references everywhere.

static Specifies that a property belongs to the class, as opposed to instances of the class.

UserDefinedNamespace Custom namespace name defined by user.

Updated 11 February 2009



95PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 class PrivateExample  
 {  
 private var privVar:String = "private variable";  
 }  
   
 var myExample:PrivateExample = new PrivateExample();  
 trace(myExample.privVar);// compile-time error in strict mode  
 trace(myExample["privVar"]); // ActionScript 2.0 allows access, but in ActionScript 3.0, this 
is a run-time error. 

In ActionScript 3.0, an attempt to access a private property using the dot operator (myExample.privVar) results in a 

compile-time error if you are using strict mode. Otherwise, the error is reported at run time, just as it is when you use 

the property access operator (myExample["privVar"]). 

The following table summarizes the results of attempting to access a private property that belongs to a sealed (not 

dynamic) class: 

In classes declared with the dynamic attribute, attempts to access a private variable will not result in a run-time error. 

Instead, the variable is simply not visible, so Flash Player or Adobe® AIR™ returns the value undefined. A compile-

time error occurs, however, if you use the dot operator in strict mode. The following example is the same as the 

previous example, except that the PrivateExample class is declared as a dynamic class: 

 dynamic class PrivateExample  
 {  
 private var privVar:String = "private variable";  
 }  
   
 var myExample:PrivateExample = new PrivateExample();  
 trace(myExample.privVar);// compile-time error in strict mode  
 trace(myExample["privVar"]); // output: undefined

Dynamic classes generally return the value undefined instead of generating an error when code external to a class 

attempts to access a private property. The following table shows that an error is generated only when the dot operator 

is used to access a private property in strict mode:

The protected attribute, which is new for ActionScript 3.0, makes a property visible to callers within its own class or 

in a subclass. In other words, a protected property is available within its own class or to classes that lie anywhere below 

it in the inheritance hierarchy. This is true whether the subclass is in the same package or in a different package. 

For those familiar with ActionScript 2.0, this functionality is similar to the private attribute in ActionScript 2.0. The 

ActionScript 3.0 protected attribute is also similar to the protected attribute in Java, but differs in that the Java 

version also permits access to callers within the same package. The protected attribute is useful when you have a 

variable or method that your subclasses need but that you want to hide from code that is outside the inheritance chain.

 Strict mode Standard mode

dot operator (.) compile-time error run-time error

bracket operator ([]) run-time error run-time error

 Strict mode Standard mode

dot operator (.) compile-time error undefined

bracket operator ([]) undefined undefined

Updated 11 February 2009



96PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

The internal attribute, which is new for ActionScript 3.0, makes a property visible to callers within its own package. 

This is the default attribute for code inside a package, and it applies to any property that does not have any of the 

following attributes:

• public

• private

• protected

• a user-defined namespace

The internal attribute is similar to the default access control in Java, although in Java there is no explicit name for 

this level of access, and it can be achieved only through the omission of any other access modifier. The internal 

attribute is available in ActionScript 3.0 to give you the option of explicitly signifying your intent to make a property 

visible only to callers within its own package. 

static attribute

The static attribute, which can be used with properties declared with the var, const, or function keywords, allows 

you to attach a property to the class rather than to instances of the class. Code external to the class must call static 

properties by using the class name instead of an instance name.

Static properties are not inherited by subclasses, but the properties are part of a subclass’s scope chain. This means that 

within the body of a subclass, a static variable or method can be used without referencing the class in which it was 

defined. For more information, see “Static properties not inherited” on page 113.

User-defined namespace attributes

As an alternative to the predefined access control attributes, you can create a custom namespace for use as an attribute. 

Only one namespace attribute can be used per definition, and you cannot use a namespace attribute in combination 

with any of the access control attributes (public, private, protected, internal). For more information about using 

namespaces, see “Namespaces” on page 42.

Variables

Variables can be declared with either the var or const keywords. Variables declared with the var keyword can have 

their values changed multiple times throughout the execution of a script. Variables declared with the const keyword 

are called constants, and can have values assigned to them only once. An attempt to assign a new value to an initialized 

constant results in an error. For more information, see “Constants” on page 66.

Static variables

Static variables are declared using a combination of the static keyword and either the var or const statement. Static 

variables, which are attached to a class rather than an instance of a class, are useful for storing and sharing information 

that applies to an entire class of objects. For example, a static variable is appropriate if you want to keep a tally of the 

number of times a class is instantiated or if you want to store the maximum number of class instances that are allowed. 

The following example creates a totalCount variable to track the number of class instantiations and a MAX_NUM 

constant to store the maximum number of instantiations. The totalCount and MAX_NUM variables are static, because 

they contain values that apply to the class as a whole rather than to a particular instance.

 class StaticVars  
 {  
 public static var totalCount:int = 0;  
 public static const MAX_NUM:uint = 16;  
 }

Updated 11 February 2009



97PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Code that is external to the StaticVars class and any of its subclasses can reference the totalCount and MAX_NUM 

properties only through the class itself. For example, the following code works:

 trace(StaticVars.totalCount); // output: 0  
 trace(StaticVars.MAX_NUM); // output: 16

You cannot access static variables through an instance of the class, so the following code returns errors:

 var myStaticVars:StaticVars = new StaticVars();  
 trace(myStaticVars.totalCount); // error  
 trace(myStaticVars.MAX_NUM); // error

Variables that are declared with both the static and const keywords must be initialized at the same time as you 

declare the constant, as the StaticVars class does for MAX_NUM. You cannot assign a value to MAX_NUM inside the 

constructor or an instance method. The following code will generate an error, because it is not a valid way to initialize 

a static constant:

 // !! Error to initialize static constant this way  
 class StaticVars2  
 {  
 public static const UNIQUESORT:uint;  
 function initializeStatic():void  
 {  
 UNIQUESORT = 16;  
 }  
 }

Instance variables

Instance variables include properties declared with the var and const keywords, but without the static keyword. 

Instance variables, which are attached to class instances rather than to an entire class, are useful for storing values that 

are specific to an instance. For example, the Array class has an instance property named length, which stores the 

number of array elements that a particular instance of the Array class holds.

Instance variables, whether declared as var or const, cannot be overridden in a subclass. You can, however, achieve 

functionality that is similar to overriding variables by overriding getter and setter methods. For more information, see 

“Get and set accessor methods” on page 100.

Methods

Methods are functions that are part of a class definition. Once an instance of the class is created, a method is bound to 

that instance. Unlike a function declared outside a class, a method cannot be used apart from the instance to which it 

is attached.

Methods are defined using the function keyword. As with any class property, you can apply any of the class property 

attributes to methods, including private, protected, public, internal, static, or a custom namespace.You can use a 

function statement such as the following:

 public function sampleFunction():String {}

Or you can use a variable to which you assign a function expression, as follows:

 public var sampleFunction:Function = function () {}

In most cases you will want to use a function statement instead of a function expression for the following reasons:

• Function statements are more concise and easier to read.

Updated 11 February 2009



98PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

• Function statements allow you to use the override and final keywords. For more information, see “Overriding 

methods” on page 111.

• Function statements create a stronger bond between the identifier—that is, the name of the function—and the code 

within the method body. Because the value of a variable can be changed with an assignment statement, the 

connection between a variable and its function expression can be severed at any time. Although you can work 

around this issue by declaring the variable with const instead of var, such a technique is not considered a best 

practice, because it makes the code hard to read and prevents the use of the override and final keywords.

One case in which you must use a function expression is when you choose to attach a function to the prototype object. 

For more information, see “The prototype object” on page 119.

Constructor methods

Constructor methods, sometimes simply called constructors, are functions that share the same name as the class in 

which they are defined. Any code that you include in a constructor method is executed whenever an instance of the 

class is created with the new keyword. For example, the following code defines a simple class named Example that 

contains a single property named status. The initial value of the status variable is set inside the constructor 

function.

 class Example  
 {  
 public var status:String;  
 public function Example()  
 {  
 status = "initialized";  
 }  
 }  
   
 var myExample:Example = new Example();  
 trace(myExample.status); // output: initialized

Constructor methods can only be public, but the use of the public attribute is optional. You cannot use any of the 

other access control specifiers, including private, protected, or internal, on a constructor. You also cannot use a 

user-defined namespace with a constructor method.

A constructor can make an explicit call to the constructor of its direct superclass by using the super() statement. If 

the superclass constructor is not explicitly called, the compiler automatically inserts a call before the first statement in 

the constructor body. You can also call methods of the superclass by using the super prefix as a reference to the 

superclass. If you decide to use both super() and super in the same constructor body, be sure to call super() first. 

Otherwise, the super reference will not behave as expected. The super() constructor should also be called before any 

throw or return statement. 

The following example demonstrates what happens if you attempt to use the super reference before calling the 

super() constructor. A new class, ExampleEx, extends the Example class. The ExampleEx constructor attempts to 

access the status variable defined in its superclass, but does so before calling super(). The trace() statement inside 

the ExampleEx constructor produces the value null, because the status variable is not available until the super() 

constructor executes.

Updated 11 February 2009



99PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 class ExampleEx extends Example  
 {  
 public function ExampleEx()  
 {  
 trace(super.status);  
 super();  
 }  
 }  
   
 var mySample:ExampleEx = new ExampleEx(); // output: null

Although it is legal to use the return statement inside a constructor, it is not permissible to return a value. In other 

words, return statements must not have associated expressions or values. Accordingly, constructor methods are not 

allowed to return values, which means that no return type may be specified.

If you do not define a constructor method in your class, the compiler will automatically create an empty constructor 

for you. If your class extends another class, the compiler will include a super() call in the constructor it generates.

Static methods

Static methods, also called class methods, are methods that are declared with the static keyword. Static methods, 

which are attached to a class rather than to an instance of a class, are useful for encapsulating functionality that affects 

something other than the state of an individual instance. Because static methods are attached to a class as a whole, static 

methods can be accessed only through a class and not through an instance of the class. 

Static methods are useful for encapsulating functionality that is not limited to affecting the state of class instances. In 

other words, a method should be static if it provides functionality that does not directly affect the value of a class 

instance. For example, the Date class has a static method named parse(), which takes a string and converts it to a 

number. The method is static because it does not affect an individual instance of the class. Instead, the parse() 

method takes a string that represents a date value, parses the string, and returns a number in a format compatible with 

the internal representation of a Date object. This method is not an instance method, because it does not make sense to 

apply the method to an instance of the Date class. 

Contrast the static parse() method with one of the instance methods of the Date class, such as getMonth(). The 

getMonth() method is an instance method, because it operates directly on the value of an instance by retrieving a 

specific component, the month, of a Date instance.

Because static methods are not bound to individual instances, you cannot use the keywords this or super within the 

body of a static method. Both the this reference and the super reference have meaning only within the context of an 

instance method.

In contrast with some other class-based programming languages, static methods in ActionScript 3.0 are not inherited. 

For more information, see “Static properties not inherited” on page 113.

Instance methods

Instance methods are methods that are declared without the static keyword. Instance methods, which are attached 

to instances of a class instead of the class as a whole, are useful for implementing functionality that affects individual 

instances of a class. For example, the Array class contains an instance method named sort(), which operates directly 

on Array instances.

Within the body of an instance method, both static and instance variables are in scope, which means that variables 

defined in the same class can be referenced using a simple identifier. For example, the following class, CustomArray, 

extends the Array class. The CustomArray class defines a static variable named arrayCountTotal to track the total 

number of class instances, an instance variable named arrayNumber that tracks the order in which the instances were 

created, and an instance method named getPosition() that returns the values of these variables. 

Updated 11 February 2009



100PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 public class CustomArray extends Array  
 {  
 public static var arrayCountTotal:int = 0;  
 public var arrayNumber:int;  
   
 public function CustomArray()  
 {  
 arrayNumber = ++arrayCountTotal;  
 }  
   
 public function getArrayPosition():String  
 {  
  return ("Array " + arrayNumber + " of " + arrayCountTotal);  
 }  
 }

Although code external to the class must refer to the arrayCountTotal static variable through the class object using 

CustomArray.arrayCountTotal, code that resides inside the body of the getPosition() method can refer directly 

to the static arrayCountTotal variable. This is true even for static variables in superclasses. Though static properties 

are not inherited in ActionScript 3.0, static properties in superclasses are in scope. For example, the Array class has a 

few static variables, one of which is a constant named DESCENDING. Code that resides in an Array subclass can refer to 

the static constant DESCENDING using a simple identifier:

 public class CustomArray extends Array  
 {  
 public function testStatic():void  
 {  
 trace(DESCENDING); // output: 2  
 }  
 }

The value of the this reference within the body of an instance method is a reference to the instance to which the 

method is attached. The following code demonstrates that the this reference points to the instance that contains the 

method:

 class ThisTest  
 {  
 function thisValue():ThisTest  
 {  
 return this;  
 }  
 }  
   
 var myTest:ThisTest = new ThisTest();  
 trace(myTest.thisValue() == myTest); // output: true

Inheritance of instance methods can be controlled with the keywords override and final. You can use the override 

attribute to redefine an inherited method, and the final attribute to prevent subclasses from overriding a method. For 

more information, see “Overriding methods” on page 111.

Get and set accessor methods

Get and set accessor functions, also called getters and setters, allow you to adhere to the programming principles of 

information hiding and encapsulation while providing an easy-to-use programming interface for the classes that you 

create. Get and set functions allow you to keep your class properties private to the class, but allow users of your class 

to access those properties as if they were accessing a class variable instead of calling a class method. 

Updated 11 February 2009



101PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

The advantage of this approach is that it allows you to avoid the traditional accessor functions with unwieldy names, 

such as getPropertyName() and setPropertyName(). Another advantage of getters and setters is that you can avoid 

having two public-facing functions for each property that allows both read and write access.

The following example class, named GetSet, includes get and set accessor functions named publicAccess() that 

provide access to the private variable named privateProperty:

 class GetSet  
 {  
 private var privateProperty:String;  
   
 public function get publicAccess():String  
 {  
 return privateProperty;  
 }  
   
 public function set publicAccess(setValue:String):void  
 {  
 privateProperty = setValue;  
 }  
 }

If you attempt to access the property privateProperty directly, an error will result, as follows:

 var myGetSet:GetSet = new GetSet();  
 trace(myGetSet.privateProperty); // error occurs

Instead, a user of the GetSet class will use something that appears to be a property named publicAccess, but that is 

really a pair of get and set accessor functions that operate on the private property named privateProperty. The 

following example instantiates the GetSet class, and then sets the value of the privateProperty using the public 

accessor named publicAccess:

 var myGetSet:GetSet = new GetSet();  
 trace(myGetSet.publicAccess); // output: null  
 myGetSet.publicAccess = "hello";  
 trace(myGetSet.publicAccess); // output: hello

Getter and setter functions also make it possible to override properties that are inherited from a superclass, something 

that is not possible when you use regular class member variables. Class member variables that are declared using the 

var keyword cannot be overridden in a subclass. Properties that are created using getter and setter functions, however, 

do not have this restriction. You can use the override attribute on getter and setter functions that are inherited from 

a superclass.

Bound methods

A bound method, sometimes called a method closure, is simply a method that is extracted from its instance. Examples 

of bound methods include methods that are passed as arguments to a function or returned as values from a function. 

New in ActionScript 3.0, a bound method is similar to a function closure in that it retains its lexical environment even 

when extracted from its instance. The key difference, however, between a bound method and a function closure is that 

the this reference for a bound method remains linked, or bound, to the instance that implements the method. In other 

words, the this reference in a bound method always points to the original object that implemented the method. For 

function closures, the this reference is generic, which means that it points to whatever object the function is 

associated with at the time it is invoked.

Updated 11 February 2009



102PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Understanding bound methods is important if you use the this keyword. Recall that the this keyword provides a 

reference to a method’s parent object. Most ActionScript programmers expect that the this keyword always refers to 

the object or class that contains the definition of a method. Without method binding, however, this would not always 

be true. In previous versions of ActionScript, for example, the this reference did not always refer to the instance that 

implemented the method. When methods are extracted from an instance in ActionScript 2.0, not only is the this 

reference not bound to the original instance, but also the member variables and methods of the instance’s class are not 

available. This is not a problem in ActionScript 3.0, because bound methods are automatically created when you pass 

a method as a parameter. Bound methods ensure that the this keyword always references the object or class in which 

a method is defined.

The following code defines a class named ThisTest, which contains a method named foo() that defines the bound 

method, and a method named bar() that returns the bound method. Code external to the class creates an instance of 

the ThisTest class, calls the bar() method, and stores the return value in a variable named myFunc. 

 class ThisTest  
 {  
 private var num:Number = 3;  
 function foo():void // bound method defined  
 {  
 trace("foo's this: " + this);  
 trace("num: " + num);  
 }  
 function bar():Function  
 {  
 return foo; // bound method returned  
 }  
 }  
   
 var myTest:ThisTest = new ThisTest();  
 var myFunc:Function = myTest.bar();  
 trace(this); // output: [object global]  
 myFunc();  
 /* output:   
 foo's this: [object ThisTest]  
 output: num: 3 */

The last two lines of code show that the this reference in the bound method foo() still points to an instance of 

ThisTest class, even though the this reference in the line just before it points to the global object. Moreover, the bound 

method stored in the myFunc variable still has access to the member variables of the ThisTest class. If this same code 

is run in ActionScript 2.0, the this references would match, and the num variable would be undefined.

One area where the addition of bound methods is most noticeable is with event handlers, because the 

addEventListener() method requires that you pass a function or method as an argument. For more information, 

see Listener function defined as a class method in “Event listeners” on page 254.

Enumerations with classes

Enumerations are custom data types that you create to encapsulate a small set of values. ActionScript 3.0 does not 

support a specific enumeration facility, unlike C++ with its enum keyword or Java with its Enumeration interface. You 

can, however, create enumerations using classes and static constants. For example, the PrintJob class in ActionScript 

3.0 uses an enumeration named PrintJobOrientation to store the set of values comprising "landscape" and 

"portrait", as shown in the following code: 

Updated 11 February 2009



103PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 public final class PrintJobOrientation  
 {  
 public static const LANDSCAPE:String = "landscape";  
 public static const PORTRAIT:String = "portrait";  
 }

By convention, an enumeration class is declared with the final attribute, because there is no need to extend the class. 

The class comprises only static members, which means that you do not create instances of the class. Instead, you access 

the enumeration values directly through the class object, as shown in the following code excerpt:

 var pj:PrintJob = new PrintJob();  
 if(pj.start())  
 {  
 if (pj.orientation == PrintJobOrientation.PORTRAIT)  
 {  
 ...  
 }  
 ...  
 }

All of the enumeration classes in ActionScript 3.0 contain only variables of type String, int, or uint. The advantage of 

using enumerations instead of literal string or number values is that typographical mistakes are easier to find with 

enumerations. If you mistype the name of an enumeration, the ActionScript compiler generates an error. If you use 

literal values, the compiler does not complain if you spell a word incorrectly or use the wrong number. In the previous 

example, the compiler generates an error if the name of the enumeration constant is incorrect, as the following excerpt 

shows:

 if (pj.orientation == PrintJobOrientation.PORTRAI) // compiler error

However, the compiler does not generate an error if you misspell a string literal value, as follows:

 if (pj.orientation == "portrai") // no compiler error

A second technique for creating enumerations also involves creating a separate class with static properties for the 

enumeration. This technique differs, however, in that each of the static properties contains an instance of the class instead 

of a string or integer value. For example, the following code creates an enumeration class for the days of the week:

 public final class Day  
 {  
 public static const MONDAY:Day = new Day();  
 public static const TUESDAY:Day = new Day();  
 public static const WEDNESDAY:Day = new Day();  
 public static const THURSDAY:Day = new Day();  
 public static const FRIDAY:Day = new Day();  
 public static const SATURDAY:Day = new Day();  
 public static const SUNDAY:Day = new Day();  
 }

This technique is not used by ActionScript 3.0 but is used by many developers who prefer the improved type checking 

that the technique provides. For example, a method that returns an enumeration value can restrict the return value to 

the enumeration data type. The following code shows not only a function that returns a day of the week, but also a 

function call that uses the enumeration type as a type annotation:

Updated 11 February 2009



104PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 function getDay():Day  
 {  
 var date:Date = new Date();  
 var retDay:Day;  
 switch (date.day)  
 {  
 case 0:  
 retDay = Day.MONDAY;  
 break;  
 case 1:  
 retDay = Day.TUESDAY;  
 break;  
 case 2:  
 retDay = Day.WEDNESDAY;  
 break;  
 case 3:  
 retDay = Day.THURSDAY;  
 break;  
 case 4:  
 retDay = Day.FRIDAY;  
 break;  
 case 5:  
 retDay = Day.SATURDAY;  
 break;  
 case 6:  
 retDay = Day.SUNDAY;  
 break;  
 }  
 return retDay;  
 }  
   
 var dayOfWeek:Day = getDay();

You can also enhance the Day class so that it associates an integer with each day of the week, and provides a 

toString() method that returns a string representation of the day. You might want to enhance the Day class in this 

manner as an exercise.

Embedded asset classes

ActionScript 3.0 uses special classes, called embedded asset classes, to represent embedded assets. An embedded asset is 

an asset, such as a sound, image, or font, that is included in a SWF file at compile time. Embedding an asset instead of 

loading it dynamically ensures that it will be available at run time, but at the cost of increased SWF file size. 

Using embedded asset classes in Flash

To embed an asset, first place the asset into a FLA file’s library. Next, use the asset’s linkage property to provide a name 

for the asset’s embedded asset class. If a class by that name cannot be found in the classpath, a class is automatically 

generated for you. You can then create an instance of the embedded asset class and use any properties and methods 

defined or inherited by that class. For example, the following code can be used to play an embedded sound that is 

linked to an embedded asset class named PianoMusic:

 var piano:PianoMusic = new PianoMusic();  
 var sndChannel:SoundChannel = piano.play();

Updated 11 February 2009



105PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Interfaces

An interface is a collection of method declarations that allows unrelated objects to communicate with one another. For 

example, ActionScript 3.0 defines the IEventDispatcher interface, which contains method declarations that a class can 

use to handle event objects. The IEventDispatcher interface establishes a standard way for objects to pass event objects 

to one another. The following code shows the definition of the IEventDispatcher interface:

 public interface IEventDispatcher  
 {  
 function addEventListener(type:String, listener:Function,   
 useCapture:Boolean=false, priority:int=0,  
 useWeakReference:Boolean = false):void;  
 function removeEventListener(type:String, listener:Function,   
 useCapture:Boolean=false):void;  
 function dispatchEvent(event:Event):Boolean;  
 function hasEventListener(type:String):Boolean;  
 function willTrigger(type:String):Boolean;  
 }

Interfaces are based on the distinction between a method’s interface and its implementation. A method’s interface 

includes all the information necessary to invoke that method, including the name of the method, all of its parameters, 

and its return type. A method’s implementation includes not only the interface information, but also the executable 

statements that carry out the method’s behavior. An interface definition contains only method interfaces, and any class 

that implements the interface is responsible for defining the method implementations.

In ActionScript 3.0, the EventDispatcher class implements the IEventDispatcher interface by defining all of the 

IEventDispatcher interface methods and adding method bodies to each of the methods. The following code is an 

excerpt from the EventDispatcher class definition:

 public class EventDispatcher implements IEventDispatcher  
 {  
 function dispatchEvent(event:Event):Boolean  
 {  
 /* implementation statements */  
 }  
   
 ...  
 }

The IEventDispatcher interface serves as a protocol that EventDispatcher instances use to process event objects and 

pass them to other objects that have also implemented the IEventDispatcher interface. 

Another way to describe an interface is to say that it defines a data type just as a class does. Accordingly, an interface 

can be used as a type annotation, just as a class can. As a data type, an interface can also be used with operators, such 

as the is and as operators, that require a data type. Unlike a class, however, an interface cannot be instantiated. This 

distinction has led many programmers to think of interfaces as abstract data types and classes as concrete data types.

Defining an interface

The structure of an interface definition is similar to that of a class definition, except that an interface can contain only 

methods with no method bodies. Interfaces cannot include variables or constants but can include getters and setters. 

To define an interface, use the interface keyword. For example, the following interface, IExternalizable, is part of the 

flash.utils package in ActionScript 3.0. The IExternalizable interface defines a protocol for serializing an object, which 

means converting an object into a format suitable for storage on a device or for transport across a network. 

Updated 11 February 2009



106PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 public interface IExternalizable  
 {  
 function writeExternal(output:IDataOutput):void;  
 function readExternal(input:IDataInput):void;  
 }

Note that the IExternalizable interface is declared with the public access control modifier. Interface definitions may 

only be modified by the public and internal access control specifiers. The method declarations inside an interface 

definition cannot have any access control specifiers.

ActionScript 3.0 follows a convention in which interface names begin with an uppercase I, but you can use any legal 

identifier as an interface name. Interface definitions are often placed at the top level of a package. Interface definitions 

cannot be placed inside a class definition or inside another interface definition.

Interfaces can extend one or more other interfaces. For example, the following interface, IExample, extends the 

IExternalizable interface:

 public interface IExample extends IExternalizable  
 {  
 function extra():void;  
 }

Any class that implements the IExample interface must include implementations not only for the extra() method, 

but also for the writeExternal() and readExternal() methods inherited from the IExternalizable interface.

Implementing an interface in a class

A class is the only ActionScript 3.0 language element that can implement an interface. Use the implements keyword 

in a class declaration to implement one or more interfaces. The following example defines two interfaces, IAlpha and 

IBeta, and a class, Alpha, that implements them both:

 interface IAlpha  
 {  
 function foo(str:String):String;  
 }  
   
 interface IBeta  
 {  
 function bar():void;  
 }  
   
 class Alpha implements IAlpha, IBeta  
 {  
 public function foo(param:String):String {}  
 public function bar():void {}  
 }

In a class that implements an interface, implemented methods must do the following:

• Use the public access control identifier. 

• Use the same name as the interface method.

• Have the same number of parameters, each with data types that match the interface method parameter data types.

• Use the same return type.

 public function foo(param:String):String {}

Updated 11 February 2009



107PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

You do have some flexibility, however, in how you name the parameters of methods that you implement. Although 

the number of parameters and the data type of each parameter in the implemented method must match that of the 

interface method, the parameter names do not need to match. For example, in the previous example the parameter of 

the Alpha.foo() method is named param:

But the parameter is named str in the IAlpha.foo() interface method:

 function foo(str:String):String;

You also have some flexibility with default parameter values. An interface definition can include function declarations 

with default parameter values. A method that implements such a function declaration must have a default parameter 

value that is a member of the same data type as the value specified in the interface definition, but the actual value does 

not have to match. For example, the following code defines an interface that contains a method with a default 

parameter value of 3:

 interface IGamma  
 {  
 function doSomething(param:int = 3):void;  
 }

The following class definition implements the Igamma interface but uses a different default parameter value:

 class Gamma implements IGamma  
 {  
 public function doSomething(param:int = 4):void {}  
 }

The reason for this flexibility is that the rules for implementing an interface are designed specifically to ensure data 

type compatibility, and requiring identical parameter names and default parameter values is not necessary to achieve 

that objective.

Inheritance

Inheritance is a form of code reuse that allows programmers to develop new classes that are based on existing classes. 

The existing classes are often referred to as base classes or superclasses, while the new classes are usually called 

subclasses. A key advantage of inheritance is that it allows you to reuse code from a base class yet leave the existing code 

unmodified. Moreover, inheritance requires no changes to the way that other classes interact with the base class. 

Rather than modifying an existing class that may have been thoroughly tested or may already be in use, using 

inheritance you can treat that class as an integrated module that you can extend with additional properties or methods. 

Accordingly, you use the extends keyword to indicate that a class inherits from another class.

Inheritance also allows you to take advantage of polymorphism in your code. Polymorphism is the ability to use a single 

method name for a method that behaves differently when applied to different data types. A simple example is a base 

class named Shape with two subclasses named Circle and Square. The Shape class defines a method named area(), 

which returns the area of the shape. If polymorphism is implemented, you can call the area() method on objects of 

type Circle and Square and have the correct calculations done for you. Inheritance enables polymorphism by allowing 

subclasses to inherit and redefine, or override, methods from the base class. In the following example, the area() 

method is redefined by the Circle and Square classes:

Updated 11 February 2009



108PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 class Shape  
 {  
 public function area():Number  
 {  
 return NaN;  
 }  
 }  
   
 class Circle extends Shape  
 {  
 private var radius:Number = 1;  
 override public function area():Number  
 {  
 return (Math.PI * (radius * radius));  
 }  
 }  
   
 class Square extends Shape  
 {  
 private var side:Number = 1;  
 override public function area():Number  
 {  
 return (side * side);  
 }  
 }  
   
 var cir:Circle = new Circle();  
 trace(cir.area()); // output: 3.141592653589793  
 var sq:Square = new Square();  
 trace(sq.area()); // output: 1

Because each class defines a data type, the use of inheritance creates a special relationship between a base class and a 

class that extends it. A subclass is guaranteed to possess all the properties of its base class, which means that an instance 

of a subclass can always be substituted for an instance of the base class. For example, if a method defines a parameter 

of type Shape, it is legal to pass an argument of type Circle because Circle extends Shape, as in the following:

 function draw(shapeToDraw:Shape) {}  
   
 var myCircle:Circle = new Circle();  
 draw(myCircle);

Instance properties and inheritance

An instance property, whether defined with the function, var, or const keywords, is inherited by all subclasses as 

long as the property is not declared with the private attribute in the base class. For example, the Event class in 

ActionScript 3.0 has a number of subclasses that inherit properties common to all event objects. 

For some types of events, the Event class contains all the properties necessary to define the event. These types of events 

do not require instance properties beyond those defined in the Event class. Examples of such events are the complete 

event, which occurs when data has loaded successfully, and the connect event, which occurs when a network 

connection has been established. 

The following example is an excerpt from the Event class that shows some of the properties and methods that are 

inherited by subclasses. Because the properties are inherited, an instance of any subclass can access these properties.

Updated 11 February 2009



109PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 public class Event  
 {  
 public function get type():String;  
 public function get bubbles():Boolean;  
 ...  
   
 public function stopPropagation():void {}  
 public function stopImmediatePropagation():void {}  
 public function preventDefault():void {}  
 public function isDefaultPrevented():Boolean {}  
 ...  
 }

Other types of events require unique properties not available in the Event class. These events are defined using 

subclasses of the Event class so that new properties can be added to the properties defined in the Event class. An 

example of such a subclass is the MouseEvent class, which adds properties unique to events associated with mouse 

movement or mouse clicks, such as the mouseMove and click events. The following example is an excerpt from the 

MouseEvent class that shows the definition of properties that exist on the subclass but not on the base class:

 public class MouseEvent extends Event  
 {  
 public static const CLICK:String= "click";  
 public static const MOUSE_MOVE:String = "mouseMove";  
 ...  
   
 public function get stageX():Number {}  
 public function get stageY():Number {}  
 ...  
 }

Access control specifiers and inheritance

If a property is declared with the public keyword, the property is visible to code anywhere. This means that the 

public keyword, unlike the private, protected, and internal keywords, places no restrictions on property 

inheritance.

If a property is declared with private keyword, it is visible only in the class that defines it, which means that it is not 

inherited by any subclasses. This behavior is different from previous versions of ActionScript, where the private 

keyword behaved more like the ActionScript 3.0 protected keyword.

The protected keyword indicates that a property is visible not only within the class that defines it, but also to all 

subclasses. Unlike the protected keyword in the Java programming language, the protected keyword in 

ActionScript 3.0 does not make a property visible to all other classes in the same package. In ActionScript 3.0, only 

subclasses can access a property declared with the protected keyword. Moreover, a protected property is visible to a 

subclass whether the subclass is in the same package as the base class or in a different package.

To limit the visibility of a property to the package in which it is defined, use the internal keyword or do not use any 

access control specifier. The internal access control specifier is the default access control specifier that applies when 

one is not specified. A property marked as internal will be inherited only by a subclass that resides in the same 

package.

Updated 11 February 2009



110PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

You can use the following example to see how each of the access control specifiers affects inheritance across package 

boundaries. The following code defines a main application class named AccessControl and two other classes named 

Base and Extender. The Base class is in a package named foo and the Extender class, which is a subclass of the Base 

class, is in a package named bar. The AccessControl class imports only the Extender class and creates an instance of 

Extender that attempts to access a variable named str that is defined in the Base class. The str variable is declared as 

public so that the code compiles and runs as shown in the following excerpt:

 // Base.as in a folder named foo  
 package foo  
 {  
 public class Base  
 {  
 public var str:String = "hello"; // change public on this line  
 }  
 }  
   
 // Extender.as in a folder named bar  
 package bar  
 {  
 import foo.Base;  
 public class Extender extends Base  
 {  
 public function getString():String {  
 return str;  
 }  
 }  
 }  
   
 // main application class in file named AccessControl.as  
 package  
 {  
 import flash.display.MovieClip;  
 import bar.Extender;  
 public class AccessControl extends MovieClip  
 {  
 public function AccessControl()  
 {  
 var myExt:Extender = new Extender();  
 trace(myExt.str);// error if str is not public  
 trace(myExt.getString()); // error if str is private or internal  
 }  
 }  
 }

To see how the other access control specifiers affect compilation and execution of the preceding example, change the 

str variable’s access control specifier to private, protected, or internal after deleting or commenting out the 

following line from the AccessControl class:

 trace(myExt.str);// error if str is not public

Updated 11 February 2009



111PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Overriding variables not permitted

Properties that are declared with the var or const keywords are inherited but cannot be overridden. To override a 

property means to redefine the property in a subclass. The only type of property that can be overridden are methods—

that is, properties declared with the function keyword. Although you cannot override an instance variable, you can 

achieve similar functionality by creating getter and setter methods for the instance variable and overriding the 

methods. For more information, see “Overriding methods” on page 111.

Overriding methods

To override a method means to redefine the behavior of an inherited method. Static methods are not inherited and 

cannot be overridden. Instance methods, however, are inherited by subclasses and can be overridden as long as the 

following two criteria are met:

• The instance method is not declared with the final keyword in the base class. When used with an instance method, 

the final keyword indicates the programmer’s intent to prevent subclasses from overriding the method.

• The instance method is not declared with the private access control specifier in the base class. If a method is 

marked as private in the base class, there is no need to use the override keyword when defining an identically 

named method in the subclass, because the base class method will not be visible to the subclass.

To override an instance method that meets these criteria, the method definition in the subclass must use the 

override keyword and must match the superclass version of the method in the following ways:

• The override method must have the same level of access control as the base class method. Methods marked as 

internal have the same level of access control as methods that have no access control specifier. 

• The override method must have the same number of parameters as the base class method.

• The override method parameters must have the same data type annotations as the parameters in the base class 

method.

• The override method must have the same return type as the base class method.

The names of the parameters in the override method, however, do not have to match the names of the parameters in 

the base class, as long as the number of parameters and the data type of each parameter matches.

The super statement

When overriding a method, programmers often want to add to the behavior of the superclass method they are 

overriding instead of completely replacing the behavior. This requires a mechanism that allows a method in a subclass 

to call the superclass version of itself. The super statement provides such a mechanism, in that it contains a reference 

to the immediate superclass. The following example defines a class named Base that contains a method named 

thanks() and a subclass of the Base class named Extender that overrides the thanks() method. The 

Extender.thanks() method uses the super statement to call Base.thanks().

Updated 11 February 2009



112PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 package {  
 import flash.display.MovieClip;  
 public class SuperExample extends MovieClip  
 {  
 public function SuperExample()  
 {  
 var myExt:Extender = new Extender()  
 trace(myExt.thanks()); // output: Mahalo nui loa  
 }  
 }  
 }  
   
 class Base {  
 public function thanks():String  
 {  
 return "Mahalo";  
 }  
 }  
   
 class Extender extends Base  
 {  
 override public function thanks():String  
 {  
 return super.thanks() + " nui loa";  
 }  
 }

Overriding getters and setters

Although you cannot override variables defined in a superclass, you can override getters and setters. For example, the 

following code overrides a getter named currentLabel that is defined in the MovieClip class in ActionScript 3.0.:

 package  
 {  
 import flash.display.MovieClip;  
 public class OverrideExample extends MovieClip  
 {  
 public function OverrideExample()  
 {  
 trace(currentLabel)  
 }  
 override public function get currentLabel():String  
 {  
 var str:String = "Override: ";  
 str += super.currentLabel;  
 return str;  
 }  
 }  
 }

The output of the trace() statement in the OverrideExample class constructor is Override: null, which shows that 

the example was able to override the inherited currentLabel property.

Updated 11 February 2009



113PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Static properties not inherited

Static properties are not inherited by subclasses. This means that static properties cannot be accessed through an 

instance of a subclass. A static property can be accessed only through the class object on which it is defined. For 

example, the following code defines a base class named Base and a subclass that extends Base named Extender. A static 

variable named test is defined in the Base class. The code as written in the following excerpt does not compile in strict 

mode and generates a run-time error in standard mode.

 package {  
 import flash.display.MovieClip;  
 public class StaticExample extends MovieClip  
 {  
 public function StaticExample()  
 {  
 var myExt:Extender = new Extender();  
 trace(myExt.test);// error  
 }  
 }  
 }  
   
 class Base {  
 public static var test:String = "static";  
 }  
   
 class Extender extends Base { }

The only way to access the static variable test is through the class object, as shown in the following code:

 Base.test;

It is permissible, however, to define an instance property using the same name as a static property. Such an instance 

property can be defined in the same class as the static property or in a subclass. For example, the Base class in the 

preceding example could have an instance property named test. The following code compiles and executes because 

the instance property is inherited by the Extender class. The code would also compile and execute if the definition of 

the test instance variable is moved, but not copied, to the Extender class.

 package  
 {  
 import flash.display.MovieClip;  
 public class StaticExample extends MovieClip  
 {  
 public function StaticExample()  
 {  
 var myExt:Extender = new Extender();  
 trace(myExt.test);// output: instance  
 }  
 }  
 }  
   
 class Base  
 {  
 public static var test:String = "static";  
 public var test:String = "instance";  
 }  
   
 class Extender extends Base {}

Updated 11 February 2009



114PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Static properties and the scope chain

Although static properties are not inherited, they are within the scope chain of the class that defines them and any 

subclass of that class. As such, static properties are said to be in scope of both the class in which they are defined and 

any subclasses. This means that a static property is directly accessible within the body of the class that defines the static 

property and any subclass of that class. 

The following example modifies the classes defined in the previous example to show that the static test variable 

defined in the Base class is in scope of the Extender class. In other words, the Extender class can access the static test 

variable without prefixing the variable with the name of the class that defines test.

 package  
 {  
 import flash.display.MovieClip;  
 public class StaticExample extends MovieClip  
 {  
 public function StaticExample()  
 {  
 var myExt:Extender = new Extender();  
 }  
 }  
 }  
   
 class Base {  
 public static var test:String = "static";  
 }  
   
 class Extender extends Base  
 {  
 public function Extender()  
 {  
 trace(test); // output: static  
 }  
   
 }

If an instance property is defined that uses the same name as a static property in the same class or a superclass, the 

instance property has higher precedence in the scope chain. The instance property is said to shadow the static property, 

which means that the value of the instance property is used instead of the value of the static property. For example, the 

following code shows that if the Extender class defines an instance variable named test, the trace() statement uses 

the value of the instance variable instead of the value of the static variable.:

Updated 11 February 2009



115PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 package  
 {  
 import flash.display.MovieClip;  
 public class StaticExample extends MovieClip  
 {  
 public function StaticExample()  
 {  
 var myExt:Extender = new Extender();  
 }  
 }  
 }  
   
 class Base  
 {  
 public static var test:String = "static";  
 }  
   
 class Extender extends Base  
 {  
 public var test:String = "instance";  
 public function Extender()  
 {  
 trace(test); // output: instance  
 }  
   
 }

Advanced topics

This section begins with a brief history of ActionScript and OOP and continues with a discussion of the ActionScript 

3.0 object model and how it enables the new ActionScript Virtual Machine (AVM2) to perform significantly faster 

than previous versions of Flash Player that contain the old ActionScript Virtual Machine (AVM1).

History of ActionScript OOP support

Because ActionScript 3.0 builds upon previous versions of ActionScript, it may be helpful to understand how the 

ActionScript object model has evolved. ActionScript began as a simple scripting mechanism for early versions of the 

Flash authoring tool. Subsequently, programmers began building increasingly complex applications with 

ActionScript. In response to the needs of such programmers, each subsequent release has added language features that 

facilitate the creation of complex applications.

ActionScript 1.0

ActionScript 1.0 refers to the version of the language used in Flash Player 6 and earlier. Even at this early stage of 

development, the ActionScript object model was based on the concept of the object as a fundamental data type. An 

ActionScript object is a compound data type with a group of properties. When discussing the object model, the term 

properties includes everything that is attached to an object, such as variables, functions, or methods. 

Updated 11 February 2009



116PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Although this first generation of ActionScript does not support the definition of classes with a class keyword, you 

can define a class using a special kind of object called a prototype object. Instead of using a class keyword to create 

an abstract class definition that you instantiate into concrete objects, as you do in class-based languages like Java and 

C++, prototype-based languages like ActionScript 1.0 use an existing object as a model (or prototype) for other objects. 

While objects in a class-based language may point to a class that serves as its template, objects in a prototype-based 

language point instead to another object, its prototype, that serves as its template. 

To create a class in ActionScript 1.0, you define a constructor function for that class. In ActionScript, functions are 

actual objects, not just abstract definitions. The constructor function that you create serves as the prototypical object 

for instances of that class. The following code creates a class named Shape and defines one property named visible 

that is set to true by default:

 // base class  
 function Shape() {}  
 // Create a property named visible.  
 Shape.prototype.visible = true;

This constructor function defines a Shape class that you can instantiate with the new operator, as follows:

 myShape = new Shape();

Just as the Shape() constructor function object serves as the prototype for instances of the Shape class, it can also serve 

as the prototype for subclasses of Shape—that is, other classes that extend the Shape class.

The creation of a class that is a subclass of the Shape class is a two-step process. First, create the class by defining a 

constructor function for the class, as follows:

 // child class  
 function Circle(id, radius)  
 {  
 this.id = id;  
 this.radius = radius;  
 }

Second, use the new operator to declare that the Shape class is the prototype for the Circle class. By default, any class 

you create uses the Object class as its prototype, which means that Circle.prototype currently contains a generic 

object (an instance of the Object class). To specify that Circle’s prototype is Shape instead of Object, use the following 

code to change the value of Circle.prototype so that it contains a Shape object instead of a generic object:

 // Make Circle a subclass of Shape.  
 Circle.prototype = new Shape();

The Shape class and the Circle class are now linked together in an inheritance relationship that is commonly known 

as the prototype chain. The diagram illustrates the relationships in a prototype chain:

Object.prototype

Shape.prototype

Circle.prototype

Updated 11 February 2009



117PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

The base class at the end of every prototype chain is the Object class. The Object class contains a static property named 

Object.prototype that points to the base prototype object for all objects created in ActionScript 1.0. The next object 

in our example prototype chain is the Shape object. This is because the Shape.prototype property was never 

explicitly set, so it still holds a generic object (an instance of the Object class). The final link in this chain is the Circle 

class, which is linked to its prototype, the Shape class (the Circle.prototype property holds a Shape object).

If we create an instance of the Circle class, as in the following example, the instance inherits the prototype chain of the 

Circle class: 

 // Create an instance of the Circle class.  
 myCircle = new Circle();

Recall that we created a property named visible as a member of the Shape class. In our example, the visible 

property does not exist as a part of the myCircle object, only as a member of the Shape object, yet the following line 

of code outputs true:

 trace(myCircle.visible); // output: true

Flash Player is able to ascertain that the myCircle object inherits the visible property by walking up the prototype 

chain. When executing this code, Flash Player first searches through the properties of the myCircle object for a 

property named visible, but does not find such a property. Flash Player looks next in the Circle.prototype object, 

but still does not find a property named visible. Continuing up the prototype chain, Flash Player finally finds the 

visible property defined on the Shape.prototype object and outputs the value of that property.

In the interest of simplicity, this section omits many of the details and intricacies of the prototype chain, and aims 

instead to provide enough information to help you understand the ActionScript 3.0 object model.

ActionScript 2.0

ActionScript 2.0 introduced new keywords such as class, extends, public, and private, that allowed you to define 

classes in a way that is familiar to anyone who works with class-based languages like Java and C++. It’s important to 

understand that the underlying inheritance mechanism did not change between ActionScript 1.0 and ActionScript 2.0. 

ActionScript 2.0 merely added a new syntax for defining classes. The prototype chain works the same way in both 

versions of the language.

The new syntax introduced by ActionScript 2.0, shown in the following excerpt, allows you to define classes in a way 

that many programmers find more intuitive:

 // base class  
 class Shape  
 {  
 var visible:Boolean = true;  
 }

Note that ActionScript 2.0 also introduced type annotations for use with compile-time type checking. This allows you 

to declare that the visible property in the previous example should contain only a Boolean value. The new extends 

keyword also simplifies the process of creating a subclass. In the following example, the two-step process necessary in 

ActionScript 1.0 is accomplished in one step with the extends keyword:

Updated 11 February 2009



118PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 // child class  
 class Circle extends Shape  
 {  
 var id:Number;  
 var radius:Number;  
 function Circle(id, radius)  
 {  
 this.id = id;  
 this.radius = radius;  
 }  
 }

The constructor is now declared as part of the class definition, and the class properties id and radius must also be 

declared explicitly.

ActionScript 2.0 also added support for the definition of interfaces, which allow you to further refine your object-

oriented programs with formally defined protocols for inter-object communication.

The ActionScript 3.0 class object

A common object-oriented programming paradigm, most commonly associated with Java and C++, uses classes to 

define types of objects. Programming languages that adopt this paradigm also tend to use classes to construct instances 

of the data type that the class defines. ActionScript uses classes for both of these purposes, but its roots as a prototype-

based language add an interesting characteristic. ActionScript creates for each class definition a special class object that 

allows sharing of both behavior and state. For many ActionScript programmers, however, this distinction may have 

no practical coding implications. ActionScript 3.0 is designed such that you can create sophisticated object-oriented 

ActionScript applications without using, or even understanding, these special class objects. For advanced 

programmers who want to take advantage of class objects, this section discusses the issues in depth.

The following diagram shows the structure of a class object that represents a simple class named A that is defined with 

the statement class A {}:

Each rectangle in the diagram represents an object. Each object in the diagram has a subscript character A to represent 

that it belongs to class A. The class object (CA) contains references to a number of other important objects. An instance 

traits object (TA) stores the instance properties that are defined within a class definition. A class traits object (TCA) 

represents the internal type of the class and stores the static properties defined by the class (the subscript character C 

stands for “class”). The prototype object (PA) always refers to the class object to which it was originally attached 

through the constructor property.

TCA

PACA

TA

Class.prototype Object.prototype

delegate

constructor

delegate

prototype

type
traits

Updated 11 February 2009



119PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

The traits object

The traits object, which is new in ActionScript 3.0, was implemented with performance in mind. In previous versions 

of ActionScript, name lookup could be a time-consuming process as Flash Player walked the prototype chain. In 

ActionScript 3.0, name lookup is much more efficient and less time consuming, because inherited properties are 

copied down from superclasses into the traits object of subclasses.

The traits object is not directly accessible to programmer code, but its presence can be felt by the improvements in 

performance and memory usage. The traits object provides the AVM2 with detailed information about the layout and 

contents of a class. With such knowledge, the AVM2 is able to significantly reduce execution time, because it can often 

generate direct machine instructions to access properties or call methods directly without a time-consuming name 

lookup.

Thanks to the traits object, an object’s memory footprint can be significantly smaller than a similar object in previous 

versions of ActionScript. For example, if a class is sealed (that is, the class is not declared dynamic), an instance of the 

class does not need a hash table for dynamically added properties, and can hold little more than a pointer to the traits 

objects and some slots for the fixed properties defined in the class. As a result, an object that required 100 bytes of 

memory in ActionScript 2.0 could require as little as 20 bytes of memory in ActionScript 3.0.

Note: The traits object is an internal implementation detail, and there is no guarantee that it will not change or even 

disappear in future versions of ActionScript.

The prototype object

Every ActionScript class object has a property named prototype, which is a reference to the class’s prototype object. 

The prototype object is a legacy of ActionScript’s roots as prototype-based language. For more information, see 

“History of ActionScript OOP support” on page 115.

The prototype property is read-only, which means that it cannot be modified to point to different objects. This 

differs from the class prototype property in previous versions of ActionScript, where the prototype could be 

reassigned so that it pointed to a different class. Although the prototype property is read-only, the prototype object 

that it references is not. In other words, new properties can be added to the prototype object. Properties added to the 

prototype object are shared among all instances of the class.

The prototype chain, which was the only inheritance mechanism in previous versions of ActionScript, serves only a 

secondary role in ActionScript 3.0. The primary inheritance mechanism, fixed property inheritance, is handled 

internally by the traits object. A fixed property is a variable or method that is defined as part of a class definition. Fixed 

property inheritance is also called class inheritance, because it is the inheritance mechanism that is associated with 

keywords such as class, extends, and override. 

The prototype chain provides an alternative inheritance mechanism that is more dynamic than fixed property 

inheritance. You can add properties to a class’s prototype object not only as part of the class definition, but also at run 

time through the class object’s prototype property. Note, however, that if you set the compiler to strict mode, you 

may not be able to access properties added to a prototype object unless you declare a class with the dynamic keyword. 

A good example of a class with several properties attached to the prototype object is the Object class. The Object class’s 

toString() and valueOf() methods are actually functions assigned to properties of the Object class’s prototype 

object. The following is an example of how the declaration of these methods could, in theory, look (the actual 

implementation differs slightly because of implementation details):

Updated 11 February 2009



120PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 public dynamic class Object  
 {  
 prototype.toString = function()  
 {  
 // statements  
 };  
 prototype.valueOf = function()  
 {  
 // statements  
 };  
 }

As mentioned previously, you can attach a property to a class’s prototype object outside the class definition. For 

example, the toString() method can also be defined outside the Object class definition, as follows:

 Object.prototype.toString = function()  
 {  
 // statements  
 };

Unlike fixed property inheritance, however, prototype inheritance does not require the override keyword if you want 

to redefine a method in a subclass. For example. if you want to redefine the valueOf() method in a subclass of the 

Object class, you have three options. First, you can define a valueOf() method on the subclass’s prototype object 

inside the class definition. The following code creates a subclass of Object named Foo and redefines the valueOf() 

method on Foo’s prototype object as part of the class definition. Because every class inherits from Object, it is not 

necessary to use the extends keyword.

 dynamic class Foo  
 {  
 prototype.valueOf = function()  
 {  
 return "Instance of Foo";  
 };  
 }

Second, you can define a valueOf() method on Foo’s prototype object outside the class definition, as shown in the 

following code:

 Foo.prototype.valueOf = function()  
 {  
 return "Instance of Foo";  
 };

Third, you can define a fixed property named valueOf() as part of the Foo class. This technique differs from the 

others in that it mixes fixed property inheritance with prototype inheritance. Any subclass of Foo that wants to 

redefine valueOf() must use the override keyword. The following code shows valueOf() defined as a fixed 

property in Foo:

 class Foo  
 {  
 function valueOf():String  
 {  
 return "Instance of Foo";  
 }  
 }

Updated 11 February 2009



121PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

The AS3 namespace

The existence of two separate inheritance mechanisms, fixed property inheritance and prototype inheritance, creates 

an interesting compatibility challenge with respect to the properties and methods of the core classes. Compatibility 

with the ECMAScript language specification on which ActionScript is based requires the use of prototype inheritance, 

which means that the properties and methods of a core class are defined on the prototype object of that class. On the 

other hand, compatibility with ActionScript 3.0 calls for the use of fixed property inheritance, which means that the 

properties and methods of a core class are defined in the class definition using the const, var, and function 

keywords. Moreover, the use of fixed properties instead of the prototype versions can lead to significant increases in 

run-time performance.

ActionScript 3.0 solves this problem by using both prototype inheritance and fixed property inheritance for the core 

classes. Each core class contains two sets of properties and methods. One set is defined on the prototype object for 

compatibility with the ECMAScript specification, and the other set is defined with fixed properties and the AS3 

namespace for compatibility with ActionScript 3.0. 

The AS3 namespace provides a convenient mechanism for choosing between the two sets of properties and methods. 

If you do not use the AS3 namespace, an instance of a core class inherits the properties and methods defined on the 

core class’s prototype object. If you decide to use the AS3 namespace, an instance of a core class inherits the AS3 

versions because fixed properties are always preferred over prototype properties. In other words, whenever a fixed 

property is available, it is always used instead of an identically named prototype property.

You can selectively use the AS3 namespace version of a property or method by qualifying it with the AS3 namespace. 

For example, the following code uses the AS3 version of the Array.pop() method:

 var nums:Array = new Array(1, 2, 3);  
 nums.AS3::pop();  
 trace(nums); // output: 1,2

Alternatively, you can use the use namespace directive to open the AS3 namespace for all the definitions within a 

block of code. For example, the following code uses the use namespace directive to open the AS3 namespace for both 

the pop() and push() methods: 

 use namespace AS3;  
   
 var nums:Array = new Array(1, 2, 3);  
 nums.pop();  
 nums.push(5);  
 trace(nums) // output: 1,2,5

ActionScript 3.0 also provides compiler options for each set of properties so that you can apply the AS3 namespace to 

your entire program. The -as3 compiler option represents the AS3 namespace, and the -es compiler option 

represents the prototype inheritance option (es stands for ECMAScript). To open the AS3 namespace for your entire 

program, set the -as3 compiler option to true and the -es compiler option to false. To use the prototype versions, 

set the compiler options to the opposite values. The default compiler settings for Adobe Flex Builder 3 and Adobe Flash 

CS4 Professional are -as3 = true and -es = false.

If you plan to extend any of the core classes and override any methods, you should understand how the AS3 namespace 

can affect how you must declare an overridden method. If you are using the AS3 namespace, any method override of 

a core class method must also use the AS3 namespace along with the override attribute. If you are not using the AS3 

namespace and want to redefine a core class method in a subclass, you should not use the AS3 namespace or the 

override keyword.

Updated 11 February 2009



122PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Example: GeometricShapes

The GeometricShapes sample application shows how a number of object-oriented concepts and features can be 

applied using ActionScript 3.0, including:

• Defining classes 

• Extending classes

• Polymorphism and the override keyword

• Defining, extending and implementing interfaces

It also includes a “factory method” that creates class instances, showing how to declare a return value as an instance of 

an interface, and use that returned object in a generic way.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

GeometricShapes application files can be found in the folder Samples/GeometricShapes. The application consists of 

the following files:

Defining the GeometricShapes classes

The GeometricShapes application lets the user specify a type of geometric shape and a size. It then responds with a 

description of the shape, its area, and distance around its perimeter.

The application user interface is trivial, including a few controls for selecting the type of shape, setting the size, and 

displaying the description. The most interesting part of this application is under the surface, in the structure of the 

classes and interfaces themselves.

File Description

GeometricShapes.mxml

or

GeometricShapes.fla

The main application file in Flash (FLA) or Flex 

(MXML).

com/example/programmingas3/geometricshapes/IGeometricShape.as The base interface defining methods to be 

implemented by all GeometricShapes 

application classes.

com/example/programmingas3/geometricshapes/IPolygon.as An interface defining methods to be 

implemented by GeometricShapes application 

classes that have multiple sides.

com/example/programmingas3/geometricshapes/RegularPolygon.as A type of geometric shape that has sides of equal 

length postponed symmetrically around the 

shape’s center.

com/example/programmingas3/geometricshapes/Circle.as A type of geometric shape that defines a circle.

com/example/programmingas3/geometricshapes/EquilateralTriangle.as A subclass of RegularPolygon that defines a 

triangle with all sides the same length.

com/example/programmingas3/geometricshapes/Square.as A subclass of RegularPolygon defining a 

rectangle with all four sides the same length.

com/example/programmingas3/geometricshapes/GeometricShapeFactory.as A class containing a factory method for creating 

shapes given a shape type and size.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


123PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

This application deals with geometric shapes, but it doesn’t display them graphically. It provides a small library of 

classes and interfaces that will be reused in a later chapter’s example (see “Example: SpriteArranger” on page 307). The 

SpriteArranger example displays the shapes graphically and lets the user manipulate them, based on the class 

framework provided here in the GeometricShapes application.

The classes and interfaces that define the geometric shapes in this example are shown in the following diagram using 

Unified Modeling Language (UML) notation:

GeometricShapes Example Classes

Defining common behavior with interfaces

This GeometricShapes application deals with three types of shapes: circles, squares, and equilateral triangles. The 

GeometricShapes class structure begins with a very simple interface, IGeometricShape, that lists methods common to 

all three types of shapes:

 package com.example.programmingas3.geometricshapes  
 {  
 public interface IGeometricShape  
 {  
 function getArea():Number;  
 function describe():String;  
 }  
 }

The interface defines two methods: the getArea() method, which calculates and returns the area of the shape, and the 

describe() method, which assembles a text description of the shape’s properties.

We also want to know the distance around the perimeter of each shape. However, the perimeter of a circle is called the 

circumference, and it’s calculated in a unique way, so the behavior diverges from that of a triangle or a square. Still 

there is enough similarity between triangles, squares, and other polygons that it makes sense to define a new interface 

class just for them: IPolygon. The IPolygon interface is also rather simple, as shown here:

<< interface >>
IGeometricShape

+getArea (): Number
+describe (): Strin

<< interface >>
IPolygon

+getPerimeter (): Number
+getSumOfAngles (): Number

Circle
+diameter:Number
+Circle () : Circle

+getArea () : Number
+describe () : String
+getCircumference () : Number

+numSides : int
+sideLength : Number

+RegularPolygon (): RegularPolygon
+getSumOfAngles (): Number
+getPerimeter (): Number
+getArea (): Number
+describe (): String

RegularPolygon

+EquilateralTriangle (): EquilateralTriangle
+getArea (): Number
+describe (): String

EquilateralTriangle

+Square (): Square
+getArea (): Number
+describe (): String

Square

Updated 11 February 2009



124PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 package com.example.programmingas3.geometricshapes  
 {  
 public interface IPolygon extends IGeometricShape  
 {  
 function getPerimeter():Number;  
 function getSumOfAngles():Number;  
 }  
 }

This interface defines two methods common to all polygons: the getPerimeter() method that measures the 

combined distance of all the sides, and the getSumOfAngles() method that adds up all the interior angles.

The IPolygon interface extends the IGeometricShape interface, which means that any class that implements the 

IPolygon interface must declare all four methods—the two from the IGeometricShape interface, and the two from the 

IPolygon interface.

Defining the shape classes

Once you have a good idea about the methods common to each type of shape, you can define the shape classes 

themselves. In terms of how many methods you need to implement, the simplest shape is the Circle class, shown here:

 package com.example.programmingas3.geometricshapes  
 {  
 public class Circle implements IGeometricShape  
 {  
 public var diameter:Number;  
   
 public function Circle(diam:Number = 100):void  
 {  
 this.diameter = diam;  
 }  
   
 public function getArea():Number  
 {  
 // The formula is Pi * radius * radius.  
 var radius:Number = diameter / 2;  
 return Math.PI * radius * radius;  
 }  
   
 public function getCircumference():Number  
 {  
 // The formula is Pi * diameter.  
 return Math.PI * diameter;  
 }  
   
 public function describe():String  
 {  
 var desc:String = "This shape is a Circle.\n";  
 desc += "Its diameter is " + diameter + " pixels.\n";  
 desc += "Its area is " + getArea() + ".\n";  
 desc += "Its circumference is " + getCircumference() + ".\n";  
 return desc;  
 }  
 }  
 }

Updated 11 February 2009



125PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

The Circle class implements the IGeometricShape interface, so it must provide code for both the getArea() method 

and the describe() method. In addition, it defines the getCircumference() method, which is unique to the Circle 

class. The Circle class also declares a property, diameter, which won’t be found in the other polygon classes.

The other two types of shapes, squares and equilateral triangles, have some other things in common: they each have 

sides of equal length, and there are common formulas you can use to calculate the perimeter and sum of interior angles 

for both. In fact, those common formulas will apply to any other regular polygons that you need to define in the future 

as well. 

The RegularPolygon class will be the superclass for both the Square class and the EquilateralTriangle class. A superclass 

lets you define common methods in one place, so you don’t have to define them separately in each subclass. Here is 

the code for the RegularPolygon class:

 package com.example.programmingas3.geometricshapes  
 {  
 public class RegularPolygon implements IPolygon  
 {  
 public var numSides:int;  
 public var sideLength:Number;  
   
 public function RegularPolygon(len:Number = 100, sides:int = 3):void  
 {  
 this.sideLength = len;  
 this.numSides = sides;  
 }  
   
 public function getArea():Number  
 {  
 // This method should be overridden in subclasses.  
 return 0;  
 }  
   
 public function getPerimeter():Number  
 {  
 return sideLength * numSides;  
 }  
   
 public function getSumOfAngles():Number  
 {  
 if (numSides >= 3)  

Updated 11 February 2009



126PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 {  
 return ((numSides - 2) * 180);  
 }  
 else  
 {  
 return 0;  
 }  
 }  
   
 public function describe():String  
 {  
 var desc:String = "Each side is " + sideLength + " pixels long.\n";  
 desc += "Its area is " + getArea() + " pixels square.\n";  
 desc += "Its perimeter is " + getPerimeter() + " pixels long.\n";   
 desc += "The sum of all interior angles in this shape is " + getSumOfAngles() + " 
degrees.\n";   
 return desc;  
 }  
 }  
 }

First, the RegularPolygon class declares two properties that are common to all regular polygons: the length of each side 

(the sideLength property) and the number of sides (the numSides property).

The RegularPolygon class implements the IPolygon interface and declares all four of the IPolygon interface methods. 

It implements two of these—the getPerimeter() and getSumOfAngles() methods—using common formulas.

Because the formula for the getArea() method will differ from shape to shape, the base class version of the method 

cannot include common logic that can be inherited by the subclass methods. Instead, it simply returns a 0 default value 

to indicate that the area was not calculated. To calculate the area of each shape correctly, the subclasses of the 

RegularPolygon class will have to override the getArea() method themselves.

The following code for the EquilateralTriangle class show how the getArea() method is overridden:

Updated 11 February 2009



127PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

 package com.example.programmingas3.geometricshapes   
 {  
 public class EquilateralTriangle extends RegularPolygon  
 {  
 public function EquilateralTriangle(len:Number = 100):void  
 {  
 super(len, 3);  
 }  
   
 public override function getArea():Number  
 {  
 // The formula is ((sideLength squared) * (square root of 3)) / 4.  
 return ( (this.sideLength * this.sideLength) * Math.sqrt(3) ) / 4;  
 }  
   
 public override function describe():String  
 {  
  /* starts with the name of the shape, then delegates the rest  
  of the description work to the RegularPolygon superclass */  
 var desc:String = "This shape is an equilateral Triangle.\n";  
 desc += super.describe();  
 return desc;  
 }  
 }  
 }

The override keyword indicates that the EquilateralTriangle.getArea() method intentionally overrides the 

getArea() method from the RegularPolygon superclass. When the EquilateralTriangle.getArea() method is 

called, it calculates the area using the formula in the preceding code, and the code in the RegularPolygon.getArea() 

method never executes.

In contrast, the EquilateralTriangle class doesn’t define its own version of the getPerimeter() method. When the 

EquilateralTriangle.getPerimeter() method is called, the call goes up the inheritance chain and executes the 

code in the getPerimeter() method of the RegularPolygon superclass.

The EquilateralTriangle() constructor uses the super() statement to explicitly invoke the RegularPolygon() 

constructor of its superclass. If both constructors had the same set of parameters, you could have omitted the 

EquilateralTriangle() constructor completely, and the RegularPolygon() constructor would be executed 

instead. However, the RegularPolygon() constructor needs an extra parameter, numSides. So the 

EquilateralTriangle() constructor calls super(len, 3), which passes along the len input parameter and the 

value 3 to indicate that the triangle will have 3 sides.

The describe() method also uses the super() statement, but in a different way—to invoke the RegularPolygon 

superclass’ version of the describe() method. The EquilateralTriangle.describe() method first sets the desc 

string variable to a statement about the type of shape. Then it gets the results of the RegularPolygon.describe() 

method by calling super.describe(), and it appends that result to the desc string.

The Square class won’t be described in detail here, but it is similar to the EquilateralTriangle class, providing a 

constructor and its own implementations of the getArea() and describe() methods.

Updated 11 February 2009



128PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

Polymorphism and the factory method

A set of classes that make good use of interfaces and inheritance can be used in many interesting ways. For example, 

all of the shape classes described so far either implement the IGeometricShape interface or extend a superclass that 

does. So if you define a variable to be an instance of IGeometricShape, you don’t have to know whether it is actually 

an instance of the Circle or the Square class in order to call its describe() method.

The following code shows how this works:

 var myShape:IGeometricShape = new Circle(100);  
 trace(myShape.describe());

When myShape.describe() is called, it executes the method Circle.describe(), because even though the variable 

is defined as an instance of the IGeometricShape interface, Circle is its underlying class.

This example shows the principle of polymorphism in action: the exact same method call results in different code being 

executed, depending on the class of the object whose method is being invoked.

The GeometricShapes application applies this kind of interface-based polymorphism using a simplified version of a 

design pattern known as the factory method. The term factory method refers to a function that returns an object whose 

underlying data type or contents can differ depending on the context.

The GeometricShapeFactory class shown here defines a factory method named createShape():

 package com.example.programmingas3.geometricshapes   
 {  
 public class GeometricShapeFactory   
 {  
 public static var currentShape:IGeometricShape;  
   
 public static function createShape(shapeName:String,   
 
len:Number):IGeometricShape  
 {  
 switch (shapeName)  
 {  
 case "Triangle":  
 return new EquilateralTriangle(len);  
   
 case "Square":  
 return new Square(len);  
   
 case "Circle":  
 return new Circle(len);  
 }  
 return null;  
 }  
   
 public static function describeShape(shapeType:String, shapeSize:Number):String  
 {  
 GeometricShapeFactory.currentShape =  
 GeometricShapeFactory.createShape(shapeType, shapeSize);  
 return GeometricShapeFactory.currentShape.describe();  
 }  
 }  
 }

Updated 11 February 2009



129PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Object-oriented programming in ActionScript

The createShape() factory method lets the shape subclass constructors define the details of the instances that they 

create, while returning the new objects as IGeometricShape instances so that they can be handled by the application in 

a more general way.

The describeShape() method in the preceding example shows how an application can use the factory method to get 

a generic reference to a more specific object. The application can get the description for a newly created Circle object 

like this:

 GeometricShapeFactory.describeShape("Circle", 100);

The describeShape() method then calls the createShape() factory method with the same parameters, storing the 

new Circle object in a static variable named currentShape, which was typed as an IGeometricShape object. Next, the 

describe() method is called on the currentShape object, and that call is automatically resolved to execute the 

Circle.describe() method, returning a detailed description of the circle.

Enhancing the sample application

The real power of interfaces and inheritance becomes apparent when you enhance or change your application.

Say that you wanted to add a new shape, a pentagon, to this sample application. You would create a new Pentagon class 

that extends the RegularPolygon class and defines its own versions of the getArea() and describe() methods. Then 

you would add a new Pentagon option to the combo box in the application’s user interface. But that’s it. The Pentagon 

class would automatically get the functionality of the getPerimeter() method and the getSumOfAngles() method 

from the RegularPolygon class by inheritance. Because it inherits from a class that implements the IGeometricShape 

interface, a Pentagon instance can be treated as an IGeometricShape instance too. That means that to add a new type 

of shape, you do not need to change the method signature of any of the methods in the GeometricShapeFactory class 

(and consequently, you don’t need to change any of the code that uses the GeometricShapeFactory class either).

You may want to add a Pentagon class to the Geometric Shapes example as an exercise, to see how interfaces and 

inheritance can ease the workload of adding new features to an application.

Updated 11 February 2009



130

Chapter 6: Working with dates and times

Timing might not be everything, but it's usually a key factor in software applications. ActionScript 3.0 provides 

powerful ways to manage calendar dates, times, and time intervals. Two main classes provide most of this timing 

functionality: the Date class and the new Timer class in the flash.utils package.

Basics of dates and times

Introduction to working with dates and times

Dates and times are a common type of information used in ActionScript programs. For instance, you might need to 

know the current day of the week or to measure how much time a user spends on a particular screen, among many 

other possibilities. In ActionScript, you can use the Date class to represent a single moment in time, including date and 

time information. Within a Date instance are values for the individual date and time units, including year, month, date, 

day of the week, hour, minutes, seconds, milliseconds, and time zone. For more advanced uses, ActionScript also 

includes the Timer class, which you can use to perform actions after a certain delay or at repeated intervals.

Common date and time tasks

This chapter describes the following common tasks for working with date and time information:

• Working with Date objects

• Getting the current date and time

• Accessing individual date and time units (days, years, hours, minutes, and so on)

• Performing arithmetic with dates and times

• Converting between time zones

• Performing repeating actions

• Performing actions after a set time interval

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• UTC time: Coordinated Universal Time—the “zero hour” reference time zone. All other time zones are defined as 

a number of hours relative to (ahead of or behind) UTC time.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Because 

the code listings in this chapter deal primarily with Date objects, testing the examples will involve viewing the values 

of the variables used in the examples, either by writing values into a text field instance on the Stage, or by using the 

trace() function to print values to the Output panel. These techniques are described in detail in “Testing in-chapter 

example code listings” on page 34.

Updated 11 February 2009



131PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

Managing calendar dates and times

All of the calendar date and time management functions in ActionScript 3.0 are concentrated in the top-level Date 

class. The Date class contains methods and properties that let you handle dates and times in either Coordinated 

Universal Time (UTC) or in local time specific to a time zone. UTC is a standard time definition that is essentially the 

same as Greenwich Mean Time (GMT).

Creating Date objects

The Date class boasts one of the most versatile constructor methods of all the core classes. You can invoke it four 

different ways.

First, if given no parameters, the Date() constructor returns a Date object containing the current date and time, in 

local time based on your time zone. Here’s an example:

 var now:Date = new Date();

Second, if given a single numeric parameter, the Date() constructor treats that as the number of milliseconds since 

January 1, 1970, and returns a corresponding Date object. Note that the millisecond value you pass in is treated as 

milliseconds since January 1, 1970, in UTC. However, the Date object shows values in your local time zone, unless you 

use the UTC-specific methods to retrieve and display them. If you create a new Date object using a single milliseconds 

parameter, make sure you account for the time zone difference between your local time and UTC. The following 

statements create a Date object set to midnight on the day of January 1, 1970, in UTC:

 var millisecondsPerDay:int = 1000 * 60 * 60 * 24;  
 // gets a Date one day after the start date of 1/1/1970  
 var startTime:Date = new Date(millisecondsPerDay);

Third, you can pass multiple numeric parameters to the Date() constructor. It treats those parameters as the year, 

month, day, hour, minute, second, and millisecond, respectively, and returns a corresponding Date object. Those input 

parameters are assumed to be in local time rather than UTC. The following statements get a Date object set to midnight 

at the start of January 1, 2000, in local time:

 var millenium:Date = new Date(2000, 0, 1, 0, 0, 0, 0);

Fourth, you can pass a single string parameter to the Date() constructor. It will try to parse that string into date or 

time components and then return a corresponding Date object. If you use this approach, it’s a good idea to enclose the 

Date() constructor in a try..catch block to trap any parsing errors. The Date() constructor accepts a number of 

different string formats, as listed in the ActionScript 3.0 Language and Components Reference. The following 

statement initializes a new Date object using a string value:

 var nextDay:Date = new Date("Mon May 1 2006 11:30:00 AM");

If the Date() constructor cannot successfully parse the string parameter, it will not raise an exception. However, the 

resulting Date object will contain an invalid date value.

Getting time unit values

You can extract the values for various units of time within a Date object using properties or methods of the Date class. 

Each of the following properties gives you the value of a time unit in the Date object:

• The fullYear property

• The month property, which is in a numeric format with 0 for January up to 11 for December

• The date property, which is the calendar number of the day of the month, in the range of 1 to 31

Updated 11 February 2009



132PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

• The day property, which is the day of the week in numeric format, with 0 standing for Sunday

• The hours property, in the range of 0 to 23

• The minutes property

• The seconds property

• The milliseconds property

In fact, the Date class gives you a number of ways to get each of these values. For example, you can get the month 

value of a Date object in four different ways:

• The month property

• The getMonth() method

• The monthUTC property

• The getMonthUTC() method

All four ways are essentially equivalent in terms of efficiency, so you can use whichever approach suits your 

application best.

The properties just listed all represent components of the total date value. For example, the milliseconds property 

will never be greater than 999, since when it reaches 1000 the seconds value increases by 1 and the milliseconds 

property resets to 0. 

If you want to get the value of the Date object in terms of milliseconds since January 1, 1970 (UTC), you can use 

the getTime() method. Its counterpart, the setTime() method, lets you change the value of an existing Date 

object using milliseconds since January 1, 1970 (UTC). 

Performing date and time arithmetic

You can perform addition and subtraction on dates and times with the Date class. Date values are kept internally in 

terms of milliseconds, so you should convert other values to milliseconds before adding them to or subtracting them 

from Date objects.

If your application will perform a lot of date and time arithmetic, you might find it useful to create constants that hold 

common time unit values in terms of milliseconds, like the following:

 public static const millisecondsPerMinute:int = 1000 * 60;  
 public static const millisecondsPerHour:int = 1000 * 60 * 60;  
 public static const millisecondsPerDay:int = 1000 * 60 * 60 * 24;

Now it is easy to perform date arithmetic using standard time units. The following code sets a date value to one hour 

from the current time using the getTime() and setTime() methods:

 var oneHourFromNow:Date = new Date();  
 oneHourFromNow.setTime(oneHourFromNow.getTime() + millisecondsPerHour);

Another way to set a date value is to create a new Date object using a single milliseconds parameter. For example, the 

following code adds 30 days to one date to calculate another: 

 // sets the invoice date to today's date  
 var invoiceDate:Date = new Date();  
   
 // adds 30 days to get the due date  
 var dueDate:Date = new Date(invoiceDate.getTime() + (30 * millisecondsPerDay));

Next, the millisecondsPerDay constant is multiplied by 30 to represent 30 days’ time and the result is added to the 

invoiceDate value and used to set the dueDate value. 

Updated 11 February 2009



133PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

Converting between time zones

Date and time arithmetic comes in handy when you want to convert dates from one time zone to another. So does the 

getTimezoneOffset() method, which returns the value in minutes by which the Date object’s time zone differs from 

UTC. It returns a value in minutes because not all time zones are set to even-hour increments—some have half-hour 

offsets from neighboring zones.

The following example uses the time zone offset to convert a date from local time to UTC. It does the conversion by 

first calculating the time zone value in milliseconds and then adjusting the Date value by that amount:

 // creates a Date in local time  
 var nextDay:Date = new Date("Mon May 1 2006 11:30:00 AM");  
   
 // converts the Date to UTC by adding or subtracting the time zone offset  
 var offsetMilliseconds:Number = nextDay.getTimezoneOffset() * 60 * 1000;  
 nextDay.setTime(nextDay.getTime() + offsetMilliseconds);

Controlling time intervals

When you develop applications using Adobe Flash CS4 Professional, you have access to the timeline, which provides 

a steady, frame-by-frame progression through your application. In pure ActionScript projects, however, you must rely 

on other timing mechanisms.

Loops versus timers

In some programming languages, you must devise your own timing schemes using loop statements like for or 

do..while.

Loop statements generally execute as fast as the local machine allows, which means that the application runs faster on 

some machines and slower on others. If your application needs a consistent timing interval, you need to tie it to an 

actual calendar or clock time. Many applications, such as games, animations, and real-time controllers, need regular, 

time-driven ticking mechanisms that are consistent from machine to machine.

The ActionScript 3.0 Timer class provides a powerful solution. Using the ActionScript 3.0 event model, the Timer class 

dispatches timer events whenever a specified time interval is reached.

The Timer class

The preferred way to handle timing functions in ActionScript 3.0 is to use the Timer class (flash.utils.Timer), which 

can be used to dispatch events whenever an interval is reached.

To start a timer, you first create an instance of the Timer class, telling it how often to generate a timer event and how 

many times to do so before stopping.

For example, the following code creates a Timer instance that dispatches an event every second and continues for 60 

seconds:

 var oneMinuteTimer:Timer = new Timer(1000, 60);

The Timer object dispatches a TimerEvent object each time the given interval is reached. A TimerEvent object’s event 

type is timer (defined by the constant TimerEvent.TIMER). A TimerEvent object contains the same properties as a 

standard Event object.

Updated 11 February 2009



134PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

If the Timer instance is set to a fixed number of intervals, it will also dispatch a timerComplete event (defined by the 

constant TimerEvent.TIMER_COMPLETE) when it reaches the final interval.

Here is a small sample application showing the Timer class in action:

 package   
 {  
 import flash.display.Sprite;  
 import flash.events.TimerEvent;  
 import flash.utils.Timer;  
   
 public class ShortTimer extends Sprite  
 {  
 public function ShortTimer()   
 {  
 // creates a new five-second Timer  
 var minuteTimer:Timer = new Timer(1000, 5);  
   
 // designates listeners for the interval and completion events  
 minuteTimer.addEventListener(TimerEvent.TIMER, onTick);  
 minuteTimer.addEventListener(TimerEvent.TIMER_COMPLETE, onTimerComplete);  
   
 // starts the timer ticking  
 minuteTimer.start();  
 }  
   
 public function onTick(event:TimerEvent):void   
 {  
 // displays the tick count so far  
 // The target of this event is the Timer instance itself.  
 trace("tick " + event.target.currentCount);  
 }  
   
 public function onTimerComplete(event:TimerEvent):void  
 {  
 trace("Time's Up!");  
 }  
 }  
 }

When the ShortTimer class is created, it creates a Timer instance that will tick once per second for five seconds. Then 

it adds two listeners to the timer: one that listens to each tick, and one that listens for the timerComplete event. 

Next, it starts the timer ticking, and from that point forward, the onTick() method executes at one-second intervals. 

The onTick() method simply displays the current tick count. After five seconds have passed, the 

onTimerComplete() method executes, telling you that the time is up.

When you run this sample, you should see the following lines appear in your console or trace window at the rate of 

one line per second:

 tick 1  
 tick 2  
 tick 3  
 tick 4  
 tick 5  
 Time's Up!

Updated 11 February 2009



135PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

Timing functions in the flash.utils package

ActionScript 3.0 contains a number of timing functions similar to those that were available in ActionScript 2.0. These 

functions are provided as package-level functions in the flash.utils package, and they operate just as they did in 

ActionScript 2.0.

These functions remain in ActionScript 3.0 for backward compatibility. Adobe does not recommend that you use them 

in new ActionScript 3.0 applications. In general, it is easier and more efficient to use the Timer class in your 

applications.

Example: Simple analog clock

A simple analog clock example illustrates two of the date and time concepts discussed in this chapter:

• Getting the current date and time and extracting values for the hours, minutes, and seconds

• Using a Timer to set the pace of an application

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

SimpleClock application files can be found in the folder Samples/SimpleClock. The application consists of the 

following files:

Defining the SimpleClock class

The clock example is simple, but it’s a good idea to organize even simple applications well so you could easily expand 

them in the future. To that end, the SimpleClock application uses the SimpleClock class to handle the startup and time-

keeping tasks, and then uses another class named AnalogClockFace to actually display the time.

Here is the code that defines and initializes the SimpleClock class (note that in the Flash version, SimpleClock extends 

the Sprite class instead):

Function Description

clearInterval(id:uint):void Cancels a specified setInterval() call.

clearTimeout(id:uint):void Cancels a specified setTimeout() call.

getTimer():int Returns the number of milliseconds that have elapsed since Adobe® Flash® Player 

or Adobe® AIR™ was initialized.

setInterval(closure:Function, 
delay:Number, ... arguments):uint 

Runs a function at a specified interval (in milliseconds).

setTimeout(closure:Function, 
delay:Number, ... arguments):uint 

Runs a specified function after a specified delay (in milliseconds).

File Description

SimpleClockApp.mxml

or

SimpleClockApp.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/simpleclock/SimpleClock.as The main application file.

com/example/programmingas3/simpleclock/AnalogClockFace.as Draws a round clock face and hour, minute, and seconds 

hands based on the time.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


136PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

 public class SimpleClock extends UIComponent  
 {  
 /**  
  * The time display component.  
  */  
 private var face:AnalogClockFace;  
   
 /**  
  * The Timer that acts like a heartbeat for the application.  
  */  
 private var ticker:Timer;

The class has two important properties:

• The face property, which is an instance of the AnalogClockFace class

• The ticker property, which is an instance of the Timer class

The SimpleClock class uses a default constructor. The initClock() method takes care of the real setup work, 

creating the clock face and starting the Timer instance ticking.

Creating the clock face

The next lines in the SimpleClock code create the clock face that is used to display the time:

 /**  
  * Sets up a SimpleClock instance.  
  */  
 public function initClock(faceSize:Number = 200)   
 {  
 // creates the clock face and adds it to the display list  
 face = new AnalogClockFace(Math.max(20, faceSize));  
 face.init();  
 addChild(face);  
   
 // draws the initial clock display  
 face.draw();

The size of the face can be passed in to the initClock() method. If no faceSize value is passed, a default size of 200 

pixels is used.

Next, the application initializes the face and then adds it to the display list using the addChild() method inherited 

from the DisplayObject class. Then it calls the AnalogClockFace.draw() method to display the clock face once, 

showing the current time. 

Starting the timer

After creating the clock face, the initClock() method sets up a timer: 

Updated 11 February 2009



137PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

 // creates a Timer that fires an event once per second  
 ticker = new Timer(1000);   
   
 // designates the onTick() method to handle Timer events  
 ticker.addEventListener(TimerEvent.TIMER, onTick);  
   
 // starts the clock ticking  
 ticker.start();

First this method instantiates a Timer instance that will dispatch an event once per second (every 1000 milliseconds). 

Since no second repeatCount parameter is passed to the Timer() constructor, the Timer will keep repeating 

indefinitely. 

The SimpleClock.onTick() method will execute once per second when the timer event is received:

 public function onTick(event:TimerEvent):void   
 {  
 // updates the clock display  
 face.draw();  
 }

The AnalogClockFace.draw() method simply draws the clock face and hands. 

Displaying the current time

Most of the code in the AnalogClockFace class involves setting up the clock face’s display elements. When the 

AnalogClockFace is initialized, it draws a circular outline, places a numeric text label at each hour mark, and then 

creates three Shapeobjects, one each for the hour hand, the minute hand, and the second hand on the clock.

Once the SimpleClock application is running, it calls the AnalogClockFace.draw() method each second, as follows:

 /**  
  * Called by the parent container when the display is being drawn.  
  */  
 public override function draw():void  
 {  
 // stores the current date and time in an instance variable  
 currentTime = new Date();  
 showTime(currentTime);  
 }

This method saves the current time in a variable, so the time can’t change in the middle of drawing the clock hands. 

Then it calls the showTime() method to display the hands, as the following shows:

Updated 11 February 2009



138PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with dates and times

 /**  
  * Displays the given Date/Time in that good old analog clock style.  
  */  
 public function showTime(time:Date):void   
 {  
 // gets the time values  
 var seconds:uint = time.getSeconds();  
 var minutes:uint = time.getMinutes();  
 var hours:uint = time.getHours();  
   
 // multiplies by 6 to get degrees  
 this.secondHand.rotation = 180 + (seconds * 6);  
 this.minuteHand.rotation = 180 + (minutes * 6);  
   
 // Multiply by 30 to get basic degrees, then  
 // add up to 29.5 degrees (59 * 0.5)  
 // to account for the minutes.  
 this.hourHand.rotation = 180 + (hours * 30) + (minutes * 0.5);  
 }

First, this method extracts the values for the hours, minutes, and seconds of the current time. Then it uses these values 

to calculate the angle for each hand. Since the second hand makes a full rotation in 60 seconds, it rotates 6 degrees each 

second (360/60). The minute hand rotates the same amount each minute.

The hour hand updates every minute, too, so it can show some progress as the minutes tick by. It rotates 30 degrees 

each hour (360/12), but it also rotates half a degree each minute (30 degrees divided by 60 minutes). 

Updated 11 February 2009



139

Chapter 7: Working with strings 

The String class contains methods that let you work with text strings. Strings are important in working with many 

objects. The methods described in this chapter are useful in working with strings used in objects such as TextField, 

StaticText, XML, ContextMenu, and FileReference objects.

Strings are sequences of characters. ActionScript 3.0 supports ASCII and Unicode characters. 

Basics of strings

Introduction to working with strings

In programming parlance, a string is a text value—a sequence of letters, numbers, or other characters strung together 

into a single value. For instance, this line of code creates a variable with the data type String and assigns a literal string 

value to that variable:

 var albumName:String = "Three for the money";

As this example shows, in ActionScript you can denote a string value by surrounding text with double or single 

quotation marks. Here are several more examples of strings:

 "Hello"  
 "555-7649"  
 "http://www.adobe.com/"

Any time you manipulate a piece of text in ActionScript, you are working with a string value. The ActionScript String 

class is the data type you can use to work with text values. String instances are frequently used for properties, method 

parameters, and so forth in many other ActionScript classes.

Common tasks for working with strings

The following are common string-related tasks that are explored in this chapter:

• Creating String objects

• Working with special characters such as carriage-return, tab, and non-keyboard characters

• Measuring string length

• Isolating individual characters in a string

• Joining strings

• Comparing strings

• Finding, extracting, and replacing portions of a string

• Making strings uppercase or lowercase

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• ASCII: A system for representing text characters and symbols in computer programs. The ASCII system supports 

the 26-letter English alphabet, plus a limited set of additional characters.

Updated 11 February 2009



140PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

• Character: The smallest unit of text data (a single letter or symbol).

• Concatenation: Joining multiple string values together by adding one to the end of the other, creating a new string 

value.

• Empty string: A string that contains no text, white space, or other characters, written as "". An empty string value 

is different from a String variable with a null value—a null String variable is a variable that does not have a String 

instance assigned to it, whereas an empty string has an instance with a value that contains no characters.

• String: A textual value (sequence of characters).

• String literal (or “literal string”): A string value written explicitly in code, written as a text value surrounded by 

double quotation marks or single quotation marks.

• Substring: A string that is a portion of another string.

• Unicode: A standard system for representing text characters and symbols in computer programs. The Unicode 

system allows for the use of any character in any writing system.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Because 

the code listings in this chapter deal primarily with manipulating text, testing the examples will involve viewing the 

values of the variables used in the examples, either by writing values into a text field instance on the Stage or by using 

the trace() function to print values to the Output panel. These techniques are described in detail in “Testing in-

chapter example code listings” on page 34.

Creating strings

The String class is used to represent string (textual) data in ActionScript 3.0. ActionScript strings support both ASCII 

and Unicode characters. The simplest way to create a string is to use a string literal. To declare a string literal, use 

straight double quotation mark (") or single quotation mark (') characters. For example, the following two strings are 

equivalent:

 var str1:String = "hello";  
 var str2:String = 'hello';

You can also declare a string by using the new operator, as follows:

 var str1:String = new String("hello");    
 var str2:String = new String(str1);  
 var str3:String = new String();       // str3 == ""

The following two strings are equivalent:

 var str1:String = "hello";   
 var str2:String = new String("hello");

To use single quotation marks (') within a string literal defined with single quotation mark (') delimiters, use the 

backslash escape character (\). Similarly, to use double quotation marks (") within a string literal defined with double 

quotation marks (") delimiters, use the backslash escape character (\). The following two strings are equivalent: 

 var str1:String = "That's \"A-OK\"";  
 var str2:String = 'That\'s "A-OK"';

You may choose to use single quotation marks or double quotation marks based on any single or double quotation 

marks that exist in a string literal, as in the following:

Updated 11 February 2009



141PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

 var str1:String = "ActionScript <span class='heavy'>3.0</span>";  
 var str2:String = '<item id="155">banana</item>';

Keep in mind that ActionScript distinguishes between a straight single quotation mark (') and a left or right single 

quotation mark (' or ' ). The same is true for double quotation marks. Use straight quotation marks to delineate 

string literals. When pasting text from another source into ActionScript, be sure to use the correct characters.

As the following table shows, you can use the backslash escape character (\) to define other characters in string literals: 

The length property

Every string has a length property, which is equal to the number of characters in the string:

 var str:String = "Adobe";  
 trace(str.length);            // output: 5

An empty string and a null string both have a length of 0, as the following example shows:

 var str1:String = new String();  
 trace(str1.length);           // output: 0  
   
 str2:String = '';  
 trace(str2.length);           // output: 0

Working with characters in strings

Every character in a string has an index position in the string (an integer). The index position of the first character is 

0. For example, in the following string, the character y is in position 0 and the character w is in position 5:

 "yellow"

You can examine individual characters in various positions in a string using the charAt() method and the 

charCodeAt() method, as in this example:

Escape sequence Character

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\unnnn The Unicode character with the character code specified by the hexadecimal number nnnn; for 

example, \u263a is the smiley character.

\\xnn The ASCII character with the character code specified by the hexadecimal number nn

\' Single quotation mark

\" Double quotation mark

\\ Single backslash character

Updated 11 February 2009



142PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

 var str:String = "hello world!";  
 for (var i:int = 0; i < str.length; i++)  
 {  
 trace(str.charAt(i), "-", str.charCodeAt(i));  
 }

When you run this code, the following output is produced:

 h - 104  
 e - 101  
 l - 108  
 l - 108  
 o - 111  
 - 32  
 w - 119  
 o - 111  
 r - 114  
 l - 108  
 d - 100  
 ! - 33 

You can also use character codes to define a string using the fromCharCode() method, as the following example 

shows:

 var myStr:String = String.fromCharCode(104,101,108,108,111,32,119,111,114,108,100,33);  
 // Sets myStr to "hello world!"

Comparing strings

You can use the following operators to compare strings: <, <=, !=, ==, =>, and >. These operators can be used with 

conditional statements, such as if and while, as the following example shows: 

 var str1:String = "Apple";  
 var str2:String = "apple";  
 if (str1 < str2)  
 {  
 trace("A < a, B < b, C < c, ...");  
 }

When using these operators with strings, ActionScript considers the character code value of each character in the 

string, comparing characters from left to right, as in the following:

 trace("A" < "B"); // true  
 trace("A" < "a"); // true   
 trace("Ab" < "az"); // true   
 trace("abc" < "abza"); // true

Use the == and != operators to compare strings with each other and to compare strings with other types of objects, as 

the following example shows:

 var str1:String = "1";  
 var str1b:String = "1";  
 var str2:String = "2";  
 trace(str1 == str1b); // true  
 trace(str1 == str2); // false  
 var total:uint = 1;  
 trace(str1 == total); // true

Updated 11 February 2009



143PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

Obtaining string representations of other objects

You can obtain a String representation for any kind of object. All objects have a toString() method for this purpose:

 var n:Number = 99.47;  
 var str:String = n.toString();  
 // str == "99.47"

When using the + concatenation operator with a combination of String objects and objects that are not strings, you do 

not need to use the toString() method. For details on concatenation, see the next section.

The String() global function returns the same value for a given object as the value returned by the object calling the 

toString() method.

Concatenating strings

Concatenation of strings means taking two strings and joining them sequentially into one. For example, you can use 

the + operator to concatenate two strings:

 var str1:String = "green";  
 var str2:String = "ish";  
 var str3:String = str1 + str2; // str3 == "greenish"

You can also use the += operator to the produce the same result, as the following example shows:

 var str:String = "green";  
 str += "ish"; // str == "greenish"

Additionally, the String class includes a concat() method, which can be used as follows:

 var str1:String = "Bonjour";  
 var str2:String = "from";  
 var str3:String = "Paris";  
 var str4:String = str1.concat(" ", str2, " ", str3);  
 // str4 == "Bonjour from Paris"

If you use the + operator (or the += operator) with a String object and an object that is not a string, ActionScript 

automatically converts the nonstring object to a String object in order to evaluate the expression, as shown in this 

example:

 var str:String = "Area = ";  
 var area:Number = Math.PI * Math.pow(3, 2);  
 str = str + area; // str == "Area = 28.274333882308138"

However, you can use parentheses for grouping to provide context for the + operator, as the following example shows:

 trace("Total: $" + 4.55 + 1.45); // output: Total: $4.551.45  
 trace("Total: $" + (4.55 + 1.45)); // output: Total: $6

Finding substrings and patterns in strings

Substrings are sequential characters within a string. For example, the string "abc" has the following substrings: "", 

"a", "ab", "abc", "b", "bc", "c". You can use ActionScript methods to locate substrings of a string.

Updated 11 February 2009



144PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

Patterns are defined in ActionScript by strings or by regular expressions. For example, the following regular expression 

defines a specific pattern—the letters A, B, and C followed by a digit character (the forward slashes are regular 

expression delimiters):

 /ABC\d/

ActionScript includes methods for finding patterns in strings and for replacing found matches with replacement 

substrings. These methods are described in the following sections.

Regular expressions can define intricate patterns. For more information, see “Using regular expressions” on page 203.

Finding a substring by character position

The substr() and substring() methods are similar. Both return a substring of a string. Both take two parameters. 

In both methods, the first parameter is the position of the starting character in the given string. However, in the 

substr() method, the second parameter is the length of the substring to return, and in the substring() method, the 

second parameter is the position of the character at the end of the substring (which is not included in the returned 

string). This example shows the difference between these two methods: 

 var str:String = "Hello from Paris, Texas!!!";  
 trace(str.substr(11,15)); // output: Paris, Texas!!!  
 trace(str.substring(11,15)); // output: Pari

The slice() method functions similarly to the substring() method. When given two non-negative integers as 

parameters, it works exactly the same. However, the slice() method can take negative integers as parameters, in 

which case the character position is taken from the end of the string, as shown in the following example:

 var str:String = "Hello from Paris, Texas!!!";  
 trace(str.slice(11,15)); // output: Pari  
 trace(str.slice(-3,-1)); // output: !!  
 trace(str.slice(-3,26)); // output: !!!  
 trace(str.slice(-3,str.length)); // output: !!!  
 trace(str.slice(-8,-3)); // output: Texas

You can combine non-negative and negative integers as the parameters of the slice() method.

Finding the character position of a matching substring

You can use the indexOf() and lastIndexOf() methods to locate matching substrings within a string, as the 

following example shows:

 var str:String = "The moon, the stars, the sea, the land";  
 trace(str.indexOf("the")); // output: 10

Notice that the indexOf() method is case-sensitive.

You can specify a second parameter to indicate the index position in the string from which to start the search, as 

follows:

 var str:String = "The moon, the stars, the sea, the land"  
 trace(str.indexOf("the", 11)); // output: 21

The lastIndexOf() method finds the last occurrence of a substring in the string:

 var str:String = "The moon, the stars, the sea, the land"  
 trace(str.lastIndexOf("the")); // output: 30

If you include a second parameter with the lastIndexOf() method, the search is conducted from that index position 

in the string working backward (from right to left):

Updated 11 February 2009



145PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

 var str:String = "The moon, the stars, the sea, the land"  
 trace(str.lastIndexOf("the", 29)); // output: 21

Creating an array of substrings segmented by a delimiter

You can use the split() method to create an array of substrings, which is divided based on a delimiter. For example, 

you can segment a comma-delimited or tab-delimited string into multiple strings.

The following example shows how to split an array into substrings with the ampersand (&) character as the delimiter:

 var queryStr:String = "first=joe&last=cheng&title=manager&StartDate=3/6/65";  
 var params:Array = queryStr.split("&", 2); // params == ["first=joe","last=cheng"]

The second parameter of the split() method, which is optional, defines the maximum size of the array that is 

returned.

You can also use a regular expression as the delimiter character: 

 var str:String = "Give me\t5."  
 var a:Array = str.split(/\s+/); // a == ["Give","me","5."]

For more information, see “Using regular expressions” on page 203 and the ActionScript 3.0 Language and 

Components Reference.

Finding patterns in strings and replacing substrings

The String class includes the following methods for working with patterns in strings:

• Use the match() and search() methods to locate substrings that match a pattern.

• Use the replace() method to find substrings that match a pattern and replace them with a specified substring.

These methods are described in the following sections.

You can use strings or regular expressions to define patterns used in these methods. For more information on regular 

expressions, see “Using regular expressions” on page 203.

Finding matching substrings

The search() method returns the index position of the first substring that matches a given pattern, as shown in this 

example:

 var str:String = "The more the merrier.";  
 // (This search is case-sensitive.)  
 trace(str.search("the")); // output: 9 

You can also use regular expressions to define the pattern to match, as this example shows:

 var pattern:RegExp = /the/i;  
 var str:String = "The more the merrier.";  
 trace(str.search(pattern)); // 0

The output of the trace() method is 0, because the first character in the string is index position 0. The i flag is set in 

the regular expression, so the search is not case-sensitive.

The search() method finds only one match and returns its starting index position, even if the g (global) flag is set in 

the regular expression.

The following example shows a more intricate regular expression, one that matches a string in double quotation marks:

Updated 11 February 2009



146PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

 var pattern:RegExp = /"[^"]*"/;  
 var str:String = "The \"more\" the merrier.";  
 trace(str.search(pattern)); // output: 4  
   
 str = "The \"more the merrier.";  
 trace(str.search(pattern)); // output: -1   
 // (Indicates no match, since there is no closing double quotation mark.)

The match() method works similarly. It searches for a matching substring. However, when you use the global flag in 

a regular expression pattern, as in the following example, match() returns an array of matching substrings:

 var str:String = "bob@example.com, omar@example.org";  
 var pattern:RegExp = /\w*@\w*\.[org|com]+/g;  
 var results:Array = str.match(pattern);

The results array is set to the following:

 ["bob@example.com","omar@example.org"]

For more information on regular expressions, see “Using regular expressions” on page 203.

Replacing matched substrings

You can use the replace() method to search for a specified pattern in a string and replace matches with the specified 

replacement string, as the following example shows: 

 var str:String = "She sells seashells by the seashore.";  
 var pattern:RegExp = /sh/gi;  
 trace(str.replace(pattern, "sch"));  
 //sche sells seaschells by the seaschore. 

Note that in this example, the matched strings are not case-sensitive because the i (ignoreCase) flag is set in the 

regular expression, and multiple matches are replaced because the g (global) flag is set. For more information, see 

“Using regular expressions” on page 203.

You can include the following $ replacement codesin the replacement string. The replacement text shown in the 

following table is inserted in place of the $ replacement code:

For example, the following shows the use of the $2 and $1 replacement codes, which represent the first and second 

capturing group matched:

 var str:String = "flip-flop";  
 var pattern:RegExp = /(\w+)-(\w+)/g;  
 trace(str.replace(pattern, "$2-$1")); // flop-flip

$ Code Replacement Text

$$ $

$& The matched substring.

$` The portion of the string that precedes the matched substring. This code uses the straight left single quotation 

mark character (`), not the straight single quotation mark (') or the left curly single quotation mark (' ).

$' The portion of the string that follows the matched substring. This code uses the straight single quotation mark (' ).

$n The nth captured parenthetical group match, where n is a single digit, 1-9, and $n is not followed by a decimal digit. 

$nn The nnth captured parenthetical group match, where nn is a two-digit decimal number, 01–99. If the nnth capture 

is undefined, the replacement text is an empty string. 

Updated 11 February 2009



147PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

You can also use a function as the second parameter of the replace() method. The matching text is replaced by the 

returned value of the function.

 var str:String = "Now only $9.95!";  
 var price:RegExp = /\$([\d,]+.\d+)+/i;  
 trace(str.replace(price, usdToEuro));  
   
 function usdToEuro(matchedSubstring:String,  capturedMatch1:String,  index:int,  
str:String):String  
 {  
 var usd:String = capturedMatch1;  
 usd = usd.replace(",", "");  
 var exchangeRate:Number = 0.853690;  
 var euro:Number = parseFloat(usd) * exchangeRate;  
 const euroSymbol:String = String.fromCharCode(8364);  
 return euro.toFixed(2) + " " + euroSymbol;  
 }

When you use a function as the second parameter of the replace() method, the following arguments are passed to 

the function:

• The matching portion of the string.

• Any capturing parenthetical group matches. The number of arguments passed this way will vary depending on the 

number of parenthetical matches. You can determine the number of parenthetical matches by checking 

arguments.length - 3 within the function code.

• The index position in the string where the match begins.

• The complete string.

Converting strings between uppercase and lowercase

As the following example shows, the toLowerCase() method and the toUpperCase() method convert alphabetical 

characters in the string to lowercase and uppercase, respectively:

 var str:String = "Dr. Bob Roberts, #9."  
 trace(str.toLowerCase()); // dr. bob roberts, #9.  
 trace(str.toUpperCase()); // DR. BOB ROBERTS, #9.

After these methods are executed, the source string remains unchanged. To transform the source string, use the 

following code:

 str = str.toUpperCase();

These methods work with extended characters, not simply a–z and A–Z:

 var str:String = "José Barça";  
 trace(str.toUpperCase(), str.toLowerCase()); // JOSÉ BARÇA josé barça

Updated 11 February 2009



148PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

Example: ASCII art

This ASCII Art example shows a number of features of working with the String class in ActionScript 3.0, including the 

following: 

• The split() method of the String class is used to extract values from a character-delimited string (image 

information in a tab-delimited text file).

• Several string-manipulation techniques, including split(), concatenation, and extracting a portion of the string 

using substring() and substr(), are used to capitalize the first letter of each word in the image titles.

• The getCharAt() method is used to get a single character from a string (to determine the ASCII character 

corresponding to a grayscale bitmap value).

• String concatenation is used to build up the ASCII art representation of an image one character at a time.

The term ASCII art refers to a text representations of an image, in which a grid of monospaced font characters, such 

as Courier New characters, plots the image. The following image shows an example of ASCII art produced by the 

application: 

The ASCII art version of the graphic is shown on the right.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

ASCIIArt application files can be found in the folder Samples/AsciiArt. The application consists of the following files:

File Description

AsciiArtApp.mxml

or

AsciiArtApp.fla

The main application file in Flash (FLA) or Flex (MXML)

com/example/programmingas3/asciiArt/AsciiArtBuilder.as The class that provides the main functionality of the 

application, including extracting image metadata from a text 

file, loading the images, and managing the image-to-text 

conversion process.

com/example/programmingas3/asciiArt/BitmapToAsciiConverter.as A class that provides the parseBitmapData() method for 

converting image data into a String version.

com/example/programmingas3/asciiArt/Image.as A class which represents a loaded bitmap image.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


149PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

Extracting tab-delimited values

This example uses the common practice of storing application data separate from the application itself; that way, if the 

data changes (for example, if another image is added or an image’s title changes), there is no need to recreate the SWF 

file. In this case, the image metadata, including the image title, the URL of the actual image file, and some values that 

are used to manipulate the image, are stored in a text file (the txt/ImageData.txt file in the project). The contents of the 

text file are as follows:

 FILENAMETITLEWHITE_THRESHHOLDBLACK_THRESHHOLD  
 FruitBasket.jpgPear, apple, orange, and bananad810  
 Banana.jpgA picture of a bananaC820  
 Orange.jpgorangeFF20  
 Apple.jpgpicture of an apple6E10

The file uses a specific tab-delimited format. The first line (row) is a heading row. The remaining lines contain the 

following data for each bitmap to be loaded:

• The filename of the bitmap.

• The display name of the bitmap.

• The white-threshold and black-threshold values for the bitmaps. These are hex values above which and below 

which a pixel is to be considered completely white or completely black.

As soon as the application starts, the AsciiArtBuilder class loads and parses the contents of the text file in order to 

create the “stack” of images that it will display, using the following code from the AsciiArtBuilder class’s 

parseImageInfo() method:

 var lines:Array = _imageInfoLoader.data.split("\n");  
 var numLines:uint = lines.length;  
 for (var i:uint = 1; i < numLines; i++)  
 {  
 var imageInfoRaw:String = lines[i];  
 ...  
 if (imageInfoRaw.length > 0)  
 {  
 // Create a new image info record and add it to the array of image info.  
 var imageInfo:ImageInfo = new ImageInfo();  
   
 // Split the current line into values (separated by tab (\t)  
 // characters) and extract the individual properties:  
 var imageProperties:Array = imageInfoRaw.split("\t");  
 imageInfo.fileName = imageProperties[0];  
 imageInfo.title = normalizeTitle(imageProperties[1]);  
 imageInfo.whiteThreshold = parseInt(imageProperties[2], 16);  
 imageInfo.blackThreshold = parseInt(imageProperties[3], 16);  
 result.push(imageInfo);  
 }  
 }

com/example/programmingas3/asciiArt/ImageInfo.as A class representing metadata for an ASCII art image (such as 

title, image file URL, and so on).

image/ A folder containing images used by the application.

txt/ImageData.txt A tab-delimited text file, containing information on the 

images to be loaded by the application.

File Description

Updated 11 February 2009



150PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

The entire contents of the text file are contained in a single String instance, the _imageInfoLoader.data property. 

Using the split() method with the newline character ("\n") as a parameter, the String instance is divided into an 

Array (lines) whose elements are the individual lines of the text file. Next, the code uses a loop to work with each of 

the lines (except the first, because it contains only headers rather than actual content). Inside the loop, the split() 

method is used once again to divide the contents of the single line into a set of values (the Array object named 

imageProperties). The parameter used with the split() method in this case is the tab ("\t") character, because the 

values in each line are delineated by tab characters.

Using String methods to normalize image titles

One of the design decisions for this application is that all the image titles are displayed using a standard format, with 

the first letter of each word capitalized (except for a few words that are commonly not capitalized in English titles). 

Rather than assume that the text file contains properly formatted titles, the application formats the titles while they’re 

being extracted from the text file.

In the previous code listing, as part of extracting individual image metadata values, the following line of code is used:

 imageInfo.title = normalizeTitle(imageProperties[1]);

In that code, the image’s title from the text file is passed through the normalizeTitle() method before it is stored in 

the ImageInfo object:

 private function normalizeTitle(title:String):String  
 {  
 var words:Array = title.split(" ");  
 var len:uint = words.length;  
 for (var i:uint; i < len; i++)  
 {  
 words[i] = capitalizeFirstLetter(words[i]);  
 }  
   
 return words.join(" ");  
 }

This method uses the split() method to divide the title into individual words (separated by the space character), 

passes each word through the capitalizeFirstLetter() method, and then uses the Array class’s join() method 

to combine the words back into a single string again.

As its name suggests, the capitalizeFirstLetter() method actually does the work of capitalizing the first letter of 

each word:

Updated 11 February 2009



151PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

 /**  
  * Capitalizes the first letter of a single word, unless it's one of  
  * a set of words that are normally not capitalized in English.  
  */  
 private function capitalizeFirstLetter(word:String):String  
 {  
 switch (word)  
 {  
 case "and":  
 case "the":  
 case "in":  
 case "an":  
 case "or":  
 case "at":  
 case "of":  
 case "a":  
 // Don't do anything to these words.  
 break;  
 default:  
 // For any other word, capitalize the first character.  
 var firstLetter:String = word.substr(0, 1);  
 firstLetter = firstLetter.toUpperCase();  
 var otherLetters:String = word.substring(1);  
 word = firstLetter + otherLetters;  
 }  
 return word;  
 }

In English, the initial character of each word in a title is not capitalized if it is one of the following words: “and,” “the,” 

“in,” “an,” “or,” “at,” “of,” or “a.” (This is a simplified version of the rules.) To execute this logic, the code first uses a 

switch statement to check if the word is one of the words that should not be capitalized. If so, the code simply jumps 

out of the switch statement. On the other hand, if the word should be capitalized, that is done in several steps, as 

follows:

1 The first letter of the word is extracted using substr(0, 1), which extracts a substring starting with the character 

at index 0 (the first letter in the string, as indicated by the first parameter 0). The substring will be one character in 

length (indicated by the second parameter 1).

2 That character is capitalized using the toUpperCase() method.

3 The remaining characters of the original word are extracted using substring(1), which extracts a substring 

starting at index 1 (the second letter) through the end of the string (indicated by leaving off the second parameter 

of the substring() method).

4 The final word is created by combining the newly capitalized first letter with the remaining letters using string 

concatenation: firstLetter + otherLetters.

Generating the ASCII art text

The BitmapToAsciiConverter class provides the functionality of converting a bitmap image to its ASCII text 

representation. This process is performed by the parseBitmapData() method, which is partially shown here:

Updated 11 February 2009



152PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with strings

 var result:String = "";  
   
 // Loop through the rows of pixels top to bottom:  
 for (var y:uint = 0; y < _data.height; y += verticalResolution)  
 {  
 // Within each row, loop through pixels left to right:  
 for (var x:uint = 0; x < _data.width; x += horizontalResolution)  
 {  
 ...  
   
 // Convert the gray value in the 0-255 range to a value  
 // in the 0-64 range (since that's the number of "shades of  
 // gray" in the set of available characters):  
 index = Math.floor(grayVal / 4);  
 result += palette.charAt(index);  
 }  
 result += "\n";  
 }  
 return result;

This code first defines a String instance named result that will be used to build up the ASCII art version of the bitmap 

image. Next, it loops through individual pixels of the source bitmap image. Using several color-manipulation 

techniques (omitted here for brevity), it converts the red, green, and blue color values of an individual pixel to a single 

grayscale value (a number from 0 to 255). The code then divides that value by 4 (as shown) to convert it to a value in 

the 0-63 scale, which is stored in the variable index. (The 0-63 scale is used because the “palette” of available ASCII 

characters used by this application contains 64 values.) The palette of characters is defined as a String instance in the 

BitmapToAsciiConverter class:

 // The characters are in order from darkest to lightest, so that their  
 // position (index) in the string corresponds to a relative color value  
 // (0 = black).  
 private static const palette:String = 
"@#$%&8BMW*mwqpdbkhaoQ0OZXYUJCLtfjzxnuvcr[]{}1()|/?Il!i><+_~-;,. ";

Since the index variable defines which ASCII character in the palette corresponds to the current pixel in the bitmap 

image, that character is retrieved from the palette String using the charAt() method. It is then appended to the 

result String instance using the concatenation assignment operator (+=). In addition, at the end of each row of pixels, 

a newline character is concatenated to the end of the result String, forcing the line to wrap to create a new row of 

character “pixels.” 

Updated 11 February 2009



153

Chapter 8: Working with arrays

Arrays allow you to store multiple values in a single data structure. You can use simple indexed arrays that store values 

using fixed ordinal integer indexes or complex associative arrays that store values using arbitrary keys. Arrays can also 

be multidimensional, containing elements that are themselves arrays. Finally, you can use a Vector for an array whose 

elements are all instances of the same data type. This chapter discusses how to create and manipulate various types of 

arrays.

Basics of arrays

Introduction to working with arrays

Often in programming you’ll need to work with a set of items rather than a single object. For example, in a music player 

application, you might want to have a list of songs waiting to be played. You wouldn’t want to have to create a separate 

variable for each song on that list. It would be preferable to have all the Song objects together in a bundle, and be able 

to work with them as a group.

An array is a programming element that acts as a container for a set of items, such as a list of songs. Most commonly 

all the items in an array are instances of the same class, but that is not a requirement in ActionScript. The individual 

items in an array are known as the array’s elements. You can think of an array as a file drawer for variables. Variables 

can be added as elements in the array, which is like placing a folder into the file drawer. You can work with the array 

as a single variable (like carrying the whole drawer to a different location). You can work with the variables as a group 

(like flipping through the folders one by one searching for a piece of information). You can also access them 

individually (like opening the drawer and selecting a single folder).

For example, imagine you’re creating a music player application where a user can select multiple songs and add them 

to a playlist. In your ActionScript code, you have a method named addSongsToPlaylist(), which accepts a single 

array as a parameter. No matter how many songs you want to add to the list (a few, a lot, or even only one), you call 

the addSongsToPlaylist() method only one time, passing it the array containing the Song objects. Inside the 

addSongsToPlaylist() method, you can use a loop to go through the array’s elements (the songs) one by one and 

actually add them to the playlist.

The most common type of ActionScript array is an indexed array. In an indexed array each item is stored in a 

numbered slot (known as an index). Items are accessed using the number, like an address. Indexed arrays work well 

for most programming needs. The Array class is one common class that’s used to represent an indexed array.

Often, an indexed array is used to store multiple items of the same type (objects that are instances of the same class). 

The Array class doesn’t have any means for restricting the type of items it contains. The Vector class is a type of indexed 

array in which all the items in a single array are the same type. Using a Vector instance instead of an Array instance 

can also provide performance improvements and other benefits. The Vector class is available starting with Flash Player 

10 and Adobe AIR 1.5.

A special use of an indexed array is a multidimensional array. A multidimensional array is an indexed array whose 

elements are indexed arrays (which in turn contain other elements). 

Another type of array is an associative array, which uses a string key instead of a numeric index to identify individual 

elements. Finally, ActionScript 3.0 also includes the Dictionary class, which represents a dictionary. A dictionary is an 

array that allows you to use any type of object as a key to distinguish between elements.

Updated 11 February 2009



154PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

Common array tasks

The following common activities for working with arrays are described in this chapter:

• Creating indexed arrays using the Array class and the Vector class

• Adding and removing array elements

• Sorting array elements

• Extracting portions of an array

• Working with associative arrays and dictionaries

• Working with multidimensional arrays

• Copying array elements

• Creating an array subclass

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Array: An object that serves as a container to group multiple objects

• Array access ([]) operator: A pair of square brackets surrounding an index or key that uniquely identifies an array 

element. This syntax is used after an array variable name to specify a single element of the array rather than the 

entire array.

• Associative array: An array that uses string keys to identify individual elements

• Base type: The data type of the objects that a Vector instance is allowed to store

• Dictionary: An array whose items consist of pairs of objects, known as the key and the value. The key is used instead 

of a numeric index to identify a single element.

• Element: A single item in an array

• Index: The numeric “address” used to identify a single element in an indexed array

• Indexed array: The standard type of array that stores each element in a numbered position, and uses the number 

(index) to identify individual elements

• Key: The string or object used to identify a single element in an associative array or a dictionary

• Multidimensional array: An array containing items that are arrays rather than single values

• T: The standard convention that’s used in this documentation to represent the base type of a Vector instance, 

whatever that base type happens to be. The T convention is used to represent a class name, as shown in the Type 

parameter description. (“T” stands for “type,” as in “data type.”)

• Type parameter: The syntax that’s used with the Vector class name to specify the Vector’s base type (the data type 

of the objects that it stores). The syntax consists of a period (.), then the data type name surrounded by angle 

brackets (<>). Put together, it looks like this: Vector.<T>. In this documentation, the class specified in the type 

parameter is represented generically as T.

• Vector: A type of array whose elements are all instances of the same data type

Updated 11 February 2009



155PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Essentially 

all the code listings in this chapter include the appropriate trace() function call. To test the code listings in this 

chapter:

1 Create an empty document in the Flash authoring tool

2 Select a keyframe in the timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

You will see the results of the trace() function in the Output panel.

This and other techniques for testing example code listings are described in detail in “Testing in-chapter example code 

listings” on page 34.

Indexed arrays

Indexed arrays store a series of one or more values organized such that each value can be accessed using an unsigned 

integer value. The first index is always the number 0, and the index increments by 1 for each subsequent element added 

to the array. In ActionScript 3.0, two classes are used as indexed arrays: the Array class and the Vector class.

Indexed arrays use an unsigned 32-bit integer for the index number. The maximum size of an indexed array is 232 - 1 

or 4,294,967,295. An attempt to create an array that is larger than the maximum size results in a run-time error.

To access an individual element of an indexed array, you use the array access ([]) operator to specify the index position 

of the element you wish to access. For example, the following code represents the first element (the element at index 

0) in an indexed array named songTitles:

songTitles[0]

The combination of the array variable name followed by the index in square brackets functions as a single identifier. 

(In other words, it can be used in any way a variable name can). You can assign a value to an indexed array element by 

using the name and index on the left side of an assignment statement:

songTitles[1] = "Symphony No. 5 in D minor";

Likewise, you can retrieve the value of an indexed array element by using the name and index on the right side of an 

assignment statement:

var nextSong:String = songTitles[2];

You can also use a variable in the square brackets rather than providing an explicit value. (The variable must contain 

a non-negative integer value such as a uint, a positive int, or a positive integer Number instance). This technique is 

commonly used to “loop over” the elements in an indexed array and perform an operation on some or all the elements. 

The following code listing demonstrates this technique. The code uses a loop to access each value in an Array object 

named oddNumbers. It uses the trace() statement to print each value in the form “oddNumber[index] = value”:

var oddNumbers:Array = [1, 3, 5, 7, 9, 11];  
var len:uint = oddNumbers.length;  
for (var i:uint = 0; i < len; i++)  
{  

trace("oddNumbers[" + i.toString() + "] = " + oddNumbers[i].toString());  
}

Updated 11 February 2009



156PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

The Array class

The first type of indexed array is the Array class. An Array instance can hold a value of any data type. The same Array 

object can hold objects that are of different data types. For example, a single Array instance can have a String value in 

index 0, a Number instance in index 1, and an XML object in index 2.

The Vector class

Another type of indexed array that’s available in ActionScript 3.0 is the Vector class. A Vector instance is a typed array, 

which means that all the elements in a Vector instance always have the same data type.

Note: The Vector class is available starting with Flash Player 10 and Adobe AIR 1.5.

When you declare a Vector variable or instantiate a Vector object, you explicitly specify the data type of the objects 

that the Vector can contain. The specified data type is known as the Vector’s base type. At run time and at compile time 

(in strict mode), any code that sets the value of a Vector element or retrieves a value from a Vector is checked. If the 

data type of the object being added or retrieved doesn’t match the Vector’s base type, an error occurs.

In addition to the data type restriction, the Vector class has other restrictions that distinguish it from the Array class:

• A Vector is a dense array. An Array object may have values in indices 0 and 7 even if it has no values in positions 1 

through 6. However, a Vector must have a value (or null) in each index.

• A Vector can optionally be fixed-length. This means that the number of elements the Vector contains can’t change.

• Access to a Vector’s elements is bounds-checked. You can never read a value from an index greater than the final 

element (length - 1). You can never set a value with an index more than one beyond the current final index. (In 

other words, you can only set a value at an existing index or at index [length].)

As a result of its restrictions, a Vector has two primary benefits over an Array instance whose elements are all instances 

of a single class:

• Performance: array element access and iteration are much faster when using a Vector instance than when using an 

Array instance.

• Type safety: in strict mode the compiler can identify data type errors. Examples of such errors include assigning a 

value of the incorrect data type to a Vector or expecting the wrong data type when reading a value from a Vector. 

At run time, data types are also checked when adding data to or reading data from a Vector object. Note, however, 

that when you use the push() method or unshift() method to add values to a Vector, the arguments’ data types 

are not checked at compile time. When using those methods the values are still checked at run time.

Aside from the additional restrictions and benefits, the Vector class is very much like the Array class. The properties 

and methods of a Vector object are similar—for the most part identical—to the properties and methods of an Array. 

In any situation where you would use an Array in which all the elements have the same data type, a Vector instance is 

preferable.

Creating arrays

You can use several techniques to create an Array instance or a Vector instance. However, the techniques to create each 

type of array are somewhat different.

Creating an Array instance

You create an Array object by calling the Array() constructor or by using Array literal syntax.

The Array() constructor function can be used in three ways. First, if you call the constructor with no arguments, you 

get an empty array. You can use the length property of the Array class to verify that the array has no elements. For 

example, the following code calls the Array() constructor with no arguments:

Updated 11 February 2009



157PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 var names:Array = new Array();  
 trace(names.length); // output: 0

Second, if you use a number as the only parameter to the Array() constructor, an array of that length is created, with 

each element’s value set to undefined. The argument must be an unsigned integer between the values 0 and 

4,294,967,295. For example, the following code calls the Array() constructor with a single numeric argument:

 var names:Array = new Array(3);  
 trace(names.length); // output: 3  
 trace(names[0]); // output: undefined  
 trace(names[1]); // output: undefined  
 trace(names[2]); // output: undefined

Third, if you call the constructor and pass a list of elements as parameters, an array is created, with elements 

corresponding to each of the parameters. The following code passes three arguments to the Array() constructor:

 var names:Array = new Array("John", "Jane", "David");  
 trace(names.length); // output: 3  
 trace(names[0]); // output: John  
 trace(names[1]); // output: Jane  
 trace(names[2]); // output: David

You can also create arrays with Array literals. An Array literal can be assigned directly to an array variable, as shown 

in the following example:

 var names:Array = ["John", "Jane", "David"];

Creating a Vector instance

You create a Vector instance by calling the Vector.<T>() constructor. You can also create a Vector by calling the 

Vector.<T>() global function. That function converts a specified object to a Vector instance. ActionScript has no 

Vector equivalent to Array literal syntax.

Any time you declare a Vector variable (or similarly, a Vector method parameter or method return type) you specify 

the base type of the Vector variable. You also specify the base type when you create a Vector instance by calling the 

Vector.<T>() constructor. Put another way, any time you use the term Vector in ActionScript, it is accompanied by 

a base type.

You specify the Vector’s base type using type parameter syntax. The type parameter immediately follows the word 

Vector in the code. It consists of a dot (.), then the base class name surrounded by angle brackets (<>), as shown in 

this example:

var v:Vector.<String>;  
v = new Vector.<String>();

In the first line of the example, the variable v is declared as a Vector.<String> instance. In other words, it represents 

an indexed array that can only hold String instances. The second line calls the Vector() constructor to create an 

instance of the same Vector type (that is, a Vector whose elements are all String objects). It assigns that object to v.

Using the Vector.<T>() constructor

If you use the Vector.<T>() constructor without any arguments, it creates an empty Vector instance. You can test 

that a Vector is empty by checking its length property. For example, the following code calls the Vector.<T>() 

constructor with no arguments:

 var names:Vector.<String> = new Vector.<String>();  
 trace(names.length); // output: 0

Updated 11 February 2009



158PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

If you know ahead of time how many elements a Vector initially needs, you can pre-define the number of elements in 

the Vector. To create a Vector with a certain number of elements, pass the number of elements as the first parameter 

(the length parameter). Because Vector elements can’t be empty, the elements are filled with instances of the base 

type. If the base type is a reference type that allows null values, the elements all contain null. Otherwise, the elements 

all contain the default value for the class. For example, a uint variable can’t be null. Consequently, in the following 

code listing the Vector named ages is created with seven elements, each containing the value 0:

var ages:Vector.<uint> = new Vector.<uint>(7);  
trace(ages); // output: 0,0,0,0,0,0,0 

Finally, using the Vector.<T>() constructor you can also create a fixed-length Vector by passing true for the second 

parameter (the fixed parameter). In that case the Vector is created with the specified number of elements and the 

number of elements can’t be changed. Note, however, that you can still change the values of the elements of a fixed-

length Vector.

Unlike with the Array class, you can’t pass a list of values to the Vector.<T>() constructor to specify the Vector’s 

initial values.

Using the Vector.<T>() global function

In addition to the Vector.<T>() constructor, you can also use the Vector.<T>() global function to create a Vector 

object. The Vector.<T>() global function is a conversion function. When you call the Vector.<T>() global function 

you specify the base type of the Vector that the method returns. You pass a single indexed array (Array or Vector 

instance) as an argument. The method then returns a Vector with the specified base type, containing the values in the 

source array argument. The following code listing shows the syntax for calling the Vector.<T>() global function:

var friends:Vector.<String> = Vector.<String>(["Bob", "Larry", "Sarah"]);

The Vector.<T>() global function performs data type conversion on two levels. First, when an Array instance is 

passed to the function, a Vector instance is returned. Second, whether the source array is an Array or Vector instance 

the function attempts to convert the source array’s elements to values of the base type. The conversion uses standard 

ActionScript data type conversion rules. For example, the following code listing converts the String values in the source 

Array to integers in the result Vector. The decimal portion of the first value ("1.5") is truncated, and the non-numeric 

third value ("Waffles") is converted to 0 in the result:

var numbers:Vector.<int> = Vector.<int>(["1.5", "17", "Waffles"]);  
trace(numbers); // output: 1,17,0

If any of the source elements can’t be converted, an error occurs.

When code calls the Vector.<T>() global function, if an element in the source array is an instance of a subclass of the 

specified base type, the element is added to the result Vector (no error occurs). Using the Vector.<T>() global 

function is the only way to convert a Vector with base type T to a Vector with a base type that’s a superclass of T.

Inserting array elements

The most basic way to add an element to an indexed array is to use the array access ([]) operator. To set the value of 

an indexed array element, use the Array or Vector object name and index number on the left side of an assignment 

statement:

songTitles[5] = "Happy Birthday";

If the Array or Vector doesn’t already have an element at that index, the index is created and the value is stored there. 

If a value exists at that index, the new value replaces the existing one.

Updated 11 February 2009



159PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

An Array object allows you to create an element at any index. However, with a Vector object you can only assign a 

value to an existing index or to the next available index. The next available index corresponds to the Vector object’s 

length property. The safest way to add a new element to a Vector object is to use code like this listing:

myVector[myVector.length] = valueToAdd;

Three of the Array and Vector class methods—push(), unshift(), and splice()—allow you to insert elements into 

an indexed array. The push() method appends one or more elements to the end of an array. In other words, the last 

element inserted into the array using the push() method will have the highest index number. The unshift() method 

inserts one or more elements at the beginning of an array, which is always at index number 0. The splice() method 

will insert any number of items at a specified index in the array.

The following example demonstrates all three methods. An array named planets is created to store the names of the 

planets in order of proximity to the Sun. First, the push() method is called to add the initial item, Mars. Second, the 

unshift() method is called to insert the item that belongs at the front of the array, Mercury. Finally, the splice() 

method is called to insert the items Venus and Earth after Mercury, but before Mars. The first argument sent to 

splice(), the integer 1, directs the insertion to begin at index 1. The second argument sent to splice(), the integer 

0, indicates that no items should be deleted. Finally, the third and fourth arguments sent to splice(), Venus and 

Earth, are the items to be inserted. 

 var planets:Array = new Array();  
 planets.push("Mars"); // array contents: Mars  
 planets.unshift("Mercury"); // array contents: Mercury,Mars  
 planets.splice(1, 0, "Venus", "Earth");  
 trace(planets); // array contents: Mercury,Venus,Earth,Mars

The push() and unshift() methods both return an unsigned integer that represents the length of the modified array. 

The splice() method returns an empty array when used to insert elements, which may seem strange, but makes more 

sense in light of the splice() method’s versatility. You can use the splice() method not only to insert elements into 

an array, but also to remove elements from an array. When used to remove elements, the splice() method returns 

an array containing the elements removed.

Note: If a Vector object’s fixed property is true, the total number of elements in the Vector can’t change. If you try to 

add a new element to a fixed-length Vector using the techniques described here, an error occurs.

Retrieving values and removing array elements

The simplest way to retrieve the value of an element from an indexed array is to use the array access ([]) operator. To 

retrieve the value of an indexed array element, use the Array or Vector object name and index number on the right 

side of an assignment statement:

var myFavoriteSong:String = songTitles[3];

It’s possible to attempt to retrieve a value from an Array or Vector using an index where no element exists. In that case, 

an Array object returns the value undefined and a Vector throws a RangeError exception.

Three methods of the Array and Vector classes—pop(), shift(), and splice()—allow you to remove elements. The 

pop() method removes an element from the end of the array. In other words, it removes the element at the highest 

index number. The shift() method removes an element from the beginning of the array, which means that it always 

removes the element at index number 0. The splice() method, which can also be used to insert elements, removes 

an arbitrary number of elements starting at the index number specified by the first argument sent to the method.

The following example uses all three methods to remove elements from an Array instance. An Array named oceans 

is created to store the names of large bodies of water. Some of the names in the Array are lakes rather than oceans, so 

they need to be removed. 

Updated 11 February 2009



160PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

First, the splice() method is used to remove the items Aral and Superior, and insert the items Atlantic and 

Indian. The first argument sent to splice(), the integer 2, indicates that the operation should start with the third 

item in the list, which is at index 2. The second argument, 2, indicates that two items should be removed. The 

remaining arguments, Atlantic and Indian, are values to be inserted at index 2. 

Second, the pop() method is used to remove last element in the array, Huron. And third, the shift() method is used 

to remove the first item in the array, Victoria.

 var oceans:Array = ["Victoria", "Pacific", "Aral", "Superior", "Indian", "Huron"];  
 oceans.splice(2, 2, "Arctic", "Atlantic"); // replaces Aral and Superior  
 oceans.pop(); // removes Huron  
 oceans.shift(); // removes Victoria  
 trace(oceans);// output: Pacific,Arctic,Atlantic,Indian

The pop() and shift() methods both return the item that was removed. For an Array instance, the data type of the 

return value is Object because arrays can hold values of any data type. For a Vector instance, the data type of the return 

value is the base type of the Vector. The splice() method returns an Array or Vector containing the values removed. 

You can change the oceans Array example so that the call to splice() assigns the returned Array to a new Array 

variable, as shown in the following example:

 var lakes:Array = oceans.splice(2, 2, "Arctic", "Atlantic");  
 trace(lakes); // output: Aral,Superior

You may come across code that uses the delete operator on an Array object element. The delete operator sets the 

value of an Array element to undefined, but it does not remove the element from the Array. For example, the 

following code uses the delete operator on the third element in the oceans Array, but the length of the Array remains 

5:

 var oceans:Array = ["Arctic", "Pacific", "Victoria", "Indian", "Atlantic"];  
 delete oceans[2];  
 trace(oceans);// output: Arctic,Pacific,,Indian,Atlantic  
 trace(oceans[2]); // output: undefined  
 trace(oceans.length); // output: 5

You can truncate an Array or Vector using an array’s length property. If you set the length property of an indexed 

array to a length that is less than the current length of the array, the array is truncated, removing any elements stored 

at index numbers higher than the new value of length minus 1. For example, if the oceans array were sorted such that 

all valid entries were at the beginning of the array, you could use the length property to remove the entries at the end 

of the array, as shown in the following code:

 var oceans:Array = ["Arctic", "Pacific", "Victoria", "Aral", "Superior"];  
 oceans.length = 2;  
 trace(oceans); // output: Arctic,Pacific

Note: If a Vector object’s fixed property is true, the total number of elements in the Vector can’t change. If you try to 

remove an element from or truncate a fixed-length Vector using the techniques described here, an error occurs.

Sorting an array

There are three methods—reverse(), sort(), and sortOn()—that allow you to change the order of an indexed 

array, either by sorting or reversing the order. All of these methods modify the existing array. The following table 

summarizes these methods and their behavior for Array and Vector objects:

Updated 11 February 2009



161PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

The reverse() method

The reverse() method takes no parameters and does not return a value, but allows you to toggle the order of your 

array from its current state to the reverse order. The following example reverses the order of the oceans listed in the 

oceans array:

 var oceans:Array = ["Arctic", "Atlantic", "Indian", "Pacific"];  
 oceans.reverse();  
 trace(oceans); // output: Pacific,Indian,Atlantic,Arctic

Basic sorting with the sort() method (Array class only)

For an Array instance, the sort() method rearranges the elements in an array using the default sort order. The default 

sort order has the following characteristics:

• The sort is case-sensitive, which means that uppercase characters precede lowercase characters. For example, the 

letter D precedes the letter b. 

• The sort is ascending, which means that lower character codes (such as A) precede higher character codes (such as B).

• The sort places identical values adjacent to each other but in no particular order.

• The sort is string-based, which means that elements are converted to strings before they are compared (for example, 

10 precedes 3 because the string "1" has a lower character code than the string "3" has). 

You may find that you need to sort your Array without regard to case, or in descending order, or perhaps your array 

contains numbers that you want to sort numerically instead of alphabetically. The Array class’s sort() method has an 

options parameter that allows you to alter each characteristic of the default sort order. The options are defined by a 

set of static constants in the Array class, as shown in the following list:

• Array.CASEINSENSITIVE: This option makes the sort disregard case. For example, the lowercase letter b precedes 

the uppercase letter D.

• Array.DESCENDING: This reverses the default ascending sort. For example, the letter B precedes the letter A.

• Array.UNIQUESORT: This causes the sort to abort if two identical values are found.

• Array.NUMERIC: This causes numerical sorting, so that 3 precedes 10.

The following example highlights some of these options. An Array named poets is created that is sorted using several 

different options.

Method Array behavior Vector behavior

reverse() Changes the order of the elements so that the last element becomes the 

first element, the penultimate element becomes the second, and so on

Identical to Array behavior

sort() Allows you to sort the Array’s elements in a variety of predefined ways, 

such as alphabetical or numeric order. You can also specify a custom 

sorting algorithm.

Sorts the elements according to the custom 

sorting algorithm that you specify

sortOn() Allows you to sort objects that have one or more common properties, 

specifying the property or properties to use as the sort keys

Not available in the Vector class

Updated 11 February 2009



162PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 var poets:Array = ["Blake", "cummings", "Angelou", "Dante"];  
 poets.sort(); // default sort  
 trace(poets); // output: Angelou,Blake,Dante,cummings  
   
 poets.sort(Array.CASEINSENSITIVE);  
 trace(poets); // output: Angelou,Blake,cummings,Dante  
   
 poets.sort(Array.DESCENDING);  
 trace(poets); // output: cummings,Dante,Blake,Angelou  
   
 poets.sort(Array.DESCENDING | Array.CASEINSENSITIVE); // use two options  
 trace(poets); // output: Dante,cummings,Blake,Angelou

Custom sorting with the sort() method (Array and Vector classes)

In addition to the basic sorting that’s available for an Array object, you can also define a custom sorting rule. This 

technique is the only form of the sort() method that is available for the Vector class. To define a custom sort, you 

write a custom sort function and pass it as an argument to the sort() method.

For example, if you have a list of names in which each list element contains a person’s full name, but you want to sort 

the list by last name, you must use a custom sort function to parse each element and use the last name in the sort 

function. The following code shows how this can be done with a custom function that is used as a parameter to the 

Array.sort() method:

 var names:Array = new Array("John Q. Smith", "Jane Doe", "Mike Jones");  
 function orderLastName(a, b):int  
 {  
 var lastName:RegExp = /\b\S+$/;  
 var name1 = a.match(lastName);  
 var name2 = b.match(lastName);  
 if (name1 < name2)  
 {  
 return -1;  
 }  
 else if (name1 > name2)  
 {  
 return 1;  
 }  
 else  
 {  
 return 0;  
 }  
 }  
 trace(names); // output: John Q. Smith,Jane Doe,Mike Jones  
 names.sort(orderLastName);  
 trace(names); // output: Jane Doe,Mike Jones,John Q. Smith

The custom sort function orderLastName() uses a regular expression to extract the last name from each element to 

use for the comparison operation. The function identifier orderLastName is used as the sole parameter when calling 

the sort() method on the names array. The sort function accepts two parameters, a and b, because it works on two 

array elements at a time. The sort function’s return value indicates how the elements should be sorted:

• A return value of -1 indicates that the first parameter, a, precedes the second parameter, b. 

• A return value of 1 indicates that the second parameter, b, precedes the first, a. 

• A return value of 0 indicates that the elements have equal sorting precedence. 

Updated 11 February 2009



163PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

The sortOn() method (Array class only)

The sortOn() method is designed for Array objects with elements that contain objects. These objects are expected to 

have at least one common property that can be used as the sort key. The use of the sortOn() method for arrays of any 

other type yields unexpected results.

Note: The Vector class does not include a sortOn() method. This method is only available for Array objects.

The following example revises the poets Array so that each element is an object instead of a string. Each object holds 

both the poet’s last name and year of birth.

 var poets:Array = new Array();  
 poets.push({name:"Angelou", born:"1928"});  
 poets.push({name:"Blake", born:"1757"});  
 poets.push({name:"cummings", born:"1894"});  
 poets.push({name:"Dante", born:"1265"});  
 poets.push({name:"Wang", born:"701"});

You can use the sortOn() method to sort the Array by the born property. The sortOn() method defines two 

parameters, fieldName and options. The fieldName argument must be specified as a string. In the following 

example, sortOn() is called with two arguments, "born" and Array.NUMERIC. The Array.NUMERIC argument is used 

to ensure that the sort is done numerically instead of alphabetically. This is a good practice even when all the numbers 

have the same number of digits because it ensures that the sort will continue to behave as expected if a number with 

fewer or more digits is later added to the array.

 poets.sortOn("born", Array.NUMERIC);  
 for (var i:int = 0; i < poets.length; ++i)  
 {  
 trace(poets[i].name, poets[i].born);  
 }  
 /* output:  
 Wang 701  
 Dante 1265  
 Blake 1757  
 cummings 1894  
 Angelou 1928  
 */

Sorting without modifying the original array (Array class only)

Generally, the sort() and sortOn() methods modify an Array. If you wish to sort an Array without modifying the 

existing array, pass the Array.RETURNINDEXEDARRAY constant as part of the options parameter. This option directs 

the methods to return a new Array that reflects the sort and to leave the original Array unmodified. The Array returned 

by the methods is a simple Array of index numbers that reflects the new sort order and does not contain any elements 

from the original Array. For example, to sort the poets Array by birth year without modifying the Array, include the 

Array.RETURNINDEXEDARRAY constant as part of the argument passed for the options parameter. 

The following example stores the returned index information in an Array named indices and uses the indices array 

in conjunction with the unmodified poets array to output the poets in order of birth year:

Updated 11 February 2009



164PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 var indices:Array;  
 indices = poets.sortOn("born", Array.NUMERIC | Array.RETURNINDEXEDARRAY);  
 for (var i:int = 0; i < indices.length; ++i)  
 {  
 var index:int = indices[i];  
 trace(poets[index].name, poets[index].born);  
 }  
 /* output:  
 Wang 701  
 Dante 1265  
 Blake 1757  
 cummings 1894  
 Angelou 1928  
 */

Querying an array

Four methods of the Array and Vector classes—concat(), join(), slice(), and toString()—all query the array 

for information, but do not modify the array. The concat() and slice() methods both return new arrays, while the 

join() and toString() methods both return strings. The concat() method takes a new array or list of elements as 

arguments and combines it with the existing array to create a new array. The slice() method has two parameters, 

aptly named startIndex and an endIndex, and returns a new array containing a copy of the elements “sliced” from 

the existing array. The slice begins with the element at startIndex and ends with the element just before endIndex. 

That bears repeating: the element at endIndex is not included in the return value.

The following example uses concat() and slice() to create new arrays using elements of other arrays:

 var array1:Array = ["alpha", "beta"];  
 var array2:Array = array1.concat("gamma", "delta");  
 trace(array2); // output: alpha,beta,gamma,delta  
   
 var array3:Array = array1.concat(array2);  
 trace(array3); // output: alpha,beta,alpha,beta,gamma,delta  
   
 var array4:Array = array3.slice(2,5);  
 trace(array4); // output: alpha,beta,gamma

You can use the join() and toString() methods to query the array and return its contents as a string. If no 

parameters are used for the join() method, the two methods behave identically—they return a string containing a 

comma-delimited list of all elements in the array. The join() method, unlike the toString() method, accepts a 

parameter named delimiter, which allows you to choose the symbol to use as a separator between each element in 

the returned string.

The following example creates an Array called rivers and calls both join() and toString() to return the values in 

the Array as a string. The toString() method is used to return comma-separated values (riverCSV), while the 

join() method is used to return values separated by the + character.

 var rivers:Array = ["Nile", "Amazon", "Yangtze", "Mississippi"];  
 var riverCSV:String = rivers.toString();  
 trace(riverCSV); // output: Nile,Amazon,Yangtze,Mississippi  
 var riverPSV:String = rivers.join("+");  
 trace(riverPSV); // output: Nile+Amazon+Yangtze+Mississippi

One issue to be aware of with the join() method is that any nested Array or Vector instances are always returned with 

comma-separated values, no matter what separator you specify for the main array elements, as the following example 

shows:

Updated 11 February 2009



165PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 var nested:Array = ["b","c","d"];  
 var letters:Array = ["a",nested,"e"];   
 var joined:String = letters.join("+");  
 trace(joined); // output: a+b,c,d+e

Associative arrays

An associative array, sometimes called a hash or map, uses keys instead of a numeric index to organize stored values. 

Each key in an associative array is a unique string that is used to access a stored value. An associative array is an 

instance of the Object class, which means that each key corresponds to a property name. Associative arrays are 

unordered collections of key and value pairs. Your code should not expect the keys of an associative array to be in a 

specific order. 

ActionScript 3.0 also includes an advanced type of associative array called a dictionary. Dictionaries, which are 

instances of the Dictionary class in the flash.utils package, use keys that can be of any data type. In other words, 

dictionary keys are not limited to values of type String. 

Associative arrays with string keys

There are two ways to create associative arrays in ActionScript 3.0. The first way is to use an Object instance. By using 

an Object instance you can initialize your array with an object literal. An instance of the Object class, also called a 

generic object, is functionally identical to an associative array. Each property name of the generic object serves as the 

key that provides access to a stored value. 

The following example creates an associative array named monitorInfo, using an object literal to initialize the array 

with two key and value pairs:

 var monitorInfo:Object = {type:"Flat Panel", resolution:"1600 x 1200"};  
 trace(monitorInfo["type"], monitorInfo["resolution"]);   
 // output: Flat Panel 1600 x 1200

If you do not need to initialize the array at declaration time, you can use the Object constructor to create the array, as 

follows:

 var monitorInfo:Object = new Object();

After the array is created using either an object literal or the Object class constructor, you can add new values to the 

array using either the array access ([]) operator or the dot operator (.). The following example adds two new values 

to monitorArray:

 monitorInfo["aspect ratio"] = "16:10"; // bad form, do not use spaces  
 monitorInfo.colors = "16.7 million";  
 trace(monitorInfo["aspect ratio"], monitorInfo.colors);  
 // output: 16:10 16.7 million

Note that the key named aspect ratio contains a space character. This is possible with the array access ([]) operator, 

but generates an error if attempted with the dot operator. Using spaces in your key names is not recommended.

The second way to create an associative array is to use the Array constructor (or the constructor of any dynamic class) 

and then use either the array access ([]) operator or the dot operator (.) to add key and value pairs to the array. If you 

declare your associative array to be of type Array, you cannot use an object literal to initialize the array. The following 

example creates an associative array named monitorInfo using the Array constructor and adds a key called type and 

a key called resolution, along with their values:

Updated 11 February 2009



166PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 var monitorInfo:Array = new Array();  
 monitorInfo["type"] = "Flat Panel";  
 monitorInfo["resolution"] = "1600 x 1200";  
 trace(monitorInfo["type"], monitorInfo["resolution"]);   
 // output: Flat Panel 1600 x 1200

There is no advantage in using the Array constructor to create an associative array. You cannot use the Array.length 

property or any of the methods of the Array class with associative arrays, even if you use the Array constructor or the 

Array data type. The use of the Array constructor is best left for the creation of indexed arrays.

Associative arrays with object keys (Dictionaries)

You can use the Dictionary class to create an associative array that uses objects for keys rather than strings. Such arrays 

are sometimes called dictionaries, hashes, or maps. For example, consider an application that determines the location 

of a Sprite object based on its association with a specific container. You can use a Dictionary object to map each Sprite 

object to a container.

The following code creates three instances of the Sprite class that serve as keys for the Dictionary object. Each key is 

assigned a value of either GroupA or GroupB. The values can be of any data type, but in this example both GroupA and 

GroupB are instances of the Object class. Subsequently, you can access the value associated with each key with the array 

access ([]) operator, as shown in the following code:

 import flash.display.Sprite;  
 import flash.utils.Dictionary;  
   
 var groupMap:Dictionary = new Dictionary();  
   
 // objects to use as keys  
 var spr1:Sprite = new Sprite();  
 var spr2:Sprite = new Sprite();  
 var spr3:Sprite = new Sprite();  
   
 // objects to use as values  
 var groupA:Object = new Object();  
 var groupB:Object = new Object();  
   
 // Create new key-value pairs in dictionary.  
 groupMap[spr1] = groupA;  
 groupMap[spr2] = groupB;  
 groupMap[spr3] = groupB;  
   
 if (groupMap[spr1] == groupA)  
 {  
 trace("spr1 is in groupA");   
 }  
 if (groupMap[spr2] == groupB)  
 {  
 trace("spr2 is in groupB");   
 }  
 if (groupMap[spr3] == groupB)  
 {  
 trace("spr3 is in groupB");   
 }

Updated 11 February 2009



167PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

Iterating with object keys

You can iterate through the contents of a Dictionary object with either a for..in loop or a for each..in loop. A 

for..in loop allows you to iterate based on the keys, whereas a for each..in loop allows you to iterate based on the 

values associated with each key.

Use the for..in loop for direct access to the object keys of a Dictionary object. You can also access the values of the 

Dictionary object with the array access ([]) operator. The following code uses the previous example of the groupMap 

dictionary to show how to iterate through a Dictionary object with the for..in loop:

 for (var key:Object in groupMap)  
 {  
 trace(key, groupMap[key]);  
 }  
 /* output:  
 [object Sprite] [object Object]  
 [object Sprite] [object Object]  
 [object Sprite] [object Object]  
 */

Use the for each..in loop for direct access to the values of a Dictionary object. The following code also uses the 

groupMap dictionary to show how to iterate through a Dictionary object with the for each..in loop:

 for each (var item:Object in groupMap)  
 {  
 trace(item);  
 }  
 /* output:  
 [object Object]  
 [object Object]  
 [object Object]  
 */

Object keys and memory management

Adobe® Flash® Player and Adobe® AIR™ use a garbage collection system to recover memory that is no longer used. 

When an object has no references pointing to it, the object becomes eligible for garbage collection, and the memory is 

recovered the next time the garbage collection system executes. For example, the following code creates a new object 

and assigns a reference to the object to the variable myObject:

 var myObject:Object = new Object();

As long as any reference to the object exists, the garbage collection system will not recover the memory that the object 

occupies. If the value of myObject is changed such that it points to a different object or is set to the value null, the 

memory occupied by the original object becomes eligible for garbage collection, but only if there are no other 

references to the original object. 

If you use myObject as a key in a Dictionary object, you are creating another reference to the original object. For 

example, the following code creates two references to an object—the myObject variable, and the key in the myMap 

object:

 import flash.utils.Dictionary;  
   
 var myObject:Object = new Object();  
 var myMap:Dictionary = new Dictionary();  
 myMap[myObject] = "foo";

To make the object referenced by myObject eligible for garbage collection, you must remove all references to it. In this 

case, you must change the value of myObject and delete the myObject key from myMap, as shown in the following code:

Updated 11 February 2009



168PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 myObject = null;  
 delete myMap[myObject];

Alternatively, you can use the useWeakReference parameter of the Dictionary constructor to make all of the 

dictionary keys weak references. The garbage collection system ignores weak references, which means that an object 

that has only weak references is eligible for garbage collection. For example, in the following code, you do not need to 

delete the myObject key from myMap in order to make the object eligible for garbage collection:

 import flash.utils.Dictionary;  
   
 var myObject:Object = new Object();  
 var myMap:Dictionary = new Dictionary(true);  
 myMap[myObject] = "foo";  
 myObject = null; // Make object eligible for garbage collection.

Multidimensional arrays

Multidimensional arrays contain other arrays as elements. For example, consider a list of tasks that is stored as an 

indexed array of strings:

 var tasks:Array = ["wash dishes", "take out trash"];

If you want to store a separate list of tasks for each day of the week, you can create a multidimensional array with one 

element for each day of the week. Each element contains an indexed array, similar to the tasks array, that stores the 

list of tasks. You can use any combination of indexed or associative arrays in multidimensional arrays. The examples 

in the following sections use either two indexed arrays or an associative array of indexed arrays. You might want to try 

the other combinations as exercises. 

Two indexed arrays

When you use two indexed arrays, you can visualize the result as a table or spreadsheet. The elements of the first array 

represent the rows of the table, while the elements of the second array represent the columns. 

For example, the following multidimensional array uses two indexed arrays to track task lists for each day of the week. 

The first array, masterTaskList, is created using the Array class constructor. Each element of the array represents a 

day of the week, with index 0 representing Monday, and index 6 representing Sunday. These elements can be thought 

of as the rows in the table. You can create each day’s task list by assigning an array literal to each of the seven elements 

that you create in the masterTaskList array. The array literals represent the columns in the table.

 var masterTaskList:Array = new Array();  
 masterTaskList[0] = ["wash dishes", "take out trash"];  
 masterTaskList[1] = ["wash dishes", "pay bills"];  
 masterTaskList[2] = ["wash dishes", "dentist", "wash dog"];  
 masterTaskList[3] = ["wash dishes"];  
 masterTaskList[4] = ["wash dishes", "clean house"];  
 masterTaskList[5] = ["wash dishes", "wash car", "pay rent"];  
 masterTaskList[6] = ["mow lawn", "fix chair"];

You can access individual items on any of the task lists using the array access ([]) operator. The first set of brackets 

represents the day of the week, and the second set of brackets represents the task list for that day. For example, to 

retrieve the second task from Wednesday’s list, first use index 2 for Wednesday, and then use index 1 for the second 

task in the list.

 trace(masterTaskList[2][1]); // output: dentist

Updated 11 February 2009



169PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

To retrieve the first task from Sunday’s list, use index 6 for Sunday and index 0 for the first task on the list.

 trace(masterTaskList[6][0]); // output: mow lawn

Associative array with an indexed array

To make the individual arrays easier to access, you can use an associative array for the days of the week and an indexed 

array for the task lists. Using an associative array allows you to use dot syntax when referring to a particular day of the 

week, but at the cost of extra run-time processing to access each element of the associative array. The following 

example uses an associative array as the basis of a task list, with a key and value pair for each day of the week: 

 var masterTaskList:Object = new Object();  
 masterTaskList["Monday"] = ["wash dishes", "take out trash"];  
 masterTaskList["Tuesday"] = ["wash dishes", "pay bills"];  
 masterTaskList["Wednesday"] = ["wash dishes", "dentist", "wash dog"];  
 masterTaskList["Thursday"] = ["wash dishes"];  
 masterTaskList["Friday"] = ["wash dishes", "clean house"];  
 masterTaskList["Saturday"] = ["wash dishes", "wash car", "pay rent"];  
 masterTaskList["Sunday"] = ["mow lawn", "fix chair"];

Dot syntax makes the code more readable by making it possible to avoid multiple sets of brackets.

 trace(masterTaskList.Wednesday[1]); // output: dentist  
 trace(masterTaskList.Sunday[0]);// output: mow lawn

You can iterate through the task list using a for..in loop, but you must use the array access ([]) operator instead of 

dot syntax to access the value associated with each key. Because masterTaskList is an associative array, the elements 

are not necessarily retrieved in the order that you may expect, as the following example shows:

 for (var day:String in masterTaskList)  
 {  
 trace(day + ": " + masterTaskList[day])  
 }  
 /* output:  
 Sunday: mow lawn,fix chair  
 Wednesday: wash dishes,dentist,wash dog  
 Friday: wash dishes,clean house  
 Thursday: wash dishes  
 Monday: wash dishes,take out trash  
 Saturday: wash dishes,wash car,pay rent  
 Tuesday: wash dishes,pay bills  
 */

Cloning arrays

The Array class has no built-in method for making copies of arrays. You can create a shallowcopy of an array by calling 

either the concat() or slice() methods with no arguments. In a shallow copy, if the original array has elements that 

are objects, only the references to the objects are copied rather than the objects themselves. The copy points to the same 

objects as the original does. Any changes made to the objects are reflected in both arrays.

In a deep copy, any objects found in the original array are also copied so that the new array does not point to the same 

objects as does the original array. Deep copying requires more than one line of code, which usually calls for the creation 

of a function. Such a function could be created as a global utility function or as a method of an Array subclass.

Updated 11 February 2009



170PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

The following example defines a function named clone() that does deep copying. The algorithm is borrowed from a 

common Java programming technique. The function creates a deep copy by serializing the array into an instance of 

the ByteArray class, and then reading the array back into a new array. This function accepts an object so that it can be 

used with both indexed arrays and associative arrays, as shown in the following code:

 import flash.utils.ByteArray;  
   
 function clone(source:Object):*  
 {  
 var myBA:ByteArray = new ByteArray();  
 myBA.writeObject(source);  
 myBA.position = 0;  
 return(myBA.readObject());  
 }

Advanced topics

Extending the Array class

The Array class is one of the few core classes that is not final, which means that you can create your own subclass of 

Array. This section provides an example of how to create a subclass of Array and discusses some of the issues that can 

arise during the process. 

As mentioned previously, arrays in ActionScript are not typed, but you can create a subclass of Array that accepts 

elements of only a specific data type. The example in the following sections defines an Array subclass named 

TypedArray that limits its elements to values of the data type specified in the first parameter. The TypedArray class is 

presented merely as an example of how to extend the Array class and may not be suitable for production purposes for 

several reasons. First, type checking occurs at run time rather than at compile time. Second, when a TypedArray 

method encounters a mismatch, the mismatch is ignored and no exception is thrown, although the methods can be 

easily modified to throw exceptions. Third, the class cannot prevent the use of the array access operator to insert values 

of any type into the array. Fourth, the coding style favors simplicity over performance optimization.

Note: You can use the technique described here to create a typed array. However, a better approach is to use a Vector 

object. A Vector instance is a true typed array, and provides performance and other improvements over the Array class 

or any subclass. The purpose of this discussion is to demonstrate how to create an Array subclass.

Declaring the subclass

Use the extends keyword to indicate that a class is a subclass of Array. A subclass of Array should use the dynamic 

attribute, just as the Array class does. Otherwise, your subclass will not function properly. 

The following code shows the definition of the TypedArray class, which contains a constant to hold the data type, a 

constructor method, and the four methods that are capable of adding elements to the array. The code for each method 

is omitted in this example, but is delineated and explained fully in the sections that follow:

Updated 11 February 2009



171PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 public dynamic class TypedArray extends Array  
 {  
 private const dataType:Class;  
   
 public function TypedArray(...args) {}  
   
 AS3 override function concat(...args):Array {}  
   
 AS3 override function push(...args):uint {}  
   
 AS3 override function splice(...args) {}  
   
 AS3 override function unshift(...args):uint {}  
 }

The four overridden methods all use the AS3 namespace instead of the public attribute because this example assumes 

that the compiler option -as3 is set to true and the compiler option -es is set to false. These are the default settings 

for Adobe Flex Builder 3 and for Adobe® Flash® CS4 Professional. For more information, see “The AS3 namespace” on 

page 121.

If you are an advanced developer who prefers to use prototype inheritance, you can make two minor changes to the 

TypedArray class to make it compile with the compiler option -es set to true. First, remove all occurrences of the 

override attribute and replace the AS3 namespace with the public attribute. Second, substitute Array.prototype for 

all four occurrences of super.

TypedArray constructor

The subclass constructor poses an interesting challenge because the constructor must accept a list of arguments of 

arbitrary length. The challenge is how to pass the arguments on to the superconstructor to create the array. If you pass 

the list of arguments as an array, the superconstructor considers it a single argument of type Array and the resulting 

array is always 1 element long. The traditional way to handle pass-through argument lists is to use the 

Function.apply() method, which takes an array of arguments as its second parameter but converts it to a list of 

arguments when executing the function. Unfortunately, the Function.apply() method cannot be used with 

constructors.

The only option left is to recreate the logic of the Array constructor in the TypedArray constructor. The following code 

shows the algorithm used in the Array class constructor, which you can reuse in your Array subclass constructor:

Updated 11 February 2009



172PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 public dynamic class Array  
 {  
 public function Array(...args)  
 {  
 var n:uint = args.length  
 if (n == 1 && (args[0] is Number))  
 {  
 var dlen:Number = args[0];  
 var ulen:uint = dlen;  
 if (ulen != dlen)  
 {  
 throw new RangeError("Array index is not a 32-bit unsigned integer ("+dlen+")");  
 }  
 length = ulen;  
 }  
 else  
 {  
 length = n;  
 for (var i:int=0; i < n; i++)  
 {  
 this[i] = args[i]   
 }  
 }  
 }  
 }

The TypedArray constructor shares most of the code from the Array constructor, with only four changes to the code. 

First, the parameter list includes a new required parameter of type Class that allows specification of the array’s data 

type. Second, the data type passed to the constructor is assigned to the dataType variable. Third, in the else 

statement, the value of the length property is assigned after the for loop so that length includes only arguments that 

are the proper type. Fourth, the body of the for loop uses the overridden version of the push() method so that only 

arguments of the correct data type are added to the array. The following example shows the TypedArray constructor 

function:

Updated 11 February 2009



173PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 public dynamic class TypedArray extends Array  
 {  
 private var dataType:Class;  
 public function TypedArray(typeParam:Class, ...args)  
 {  
 dataType = typeParam;  
 var n:uint = args.length  
 if (n == 1 && (args[0] is Number))  
 {  
 var dlen:Number = args[0];  
 var ulen:uint = dlen  
 if (ulen != dlen)  
 {  
 throw new RangeError("Array index is not a 32-bit unsigned integer ("+dlen+")")  
 }  
 length = ulen;  
 }  
 else  
 {  
 for (var i:int=0; i < n; i++)  
 {  
 // type check done in push()   
 this.push(args[i])  
 }  
 length = this.length;  
 }  
 }  
 }

TypedArray overridden methods

The TypedArray class overrides the four methods of the Array class that are capable of adding elements to an array. In 

each case, the overridden method adds a type check that prevents the addition of elements that are not the correct data 

type. Subsequently, each method calls the superclass version of itself.

The push() method iterates through the list of arguments with a for..in loop and does a type check on each 

argument. Any argument that is not the correct type is removed from the args array with the splice() method. After 

the for..in loop ends, the args array contains values only of type dataType. The superclass version of push() is then 

called with the updated args array, as the following code shows:

 AS3 override function push(...args):uint  
 {  
 for (var i:* in args)  
 {  
 if (!(args[i] is dataType))  
 {  
 args.splice(i,1);  
 }  
 }  
 return (super.push.apply(this, args));  
 }

The concat() method creates a temporary TypedArray named passArgs to store the arguments that pass the type 

check. This allows the reuse of the type check code that exists in the push() method. A for..in loop iterates through 

the args array, and calls push() on each argument. Because passArgs is typed as TypedArray, the TypedArray 

version of push() is executed. The concat() method then calls its own superclass version, as the following code 

shows:

Updated 11 February 2009



174PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 AS3 override function concat(...args):Array  
 {  
 var passArgs:TypedArray = new TypedArray(dataType);  
 for (var i:* in args)  
 {  
 // type check done in push()  
 passArgs.push(args[i]);  
 }  
 return (super.concat.apply(this, passArgs));  
 }

The splice() method takes an arbitrary list of arguments, but the first two arguments always refer to an index 

number and the number of elements to delete. This is why the overridden splice() method does type checking only 

for args array elements in index positions 2 or higher. One point of interest in the code is that there appears to be a 

recursive call to splice() inside the for loop, but this is not a recursive call because args is of type Array rather than 

TypedArray, which means that the call to args.splice() is a call to the superclass version of the method. After the 

for..in loop concludes, the args array contains only values of the correct type in index positions 2 or higher, and 

splice() calls its own superclass version, as shown in the following code:

 AS3 override function splice(...args):*  
 {  
 if (args.length > 2)  
 {  
 for (var i:int=2; i< args.length; i++)  
 {  
 if (!(args[i] is dataType))  
 {  
 args.splice(i,1);  
 }  
 }  
 }  
 return (super.splice.apply(this, args));  
 }

The unshift() method, which adds elements to the beginning of an array, also accepts an arbitrary list of arguments. 

The overridden unshift() method uses an algorithm very similar to that used by the push() method, as shown in 

the following example code:

 AS3 override function unshift(...args):uint  
 {  
 for (var i:* in args)   
 {  
 if (!(args[i] is dataType))  
 {  
 args.splice(i,1);  
 }  
 }  
 return (super.unshift.apply(this, args));  
 }  
 }

Updated 11 February 2009



175PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

Example: PlayList

The PlayList example demonstrates techniques for working with arrays, in the context of a music playlist application 

that manages a list of songs. These techniques are:

• Creating an indexed array

• Adding items to an indexed array

• Sorting an array of objects by different properties, using different sorting options

• Converting an array to a character-delimited string

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

PlayList application files can be found in the Samples/PlayList folder. The application consists of the following files:

PlayList class overview

The PlayList class manages a set of Song objects. It has public methods with functionality for adding a song to the 

playlist (the addSong() method) and sorting the songs in the list (the sortList() method). In addition, the class 

includes a read-only accessor property, songList, which provides access to the actual set of songs in the playlist. 

Internally, the PlayList class keeps track of its songs using a private Array variable:

 public class PlayList  
 {  
 private var _songs:Array;  
 private var _currentSort:SortProperty = null;  
 private var _needToSort:Boolean = false;  
 ...  
 }

In addition to the _songs Array variable, which is used by the PlayList class to keep track of its list of songs, two other 

private variables keep track of whether the list needs to be sorted (_needToSort) and which property the song list is 

sorted by at a given time (_currentSort).

As with all objects, declaring an Array instance is only half the job of creating an Array. Before accessing an Array 

instance’s properties or methods, it must be instantiated, which is done in the PlayList class’s constructor.

File Description

PlayList.mxml

or

PlayList.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/playlist/PlayList.as A class representing a list of songs. It uses an Array to store the list, 

and manages the sorting of the list’s items..

com/example/programmingas3/playlist/Song.as A value object representing information about a single song. The 

items that are managed by the PlayList class are Song instances.

com/example/programmingas3/playlist/SortProperty.as A pseudo-enumeration whose available values represent the 

properties of the Song class by which a list of Song objects can be 

sorted.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


176PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 public function PlayList()  
 {  
 this._songs = new Array();  
 // Set the initial sorting.  
 this.sortList(SortProperty.TITLE);  
 }

The first line of the constructor instantiates the _songs variable, so that it is ready to be used. In addition, the 

sortList() method is called to set the initial sort-by property.

Adding a song to the list

When a user enters a new song into the application, the code in the data entry form calls the PlayList class’s addSong() 

method.

 /**  
  * Adds a song to the playlist.  
  */  
 public function addSong(song:Song):void  
 {  
 this._songs.push(song);  
 this._needToSort = true;  
 }

Inside addSong(), the _songs array’s push() method is called, adding the Song object that was passed to addSong() 

as a new element in that array. With the push() method, the new element is added to the end of the array, regardless 

of any sorting that might have been applied previously. This means that after the push() method has been called, the 

list of songs is likely to no longer be sorted correctly, so the _needToSort variable is set to true. In theory, the 

sortList() method could be called immediately, removing the need to keep track of whether the list is sorted or not 

at a given time. In practice, however, there is no need for the list of songs to be sorted until immediately before it is 

retrieved. By deferring the sorting operation, the application doesn’t perform sorting that is unnecessary if, for 

example, several songs are added to the list before it is retrieved.

Sorting the list of songs

Because the Song instances that are managed by the playlist are complex objects, users of the application may wish to 

sort the playlist according to different properties, such as song title or year of publication. In the PlayList application, 

the task of sorting the list of songs has three parts: identifying the property by which the list should be sorted, indicating 

what sorting options need to be used when sorting by that property, and performing the actual sort operation.

Properties for sorting

A Song object keeps track of several properties, including song title, artist, publication year, filename, and a user-

selected set of genres in which the song belongs. Of these, only the first three are practical for sorting. As a matter of 

convenience for developers, the example includes the SortProperty class, which acts as an enumeration with values 

representing the properties available for sorting.

 public static const TITLE:SortProperty = new SortProperty("title");  
 public static const ARTIST:SortProperty = new SortProperty("artist");  
 public static const YEAR:SortProperty = new SortProperty("year");

The SortProperty class contain three constants, TITLE, ARTIST, and YEAR, each of which stores a String containing the 

actual name of the associated Song class property that can be used for sorting. Throughout the rest of the code, 

whenever a sort property is indicated, it is done using the enumeration member. For instance, in the PlayList 

constructor, the list is sorted initially by calling the sortList() method, as follows:

Updated 11 February 2009



177PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 // Set the initial sorting.  
 this.sortList(SortProperty.TITLE);

Because the property for sorting is specified as SortProperty.TITLE, the songs are sorted according to their title.

Sorting by property and specifying sort options

The work of actually sorting the list of songs is performed by the PlayList class in the sortList() method, as follows:

 /**  
  * Sorts the list of songs according to the specified property.  
  */  
 public function sortList(sortProperty:SortProperty):void  
 {  
 ...  
 var sortOptions:uint;  
 switch (sortProperty)  
 {  
 case SortProperty.TITLE:  
 sortOptions = Array.CASEINSENSITIVE;  
 break;  
 case SortProperty.ARTIST:  
 sortOptions = Array.CASEINSENSITIVE;  
 break;  
 case SortProperty.YEAR:  
 sortOptions = Array.NUMERIC;  
 break;  
 }  
   
 // Perform the actual sorting of the data.  
 this._songs.sortOn(sortProperty.propertyName, sortOptions);  
   
 // Save the current sort property.  
 this._currentSort = sortProperty;  
   
 // Record that the list is sorted.  
 this._needToSort = false;  
 }

When sorting by title or artist, it makes sense to sort alphabetically, but when sorting by year, it’s most logical to 

perform a numeric sort. The switch statement is used to define the appropriate sorting option, stored in the variable 

sortOptions, according to the value specified in the sortProperty parameter. Here again the named enumeration 

members are used to distinguish between properties, rather than hard-coded values.

With the sort property and sort options determined, the _songs array is actually sorted by calling its sortOn() 

method, passing those two values as parameters. The current sort property is recorded, as is the fact that the song list 

is currently sorted.

Combining array elements into a character-delimited string

In addition to using an array to maintain the song list in the PlayList class, in this example arrays are also used in the 

Song class to help manage the list of genres to which a given song belongs. Consider this snippet from the Song class’s 

definition:

Updated 11 February 2009



178PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with arrays

 private var _genres:String;  
   
 public function Song(title:String, artist:String, year:uint, filename:String, genres:Array)  
 {  
 ...  
 // Genres are passed in as an array  
 // but stored as a semicolon-separated string.  
 this._genres = genres.join(";");  
 }

When creating a new Song instance, the genres parameter that is used to specify the genre (or genres) the song 

belongs to is defined as an Array instance. This makes it convenient to group multiple genres together into a single 

variable that can be passed to the constructor. However, internally the Song class maintains the genres in the private 

_genres variable as a semicolon-separated String instance. The Array parameter is converted into a semicolon-

separated string by calling its join() method with the literal string value ";" as the specified delimiter.

By the same token, the genres accessors allow genres to be set or retrieved as an Array:

 public function get genres():Array  
 {  
 // Genres are stored as a semicolon-separated String,  
 // so they need to be transformed into an Array to pass them back out.  
 return this._genres.split(";");  
 }  
 public function set genres(value:Array):void  
 {  
 // Genres are passed in as an array,  
 // but stored as a semicolon-separated string.  
 this._genres = value.join(";");  
 }

The genresset accessor behaves exactly the same as the constructor; it accepts an Array and calls the join() method 

to convert it to a semicolon-separated String. The get accessor performs the opposite operation: the _genres 

variable’s split() method is called, splitting the String into an array of values using the specified delimiter (the literal 

string value ";" as before).

Updated 11 February 2009



179

Chapter 9: Handling errors

To “handle” an error means you build logic into your application that responds to, or fixes, an error, generated either 

when an application is compiled or when a compiled application is running. When your application handles errors, 

something occurs as a response when the error is encountered, as opposed to no response and whatever process created 

the error failing silently. Used correctly, error handling helps shield your application and its users from otherwise 

unexpected behavior.

However, error handling is a broad category that includes responding to many kinds of errors that are thrown during 

compilation or at run time. This chapter focuses on how to handle run-time errors, the different types of errors that 

can be generated, and the advantages of the new error-handling system in ActionScript 3.0. This chapter also explains 

how to implement your own custom error-handling strategies for your applications.

Basics of error handling

Introduction to error handling

A run-time error is something that goes wrong in your ActionScript code that stops the ActionScript content from 

running in Adobe® Flash® Player or Adobe® AIR™. To ensure that your ActionScript code runs smoothly for users, you 

must write code in your application that handles the error—that fixes it, works around it, or at least lets the user know 

that it’s happened. This process is called error handling.

Error handling is a broad category that includes responding to many kinds of errors that are thrown during 

compilation or at run time. Errors that happen at compile time are often easier to identify—you must fix them in order 

to complete the process of creating a SWF file. This chapter doesn’t discuss compile-time errors; for more information 

on writing code that doesn’t contain compile-time errors, see “ActionScript language and syntax” on page 37 and 

“Object-oriented programming in ActionScript” on page 90. This chapter focuses on run-time errors.

Run-time errors can be more difficult to detect, because in order for them to occur the erroneous code must actually 

be run. If a segment of your program has several branches of code, like an if..then..else statement, you must test 

every possible condition, with all the possible input values that real users might use, in order to confirm that your code 

is error-free.

Run-time errors can be divided into two categories: program errors are mistakes in your ActionScript code, such as 

specifying the wrong data type for a method parameter; logical errors are mistakes in the logic (the data checking and 

value manipulation) of your program, such as using the wrong formula to calculate interest rates in a banking 

application. Again, both of these types of errors can often be detected and corrected ahead of time by diligently testing 

your application.

Ideally, you’ll want to identify and remove all errors from your application before it is released to end users. However, 

not all errors can be foreseen or prevented. For example, suppose your ActionScript application loads information 

from a particular website that is outside of your control. If at some point that website isn’t available, the part of your 

application that depends on that external data won’t behave correctly. The most important aspect of error handling 

involves preparing for these unknown cases and handling them gracefully so that users can continue to use your 

application, or at least get a friendly error message explaining why it isn’t working.

Updated 11 February 2009



180PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

Run-time errors are represented in two ways in ActionScript:

• Error classes: Many errors have an error class associated with them. When an error occurs, Flash Player or Adobe 

AIR creates an instance of the specific error class that is associated with that particular error. Your code can use the 

information contained in that error object to make an appropriate response to the error.

• Error events: Sometimes an error occurs when Flash Player or Adobe AIR would normally trigger an event. In those 

cases, Flash Player and Adobe AIR trigger an error event instead. Like other events, each error event has a class 

associated with it, and Flash Player and Adobe AIR pass an instance of that class to the methods that are subscribed 

to the error event.

To determine whether a particular method can trigger an error or error event, see the method’s entry in the 

ActionScript 3.0 Language and Components Reference.

Common error-handling tasks

These are common error-related tasks you might need to perform with your code:

• Writing code to handle errors

• Testing for, catching, and re-throwing errors

• Defining your own error class

• Responding to error and status events

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Asynchronous: A program command such as a method call that doesn’t provide an immediate result; instead it 

gives a result (or error) in the form of an event.

• Catch: When an exception (a run-time error) occurs and your code becomes aware of the exception, that code is 

said to catch the exception. Once an exception is caught, Flash Player and Adobe AIR stop notifying other 

ActionScript code of the exception.

• Debugger version: A special version of Flash Player or Adobe AIR (ADL) that contains code for notifying users of 

run-time errors. In the standard version of Flash Player or Adobe AIR (the one that most users have), errors that 

aren’t handled by your ActionScript code are ignored. In the debugger versions (which are included with Adobe 

Flash CS4 Professional and Adobe Flex), a warning message appears when an unhandled error happens.

• Exception: An error that happens while a program is running and that the run-time environment (that is, Flash 

Player or Adobe AIR) can’t resolve on its own.

• Re-throw: When your code catches an exception, Flash Player and Adobe AIR no longer notify other objects of the 

exception. If it’s important for other objects to be notified of the exception, your code must re-throw the exception 

to start the notification process again.

• Synchronous: A program command, such as a method call, that provides an immediate result (or immediately 

throws an error), meaning the response can be used within the same code block.

• Throw: The act of notifying Flash Player or Adobe AIR (and consequently, notifying other objects and ActionScript 

code) that an error has occurred is known as throwing an error.

Updated 11 February 2009



181PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Essentially 

all the code listings in this chapter include the appropriate trace() function call. To test the code listings in this 

chapter:

1 Create an empty Flash document.

2 Select a keyframe in the timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

You will see the results of the code listing’s trace() functions in the Output panel.

Some of the later code listings are more complex and are written as a class. To test these examples:

1 Create an empty Flash document and save it to your computer.

2 Create a new ActionScript file and save it in the same directory as the Flash document. The file’s name should match 

the name of the class in the code listing. For instance, if the code listing defines a class named ErrorTest, use the 

name ErrorTest.as to save the ActionScript file. 

3 Copy the code listing into the ActionScript file and save the file.

4 In the Flash document, click a blank part of the Stage or work space to activate the document Property inspector.

5 In the Property inspector, in the Document Class field, enter the name of the ActionScript class you copied from 

the text.

6 Run the program using Control > Test Movie

You will see the results of the example in the Output panel (if the example uses the trace() function) or in a text 

field created by the example code.

These techniques for testing example code listings are described in more detail in “Testing in-chapter example code 

listings” on page 34.

Types of errors

When you develop and run applications, you encounter different types of errors and error terminology. The following 

list introduces the major error types and terms:

• Compile-time errors are raised by the ActionScript compiler during code compilation. Compile-time errors occur 

when syntactical problems in your code prevent your application from being built. 

• Run-time errors occur when you run your application after you compile it. Run-time errors represent errors that 

are caused while a SWF file plays in Adobe Flash Player or Adobe AIR. In most cases, you will be able to handle 

run-time errors as they occur, reporting them to the user and taking steps to keep your application running. If the 

error is a fatal error, such as not being able to connect to a remote website or load required data, you can use error 

handling to allow your application to finish gracefully. 

• Synchronous errors are run-time errors that occur at the time a function is invoked—for example, when you try to 

use a specific method and the argument you pass to the method is invalid, so Flash Player or Adobe AIR throws an 

exception. Most errors occur synchronously—at the time the statement executes—and the flow of control passes 

immediately to the most applicable catch statement. 

For example, the following code excerpt throws a run-time error because the browse() method is not called before 

the program attempts to upload a file:

Updated 11 February 2009



182PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 var fileRef:FileReference = new FileReference();  
 try  
 {  
 fileRef.upload("http://www.yourdomain.com/fileupload.cfm");  
 }  
 catch (error:IllegalOperationError)  
 {  
 trace(error);  
 // Error #2037: Functions called in incorrect sequence, or earlier  
 // call was unsuccessful.  
 }

In this case, a run-time error is thrown synchronously because Flash Player determined that the browse() method 

was not called before the file upload was attempted. 

For detailed information on synchronous error handling, see “Handling synchronous errors in an application” on 

page 185.

• Asynchronouserrors are run-time errors that occur at various points during run time; they generate events and are 

caught by event listeners. An asynchronous operation is one in which a function initiates an operation, but doesn’t 

wait for it to complete. You can create an error event listener to wait for the application or user to try some 

operation, and if the operation fails, you catch the error with an event listener and respond to the error event. Then, 

the event listener calls an event handler function to respond to the error event in a useful manner. For example, the 

event handler could launch a dialog box that prompts the user to resolve the error.

Consider the file-upload synchronous error example presented earlier. If you successfully call the browse() 

method before beginning a file upload, Flash Player would dispatch several events. For example, when an upload 

starts, the open event is dispatched. When the file upload operation completes successfully, the complete event is 

dispatched. Because event handling is asynchronous (that is, it does not occur at specific, known, predesignated 

times), you need to use the addEventListener() method to listen for these specific events, as the following code 

shows:

 var fileRef:FileReference = new FileReference();  
 fileRef.addEventListener(Event.SELECT, selectHandler);  
 fileRef.addEventListener(Event.OPEN, openHandler);  
 fileRef.addEventListener(Event.COMPLETE, completeHandler);  
 fileRef.browse();  
   
 function selectHandler(event:Event):void  
 {  
 trace("...select...");  
 var request:URLRequest = new URLRequest("http://www.yourdomain.com/fileupload.cfm");  
 request.method = URLRequestMethod.POST;  
 event.target.upload(request.url);  
 }  
 function openHandler(event:Event):void  
 {  
 trace("...open...");  
 }  
 function completeHandler(event:Event):void  
 {  
 trace("...complete...");  
 }

For detailed information on asynchronous error handling, see “Responding to error events and status” on page 190.

Updated 11 February 2009



183PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

• Uncaught exceptions are errors thrown with no corresponding logic (like a catch statement) to respond to them. 

If your application throws an error, and no appropriate catch statement or event handler can be found at the 

current or higher level to handle the error, the error is considered an uncaught exception. 

At run time, Flash Player ignores, by design, uncaught errors and tries to continue playing if the error doesn’t stop 

the current SWF file, because users can’t necessarily resolve an error themselves. The process of ignoring an 

uncaught error is called “failing silently” and can complicate debugging applications. The debugger version of Flash 

Player responds to an uncaught error by terminating the current script and displaying the uncaught error in trace 

statement output or writing the error message to a log file. If the exception object is an instance of the Error class 

or one of its subclasses, the getStackTrace() method is invoked, and the stack trace information will also be 

displayed in trace statement output or in a log file. For more information about using the debugger version of Flash 

Player, see “Working with the debugger versions of Flash Player and AIR” on page 184.

Error handling in ActionScript 3.0

Since many applications can run without building the logic to handle errors, developers are tempted to postpone 

building error handling into their applications. However, without error handling, an application may easily stall or 

frustrate the user if something doesn’t work as expected. ActionScript 2.0 has an Error class that allows you to build 

logic into custom functions to throw an exception with a specific message. Because error handling is critical for making 

a user-friendly application, ActionScript 3.0 includes an expanded architecture for catching errors.

Note: While the ActionScript 3.0 Language and Components Reference documents the exceptions thrown by many 

methods, it may not include all possible exceptions for each method. A method may throw an exception for syntax errors 

or other problems that are not noted explicitly in the method description, even when the description does list some of the 

exceptions a method throws.

ActionScript 3.0 error-handling elements

ActionScript 3.0 includes many tools for error handling, including:

• Error classes. ActionScript 3.0 includes a broad range of Error classes to expand the scope of situations that may 

produce error objects. Each Error class helps applications handle and respond to specific error conditions, whether 

they are related to system errors (like a MemoryError condition), coding errors (like an ArgumentError condition), 

networking and communication errors (like a URIError condition), or other situations. For more information on 

each class, see “Comparing the Error classes” on page 193.

• Fewer silent failures. In earlier versions of Flash Player, errors were generated and reported only if you explicitly 

used the throw statement. For Flash Player 9 and later and Adobe AIR, native ActionScript methods and properties 

throw run-time errors that allow you to handle these exceptions more effectively when they occur, and then 

individually react to each exception. 

• Clear error messages displayed during debugging. When you are using the debugger version of Flash Player or 

Adobe AIR, problematic code or situations will generate robust error messages, which help you easily identify 

reasons why a particular block of code fails. This makes fixing errors more efficient. For more information, see 

“Working with the debugger versions of Flash Player and AIR” on page 184.

• Precise errors allow for clear error messages displayed to users at run time. In previous versions of Flash Player, the 

FileReference.upload() method returned a Boolean value of false if the upload() call was unsuccessful, 

indicating one of five possible errors. If an error occurs when you call the upload() method in ActionScript 3.0, 

you can throw one of four specific errors, which helps you display more accurate error messages to end users.

Updated 11 February 2009



184PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

• Refined error handling. Distinct errors are thrown for many common situations. For example, in ActionScript 2.0, 

before a FileReference object has been populated, the name property has the value null (so, before you can use or 

display the name property, you need to ensure that the value is set and not null). In ActionScript 3.0, if you attempt 

to access the name property before it has been populated, Flash Player or AIR throws an IllegalOperationError, 

which informs you that the value has not been set, and you can use try..catch..finally blocks to handle the 

error. For more information see “Using try..catch..finally statements” on page 185.

• No significant performance drawbacks. Using try..catch..finally blocks to handle errors takes little or no 

additional resources compared to previous versions of ActionScript.

• An ErrorEvent class that allows you to build listeners for specific asynchronous error events. For more information 

see “Responding to error events and status” on page 190.

Error-handling strategies

As long as your application doesn’t encounter a problematic condition, it may still run successfully if you don’t build 

error-handling logic into your code. However, if you don’t actively handle errors and your application does encounter 

a problem, your users will never know why your application fails when it does.

There are different ways you can approach error handling in your application. The following list summarizes the three 

major options for handling errors:

• Use try..catch..finally statements. These will catch synchronous errors as they occur. You can nest your 

statements into a hierarchy to catch exceptions at various levels of code execution. For more information, see 

“Using try..catch..finally statements” on page 185.

• Create your own custom error objects. You can use the Error class to create your own custom error objects to track 

specific operations in your application that are not covered by built-in error types. Then you can use 

try..catch..finally statements on your custom error objects. For more information see “Creating custom 

error classes” on page 189.

• Write event listeners and handlers to respond to error events. By using this strategy, you can create global error 

handlers that let you handle similar events without duplicating a lot of code in try..catch..finally blocks. You 

are also more likely to catch asynchronous errors using this approach. For more information, see “Responding to 

error events and status” on page 190.

Working with the debugger versions of Flash Player and 
AIR

Adobe provides developers with special editions of the Flash Player and Adobe AIR to assist debugging efforts. You 

obtain a copy of the debugger version of Flash Player when you install Adobe Flash CS4 Professional or Adobe Flex 

Builder 3. You also obtain the debugger version of Adobe AIR, which is called ADL, when you install either of those 

tools, or as part of the Adobe AIR SDK.

There is a notable difference in how the debugger versions and the release versions of Flash Player and Adobe AIR 

indicate errors. The debugger versions shows the error type (such as a generic Error, IOError, or EOFError), error 

number, and a human-readable error message. The release versions shows only the error type and error number. For 

example, consider the following code:

Updated 11 February 2009



185PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 try  
 {  
 tf.text = myByteArray.readBoolean();  
 }  
 catch (error:EOFError)  
 {  
 tf.text = error.toString();  
 }

If the readBoolean() method threw an EOFError in the debugger version of Flash Player, the following message 

would be displayed in the tf text field: “EOFError: Error #2030: End of file was encountered.” 

The same code in a release version of Flash Player or Adobe AIR would display the following text: “EOFError: Error 

#2030.” 

In order to keep resources and size to a minimum in the release versions, error message strings are not present. You 

can look up the error number in the documentation (the appendixes of the ActionScript 3.0 Language and 

Components Reference) to correlate to an error message. Alternatively, you can reproduce the error using the 

debugger versions of Flash Player and AIR to see the full message. 

Handling synchronous errors in an application

The most common error handling is synchronous error-handling logic, where you insert statements into your code to 

catch synchronous errors at run time. This type of error handling lets your application notice and recover from run-

time errors when functions fail. The logic for catching a synchronous error includes try..catch..finally 

statements, which literally try an operation, catch any error response from Flash Player or Adobe AIR, and finally 

execute some other operation to handle the failed operation. 

Using try..catch..finally statements

When you work with synchronous run-time errors, use the try..catch..finally statements to catch errors. When 

a run-time error occurs, Flash Player or Adobe AIR throws an exception, which means that it suspends normal 

execution and creates a special object of type Error. The Error object is then thrown to the first available catch block.

The try statement encloses statements that have the potential to create errors. You always use the catch statement 

with a try statement. If an error is detected in one of the statements in the try statement block, the catch statements 

that are attached to that try statement will execute. 

The finally statement encloses statements that will execute whether or not an error occurs in the try block. If there 

is no error, the statements within the finally block execute after the try block statements complete. If there is an 

error, the appropriate catch statement executes first, followed by the statements in the finally block. 

The following code demonstrates the syntax for using the try..catch..finally statements:

Updated 11 February 2009



186PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 try  
 {  
 // some code that could throw an error  
 }  
 catch (err:Error)  
 {  
 // code to react to the error  
 }  
 finally  
 {  
 // Code that runs whether or not an error was thrown. This code can clean  
 // up after the error, or take steps to keep the application running.  
 }

Each catch statement identifies a specific type of exception that it handles. The catch statement can specify only error 

classes that are subclasses of the Error class. Each catch statement is checked in order. Only the first catch statement 

that matches the type of error thrown will execute. In other words, if you first check the higher-level Error class and 

then a subclass of the Error class, only the higher-level Error class will match. The following code illustrates this point:

 try  
 {  
 throw new ArgumentError("I am an ArgumentError");  
 }  
 catch (error:Error)  
 {  
 trace("<Error> " + error.message);  
 }  
 catch (error:ArgumentError)  
 {  
 trace("<ArgumentError> " + error.message);  
 }

The previous code displays the following output:

 <Error> I am an ArgumentError

In order to correctly catch the ArgumentError, you need to make sure that the most specific error types are listed first 

and the more generic error types are listed later, as the following code shows:

 try  
 {  
 throw new ArgumentError("I am an ArgumentError");  
 }  
 catch (error:ArgumentError)  
 {  
 trace("<ArgumentError> " + error.message);  
 }  
 catch (error:Error)  
 {  
 trace("<Error> " + error.message);  
 }

Several methods and properties in the Flash Player API throw run-time errors if they encounter errors while they 

execute. For example, the close() method in the Sound class throws an IOError if the method is unable to close the 

audio stream, as demonstrated in the following code:

Updated 11 February 2009



187PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 var mySound:Sound = new Sound();  
 try  
 {  
 mySound.close();  
 }  
 catch (error:IOError)  
 {  
 // Error #2029: This URLStream object does not have an open stream.  
 }

As you become more familiar with the ActionScript 3.0 Language and Components Reference, you’ll notice which 

methods throw exceptions, as detailed in each method’s description.

The throw statement

Flash Player and Adobe AIR throw exceptions when they encounter errors in your application at run time. In addition, 

you can explicitly throw exceptions yourself using the throw statement. When explicitly throwing errors, Adobe 

recommends that you throw instances of the Error class or its subclasses. The following code demonstrates a throw 

statement that throws an instance of the Error class, MyErr, and eventually calls a function, myFunction(), to respond 

after the error is thrown:

 var MyError:Error = new Error("Encountered an error with the numUsers value", 99);  
 var numUsers:uint = 0;  
 try  
 {  
 if (numUsers == 0)  
 {  
 trace("numUsers equals 0");  
 }  
 }  
 catch (error:uint)  
 {  
 throw MyError; // Catch unsigned integer errors.  
 }  
 catch (error:int)  
 {  
 throw MyError; // Catch integer errors.  
 }  
 catch (error:Number)  
 {  
 throw MyError; // Catch number errors.  
 }  
 catch (error:*)  
 {  
 throw MyError; // Catch any other error.  
 }  
 finally   
 {  
 myFunction(); // Perform any necessary cleanup here.  
 }

Notice that the catch statements are ordered so that the most specific data types are listed first. If the catch statement 

for the Number data type was listed first, neither the catch statement for the uint data type nor the catch statement 

for the int data type would ever get executed.

Updated 11 February 2009



188PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

Note: In the Java programming language, each function that can throw an exception must declare this fact, listing the 

exception classes it can throw in a throws clause attached to the function declaration. ActionScript does not require you 

to declare the exceptions that can be thrown by a function.

Displaying a simple error message

One of the biggest benefits of the new exception and error event model is that it allows you to tell users when and why 

an action has failed. Your part is to write the code to display the message and offer options in response.

The following code shows a simple try..catch statement to display the error in a text field:

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.TextField;  
   
 public class SimpleError extends Sprite  
 {  
 public var employee:XML =   
 <EmpCode>  
 <costCenter>1234</costCenter>  
 <costCenter>1-234</costCenter>  
 </EmpCode>;  
   
 public function SimpleError()  
 {  
 try  
 {  
 if (employee.costCenter.length() != 1)  
 {  
 throw new Error("Error, employee must have exactly one cost center assigned.");  
 }  
 }   
 catch (error:Error)  
 {  
 var errorMessage:TextField = new TextField();  
 errorMessage.autoSize = TextFieldAutoSize.LEFT;  
 errorMessage.textColor = 0xFF0000;  
 errorMessage.text = error.message;  
 addChild(errorMessage);  
 }  
 }  
 }  
 }

Using a wider range of error classes and built-in compiler errors, ActionScript 3.0 offers more information than 

previous versions of ActionScript about why something has failed. This enables you to build more stable applications 

with better error handling. 

Rethrowing errors

When you build applications, there are several occasions in which you may need to rethrow an error if you are unable 

to handle the error properly. For example, the following code shows a nested try..catch block, which rethrows a 

custom ApplicationError if the nested catch block is unable to handle the error:

Updated 11 February 2009



189PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 try  
 {  
 try  
 {  
 trace("<< try >>");  
 throw new ArgumentError("some error which will be rethrown");  
 }  
 catch (error:ApplicationError)  
 {  
 trace("<< catch >> " + error);  
 trace("<< throw >>");  
 throw error;  
 }  
 catch (error:Error)  
 {  
 trace("<< Error >> " + error);  
 }  
 }  
 catch (error:ApplicationError)  
 {  
 trace("<< catch >> " + error);  
 }

The output from the previous snippet would be the following:

 << try >>  
 << catch >> ApplicationError: some error which will be rethrown  
 << throw >>  
 << catch >> ApplicationError: some error which will be rethrown

The nested try block throws a custom ApplicationError error that is caught by the subsequent catch block. This 

nested catch block can try to handle the error, and if unsuccessful, throw the ApplicationError object to the enclosing 

try..catch block.

Creating custom error classes

You can extend one of the standard Error classes to create your own specialized error classes in ActionScript. There 

are a number of reasons to create your own error classes:

• To identify specific errors or groups of errors that are unique to your application. 

For example, you may want to take different actions for errors thrown by your own code, in addition to those 

trapped by Flash Player or Adobe AIR. You can create a subclass of the Error class to track the new error data type 

in try..catch blocks.

• To provide unique error display capabilities for errors generated by your application. 

For example, you can create a new toString() method that formats your error messages in a certain way. You can 

also define a lookupErrorString() method that takes an error code and retrieves the proper message based on 

the user’s language preference.

A specialized error class must extend the core ActionScript Error class. Here is an example of a specialized AppError 

class that extends the Error class:

Updated 11 February 2009



190PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 public class AppError extends Error  
 {  
 public function AppError(message:String, errorID:int)  
 {  
 super(message, errorID);  
 }  
 }

The following shows an example of using AppError in your project:

 try  
 {  
 throw new AppError("Encountered Custom AppError", 29);  
 }  
 catch (error:AppError)  
 {  
 trace(error.errorID + ": " + error.message)  
 }

Note: If you want to override the Error.toString() method in your subclass, you need to give it one ...(rest) 

parameter. The ECMAScript language specification on which ActionScript 3.0 is based defines the Error.toString() 

method that way, and ActionScript 3.0 defines it the same way for backward compatibility. Therefore, when you override 

the Error.toString() method, you must match the parameters exactly. You will not want to pass any parameters to 

your toString() method at run time, because those parameters are ignored.

Responding to error events and status

One of the most noticeable improvements to error handling in ActionScript 3.0 is the support for error event handling 

for responding to asynchronous run-time errors. (For a definition of asynchronous errors, see “Types of errors” on 

page 181.) 

You can create event listeners and event handlers to respond to the error events. Many classes dispatch error events 

the same way they dispatch other events. For example, an instance of the XMLSocket class normally dispatches three 

types of events: Event.CLOSE, Event.CONNECT, and DataEvent.DATA. However, when a problem occurs, the 

XMLSocket class can dispatch the IOErrorEvent.IOError or the SecurityErrorEvent.SECURITY_ERROR. For 

more information about event listeners and event handlers, see “Handling events” on page 244.

Error events fit into one of two categories: 

• Error events that extend the ErrorEvent class 

The flash.events.ErrorEvent class contains the properties and methods for managing run-time errors related to 

networking and communication operations. The AsyncErrorEvent, IOErrorEvent, and SecurityErrorEvent classes 

extend the ErrorEvent class. If you’re using the debugger version of Flash Player or Adobe AIR, a dialog box will 

inform you at run-time of any error events without listener functions that the player encounters.

• Status-based error events

The status-based error events are related to the netStatus and status properties of the networking and 

communication classes. If Flash Player or Adobe AIR encounters a problem when reading or writing data, the value 

of the netStatus.info.level or status.level properties (depending on the class object you’re using) is set to 

the value "error". You respond to this error by checking if the level property contains the value "error" in your 

event handler function.

Updated 11 February 2009



191PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

Working with error events

The ErrorEvent class and its subclasses contain error types for handling errors dispatched by Flash Player and Adobe 

AIR as they try to read or write data.

The following example uses both a try..catch statement and error event handlers to display any errors detected 

while trying to read a local file. You can add more sophisticated handling code to provide a user with options or 

otherwise handle the error automatically in the places indicated by the comment “your error-handling code here”:

 package  
 {  
 import flash.display.Sprite;  
 import flash.errors.IOError;  
 import flash.events.IOErrorEvent;  
 import flash.events.TextEvent;  
 import flash.media.Sound;  
 import flash.media.SoundChannel;  
 import flash.net.URLRequest;  
 import flash.text.TextField;  
 import flash.text.TextFieldAutoSize;  
   
 public class LinkEventExample extends Sprite  
 {  
 private var myMP3:Sound;  
 public function LinkEventExample()  
 {  
 myMP3 = new Sound();  
 var list:TextField = new TextField();  
 list.autoSize = TextFieldAutoSize.LEFT;  
 list.multiline = true;  
 list.htmlText = "<a href=\"event:track1.mp3\">Track 1</a><br>";  
 list.htmlText += "<a href=\"event:track2.mp3\">Track 2</a><br>";  
 addEventListener(TextEvent.LINK, linkHandler);  
 addChild(list);  
 }  
   
 private function playMP3(mp3:String):void  
 {  
 try  
 {  
 myMP3.load(new URLRequest(mp3));  
 myMP3.play();  
 }  
 catch (err:Error)  

Updated 11 February 2009



192PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 {  
 trace(err.message);  
 // your error-handling code here  
 }  
 myMP3.addEventListener(IOErrorEvent.IO_ERROR, errorHandler);  
 }  
   
 private function linkHandler(linkEvent:TextEvent):void  
 {  
 playMP3(linkEvent.text);  
 // your error-handling code here  
 }  
   
 private function errorHandler(errorEvent:IOErrorEvent):void  
 {  
 trace(errorEvent.text);  
 // your error-handling code here  
 }  
 }  
 }

Working with status change events

Flash Player and Adobe AIR dynamically change the value of the netStatus.info.level or status.level 

properties for the classes that support the level property. The classes that have the netStatus.info.level property 

are NetConnection, NetStream, and SharedObject. The classes that have the status.level property are 

HTTPStatusEvent, Camera, Microphone, and LocalConnection. You can write a handler function to respond to the 

change in level value and track communication errors.

The following example uses a netStatusHandler() function to test the value of the level property. If the level 

property indicates that an error has been encountered, the code traces the message “Video stream failed”.

 package  
 {  
 import flash.display.Sprite;  
 import flash.events.NetStatusEvent;  
 import flash.events.SecurityErrorEvent;  
 import flash.media.Video;  
 import flash.net.NetConnection;  
 import flash.net.NetStream;  
   
 public class VideoExample extends Sprite  
 {  
 private var videoUrl:String = "Video.flv";  
 private var connection:NetConnection;  
 private var stream:NetStream;  
   
 public function VideoExample()  
 {  
 connection = new NetConnection();  
 connection.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);  
 connection.addEventListener(SecurityErrorEvent.SECURITY_ERROR, securityErrorHandler);  
 connection.connect(null);  
 }  
   
 private function netStatusHandler(event:NetStatusEvent):void  

Updated 11 February 2009



193PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 {  
 if (event.info.level == "error")  
 {  
 trace("Video stream failed")  
 }  
 else   
 {  
 connectStream();  
 }  
 }  
   
 private function securityErrorHandler(event:SecurityErrorEvent):void  
 {  
 trace("securityErrorHandler: " + event);  
 }  
   
 private function connectStream():void  
 {  
 var stream:NetStream = new NetStream(connection);  
 var video:Video = new Video();  
 video.attachNetStream(stream);  
 stream.play(videoUrl);  
 addChild(video);  
 }  
 }  
 }

Comparing the Error classes

ActionScript provides a number of predefined Error classes. Many of these classes are used by Flash Player and Adobe 

AIR, but you can also use the same Error classes in your own code. There are two main types of Error classes in 

ActionScript 3.0: ActionScript core Error classes and flash.error package Error classes. The core Error classes are 

prescribed by the ECMAScript (ECMA-262) edition 3 language specification. The flash.error package contents are 

additional classes introduced to aid ActionScript 3.0 application development and debugging.

ECMAScript core Error classes

The ECMAScript core error classes include the Error, EvalError, RangeError, ReferenceError, SyntaxError, 

TypeError, and URIError classes. Each of these classes are located in the top-level namespace.

Updated 11 February 2009



194PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

Class name Description Notes

Error The Error class can be used for throwing exceptions, 

and is the base class for the other exception classes 

defined in ECMAScript: EvalError, RangeError, 

ReferenceError, SyntaxError, TypeError, and URIError.

The Error class serves as the base class for all run-time errors 

thrown by Flash® Player and Adobe® AIR®, and is the 

recommended base class for any custom error classes.

EvalError An EvalError exception is thrown if any parameters 

are passed to the Function class’s constructor or if 

user code calls the eval() function.

In ActionScript 3.0, support for the eval() function has been 

removed and attempts to use the function cause an error to be 

thrown.

Earlier versions of Flash Player used the eval() function to 

access variables, properties, objects, or movie clips by name.

RangeError A RangeError exception is thrown if a numeric value 

falls outside of an acceptable range.

For example, a RangeError would be thrown by the Timer class 

if a delay was either negative or was not finite. A RangeError 

could also be thrown if you attempted to add a display object at 

an invalid depth.

ReferenceError A ReferenceError exception is thrown when a 

reference to an undefined property is attempted on a 

sealed (nondynamic) object. Versions of the 

ActionScript compiler before ActionScript 3.0 did not 

throw an error when access was attempted to a 

property that was undefined. However ActionScript 

3.0 throws the ReferenceError exception in this 

condition.

Exceptions for undefined variables point to potential bugs, 

helping you improve software quality. However, if you are not 

used to having to initialize your variables, this new ActionScript 

behavior may require some changes in your coding habits.

Updated 11 February 2009



195PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

ActionScript core Error classes

In addition to the core ECMAScript Error classes, ActionScript adds several classes of its own for ActionScript-specific 

error conditions and error-handling functionality.

Because these classes are ActionScript language extensions to ECMAScript edition 3 language specification that could 

potentially be interesting additions to a future version of the specification, they are kept at the top level instead of being 

placed in a package like flash.error.

SyntaxError A SyntaxError exception is thrown when a parsing 

error occurs in your ActionScript code.

For more information, see Section 15.11.6.4 of the 

ECMAScript (ECMA-262) edition 3 language 

specification at www.ecma-

international.org/publications/standards/Ecma-

262.htm, as well as Section 10.3.1 of the ECMAScript 

for XML (E4X) specification (ECMA-357 edition 2) at 

www.ecma-

international.org/publications/standards/Ecma-

357.htm.

A SyntaxError can be thrown under the following 

circumstances:

• ActionScript throws SyntaxError exceptions when an invalid 

regular expression is parsed by the RegExp class.

• ActionScript throws SyntaxError exceptions when invalid 

XML is parsed by the XMLDocument class.

TypeError The TypeError exception is thrown when the actual 

type of an operand is different from the expected 

type.

For more information, see Section 15.11.6.5 of the 

ECMAScript specification at www.ecma-

international.org/publications/standards/Ecma-

262.htm, as well as Section 10.3 of the E4X 

specification at www.ecma-

international.org/publications/standards/Ecma-

357.htm.

A TypeError can be thrown under the following circumstances:

• An actual parameter of a function or method could not be 

coerced to the formal parameter type.

• A value is assigned to a variable and cannot be coerced to the 

variable’s type.

• The right side of the is or instanceof operator is not a 

valid type.

• The super keyword is used illegally.

• A property lookup results in more than one binding, and is 

therefore ambiguous.

• A method is invoked on an incompatible object. For example, 

a TypeError exception is thrown if a method in the RegExp 

class is “grafted” onto a generic object and then invoked.

URIError The URIError exception is thrown when one of the 

global URI handling functions is used in a way that is 

incompatible with its definition.

For more information, see Section 15.11.6.6 of the 

ECMAScript specification at www.ecma-

international.org/publications/standards/Ecma-

262.htm.

A URIError can be thrown under the following circumstances:

An invalid URI is specified for a Flash Player API function that 

expects a valid URI, such as Socket.connect().

Class name Description Notes

Updated 11 February 2009

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm


196PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

flash.error package Error classes

The flash.error package contains Error classes that are considered part of the Flash Player API. In contrast to the Error 

classes just described, the flash.error package communicates errors events that are specific to Flash Player or Adobe AIR.

Class name Description Notes

ArgumentError The ArgumentError class represents an error that 

occurs when the parameter values supplied during a 

function call do not match the parameters defined for 

that function.

Some examples of argument errors include the following:

• Too few or too many arguments are supplied to a 

method.

• An argument was expected to be a member of an 

enumeration and was not.

SecurityError The SecurityError exception is thrown when a security 

violation takes place and access is denied.

Some examples of security errors include the following:

• An unauthorized property access or method call is 

made across a security sandbox boundary.

• An attempt was made to access a URL not permitted by 

the security sandbox.

• A socket connection was attempted to a port but the 

necessary socket policy file wasn’t present. 

• An attempt was made to access the user's camera or 

microphone, and the request to access the device was 

denied by the user.

VerifyError A VerifyError exception is thrown when a malformed or 

corrupted SWF file is encountered.

When a SWF file loads another SWF file, the parent SWF 

can catch a VerifyError generated by the loaded SWF.

Updated 11 February 2009



197PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

Class name Description Notes

EOFError An EOFError exception is thrown when you 

attempt to read past the end of the available data.

For example, an EOFError is thrown when one of the 

read methods in the IDataInput interface is called and 

there is insufficient data to satisfy the read request.

IllegalOperationError An IllegalOperationError exception is thrown 

when a method is not implemented or the 

implementation doesn't cover the current usage.

Examples of illegal operation error exceptions include 

the following:

• A base class, such as DisplayObjectContainer, 

provides more functionality than the Stage can 

support. For example, if you attempt to get or set a 

mask on the Stage (using stage.mask), Flash 

Player and Adobe AIR will throw an 

IllegalOperationError with the message “The Stage 

class does not implement this property or method.” 

• A subclass inherits a method it does not require and 

does not want to support.

• Certain accessibility methods are called when Flash 

Player is compiled without accessibility support.

• Authoring-only features are invoked from a run-

time version of Flash Player.

• You attempt to set the name of an object placed on 

the timeline.

IOError An IOError exception is thrown when some type of 

I/O exception occurs.

You get this error, for example, when a read-write 

operation is attempted on a socket that is not 

connected or that has become disconnected.

MemoryError A MemoryError exception is thrown when a 

memory allocation request fails.

By default, ActionScript Virtual Machine 2 does not 

impose a limit on how much memory an ActionScript 

program may allocate. On a desktop PC, memory 

allocation failures are infrequent. You see an error 

thrown when the system is unable to allocate the 

memory required for an operation. So, on a desktop 

PC, this exception is rare unless an allocation request is 

extremely large; for example, a request for 3 billion 

bytes is impossible because a 32-bit Microsoft® 

Windows® program can access only 2 GB of address 

space.

ScriptTimeoutError A ScriptTimeoutError exception is thrown when a 

script timeout interval of 15 seconds is reached. By 

catching a ScriptTimeoutError exception, you can 

handle the script timeout more gracefully. If there 

is no exception handler, the uncaught exception 

handler will display a dialog box with an error 

message.

To prevent a malicious developer from catching the 

exception and staying in an infinite loop, only the first 

ScriptTimeoutError exception thrown in the course of 

a particular script can be caught. A subsequent 

ScriptTimeoutError exception cannot be caught by 

your code and will immediately go to the uncaught 

exception handler.

StackOverflowError The StackOverflowError exception is thrown when 

the stack available to the script has been 

exhausted.

A StackOverflowError exception might indicate that 

infinite recursion has occurred. 

Updated 11 February 2009



198PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

Example: CustomErrors application

The CustomErrors application demonstrates techniques for working with custom errors when building an 

application. These techniques are:

• Validating an XML packet

• Writing a custom error

• Throwing custom errors

• Notifying users when an error is thrown

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

CustomErrors application files can be found in the Samples/CustomError folder. The application consists of the 

following files:

CustomErrors application overview

When the application loads, the initApp() method is called in Flex or the timeline (non-function) code is executed 

in Flash. This code defines a sample XML packet that will be verified by the Validator class. The following code is run:

 employeeXML =   
 <employee id="12345">  
 <firstName>John</firstName>  
 <lastName>Doe</lastName>  
 <costCenter>12345</costCenter>  
 <costCenter>67890</costCenter>  
 </employee>;  
 }

The XML packet is later displayed in a TextArea component instance on the Stage. This allows you to modify the XML 

packet before attempting to revalidate it. 

When the user clicks the Validate button, the validateData() method is called. This method validates the employee 

XML packet using the validateEmployeeXML() method in the Validator class. The following code shows the 

validateData() method:

File Description

CustomErrors.mxml

or

CustomErrors.fla

The main application file in Flash (FLA) or Flex (MXML)

com/example/programmingas3/errors/ApplicationError.as A class that serves as the base error class for both the FatalError and 

WarningError classes.

com/example/programmingas3/errors/FatalError.as A class that defines a FatalError error that can be thrown by the 

application. This class extends the custom ApplicationError class.

com/example/programmingas3/errors/Validator.as A class that defines a single method that validates a user-supplied 

employee XML packet.

com/example/programmingas3/errors/WarningError.as A class that defines a WarningError error that can be thrown by the 

application. This class extends the custom ApplicationError class.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


199PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 function validateData():void  
 {  
 try  
 {  
 var tempXML:XML = XML(xmlText.text);  
 Validator.validateEmployeeXML(tempXML);  
 status.text = "The XML was successfully validated.";  
 }  
 catch (error:FatalError)  
 {  
 showFatalError(error);  
 }  
 catch (error:WarningError)  
 {  
 showWarningError(error);  
 }  
 catch (error:Error)  
 {  
 showGenericError(error);  
 }  
 }

First, a temporary XML object is created using the contents of the TextArea component instance xmlText. Next, the 

validateEmployeeXML() method in the custom Validator class (com.example.programmingas3/errors/Validator.as) 

is invoked and passes the temporary XML object as a parameter. If the XML packet is valid, the status Label 

component instance displays a success message and the application exits. If the validateEmployeeXML() method 

throws a custom error (that is, a FatalError, WarningError, or a generic Error occurs), the appropriate catch 

statement executes and calls either the showFatalError(), showWarningError(), or showGenericError() 

methods. Each of these methods displays an appropriate message in a text area named statusText to notify the user 

of the specific error that occurred. Each method also updates the status Label component instance with a specific 

message.

If a fatal error occurs during an attempt to validate the employee XML packet, the error message is displayed in the 

statusText text area, and the xmlText TextArea component instance and validateBtn Button component instance 

are disabled, as the following code shows:

 function showFatalError(error:FatalError):void  
 {  
 var message:String = error.message + "\n\n";  
 var title:String = error.getTitle();  
 statusText.text = message + " " + title + "\n\nThis application has ended.";  
 this.xmlText.enabled = false;  
 this.validateBtn.enabled = false;  
 hideButtons();  
 }

If a warning error instead of a fatal error occurs, the error message is displayed in the statusText TextArea instance, 

but the xmlText TextField and Button component instances aren’t disabled. The showWarningError() method 

displays the custom error message in the statusText text area. The message also asks the user to decide if they want 

to proceed with validating the XML or abort the script. The following excerpt shows the showWarningError() 

method:

Updated 11 February 2009



200PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

 function showWarningError(error:WarningError):void  
 {  
 var message:String = error.message + "\n\n" + "Do you want to exit this application?";  
 showButtons();  
 var title:String = error.getTitle();  
 statusText.text = message;  
 }

When the user clicks either the Yes or No button, the closeHandler() method is invoked. The following excerpt 

shows the closeHandler() method:

 function closeHandler(event:CloseEvent):void  
 {  
 switch (event.detail)  
 {  
 case yesButton:  
 showFatalError(new FatalError(9999));  
 break;  
 case noButton:  
 statusText.text = "";  
 hideButtons();  
 break;  
 }  
 }

If the user chooses to abort the script by clicking Yes, a FatalError is thrown, causing the application to terminate.

Building a custom validator

The custom Validator class contains a single method, validateEmployeeXML(). The validateEmployeeXML() 

method takes a single argument, employee, which is the XML packet that you wish to validate. The 

validateEmployeeXML() method is as follows:

 public static function validateEmployeeXML(employee:XML):void  
 {  
 // checks for the integrity of items in the XML  
 if (employee.costCenter.length() < 1)  
 {  
 throw new FatalError(9000);  
 }  
 if (employee.costCenter.length() > 1)  
 {  
 throw new WarningError(9001);  
 }  
 if (employee.ssn.length() != 1)  
 {  
 throw new FatalError(9002);  
 }  
 }

To be validated, an employee must belong to one (and only one) cost center. If the employee doesn’t belong to any cost 

centers, the method throws a FatalError, which bubbles up to the validateData() method in the main application 

file. If the employee belongs to more than one cost center, a WarningError is thrown. The final check in the XML 

validator is that the user has exactly one social security number defined (the ssn node in the XML packet). If there is 

not exactly one ssn node, a FatalError error is thrown.

Updated 11 February 2009



201PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

You can add additional checks to the validateEmployeeXML() method—for instance, to ensure that the ssn node 

contains a valid number, or that the employee has at least one phone number and e-mail address defined, and that both 

values are valid. You can also modify the XML so that each employee has a unique ID and specifies the ID of their 

manager.

Defining the ApplicationError class

The ApplicationError class serves as the base class for both the FatalError and WarningError classes. The 

ApplicationError class extends the Error class, and defines its own custom methods and properties, including defining 

an error ID, severity, and an XML object that contains the custom error codes and messages. This class also defines 

two static constants that are used to define the severity of each error type.

The ApplicationError class’s constructor method is as follows:

 public function ApplicationError()  
 {  
 messages =   
 <errors>  
 <error code="9000">  
 <![CDATA[Employee must be assigned to a cost center.]]>  
 </error>  
 <error code="9001">  
 <![CDATA[Employee must be assigned to only one cost center.]]>  
 </error>  
 <error code="9002">  
 <![CDATA[Employee must have one and only one SSN.]]>  
 </error>  
 <error code="9999">  
 <![CDATA[The application has been stopped.]]>  
 </error>  
 </errors>;  
 }

Each error node in the XML object contains a unique numeric code and an error message. Error messages can be easily 

looked up by their error code using E4X, as seen in the following getMessageText() method:

 public function getMessageText(id:int):String  
 {  
 var message:XMLList = messages.error.(@code == id);  
 return message[0].text();  
 }

The getMessageText() method takes a single integer argument, id, and returns a string. The id argument is the error 

code for the error to look up. For example, passing an id of 9001 retrieves the error saying that employees must be 

assigned to only one cost center. If more than one error has the same error code, ActionScript returns the error 

message only for the first result found (message[0] in the returned XMLList object).

The next method in this class, getTitle(), doesn’t take any parameters and returns a string value that contains the 

error ID for this specific error. This value is used to help you easily identify the exact error that occurred during 

validation of the XML packet. The following excerpt shows the getTitle() method:

 public function getTitle():String  
 {  
 return "Error #" + id;  
 }

Updated 11 February 2009



202PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling errors

The final method in the ApplicationError class is toString(). Thismethod overrides the function defined in the 

Error class so that you can customize the presentation of the error message. The method returns a string that identifies 

the specific error number and message that occurred.

 public override function toString():String  
 {  
 return "[APPLICATION ERROR #" + id + "] " + message;  
 }

Defining the FatalError class

The FatalError class extends the custom ApplicationError class and defines three methods: the FatalError constructor, 

getTitle(), and toString(). The first method, the FatalError constructor, takes a single integer argument, 

errorID, and sets the error’s severity using the static constant values defined in the ApplicationError class, and gets 

the specific error’s error message by calling the getMessageText() method in the ApplicationError class. The 

FatalError constructor is as follows:

 public function FatalError(errorID:int)  
 {  
 id = errorID;  
 severity = ApplicationError.FATAL;  
 message = getMessageText(errorID);  
 }

The next method in the FatalError class, getTitle(), overrides the getTitle() method defined earlier in the 

ApplicationError class, and appends the text “-- FATAL” in the title to inform the user that a fatal error has occurred. 

The getTitle() method is as follows:

 public override function getTitle():String  
 {  
 return "Error #" + id + " -- FATAL";  
 }

The final method in this class, toString(), overrides the toString() method defined in the ApplicationError class. 

The toString() method is 

 public override function toString():String  
 {  
 return "[FATAL ERROR #" + id + "] " + message;  
 }

Defining the WarningError class

The WarningError class extends the ApplicationError class and is nearly identical to the FatalError class, except for a 

couple minor string changes and sets the error severity to ApplicationError.WARNING instead of 

ApplicationError.FATAL, as seen in the following code:

 public function WarningError(errorID:int)  
 {  
 id = errorID;  
 severity = ApplicationError.WARNING;  
 message = super.getMessageText(errorID);  
 }

Updated 11 February 2009



203

Chapter 10: Using regular expressions

A regular expression describes a pattern that is used to find and manipulate matching text in strings. Regular 

expressions resemble strings, but they can include special codes to describe patterns and repetition. For example, the 

following regular expression matches a string that starts with the character A followed by one or more sequential digits:

 /A\d+/

This chapter describes the basic syntax for constructing regular expressions. However, regular expressions can have 

many complexities and nuances. You can find detailed resources on regular expressions on the web and in bookstores. 

Keep in mind that different programming environments implement regular expressions in different ways. 

ActionScript 3.0 implements regular expressions as defined in the ECMAScript edition 3 language specification 

(ECMA-262).

Basics of regular expressions

Introduction to using regular expressions

A regular expression describes a pattern of characters. Regular expressions are typically used to verify that a text value 

conforms to a particular pattern (such as verifying that a user-entered phone number has the proper number of digits) 

or to replace portions of a text value that matches a particular pattern.

Regular expressions can be simple. For example, suppose you wanted to confirm that a particular string matches 

“ABC,” or wanted to replace every occurrence of “ABC” in a string with some other text. In that case, you could use 

the following regular expression, which defines the pattern consisting of the letters A, B, and C in sequence:

 /ABC/

Note that the regular expression literal is delineated with the forward slash (/) character.

Regular expression patterns can also be complex, and sometimes cryptic in appearance, such as the following 

expression to match a valid e-mail address:

 /([0-9a-zA-Z]+[-._+&])*[0-9a-zA-Z]+@([-0-9a-zA-Z]+[.])+[a-zA-Z]{2,6}/

Most commonly you will use regular expressions to search for patterns in strings and to replace characters. In those 

cases, you will create a regular expression object and use it as a parameter for one of several String class methods. The 

following methods of the String class take regular expressions as parameters: match(), replace(), search(), and 

split(). For more information on these methods, see “Finding patterns in strings and replacing substrings” on 

page 145.

The RegExp class includes the following methods: test() and exec(). For more information, see “Methods for using 

regular expressions with strings” on page 217.

Common regular expression tasks

There are several common uses for regular expressions, which are described in detail in this chapter:

• Creating a regular expression pattern

Updated 11 February 2009



204PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

• Using special characters in patterns

• Identifying sequences of multiple characters (such as “a two-digit number” or “between seven and ten letters”)

• Identifying any character in a range of letters or numbers (such as “any letter from a to m” )

• Identifying a character in a set of possible characters

• Identifying subsequences (segments within a pattern)

• Matching and replacing text based on patterns

Important concepts and terms

The following reference list contains important terms used in this chapter:

• Escape character: A character indicating that the character that follows should be treated as a metacharacter rather 

than a literal character. In regular expression syntax, the backslash character (\) is the escape character, so a 

backslash followed by another character is a special code rather than just the character itself.

• Flag: A character that specifies some option about how the regular expression pattern should be used, such as 

whether to distinguish between uppercase and lowercase characters.

• Metacharacter: A character that has special meaning in a regular expression pattern, as opposed to literally 

representing that character in the pattern.

• Quantifier: A character (or several characters) indicating how many times a part of the pattern should repeat. For 

example, a quantifier would be used to designate that a United States postal code should contain five or nine 

numbers.

• Regular expression: A program statement defining a pattern of characters that can be used to confirm whether 

other strings match that pattern or to replace portions of a string.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Because 

the code listings in this chapter consist primarily of regular expression patterns, testing the examples involves a few 

steps:

1 Create a new Flash document.

2 Select a keyframe and open the Actions panel.

3 Create a RegExp (regular expression) variable such as this one:

 var pattern:RegExp = /ABC/;

4 Copy the pattern from the example and assign it as the value of your RegExp variable. For instance, in the previous 

line of code, the pattern is the part of the code to the right of the equals sign, not including the semicolon (/ABC/).

5 Create one or more String variables containing strings appropriate for testing your regular expression. For instance, 

if you are creating a regular expression to test for valid e-mail addresses, create a few String variables containing 

valid and bad e-mail addresses:

 var goodEmail:String = "bob@example.com";  
 var badEmail:String = "5@$2.99";

6 Add lines of code to test the String variables to determine whether they match the regular expression pattern. These 

will be the values that you’ll want to output to the screen using the trace() function or by writing them to a text 

field on the Stage.

Updated 11 February 2009



205PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

 trace(goodEmail, " is valid:", pattern.test(goodEmail));  
 trace(badEmail, " is valid:", pattern.test(badEmail));

For instance, assuming pattern defines the regular expression pattern for a valid e-mail address, the preceding 

lines of code writes this text to the Output panel:

 bob@example.com is valid: true  
 5@$2.99 is valid: false

For more information about testing values by writing the values into a text field instance on the Stage or by using 

the trace() function to print the values to the Output panel, see “Testing in-chapter example code listings” on 

page 34.

Regular expression syntax

This section describes all of the elements of ActionScript regular expression syntax. As you’ll see, regular expressions 

can have many complexities and nuances. You can find detailed resources on regular expressions on the web and in 

bookstores. Keep in mind that different programming environments implement regular expressions in different ways. 

ActionScript 3.0 implements regular expressions as defined in the ECMAScript edition 3 language specification 

(ECMA-262).

Generally, you use regular expressions that match more complicated patterns than a simple string of characters. For 

example, the following regular expression defines the pattern consisting of the letters A, B, and C in sequence followed 

by any digit:

 /ABC\d/

The \d code represents “any digit.” The backslash (\) character is called the escape character, and combined with the 

character that follows it (in this case the letter d), it has special meaning in the regular expression. This chapter 

describes these escape character sequences and other regular expression syntax features. 

The following regular expression defines the pattern of the letters ABC followed by any number of digits (note the 

asterisk):

 /ABC\d*/

The asterisk character (*) is a metacharacter. A metacharacter is a character that has special meaning in regular 

expressions. The asterisk is a specific type of metacharacter called a quantifier, which is used to quantify the amount 

of repetition of a character or group of characters. For more information, see “Quantifiers” on page 210.

In addition to its pattern, a regular expression can contain flags, which specify how the regular expression is to be 

matched. For example, the following regular expression uses the i flag, which specifies that the regular expression 

ignores case sensitivity in matching strings:

 /ABC\d*/i

For more information, see “Flags and properties” on page 214.

You can use regular expressions with the following methods of the String class: match(), replace(), and search(). 

For more information on these methods, see “Finding patterns in strings and replacing substrings” on page 145.

Creating an instance of a regular expression

There are two ways to create a regular expression instance. One way uses forward slash characters (/) to delineate the 

regular expression; the other uses the new constructor. For example, the following regular expressions are equivalent:

Updated 11 February 2009



206PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

 var pattern1:RegExp = /bob/i;  
 var pattern2:RegExp = new RegExp("bob", "i");

Forward slashes delineate a regular expression literal in the same way as quotation marks delineate a string literal. The 

part of the regular expression within the forward slashes defines the pattern. The regular expression can also include 

flags after the final delineating slash. These flags are considered to be part of the regular expression, but they are 

separate from its pattern. 

When using the new constructor, you use two strings to define the regular expression. The first string defines the 

pattern, and the second string defines the flags, as in the following example:

 var pattern2:RegExp = new RegExp("bob", "i");

When including a forward slash within a regular expression that is defined by using the forward slash delineators, you 

must precede the forward slash with the backslash (\) escape character. For example, the following regular expression 

matches the pattern 1/2:

 var pattern:RegExp = /1\/2/;

To include quotation marks within a regular expression that is defined with the new constructor, you must add 

backslash (\) escape character before the quotation marks (just as you would when defining any String literal). For 

example, the following regular expressions match the pattern eat at "joe's":

 var pattern1:RegExp = new RegExp("eat at \"joe's\"", "");  
 var pattern2:RegExp = new RegExp('eat at "joe\'s"', "");

Do not use the backslash escape character with quotation marks in regular expressions that are defined by using the 

forward slash delineators. Similarly, do not use the escape character with forward slashes in regular expressions that 

are defined with the new constructor. The following regular expressions are equivalent, and they define the pattern 1/2 

"joe's":

 var pattern1:RegExp = /1\/2 "joe's"/;  
 var pattern2:RegExp = new RegExp("1/2 \"joe's\"", "");  
 var pattern3:RegExp = new RegExp('1/2 "joe\'s"', '');

Also, in a regular expression that is defined with the new constructor, to use a metasequence that begins with the 

backslash (\) character, such as \d (which matches any digit), type the backslash character twice:

 var pattern:RegExp = new RegExp("\\d+", ""); // matches one or more digits

You must type the backlash character twice in this case, because the first parameter of the RegExp() constructor 

method is a string, and in a string literal you must type a backslash character twice to have it recognized as a single 

backslash character.

The sections that follow describe syntax for defining regular expression patterns.

For more information on flags, see “Flags and properties” on page 214.

Characters, metacharacters, and metasequences

The simplest regular expression is one that matches a sequence of characters, as in the following example:

 var pattern:RegExp = /hello/;

However, the following characters, known as metacharacters, have special meanings in regular expressions:

 ̂ $ \ . * + ? ( ) [ ] { } |

For example, the following regular expression matches the letter A followed by zero or more instances of the letter B 

(the asterisk metacharacter indicates this repetition), followed by the letter C:

Updated 11 February 2009



207PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

 /AB*C/

To include a metacharacter without its special meaning in a regular expression pattern, you must use the backslash (\) 

escape character. For example, the following regular expression matches the letter A followed by the letter B, followed 

by an asterisk, followed by the letter C:

 var pattern:RegExp = /AB\*C/;

A metasequence, like a metacharacter, has special meaning in a regular expression. A metasequence is made up of more 

than one character. The following sections provide details on using metacharacters and metasequences.

About metacharacters 

The following table summarizes the metacharacters that you can use in regular expressions: 

Metacharacter Description

^ (caret) Matches at the start of the string. With the m (multiline) flag set, the caret matches the start of a line as 

well (see “Flags and properties” on page 214). Note that when used at the start of a character class, the caret 

indicates negation, not the start of a string. For more information, see “Character classes” on page 209.

$(dollar sign) Matches at the end of the string. With the m (multiline) flag set, $ matches the position before a newline 

(\n) character as well. For more information, see “Flags and properties” on page 214.

\ (backslash) Escapes the special metacharacter meaning of special characters. 

Also, use the backslash character if you want to use a forward slash character in a regular expression literal, 

as in /1\/2/ (to match the character 1, followed by the forward slash character, followed by the character 

2).

. (dot) Matches any single character. 

A dot matches a newline character (\n) only if the s (dotall) flag is set. For more information, see “Flags 

and properties” on page 214. 

* (star) Matches the previous item repeated zero or more times. 

For more information, see “Quantifiers” on page 210.

+ (plus) Matches the previous item repeated one or more times. 

For more information, see “Quantifiers” on page 210.

? (question mark) Matches the previous item repeated zero times or one time. 

For more information, see “Quantifiers” on page 210.

Updated 11 February 2009



208PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

About metasequences

Metasequences are sequences of characters that have special meaning in a regular expression pattern. The following 

table describes these metasequences:

( and ) Defines groups within the regular expression. Use groups for the following:

• To confine the scope of the | alternator: /(a|b|c)d/

• To define the scope of a quantifier: /(walla.){1,2}/

• In backreferences. For example, the \1 in the following regular expression matches whatever matched 

the first parenthetical group of the pattern: 

• /(\w*) is repeated: \1/

For more information, see “Groups” on page 212.

[ and ] Defines a character class, which defines possible matches for a single character:

/[aeiou]/ matches any one of the specified characters.

Within character classes, use the hyphen (-) to designate a range of characters:

/[A-Z0-9]/ matches uppercase A through Z or 0 through 9.

Within character classes, insert a backslash to escape the ] and 

- characters:

/[+\-]\d+/ matches either + or - before one or more digits.

Within character classes, other characters, which are normally metacharacters, are treated as normal 

characters (not metacharacters), without the need for a backslash:

/[$]/£ matches either $or £.

For more information, see “Character classes” on page 209.

| (pipe) Used for alternation, to match either the part on the left side or the part on the right side:

/abc|xyz/ matches either abc or xyz.

Metasequence Description

{n}

{n,}

and

{n,n}

Specifies a numeric quantifier or quantifier range for the previous item: 

/A{27}/ matches the character A repeated 27 times.

/A{3,}/ matches the character A repeated 3 or more times.

/A{3,5}/ matches the character A repeated 3 to 5 times.

For more information, see “Quantifiers” on page 210.

\b Matches at the position between a word character and a nonword character. If the first or last character in 

the string is a word character, also matches the start or end of the string.

\B Matches at the position between two word characters. Also matches the position between two nonword 

characters.

\d Matches a decimal digit.

\D Matches any character other than a digit.

\f Matches a form feed character.

\n Matches the newline character.

Metacharacter Description

Updated 11 February 2009



209PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

Character classes

You use character classes to specify a list of characters to match one position in the regular expression. You define 

character classes with square brackets ( [ and ] ). For example, the following regular expression defines a character 

class that matches bag, beg, big, bog, or bug:

 /b[aeiou]g/

Escape sequences in character classes

Most metacharacters and metasequences that normally have special meanings in a regular expression do not have 

those same meanings inside a character class. For example, in a regular expression, the asterisk is used for repetition, 

but this is not the case when the asterisk appears in a character class. The following character class matches the asterisk 

literally, along with any of the other characters listed:

 /[abc*123]/

However, the three characters listed in the following table do function as metacharacters, with special meaning, in 

character classes:

For any of these characters to be recognized as literal characters (without the special metacharacter meaning), you 

must precede the character with the backslash escape character. For example, the following regular expression includes 

a character class that matches any one of four symbols ($, \, ], or -):

 /[$\\\]\-]/

In addition to the metacharacters that retain their special meanings, the following metasequences function as 

metasequences within character classes:

\r Matches the return character.

\s Matches any white-space character (a space, tab, newline, or return character).

\S Matches any character other than a white-space character.

\t Matches the tab character.

\unnnn Matches the Unicode character with the character code specified by the hexadecimal number nnnn. For 

example, \u263a is the smiley character.

\v Matches a vertical feed character.

\w Matches a word character (AZ–, az–, 0-9, or _). Note that \w does not match non-English characters, such 

as é , ñ , or ç .

\W Matches any character other than a word character.

\\xnn Matches the character with the specified ASCII value, as defined by the hexadecimal number nn.

Metacharacter Meaning in character classes

] Defines the end of the character class.

- Defines a range of characters (see the following section “Ranges of characters in character classes”).

\ Defines metasequences and undoes the special meaning of metacharacters. 

Metasequence Description

Updated 11 February 2009



210PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

Other regular expression metasequences and metacharacters are treated as normal characters within a character class. 

Ranges of characters in character classes

Use the hyphen to specify a range of characters, such as A-Z, a-z, or 0-9. These characters must constitute a valid range 

in the character set. For example, the following character class matches any one of the characters in the range a-z or 

any digit:

 /[a-z0-9]/

You can also use the \\xnn ASCII character code to specify a range by ASCII value. For example, the following 

character class matches any character from a set of extended ASCII characters (such as é  and ê ):

 \\x

Negated character classes

When you use a caret (^) character at the beginning of a character class, it negates that class—any character not listed 

is considered a match. The following character class matches any character except for a lowercase letter (az–) or a digit:

 /[^a-z0-9]/

You must type the caret (^) character at the beginning of a character class to indicate negation. Otherwise, you are 

simply adding the caret character to the characters in the character class. For example, the following character class 

matches any one of a number of symbol characters, including the caret:

 /[!.,#+*%$&^]/

Quantifiers

You use quantifiers to specify repetitions of characters or sequences in patterns, as follows:

Metasequence Meaning in character classes

\n Matches a newline character.

\r Matches a return character.

\t Matches a tab character.

\unnnn Matches the character with the specified Unicode code point value (as defined by the hexadecimal number 

nnnn).

\\xnn Matches the character with the specified ASCII value (as defined by the hexadecimal number nn).

Quantifier metacharacter Description

* (star) Matches the previous item repeated zero or more times. 

+ (plus) Matches the previous item repeated one or more times. 

? (question mark) Matches the previous item repeated zero times or one time. 

{n}

{n,}

and

{n,n}

Specifies a numeric quantifier or quantifier range for the previous item: 

/A{27}/ matches the character A repeated 27 times.

/A{3,}/ matches the character A repeated 3 or more times.

/A{3,5}/ matches the character A repeated 3 to 5 times.

Updated 11 February 2009



211PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

You can apply a quantifier to a single character, to a character class, or to a group:

• /a+/ matches the character a repeated one or more times.

• /\d+/ matches one or more digits.

• /[abc]+/ matches a repetition of one or more character, each of which is either a, b, or c.

• /(very, )*/ matches the word very followed by a comma and a space repeated zero or more times.

You can use quantifiers within parenthetical groupings that have quantifiers applied to them. For example, the 

following quantifier matches strings such as word and word-word-word:

 /\w+(-\w+)*/

By default, regular expressions perform what is known as greedy matching. Any subpattern in the regular expression 

(such as .*) tries to match as many characters in the string as possible before moving forward to the next part of the 

regular expression. For example, consider the following regular expression and string:

 var pattern:RegExp = /<p>.*<\/p>/;  
 str:String = "<p>Paragraph 1</p> <p>Paragraph 2</p>";

The regular expression matches the entire string: 

 <p>Paragraph 1</p> <p>Paragraph 2</p>

Suppose, however, that you want to match only one <p>...</p> grouping. You can do this with the following:

 <p>Paragraph 1</p>

Add a question mark (?) after any quantifier to change it to what is known as a lazy quantifier. For example, the 

following regular expression, which uses the lazy *? quantifier, matches <p> followed by the minimum number of 

characters possible (lazy), followed by </p>:

 /<p>.*?<\/p>/

Keep in mind the following points about quantifiers:

• The quantifiers {0} and {0,0} do not exclude an item from a match.

• Do not combine multiple quantifiers, as in /abc+*/.

• The dot (.) does not span lines unless the s (dotall) flag is set, even if it is followed by a * quantifier. For example, 

consider the following code:

 var str:String = "<p>Test\n";  
 str += "Multiline</p>";  
 var re:RegExp = /<p>.*<\/p>/;  
 trace(str.match(re)); // null;  
   
 re = /<p>.*<\/p>/s;  
 trace(str.match(re));  
 // output: <p>Test  
 // Multiline</p>

For more information, see “Flags and properties” on page 214.

Alternation

Use the | (pipe) character in a regular expression to have the regular expression engine consider alternatives for a 

match. For example, the following regular expression matches any one of the words cat, dog, pig, rat:

 var pattern:RegExp = /cat|dog|pig|rat/;

Updated 11 February 2009



212PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

You can use parentheses to define groups to restrict the scope of the | alternator. The following regular expression 

matches cat followed by nap or nip:

 var pattern:RegExp = /cat(nap|nip)/;

For more information, see “Groups” on page 212.

The following two regular expressions, one using the | alternator, the other using a character class (defined with [ and 

] ), are equivalent:

 /1|3|5|7|9/  
 /[13579]/

For more information, see “Character classes” on page 209.

Groups

You can specify a group in a regular expression by using parentheses, as follows:

 /class-(\d*)/

A group is a subsection of a pattern. You can use groups to do the following things:

• Apply a quantifier to more than one character.

• Delineate subpatterns to be applied with alternation (by using the | character).

• Capture substring matches (for example, by using \1 in a regular expression to match a previously matched group, 

or by using $1 similarly in the replace() method of the String class).

The following sections provide details on these uses of groups.

Using groups with quantifiers

If you do not use a group, a quantifier applies to the character or character class that precedes it, as the following shows:

 var pattern:RegExp = /ab*/ ;  
 // matches the character a followed by  
 // zero or more occurrences of the character b  
   
 pattern = /a\d+/;   
 // matches the character a followed by   
 // one or more digits  
   
 pattern = /a[123]{1,3}/;  
 // matches the character a followed by   
 // one to three occurrences of either 1, 2, or 3

However, you can use a group to apply a quantifier to more than one character or character class:

 var pattern:RegExp = /(ab)*/;  
 // matches zero or more occurrences of the character a   
 // followed by the character b, such as ababab  
   
 pattern = /(a\d)+/;  
 // matches one or more occurrences of the character a followed by   
 // a digit, such as a1a5a8a3  
   
 pattern = /(spam ){1,3}/;   
 // matches 1 to 3 occurrences of the word spam followed by a space

For more information on quantifiers, see “Quantifiers” on page 210.

Updated 11 February 2009



213PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

Using groups with the alternator (|) character

You can use groups to define the group of characters to which you want to apply an alternator (|) character, as follows:

 var pattern:RegExp = /cat|dog/;  
 // matches cat or dog  
   
 pattern = /ca(t|d)og/;  
 // matches catog or cadog

Using groups to capture substring matches

When you define a standard parenthetical group in a pattern, you can later refer to it in the regular expression. This is 

known as a backreference, and these sorts of groups are known as capturing groups. For example, in the following 

regular expression, the sequence \1 matches whatever substring matched the capturing parenthetical group:

 var pattern:RegExp = /(\d+)-by-\1/;  
 // matches the following: 48-by-48

You can specify up to 99 of these backreferences in a regular expression by typing \1, \2, ... , \99. 

Similarly, in the replace() method of the String class, you can use $1$99– to insert captured group substring matches 

in the replacement string:

 var pattern:RegExp = /Hi, (\w+)\./;  
 var str:String = "Hi, Bob.";  
 trace(str.replace(pattern, "$1, hello."));  
    // output: Bob, hello.

Also, if you use capturing groups, the exec() method of the RegExp class and the match() method of the String class 

return substrings that match the capturing groups:

 var pattern:RegExp = /(\w+)@(\w+).(\w+)/;  
 var str:String = "bob@example.com";  
 trace(pattern.exec(str));  
   // bob@example.com,bob,example,com

Using noncapturing groups and lookahead groups

A noncapturing group is one that is used for grouping only; it is not “collected,” and it does not match numbered 

backreferences. Use (?: and ) to define noncapturing groups, as follows:

 var pattern = /(?:com|org|net);

For example, note the difference between putting (com|org) in a capturing versus a noncapturing group (the exec() 

method lists capturing groups after the complete match):

 var pattern:RegExp = /(\w+)@(\w+).(com|org)/;  
 var str:String = "bob@example.com";  
 trace(pattern.exec(str));  
 // bob@example.com,bob,example,com  
   
 //noncapturing:  
 var pattern:RegExp = /(\w+)@(\w+).(?:com|org)/;  
 var str:String = "bob@example.com";  
 trace(pattern.exec(str));  
    // bob@example.com,bob,example

A special type of noncapturing group is the lookahead group, of which there are two types: the positive lookahead group 

and the negative lookahead group.

Updated 11 February 2009



214PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

Use (?= and ) to define a positive lookahead group, which specifies that the subpattern in the group must match at the 

position. However, the portion of the string that matches the positive lookahead group can match remaining patterns 

in the regular expression. For example, because (?=e) is a positive lookahead group in the following code, the 

character e that it matches can be matched by a subsequent part of the regular expression—in this case, the capturing 

group, \w*):

 var pattern:RegExp = /sh(?=e)(\w*)/i;  
 var str:String = "Shelly sells seashells by the seashore";  
 trace(pattern.exec(str));  
 // Shelly,elly

Use (?! and ) to define a negative lookahead group that specifies that the subpattern in the group must not match at 

the position. For example:

 var pattern:RegExp = /sh(?!e)(\w*)/i;  
 var str:String = "She sells seashells by the seashore";  
 trace(pattern.exec(str));  
 // shore,ore

Using named groups

A named group is a type of group in a regular expression that is given a named identifier. Use (?P<name> and ) to 

define the named group. For example, the following regular expression includes a named group with the identifier 

named digits:

 var pattern = /[a-z]+(?P<digits>\d+)[a-z]+/;

When you use the exec() method, a matching named group is added as a property of the result array:

 var myPattern:RegExp = /([a-z]+)(?P<digits>\d+)[a-z]+/;   
 var str:String = "a123bcd";  
 var result:Array = myPattern.exec(str);  
 trace(result.digits); // 123

Here is another example, which uses two named groups, with the identifiers name and dom:

 var emailPattern:RegExp =   
 /(?P<name>(\w|[_.\-])+)@(?P<dom>((\w|-)+))+\.\w{2,4}+/;   
 var address:String = "bob@example.com";  
 var result:Array = emailPattern.exec(address);  
 trace(result.name); // bob  
 trace(result.dom); // example

Note: Named groups are not part of the ECMAScript language specification. They are an added feature in ActionScript 3.0.

Flags and properties

The following table lists the five flags that you can set for regular expressions. Each flag can be accessed as a property 

of the regular expression object. 

Flag Property Description

g global Matches more than one match.

i ignoreCase Case-insensitive matching. Applies to the A—Z and a—z characters, but not to extended characters 

such as É  and é .

Updated 11 February 2009



215PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

Note that these properties are read-only. You can set the flags (g, i, m, s, x) when you set a regular expression variable, 

as follows:

 var re:RegExp = /abc/gimsx;

However, you cannot directly set the named properties. For instance, the following code results in an error:

 var re:RegExp = /abc/;  
 re.global = true; // This generates an error.

By default, unless you specify them in the regular expression declaration, the flags are not set, and the corresponding 

properties are also set to false. 

Additionally, there are two other properties of a regular expression: 

• The lastIndex property specifies the index position in the string to use for the next call to the exec() or test() 

method of a regular expression. 

• The source property specifies the string that defines the pattern portion of the regular expression.

The g (global) flag

When the g (global) flag is not included, a regular expression matches no more than one match. For example, with 

the g flag not included in the regular expression, the String.match() method returns only one matching substring:

 var str:String = "she sells seashells by the seashore.";  
 var pattern:RegExp = /sh\w*/;  
 trace(str.match(pattern)) // output: she

When the g flag is set, the Sting.match() method returns multiple matches, as follows:

 var str:String = "she sells seashells by the seashore.";  
 var pattern:RegExp = /sh\w*/g;  
 // The same pattern, but this time the g flag IS set.  
 trace(str.match(pattern)); // output: she,shells,shore

The i (ignoreCase) flag

By default, regular expression matches are case-sensitive. When you set the i (ignoreCase) flag, case sensitivity is 

ignored. For example, the lowercase s in the regular expression does not match the uppercase letter S, the first 

character of the string:

 var str:String = "She sells seashells by the seashore.";  
 trace(str.search(/sh/)); // output: 13 -- Not the first character

With the i flag set, however, the regular expression does match the capital letter S:

 var str:String = "She sells seashells by the seashore.";  
 trace(str.search(/sh/i)); // output: 0

The i flag ignores case sensitivity only for the A–Z and a–z characters, but not for extended characters such as É  and é .

m multiline With this flag set, $ and ^ can match the beginning of a line and end of a line, respectively. 

s dotall With this flag set, . (dot) can match the newline character (\n).

x extended Allows extended regular expressions. You can type spaces in the regular expression, which are ignored 

as part of the pattern. This lets you type regular expression code more legibly.

Flag Property Description

Updated 11 February 2009



216PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

The m (multiline) flag

If the m (multiline) flag is not set, the ^ matches the beginning of the string and the $ matches the end of the string. 

If the m flag is set, these characters match the beginning of a line and end of a line, respectively. Consider the following 

string, which includes a newline character:

 var str:String = "Test\n";  
 str += "Multiline";  
 trace(str.match(/^\w*/g)); // Match a word at the beginning of the string.

Even though the g (global) flag is set in the regular expression, the match() method matches only one substring, since 

there is only one match for the ^—the beginning of the string. The output is:

 Test

Here is the same code with the m flag set:

 var str:String = "Test\n";  
 str += "Multiline";  
 trace(str.match(/^\w*/gm)); // Match a word at the beginning of lines. 

This time, the output includes the words at the beginning of both lines:

 Test,Multiline

Note that only the \n character signals the end of a line. The following characters do not:

• Return (\r) character

• Unicode line-separator (\u2028) character

• Unicode paragraph-separator (\u2029) character

The s (dotall) flag

If the s (dotall or “dot all”) flag is not set, a dot (.) in a regular expression pattern does not match a newline character 

(\n). So for the following example, there is no match:

 var str:String = "<p>Test\n";  
 str += "Multiline</p>";  
 var re:RegExp = /<p>.*?<\/p>/;  
 trace(str.match(re)); 

However, if the s flag is set, the dot matches the newline character:

 var str:String = "<p>Test\n";  
 str += "Multiline</p>";  
 var re:RegExp = /<p>.*?<\/p>/s;  
 trace(str.match(re)); 

In this case, the match is the entire substring within the <p> tags, including the newline character:

 <p>Test  
 Multiline</p>

The x (extended) flag

Regular expressions can be difficult to read, especially when they include a lot of metasymbols and metasequences. For 

example:

 /<p(>|(\s*[^>]*>)).*?<\/p>/gi

When you use the x (extended) flag in a regular expression, any blank spaces that you type in the pattern are ignored. 

For example, the following regular expression is identical to the previous example:

Updated 11 February 2009



217PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

 /     <p    (>  | (\s* [^>]* >))    .*?    <\/p>  /gix

If you have the x flag set and do want to match a blank space character, precede the blank space with a backslash. For 

example, the following two regular expressions are equivalent:

 /foo bar/  
 /foo \ bar/x

The lastIndex property

The lastIndex property specifies the index position in the string at which to start the next search. This property 

affects the exec() and test() methods called on a regular expression that has the g flag set to true. For example, 

consider the following code:

 var pattern:RegExp = /p\w*/gi;  
 var str:String = "Pedro Piper picked a peck of pickled peppers.";  
 trace(pattern.lastIndex);  
 var result:Object = pattern.exec(str);  
 while (result != null)  
 {  
 trace(pattern.lastIndex);  
 result = pattern.exec(str);  
 }

The lastIndex property is set to 0 by default (to start searches at the beginning of the string). After each match, it is 

set to the index position following the match. Therefore, the output for the preceding code is the following:

 0  
 5  
 11  
 18  
 25  
 36  
 44

If the global flag is set to false, the exec() and test() methods do not use or set the lastIndex property.

The match(), replace(), and search() methods of the String class start all searches from the beginning of the string, 

regardless of the setting of the lastIndex property of the regular expression used in the call to the method. (However, 

the match() method does set lastIndex to 0.)

You can set the lastIndex property to adjust the starting position in the string for regular expression matching.

The source property

The source property specifies the string that defines the pattern portion of a regular expression. For example:

 var pattern:RegExp = /foo/gi;  
 trace(pattern.source); // foo

Methods for using regular expressions with strings

The RegExp class includes two methods: exec() and test().

In addition to the exec() and test() methods of the RegExp class, the String class includes the following methods 

that let you match regular expressions in strings: match(), replace(), search(), and splice().

Updated 11 February 2009



218PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

The test() method

The test() method of the RegExp class simply checks the supplied string to see if it contains a match for the regular 

expression, as the following example shows:

 var pattern:RegExp = /Class-\w/;  
 var str = "Class-A";  
 trace(pattern.test(str)); // output: true

The exec() method

The exec() method of the RegExp class checks the supplied string for a match of the regular expression and returns 

an array with the following:

• The matching substring

• Substring matches for any parenthetical groups in the regular expression

The array also includes an index property, indicating the index position of the start of the substring match.

For example, consider the following code:

 var pattern:RegExp = /\d{3}\-\d{3}-\d{4}/; //U.S phone number  
 var str:String = "phone: 415-555-1212";  
 var result:Array = pattern.exec(str);  
 trace(result.index, " - ", result);  
 // 7-415-555-1212

Use the exec() method multiple times to match multiple substrings when the g (global) flag is set for the regular 

expression:

 var pattern:RegExp = /\w*sh\w*/gi;  
 var str:String = "She sells seashells by the seashore";  
 var result:Array = pattern.exec(str);  
   
 while (result != null)  
 {  
 trace(result.index, "\t", pattern.lastIndex, "\t", result);  
 result = pattern.exec(str);  
 }  
 //output:   
 // 0  3  She  
 // 10  19  seashells  
 // 27  35  seashore

String methods that use RegExp parameters

The following methods of the String class take regular expressions as parameters: match(), replace(), search(), 

and split(). For more information on these methods, see “Finding patterns in strings and replacing substrings” on 

page 145. 

Example: A Wiki parser

This simple Wiki text conversion example illustrates a number of uses for regular expressions:

• Converting lines of text that match a source Wiki pattern to the appropriate HTML output strings.

Updated 11 February 2009



219PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

• Using a regular expression to convert URL patterns to HTML <a> hyperlink tags.

• Using a regular expression to convert U.S. dollar strings (such as "$9.95") to euro strings (such as "8.24 €").

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

WikiEditor application files can be found in the folder Samples/WikiEditor. The application consists of the following 

files:

Defining the WikiParser class

The WikiParser class includes methods that convert Wiki input text into the equivalent HTML output. This is not a 

very robust Wiki conversion application, but it does illustrate some good uses of regular expressions for pattern 

matching and string conversion.

The constructor function, along with the setWikiData() method, simply initializes a sample string of Wiki input text, 

as follows:

 public function WikiParser()  
 {  
 wikiData = setWikiData();  
 }

When the user clicks the Test button in the sample application, the application invokes the parseWikiString() 

method of the WikiParser object. This method calls a number of other methods, which in turn assemble the resulting 

HTML string.

 public function parseWikiString(wikiString:String):String  
 {  
 var result:String = parseBold(wikiString);  
 result = parseItalic(result);  
 result = linesToParagraphs(result);  
 result = parseBullets(result);  
 return result;  
 }

Each of the methods called—parseBold(), parseItalic(), linesToParagraphs(), and parseBullets()—uses 

the replace() method of the string to replace matching patterns, defined by a regular expression, in order to 

transform the input Wiki text into HTML-formatted text.

Converting boldface and italic patterns

The parseBold() method looks for a Wiki boldface text pattern (such as '''foo''') and transforms it into its HTML 

equivalent (such as <b>foo</b>), as follows:

File Description

WikiEditor.mxml

or

WikiEditor.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/regExpExamples/WikiParser.as A class that includes methods that use regular expressions 

to convert Wiki input text patterns to the equivalent HTML 

output.

com/example/programmingas3/regExpExamples/URLParser.as A class that includes methods that use regular expressions 

to convert URL strings to HTML <a> hyperlink tags.

com/example/programmingas3/regExpExamples/CurrencyConverter.as A class that includes methods that use regular expressions 

to convert U.S. dollar strings to euro strings.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


220PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

 private function parseBold(input:String):String  
 {  
 var pattern:RegExp = /'''(.*?)'''/g;  
 return input.replace(pattern, "<b>$1</b>");  
 }

Note that the (.?*) portion of the regular expression matches any number of characters (*) between the two defining 

''' patterns. The ? quantifier makes the match nongreedy, so that for a string such as '''aaa''' bbb '''ccc''', 

the first matched string will be '''aaa''' and not the entire string (which starts and ends with the ''' pattern). 

The parentheses in the regular expression define a capturing group, and the replace() method refers to this group 

by using the $1 code in the replacement string. The g (global) flag in the regular expression ensures that the 

replace() method replaces all matches in the string (not simply the first one).

The parseItalic() method works similarly to the parseBold() method, except that it checks for two apostrophes 

('') as the delimiter for italic text (not three):

 private function parseItalic(input:String):String  
 {  
 var pattern:RegExp = /''(.*?)''/g;  
 return input.replace(pattern, "<i>$1</i>");  
 }

Converting bullet patterns

As the following example shows, the parseBullet() method looks for the Wiki bullet line pattern (such as * foo) 

and transforms it into its HTML equivalent (such as <li>foo</li>):

 private function parseBullets(input:String):String  
 {  
 var pattern:RegExp = /^\*(.*)/gm;  
 return input.replace(pattern, "<li>$1</li>");  
 }

The ̂  symbol at the beginning of the regular expression matches the beginning of a line. The m (multiline) flag in the 

regular expression causes the regular expression to match the ^ symbol against the start of a line, not simply the start 

of the string.

The \* pattern matches an asterisk character (the backslash is used to signal a literal asterisk instead of a * quantifier). 

The parentheses in the regular expression define a capturing group, and the replace() method refers to this group 

by using the $1 code in the replacement string. The g (global) flag in the regular expression ensures that the 

replace() method replaces all matches in the string (not simply the first one). 

Converting paragraph Wiki patterns

The linesToParagraphs() method converts each line in the input Wiki string to an HTML <p> paragraph tag. These 

lines in the method strip out empty lines from the input Wiki string:

 var pattern:RegExp = /^$/gm;  
 var result:String = input.replace(pattern, "");

The ^ and $ symbols the regular expression match the beginning and end of a line. The m (multiline) flag in the 

regular expression causes the regular expression to match the ^ symbol against the start of a line, not simply the start 

of the string.

The replace() method replaces all matching substrings (empty lines) with an empty string (""). The g (global) flag 

in the regular expression ensures that the replace() method replaces all matches in the string (not simply the first one).

Updated 11 February 2009



221PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

Converting URLs to HTML <a> tags

When the user clicks the Test button in the sample application, if the user selected the urlToATag check box, the 

application calls the URLParser.urlToATag() static method to convert URL strings from the input Wiki string into 

HTML <a> tags. 

 var protocol:String = "((?:http|ftp)://)";  
 var urlPart:String = "([a-z0-9_-]+\.[a-z0-9_-]+)";  
 var optionalUrlPart:String = "(\.[a-z0-9_-]*)";  
 var urlPattern:RegExp = new RegExp(protocol + urlPart + optionalUrlPart, "ig");  
 var result:String = input.replace(urlPattern, "<a href='$1$2$3'><u>$1$2$3</u></a>");

The RegExp() constructor function is used to assemble a regular expression (urlPattern) from a number of 

constituent parts. These constituent parts are each strings that define part of the regular expression pattern. 

The first part of the regular expression pattern, defined by the protocol string, defines an URL protocol: either 

http:// or ftp://. The parentheses define a noncapturing group, indicated by the ? symbol. This means that the 

parentheses are simply used to define a group for the | alternation pattern; the group will not match backreference 

codes ($1, $2, $3) in the replacement string of the replace() method. 

The other constituent parts of the regular expression each use capturing groups (indicated by parentheses in the 

pattern), which are then used in the backreference codes ($1, $2, $3) in the replacement string of the replace() 

method.

The part of the pattern defined by the urlPart string matches at least one of the following characters: a-z, 0-9, _, or 

-. The + quantifier indicates that at least one character is matched. The \. indicates a required dot (.) character. And 

the remainder matches another string of at least one of these characters: a-z, 0-9, _, or -.

The part of the pattern defined by the optionalUrlPart string matches zero or more of the following: a dot (.) 

character followed by any number of alphanumeric characters (including _ and -). The * quantifier indicates that zero 

or more characters are matched.

The call to the replace() method employs the regular expression and assembles the replacement HTML string, using 

backreferences.

The urlToATag() method then calls the emailToATag() method, which uses similar techniques to replace e-mail 

patterns with HTML <a> hyperlink strings. The regular expressions used to match HTTP, FTP, and e-mail URLs in 

this sample file are fairly simple, for the purposes of exemplification; there are much more complicated regular 

expressions for matching such URLs more correctly.

Converting U.S. dollar strings to euro strings

When the user clicks the Test button in the sample application, if the user selected the dollarToEuro check box, the 

application calls the CurrencyConverter.usdToEuro() static method to convert U.S. dollar strings (such as 

"$9.95") to euro strings (such as "8.24 €"), as follows:

 var usdPrice:RegExp = /\$([\d,]+.\d+)+/g;  
 return input.replace(usdPrice, usdStrToEuroStr); 

The first line defines a simple pattern for matching U.S. dollar strings. Notice that the $ character is preceded with the 

backslash (\) escape character.

The replace() method uses the regular expression as the pattern matcher, and it calls the usdStrToEuroStr() 

function to determine the replacement string (a value in euros).

Updated 11 February 2009



222PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using regular expressions

When a function name is used as the second parameter of the replace() method, the following are passed as 

parameters to the called function:

• The matching portion of the string.

• Any captured parenthetical group matches. The number of arguments passed this way varies depending on the 

number of captured parenthetical group matches. You can determine the number of captured parenthetical group 

matches by checking arguments.length - 3 within the function code.

• The index position in the string where the match begins.

• The complete string.

The usdStrToEuroStr() method converts U.S. dollar string patterns to euro strings, as follows:

 private function usdToEuro(...args):String  
 {  
 var usd:String = args[1];  
 usd = usd.replace(",", "");  
 var exchangeRate:Number = 0.828017;  
 var euro:Number = Number(usd) * exchangeRate;  
 trace(usd, Number(usd), euro);  
 const euroSymbol:String = String.fromCharCode(8364); // €  
 return euro.toFixed(2) + " " + euroSymbol;   
 }

Note that args[1] represents the captured parenthetical group matched by the usdPrice regular expression. This is 

the numerical portion of the U.S. dollar string: that is, the dollar amount without the $ sign. The method applies an 

exchange rate conversion and returns the resulting string (with a trailing € symbol instead of a leading $ symbol).

Updated 11 February 2009



223

Chapter 11: Working with XML

ActionScript 3.0 includes a group of classes based on the ECMAScript for XML (E4X) specification (ECMA-357 

edition 2). These classes include powerful and easy-to-use functionality for working with XML data. Using E4X, you 

will be able to develop code with XML data faster than was possible with previous programming techniques. As an 

added benefit, the code you produce will be easier to read.

This chapter describes how to use E4X to process XML data.

Basics of XML

Introduction to working with XML

XML is a standard way of representing structured information so that it is easy for computers to work with and 

reasonably easy for people to write and understand. XML is an abbreviation for eXtensible Markup Language. The 

XML standard is available at www.w3.org/XML/.

XML offers a standard and convenient way to categorize data, to make it easier to read, access, and manipulate. XML 

uses a tree structure and tag structure that is similar to HTML. Here is a simple example of XML data:

 <song>  
 <title>What you know?</title>  
 <artist>Steve and the flubberblubs</artist>  
 <year>1989</year>  
 <lastplayed>2006-10-17-08:31</lastplayed>  
 </song>

XML data can also be more complex, with tags nested in other tags as well as attributes and other structural 

components. Here is a more complex example of XML data:

Updated 11 February 2009

http://www.w3.org/XML/


224PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 <album>  
 <title>Questions, unanswered</title>  
 <artist>Steve and the flubberblubs</artist>  
 <year>1989</year>  
 <tracks>  
 <song tracknumber="1" length="4:05">  
 <title>What do you know?</title>  
 <artist>Steve and the flubberblubs</artist>  
 <lastplayed>2006-10-17-08:31</lastplayed>  
 </song>  
 <song tracknumber="2" length="3:45">  
 <title>Who do you know?</title>  
 <artist>Steve and the flubberblubs</artist>  
 <lastplayed>2006-10-17-08:35</lastplayed>  
 </song>  
 <song tracknumber="3" length="5:14">  
 <title>When do you know?</title>  
 <artist>Steve and the flubberblubs</artist>  
 <lastplayed>2006-10-17-08:39</lastplayed>  
 </song>  
 <song tracknumber="4" length="4:19">  
 <title>Do you know?</title>  
 <artist>Steve and the flubberblubs</artist>  
 <lastplayed>2006-10-17-08:44</lastplayed>  
 </song>  
 </tracks>  
 </album>

Notice that this XML document contains other complete XML structures within it (such as the song tags with their 

children). It also demonstrates other XML structures such as attributes (tracknumber and length in the song tags), 

and tags that contain other tags rather than containing data (such as the tracks tag).

Getting started with XML

If you have little or no experience with XML, here is a brief description of the most common aspects of XML data. XML 

data is written in plain-text form, with a specific syntax for organizing the information into a structured format. 

Generally, a single set of XML data is known as an XML document. In XML format, data is organized into elements 

(which can be single data items or containers for other elements) using a hierarchical structure. Every XML document 

has a single element as the top level or main item; inside this root element there may be a single piece of information, 

although there are more likely to be other elements, which in turn contain other elements, and so forth. For example, 

this XML document contains the information about a music album:

 <song tracknumber="1" length="4:05">  
 <title>What do you know?</title>  
 <artist>Steve and the flubberblubs</artist>  
 <mood>Happy</mood>  
 <lastplayed>2006-10-17-08:31</lastplayed>  
 </song>

Each element is distinguished by a set of tags—the element’s name wrapped in angle brackets (less-than and greater-

than signs). The opening tag, indicating the start of the element, has the element name:

 <title>

The closing tag, which marks the end of the element, has a forward slash before the element’s name:

 </title>

Updated 11 February 2009



225PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

If an element contains no content, it can be written as an empty element (sometimes called a self-closing element). In 

XML, this element:

 <lastplayed/>

is identical to this element:

 <lastplayed></lastplayed>

In addition to the element’s content contained between the opening and closing tags, an element can also include other 

values, known as attributes, defined in the element’s opening tag. For example, this XML element defines a single 

attribute named length, with the value "4:19" :

 <song length="4:19"></song>

Each XML element has content, which is either a single value, one or more XML elements, or nothing (for an empty 

element).

Learning more about XML

To learn more about working with XML, there are a number of additional books and resources for learning more about 

XML, including these web sites:

• W3Schools XML Tutorial: http://w3schools.com/xml/

• XML.com: http://www.xml.com/

• XMLpitstop tutorials, discussion lists, and more: http://xmlpitstop.com/

ActionScript classes for working with XML

ActionScript 3.0 includes several classes that are used for working with XML-structured information. The two main 

classes are as follows:

• XML: Represents a single XML element, which can be an XML document with multiple children or a single-value 

element within a document.

• XMLList: Represents a set of XML elements. An XMLList object is used when there are multiple XML elements that 

are “siblings” (at the same level, and contained by the same parent, in the XML document’s hierarchy). For instance, 

an XMLList instance would be the easiest way to work with this set of XML elements (presumably contained in an 

XML document):

 <artist type="composer">Fred Wilson</artist>  
 <artist type="conductor">James Schmidt</artist>  
 <artist type="soloist">Susan Harriet Thurndon</artist>

For more advanced uses involving XML namespaces, ActionScript also includes the Namespace and QName classes. 

For more information, see “Using XML namespaces” on page 238.

In addition to the built-in classes for working with XML, ActionScript 3.0 also includes several operators that provide 

specific functionality for accessing and manipulating XML data. This approach to working with XML using these 

classes and operators is known as ECMAScript for XML (E4X), as defined by the ECMA-357 edition 2 specification.

Common XML tasks

When you work with XML in ActionScript, you are likely to do the following tasks:

• Constructing XML documents (adding elements and values)

• Accessing XML elements, values, and attributes

• Filtering (searching in) XML elements

Updated 11 February 2009

http://w3schools.com/xml/
http://www.xml.com/
http://xmlpitstop.com/


226PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

• Looping over a set of XML elements

• Converting data between XML classes and the String class

• Working with XML namespaces

• Loading external XML files

Important concepts and terms

The following reference list contains important terms used in this chapter:

• Element: A single item in an XML document, identified as the content contained between a starting tag and an 

ending tag (including the tags). XML elements can contain text data or other elements, or can be empty.

• Empty element: An XML element that contains no child elements. Empty elements are often written as self-closing 

tags (such as <element/>).

• Document: A single XML structure. An XML document can contain any number of elements (or can consist only 

of a single empty element); however, an XML document must have a single top-level element that contains all the 

other elements in the document.

• Node: Another name for an XML element.

• Attribute: A named value associated with an element that is written into the opening tag of the element in 

attributename="value" format, rather than being written as a separate child element nested inside the element.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Essentially 

all the code listings in this chapter already include the appropriate trace() function call. To test the code listings in 

this chapter:

1 Create an empty Flash document.

2 Select a keyframe in the timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

You will see the results of the trace() function in the Output panel.

This and other techniques for testing example code listings are described in more detail in “Testing in-chapter example 

code listings” on page 34.

The E4X approach to XML processing

The ECMAScript for XML specification defines a set of classes and functionality for working with XML data. These 

classes and functionality are known collectively as E4X. ActionScript 3.0 includes the following E4X classes: XML, 

XMLList, QName, and Namespace.

The methods, properties, and operators of the E4X classes are designed with the following goals:

• Simplicity—Where possible, E4X makes it easier to write and understand code for working with XML data.

• Consistency—The methods and reasoning behind E4X are internally consistent and consistent with other parts of 

ActionScript.

Updated 11 February 2009



227PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

• Familiarity—You manipulate XML data with well-known operators, such as the dot (.) operator.

Note: There was an XML class in ActionScript 2.0. In ActionScript 3.0 it has been renamed XMLDocument, so that it 

does not conflict with the ActionScript 3.0 XML class that is part of E4X. In ActionScript 3.0, the legacy classes—

XMLDocument, XMLNode, XMLParser, and XMLTag—are included in the flash.xml package primarily for legacy 

support. The new E4X classes are core classes; you need not import a package to use them. This chapter does not go into 

detail on the legacy ActionScript 2.0 XML classes. For details on these, see the flash.xml package in the ActionScript 3.0 

Language and Components Reference. 

Here is an example of manipulating data with E4X:

 var myXML:XML =   
 <order>  
 <item id='1'>  
 <menuName>burger</menuName>  
 <price>3.95</price>  
 </item>  
 <item id='2'>  
 <menuName>fries</menuName>  
 <price>1.45</price>  
 </item>  
 </order>

Often, your application will load XML data from an external source, such as a web service or a RSS feed. However, for 

clarity, the examples in this chapter assign XML data as literals.

As the following code shows, E4X includes some intuitive operators, such as the dot (.) and attribute identifier (@) 

operators, for accessing properties and attributes in the XML:

 trace(myXML.item[0].menuName); // Output: burger  
 trace(myXML.item.(@id==2).menuName); // Output: fries  
 trace(myXML.item.(menuName=="burger").price); // Output: 3.95

Use the appendChild() method to assign a new child node to the XML, as the following snippet shows:

 var newItem:XML =   
 <item id="3">  
 <menuName>medium cola</menuName>  
 <price>1.25</price>  
 </item>  
   
 myXML.appendChild(newItem);

Use the @ and . operators not only to read data, but also to assign data, as in the following:

 myXML.item[0].menuName="regular burger";  
 myXML.item[1].menuName="small fries";  
 myXML.item[2].menuName="medium cola";  
   
 myXML.item.(menuName=="regular burger").@quantity = "2";  
 myXML.item.(menuName=="small fries").@quantity = "2";  
 myXML.item.(menuName=="medium cola").@quantity = "2";

Use a for loop to iterate through nodes of the XML, as follows:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/xml/package-detail.html


228PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 var total:Number = 0;  
 for each (var property:XML in myXML.item)  
 {  
 var q:int = Number(property.@quantity);  
 var p:Number = Number(property.price);  
 var itemTotal:Number = q * p;  
 total += itemTotal;  
 trace(q + " " + property.menuName + " $" + itemTotal.toFixed(2))  
 }  
 trace("Total: $", total.toFixed(2));

XML objects

An XML object may represent an XML element, attribute, comment, processing instruction, or text element. 

An XML object is classified as having either simple content or complex content. An XML object that has child nodes is 

classified as having complex content. An XML object is said to have simple content if it is any one of the following: an 

attribute, a comment, a processing instruction, or a text node.

For example, the following XML object contains complex content, including a comment and a processing instruction:

 XML.ignoreComments = false;  
 XML.ignoreProcessingInstructions = false;  
 var x1:XML =   
 <order>  
 <!--This is a comment. -->  
 <?PROC_INSTR sample ?>  
 <item id='1'>  
 <menuName>burger</menuName>  
 <price>3.95</price>  
 </item>  
 <item id='2'>  
 <menuName>fries</menuName>  
 <price>1.45</price>  
 </item>  
 </order>

As the following example shows, you can now use the comments() and processingInstructions() methods to 

create new XML objects, a comment and a processing instruction:

 var x2:XML = x1.comments()[0];  
 var x3:XML = x1.processingInstructions()[0];

XML properties

The XML class has five static properties:

• The ignoreComments and ignoreProcessingInstructions properties determine whether comments or 

processing instructions are ignored when the XML object is parsed. 

• The ignoreWhitespace property determines whether white space characters are ignored in element tags and 

embedded expressions that are separated only by white space characters. 

• The prettyIndentand prettyPrinting properties are used to format the text that is returned by the toString() 

and toXMLString() methods of the XML class.

Updated 11 February 2009



229PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

For details on these properties, see the ActionScript 3.0 Language and Components Reference.

XML methods

The following methods allow you to work with the hierarchical structure of XML objects: 

• appendChild()

• child()

• childIndex()

• children()

• descendants()

• elements()

• insertChildAfter()

• insertChildBefore()

• parent()

• prependChild()

The following methods allow you to work with XML object attributes: 

• attribute()

• attributes()

The following methods allow you to you work with XML object properties: 

• hasOwnProperty()

• propertyIsEnumerable()

• replace()

• setChildren()

The following methods are for working with qualified names and namespaces:

• addNamespace()

• inScopeNamespaces()

• localName()

• name()

• namespace()

• namespaceDeclarations()

• removeNamespace()

• setLocalName()

• setName()

• setNamespace()

The following methods are for working with and determining certain types of XML content:

• comments()

• hasComplexContent()

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en


230PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

• hasSimpleContent()

• nodeKind()

• processingInstructions()

• text()

The following methods are for conversion to strings and for formatting XML objects:

• defaultSettings()

• setSettings()

• settings()

• normalize()

• toString()

• toXMLString()

There are a few additional methods: 

• contains()

• copy()

• valueOf()

• length()

For details on these methods, see the ActionScript 3.0 Language and Components Reference.

XMLList objects

An XMLList instance represents an arbitrary collection of XML objects. It can contain full XML documents, XML 

fragments, or the results of an XML query.

The following methods allow you to work with the hierarchical structure of XMLList objects: 

• child()

• children()

• descendants()

• elements()

• parent()

The following methods allow you to work with XMLList object attributes: 

• attribute()

• attributes()

The following methods allow you to you work with XMLList properties: 

• hasOwnProperty()

• propertyIsEnumerable()

The following methods are for working with and determining certain types of XML content:

• comments()

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en


231PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

• hasComplexContent()

• hasSimpleContent()

• processingInstructions()

• text()

The following are for conversion to strings and for formatting the XMLList object:

• normalize()

• toString()

• toXMLString()

There are a few additional methods: 

• contains()

• copy()

• length()

• valueOf()

For details on these methods, see the ActionScript 3.0 Language and Components Reference.

For an XMLList object that contains exactly one XML element, you can use all properties and methods of the XML 

class, because an XMLList with one XML element is treated the same as an XML object. For example, in the following 

code, because doc.div is an XMLList object containing one element, you can use the appendChild() method from 

the XML class:

 var doc:XML =   
 <body>  
 <div>  
 <p>Hello</p>  
 </div>  
 </body>;  
 doc.div.appendChild(<p>World</p>);

For a list of XML properties and methods, see “XML objects” on page 228.

Initializing XML variables

You can assign an XML literal to an XML object, as follows:

 var myXML:XML =   
 <order>  
 <item id='1'>  
 <menuName>burger</menuName>  
 <price>3.95</price>  
 </item>  
 <item id='2'>  
 <menuName>fries</menuName>  
 <price>1.45</price>  
 </item>  
 </order>

As the following snippet shows, you can also use the new constructor to create an instance of an XML object from a 

string that contains XML data:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en


232PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 var str:String = "<order><item id='1'><menuName>burger</menuName>"  
 + "<price>3.95</price></item></order>";  
 var myXML:XML = new XML(str);

If the XML data in the string is not well formed (for example, if a closing tag is missing), you will see a run-time error.

You can also pass data by reference (from other variables) into an XML object, as the following example shows:

 var tagname:String = "item";   
 var attributename:String = "id";   
 var attributevalue:String = "5";   
 var content:String = "Chicken";   
 var x:XML = <{tagname} {attributename}={attributevalue}>{content}</{tagname}>;   
 trace(x.toXMLString())  
 // Output: <item id="5">Chicken</item>

To load XML data from a URL, use the URLLoader class, as the following example shows:

 import flash.events.Event;  
 import flash.net.URLLoader;  
 import flash.net.URLRequest;  
   
 var externalXML:XML;  
 var loader:URLLoader = new URLLoader();  
 var request:URLRequest = new URLRequest("xmlFile.xml");  
 loader.load(request);  
 loader.addEventListener(Event.COMPLETE, onComplete);  
   
 function onComplete(event:Event):void  
 {  
 var loader:URLLoader = event.target as URLLoader;  
 if (loader != null)  
 {  
 externalXML = new XML(loader.data);  
 trace(externalXML.toXMLString());  
 }  
 else  
 {  
 trace("loader is not a URLLoader!");  
 }  
 }

To read XML data from a socket connection, use the XMLSocket class. For more information, see the XMLSocket class 

in the ActionScript 3.0 Language and Components Reference.

Assembling and transforming XML objects

Use the prependChild() method or the appendChild() method to add a property to the beginning or end of an XML 

object’s list of properties, as the following example shows:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/net/XMLSocket.html


233PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 var x1:XML = <p>Line 1</p>   
 var x2:XML = <p>Line 2</p>   
 var x:XML = <body></body>  
 x = x.appendChild(x1);  
 x = x.appendChild(x2);  
 x = x.prependChild(<p>Line 0</p>);  
 // x == <body><p>Line 0</p><p>Line 1</p><p>Line 2</p></body>

Use the insertChildBefore() method or the insertChildAfter() method to add a property before or after a 

specified property, as follows:

 var x:XML =   
 <body>  
 <p>Paragraph 1</p>   
 <p>Paragraph 2</p>  
 </body>  
 var newNode:XML = <p>Paragraph 1.5</p>   
 x = x.insertChildAfter(x.p[0], newNode)  
 x = x.insertChildBefore(x.p[2], <p>Paragraph 1.75</p>)

As the following example shows, you can also use curly brace operators ( { and } ) to pass data by reference (from other 

variables) when constructing XML objects:

 var ids:Array = [121, 122, 123];   
 var names:Array = [["Murphy","Pat"], ["Thibaut","Jean"], ["Smith","Vijay"]]  
 var x:XML = new XML("<employeeList></employeeList>");  
   
 for (var i:int = 0; i < 3; i++)  
 {  
 var newnode:XML = new XML();   
 newnode =  
 <employee id={ids[i]}>  
 <last>{names[i][0]}</last>  
 <first>{names[i][1]}</first>  
 </employee>;  
   
 x = x.appendChild(newnode)  
 }

You can assign properties and attributes to an XML object by using the = operator, as in the following:

 var x:XML =   
 <employee>  
 <lastname>Smith</lastname>  
 </employee>  
 x.firstname = "Jean";  
 x.@id = "239";

This sets the XML object x to the following:

 <employee id="239">  
 <lastname>Smith</lastname>  
 <firstname>Jean</firstname>  
 </employee>

You can use the + and += operators to concatenate XMLList objects:

Updated 11 February 2009



234PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 var x1:XML = <a>test1</a>   
 var x2:XML = <b>test2</b>   
 var xList:XMLList = x1 + x2;  
 xList += <c>test3</c>

This sets the XMLList object xList to the following:

 <a>test1</a>  
 <b>test2</b>  
 <c>test3</c>

Traversing XML structures

One of the powerful features of XML is its ability to provide complex, nested data via a linear string of text characters. 

When you load data into an XML object, ActionScript parses the data and loads its hierarchical structure into memory 

(or it sends a run-time error if the XML data is not well formed). 

The operators and methods of the XML and XMLList objects make it easy to traverse the structure of XML data. 

Use the dot (.) operator and the descendent accessor (..) operator to access child properties of an XML object. Consider 

the following XML object:

 var myXML:XML =   
 <order>  
 <book ISBN="0942407296">  
 <title>Baking Extravagant Pastries with Kumquats</title>  
 <author>  
 <lastName>Contino</lastName>  
 <firstName>Chuck</firstName>  
 </author>  
 <pageCount>238</pageCount>  
 </book>  
 <book ISBN="0865436401">  
 <title>Emu Care and Breeding</title>  
 <editor>  
 <lastName>Case</lastName>  
 <firstName>Justin</firstName>  
 </editor>  
 <pageCount>115</pageCount>  
 </book>  
 </order>

The object myXML.book is an XMLList object containing child properties of the myXML object that have the name book. 

These are two XML objects, matching the two book properties of the myXML object.

The object myXML..lastName is an XMLList object containing any descendent properties with the name lastName. 

These are two XML objects, matching the two lastName of the myXML object. 

The object myXML.book.editor.lastName is an XMLList object containing any children with the name lastName 

of children with the name editor of children with the name book of the myXML object: in this case, an XMLList object 

containing only one XML object (the lastName property with the value "Case"). 

Accessing parent and child nodes

The parent() method returns the parent of an XML object.

Updated 11 February 2009



235PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

You can use the ordinal index values of a child list to access specific child objects. For example, consider an XML object 

myXML that has two child properties named book. Each child property named book has an index number associated 

with it:

 myXML.book[0]  
 myXML.book[1]

To access a specific grandchild, you can specify index numbers for both the child and grandchild names:

 myXML.book[0].title[0]

However, if there is only one child of x.book[0] that has the name title, you can omit the index reference, as follows:

 myXML.book[0].title

Similarly, if there is only one book child of the object x, and if that child object has only one title object, you can omit 

both index references, like this:

 myXML.book.title

You can use the child() method to navigate to children with names based on a variable or expression, as the following 

example shows:

 var myXML:XML =   
 <order>  
 <book>  
 <title>Dictionary</title>  
 </book>  
 </order>;  
   
 var childName:String = "book";  
   
 trace(myXML.child(childName).title) // output: Dictionary

Accessing attributes

Use the @ symbol (the attribute identifier operator) to access attributes in an XML or XMLList object, as shown in the 

following code:

 var employee:XML =   
 <employee id="6401" code="233">  
 <lastName>Wu</lastName>  
 <firstName>Erin</firstName>  
 </employee>;  
 trace(employee.@id); // 6401

You can use the * wildcard symbol with the @ symbol to access all attributes of an XML or XMLList object, as in the 

following code:

 var employee:XML =   
 <employee id="6401" code="233">  
 <lastName>Wu</lastName>  
 <firstName>Erin</firstName>  
 </employee>;  
 trace(employee.@*.toXMLString());   
 // 6401  
 // 233

You can use the attribute() or attributes() method to access a specific attribute or all attributes of an XML or 

XMLList object, as in the following code:

Updated 11 February 2009



236PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 var employee:XML =   
 <employee id="6401" code="233">  
 <lastName>Wu</lastName>  
 <firstName>Erin</firstName>  
 </employee>;  
 trace(employee.attribute("id")); // 6401  
 trace(employee.attribute("*").toXMLString());   
 // 6401  
 // 233  
 trace(employee.attributes().toXMLString());   
 // 6401  
 // 233

Note that you can also use the following syntax to access attributes, as the following example shows:

 employee.attribute("id")  
 employee["@id"]  
 employee.@["id"]

These are each equivalent to employee.@id. However, the syntax employee.@id is the preferred approach.

Filtering by attribute or element value

You can use the parentheses operators— ( and ) —to filter elements with a specific element name or attribute value. 

Consider the following XML object:

 var x:XML =   
 <employeeList>  
 <employee id="347">  
 <lastName>Zmed</lastName>  
 <firstName>Sue</firstName>  
 <position>Data analyst</position>  
 </employee>  
 <employee id="348">  
 <lastName>McGee</lastName>  
 <firstName>Chuck</firstName>  
 <position>Jr. data analyst</position>  
 </employee>  
 </employeeList>

The following expressions are all valid:

• x.employee.(lastName == "McGee")—This is the second employee node.

• x.employee.(lastName == "McGee").firstName—This is the firstName property of the second employee node.

• x.employee.(lastName == "McGee").@id—This is the value of the id attribute of the second employee node.

• x.employee.(@id == 347)—The first employee node.

• x.employee.(@id == 347).lastName—This is the lastName property of the first employee node.

• x.employee.(@id > 300)—This is an XMLList with both employee properties.

• x.employee.(position.toString().search("analyst") > -1)—This is an XMLList with both position 

properties.

If you try to filter on attributes or elements that may not exist, Flash® Player and Adobe® AIR™ will throw an exception. 

For example, the final line of the following code generates an error, because there is no id attribute in the second p 

element:

Updated 11 February 2009



237PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 var doc:XML =   
 <body>  
 <p id='123'>Hello, <b>Bob</b>.</p>  
 <p>Hello.</p>  
 </body>;  
 trace(doc.p.(@id == '123'));

Similarly, the final line of following code generates an error because there is no b property of the second p element:

 var doc:XML =   
 <body>  
 <p id='123'>Hello, <b>Bob</b>.</p>  
 <p>Hello.</p>  
 </body>;  
 trace(doc.p.(b == 'Bob'));

To avoid these errors, you can identify the properties that have the matching attributes or elements by using the 

attribute() and elements() methods, as in the following code:

 var doc:XML =   
 <body>  
 <p id='123'>Hello, <b>Bob</b>.</p>  
 <p>Hello.</p>  
 </body>;  
 trace(doc.p.(attribute('id') == '123'));  
 trace(doc.p.(elements('b') == 'Bob'));

You can also use the hasOwnProperty() method, as in the following code:

 var doc:XML =   
 <body>  
 <p id='123'>Hello, <b>Bob</b>.</p>  
 <p>Hello.</p>  
 </body>;  
 trace(doc.p.(hasOwnProperty('@id') && @id == '123'));  
 trace(doc.p.(hasOwnProperty('b') && b == 'Bob'));

Using the for..in and the for each..in statements

ActionScript 3.0 includes the for..in statement and the for each..in statement for iterating through XMLList 

objects. For example, consider the following XML object, myXML, and the XMLList object, myXML.item. The XMLList 

object, myXML.item, consists of the two item nodes of the XML object.

 var myXML:XML =   
 <order>  
 <item id='1' quantity='2'>  
 <menuName>burger</menuName>  
 <price>3.95</price>  
 </item>  
 <item id='2' quantity='2'>  
 <menuName>fries</menuName>  
 <price>1.45</price>  
 </item>  
 </order>;

The for..in statement lets you iterate over a set of property names in an XMLList:

Updated 11 February 2009



238PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 var total:Number = 0;  
 for (var pname:String in myXML.item)  
 {  
 total += myXML.item.@quantity[pname] * myXML.item.price[pname];  
 }

The for each..in statement lets you iterate through the properties in the XMLList: 

 var total2:Number = 0;  
 for each (var prop:XML in myXML.item)  
 {  
 total2 += prop.@quantity * prop.price;  
 }

Using XML namespaces

Namespaces in an XML object (or document) identify the type of data that the object contains. For example, in sending 

and delivering XML data to a web service that uses the SOAP messaging protocol, you declare the namespace in the 

opening tag of the XML:

 var message:XML =   
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"  
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">   
 <soap:Body xmlns:w="http://www.test.com/weather/">  
 <w:getWeatherResponse>   
 <w:tempurature >78</w:tempurature>   
 </w:getWeatherResponse>   
 </soap:Body>   
 </soap:Envelope>;

The namespace has a prefix, soap, and a URI that defines the namespace, 

http://schemas.xmlsoap.org/soap/envelope/.

ActionScript 3.0 includes the Namespace class for working with XML namespaces. For the XML object in the previous 

example, you can use the Namespace class as follows:

 var soapNS:Namespace = message.namespace("soap");  
 trace(soapNS); // Output: http://schemas.xmlsoap.org/soap/envelope/  
   
 var wNS:Namespace = new Namespace("w", "http://www.test.com/weather/");  
 message.addNamespace(wNS);  
 var encodingStyle:XMLList = message.@soapNS::encodingStyle;  
 var body:XMLList = message.soapNS::Body;  
   
 message.soapNS::Body.wNS::GetWeatherResponse.wNS::tempurature = "78";

The XML class includes the following methods for working with namespaces: addNamespace(), 

inScopeNamespaces(), localName(), name(), namespace(), namespaceDeclarations(), removeNamespace(), 

setLocalName(), setName(), and setNamespace().

The default xml namespace directive lets you assign a default namespace for XML objects. For example, in the 

following, both x1 and x2 have the same default namespace:

 var ns1:Namespace = new Namespace("http://www.example.com/namespaces/");  
 default xml namespace = ns1;  
 var x1:XML = <test1 />;  
 var x2:XML = <test2 />;

Updated 11 February 2009



239PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

XML type conversion

You can convert XML objects and XMLList objects to String values. Similarly, you can convert strings to XML objects 

and XMLList objects. Also, keep in mind that all XML attribute values, names, and text values are strings. The 

following sections discuss all these forms of XML type conversion.

Converting XML and XMLList objects to strings

The XML and XMLList classes include a toString() method and a toXMLString() method. The toXMLString() 

method returns a string that includes all tags, attributes, namespace declarations, and content of the XML object. For 

XML objects with complex content (child elements), the toString() method does exactly the same as the 

toXMLString() method. For XML objects with simple content (those that contain only one text element), the 

toString() method returns only the text content of the element, as the following example shows:

 var myXML:XML =   
 <order>  
 <item id='1' quantity='2'>  
 <menuName>burger</menuName>  
 <price>3.95</price>  
 </item>  
 <order>;  
   
 trace(myXML.item[0].menuName.toXMLString());   
 // <menuName>burger</menuName>  
 trace(myXML.item[0].menuName.toString());  
 // burger

If you use the trace() method without specifying toString() or toXMLString(), the data is converted using the 

toString() method by default, as this code shows:

 var myXML:XML =   
 <order>  
 <item id='1' quantity='2'>  
 <menuName>burger</menuName>  
 <price>3.95</price>  
 </item>  
 <order>;  
   
 trace(myXML.item[0].menuName);   
 // burger

When using the trace() method to debug code, you will often want to use the toXMLString() method so that the 

trace() method outputs more complete data.

Converting strings to XML objects

You can use the new XML() constructor to create an XML object from a string, as follows:

 var x:XML = new XML("<a>test</a>");

If you attempt to convert a string to XML from a string that represents invalid XML or XML that is not well formed, 

a run-time error is thrown, as follows:

 var x:XML = new XML("<a>test"); // throws an error

Updated 11 February 2009



240PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

Converting attribute values, names, and text values from strings

All XML attribute values, names, and text values are String data types, and you may need to convert these to other data 

types. For example, the following code uses the Number() function to convert text values to numbers:

 var myXML:XML =   
 <order>  
 <item>  
 <price>3.95</price>  
 </item>  
 <item>  
 <price>1.00</price>  
 </item>  
 </order>;  
   
 var total:XML = <total>0</total>;  
 myXML.appendChild(total);  
   
 for each (var item:XML in myXML.item)  
 {  
 myXML.total.children()[0] = Number(myXML.total.children()[0])   
 + Number(item.price.children()[0]);  
 }  
 trace(myXML.total); // 4.35;

If this code did not use the Number() function, the code would interpret the + operator as the string concatenation 

operator, and the trace() method in the last line would output the following:

 01.003.95

Reading external XML documents

You can use the URLLoader class to load XML data from a URL. To use the following code in your applications, replace 

the XML_URL value in the example with a valid URL:

 var myXML:XML = new XML();  
 var XML_URL:String = "http://www.example.com/Sample3.xml";  
 var myXMLURL:URLRequest = new URLRequest(XML_URL);  
 var myLoader:URLLoader = new URLLoader(myXMLURL);  
 myLoader.addEventListener("complete", xmlLoaded);  
   
 function xmlLoaded(event:Event):void  
 {  
 myXML = XML(myLoader.data);  
 trace("Data loaded.");  
 }

You can also use the XMLSocket class to set up an asynchronous XML socket connection with a server. For more 

information, see the ActionScript 3.0 Language and Components Reference.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en


241PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

Example: Loading RSS data from the Internet

The RSSViewer sample application shows a number of features of working with XML in ActionScript, including the 

following: 

• Using XML methods to traverse XML data in the form of an RSS feed.

• Using XML methods to assemble XML data in the form of HTML to use in a text field.

The RSS format is widely used to syndicate news via XML. A simple RSS data file may look like the following:

 <?xml version="1.0" encoding="UTF-8" ?>   
 <rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">  
 <channel>  
 <title>Alaska - Weather</title>   
 <link>http://www.nws.noaa.gov/alerts/ak.html</link>   
 <description>Alaska - Watches, Warnings and Advisories</description>   
   
 <item>  
 <title>  
 Short Term Forecast - Taiya Inlet, Klondike Highway (Alaska)  
 </title>   
 <link>  
 http://www.nws.noaa.gov/alerts/ak.html#A18.AJKNK.1900  
 </link>   
 <description>  
 Short Term Forecast Issued At: 2005-04-11T19:00:00   
 Expired At: 2005-04-12T01:00:00 Issuing Weather Forecast Office   
 Homepage: http://pajk.arh.noaa.gov  
 </description>   
 </item>  
 <item>  
 <title>  
 Short Term Forecast - Haines Borough (Alaska)  
 </title>   
 <link>  
 http://www.nws.noaa.gov/alerts/ak.html#AKZ019.AJKNOWAJK.190000  
 </link>  
 <description>  
 Short Term Forecast Issued At: 2005-04-11T19:00:00   
 Expired At: 2005-04-12T01:00:00 Issuing Weather Forecast Office   
 Homepage: http://pajk.arh.noaa.gov  
 </description>   
 </item>  
 </channel>  
 </rss>

The SimpleRSS application reads RSS data from the Internet, parses the data for headlines (titles), links, and 

descriptions, and returns that data. The SimpleRSSUI class provides the UI and calls the SimpleRSS class, which does 

all of the XML processing. 

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

RSSViewer application files can be found in the folder Samples/RSSViewer. The application consists of the following 

files:

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


242PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

Reading and parsing XML data

The RSSParser class includes an xmlLoaded() method that converts the input RSS data, stored in the rssXML variable, 

into an string containing HTML-formatted output, rssOutput. 

Near the beginning of the method, code sets the default XML namespace if the source RSS data includes a default 

namespace:

 if (rssXML.namespace("") != undefined)  
 {  
 default xml namespace = rssXML.namespace("");  
 }

The next lines then loop through the contents of the source XML data, examining each descendant property named item:

 for each (var item:XML in rssXML..item)  
 {  
 var itemTitle:String = item.title.toString();  
 var itemDescription:String = item.description.toString();  
 var itemLink:String = item.link.toString();  
 outXML += buildItemHTML(itemTitle,   
 itemDescription,  
 itemLink);  
 }

The first three lines simply set string variables to represent the title, description and link properties of the item 

property of the XML data. The next line then calls the buildItemHTML() method to get HTML data in the form of an 

XMLList object, using the three new string variables as parameters.

Assembling XMLList data

The HTML data (an XMLList object) is of the following form:

 <b>itemTitle</b>  
 <p>  
 itemDescription  
 <br />  
 <a href="link">  
 <font color="#008000">More...</font>  
 </a>  
 </p>

The first lines of the method clear the default xml namespace:

File Description

RSSViewer.mxml

or

RSSViewer.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/rssViewer/RSSParser.as A class that contains methods that use E4X to traverse RSS (XML) data and 

generate a corresponding HTML representation.

RSSData/ak.rss A sample RSS file. The application is set up to read RSS data from the web, at 

a Flex RSS feed hosted by Adobe. However, you can easily change the 

application to read RSS data from this document, which uses a slightly 

different schema than that of the Flex RSS feed.

Updated 11 February 2009



243PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with XML

 default xml namespace = new Namespace();

The default xml namespace directive has function block-level scope. This means that the scope of this declaration 

is the buildItemHTML() method.

The lines that follow assemble the XMLList, based on the string arguments passed to the function:

 var body:XMLList = new XMLList();  
 body += new XML("<b>" + itemTitle + "</b>");  
 var p:XML = new XML("<p>" + itemDescription + "</p>");  
   
 var link:XML = <a></a>;  
 link.@href = itemLink; // <link href="itemLinkString"></link>  
 link.font.@color = "#008000";   
 // <font color="#008000"></font></a>  
 // 0x008000 = green  
 link.font = "More...";  
   
 p.appendChild(<br/>);   
 p.appendChild(link);   
 body += p;

This XMLList object represents string data suitable for an ActionScript HTML text field.

The xmlLoaded() method uses the return value of the buildItemHTML() method and converts it to a string:

 XML.prettyPrinting = false;  
 rssOutput = outXML.toXMLString();

Extracting the title of the RSS feed and sending a custom event

The xmlLoaded() method sets a rssTitle string variable, based on information in the source RSS XML data:

 rssTitle = rssXML.channel.title.toString();

Finally, the xmlLoaded() method generates an event, which notifies the application that the data is parsed and 

available:

 dataWritten = new Event("dataWritten", true);

Updated 11 February 2009



244

Chapter 12: Handling events

An event-handling system allows programmers to respond to user input and system events in a convenient way. The 

ActionScript 3.0 event model is not only convenient, but also standards-compliant, and well integrated with the 

Adobe® Flash® Player and Adobe® AIR™ display lists. Based on the Document Object Model (DOM) Level 3 Events 

Specification, an industry-standard event-handling architecture, the new event model provides a powerful yet intuitive 

event-handling tool for ActionScript programmers.

This chapter is organized in five sections. The first two sections provide background information about event handling 

in ActionScript. The last three sections describe the main concepts behind the event model: the event flow, the event 

object, and event listeners. The ActionScript 3.0 event-handling system interacts closely with the display list, and this 

chapter assumes that you have a basic understanding of the display list. For more information, see “Display 

programming” on page 266.

Basics of handling events

Introduction to handling events

You can think of events as occurrences of any kind in your SWF file that are of interest to you as a programmer. For 

example, most SWF files support user interaction of some sort—whether it's something as simple as responding to a 

mouse click or something more complex, such as accepting and processing data entered into a form. Any such user 

interaction with your SWF file is considered an event. Events can also occur without any direct user interaction, such 

as when data has finished loading from a server or when an attached camera has become active.

In ActionScript 3.0, each event is represented by an event object, which is an instance of the Event class or one of its 

subclasses. An event object not only stores information about a specific event, but also contains methods that facilitate 

manipulation of the event object. For example, when Flash Player or AIR detects a mouse click, it creates an event 

object (an instance of the MouseEvent class) to represent that particular mouse click event.

After creating an event object, Flash Player or AIR dispatches it, which means that the event object is passed to the 

object that is the target of the event. An object that serves as the destination for a dispatched event object is called an 

event target. For example, when an attached camera becomes active, Flash Player dispatches an event object directly to 

the event target, which in this case is the object that represents the camera. If the event target is on the display list, 

however, the event object is passed down through the display list hierarchy until it reaches the event target. In some 

cases, the event object then “bubbles” back up the display list hierarchy along the same route. This traversal of the 

display list hierarchy is called the event flow.

You can “listen” for event objects in your code using event listeners. Event listeners are the functions or methods that 

you write to respond to specific events. To ensure that your program responds to events, you must add event listeners 

either to the event target or to any display list object that is part of an event object’s event flow.

Any time you write event listener code, it follows this basic structure (elements in bold are placeholders you’d fill in 

for your specific case):

 function eventResponse(eventObject:EventType):void  
 {  
 // Actions performed in response to the event go here.  
 }  
   
 eventTarget.addEventListener(EventType.EVENT_NAME, eventResponse);

Updated 11 February 2009



245PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

This code does two things. First, it defines a function, which is the way to specify the actions that will be performed in 

response to the event. Next, it calls the addEventListener() method of the source object, in essence “subscribing” 

the function to the specified event so that when the event happens, the function’s actions are carried out. When the 

event actually happens, the event target checks its list of all the functions and methods that are registered as event 

listeners. It then calls each one in turn, passing the event object as a parameter.

You need to alter four things in this code to create your own event listener. First, you must change the name of the 

function to the name you want to use (this must be changed in two places, where the code says eventResponse). 

Second, you must specify the appropriate class name of the event object that is dispatched by the event you want to 

listen for (EventType in the code), and you must specify the appropriate constant for the specific event 

(EVENT_NAME in the listing). Third, you must call the addEventListener() method on the object that will 

dispatch the event (eventTarget in this code). Optionally, you can change the name of the variable used as the 

function’s parameter (eventObject in this code).

Common event-handling tasks

The following are common event-handling tasks, each of which is described in this chapter:

• Writing code to respond to events

• Stopping code from responding to events

• Working with event objects

• Working with event flow:

• Identifying event flow information

• Stopping event flow

• Preventing default behavior

• Dispatching events from your classes

• Creating a custom event type

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Default behavior: Some events include a behavior that normally happens along with the event, known as the default 

behavior. For example, when a user types text in a text field, a text input event is raised. The default behavior for 

that event is to actually display the character that was typed into the text field—but you can override that default 

behavior (if for some reason you don’t want the typed character to be displayed).

• Dispatch: To notify event listeners that an event has occurred.

• Event: Something that happens to an object that the object can tell other objects about.

• Event flow: When events happen to an object on the display list (an object displayed on the screen), all the objects 

that contain the object are notified of the event and notify their event listeners in turn. This process starts with the 

Stage and proceeds through the display list to the actual object where the event occurred, and then proceeds back 

to the Stage again. This process is known as the event flow.

• Event object: An object that contains information about a particular event’s occurrence, which is sent to all listeners 

when an event is dispatched.

• Event target: The object that actually dispatches an event. For example, if the user clicks a button that is inside a 

Sprite that is in turn inside the Stage, all those objects dispatch events, but the event target is the one where the event 

actually happened—in this case, the clicked button.

Updated 11 February 2009



246PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

• Listener: An object or function that has registered itself with an object, to indicate that it should be notified when 

a specific event takes place.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Essentially, 

all the code listings in this chapter include a trace() function call for testing the results of the code. To test the code 

listings in this chapter:

1 Create an empty document using the Flash authoring tool.

2 Select a keyframe in the timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

You will see the results of the code listing’s trace() functions in the Output panel.

Some of the code listings are more complex and are written as a class. To test these examples:

1 Create an empty document using the Flash authoring tool and save it to your computer.

2 Create a new ActionScript file and save it in the same directory as the document created in step 1. The file’s name 

should match the name of the class in the code listing. For instance, if the code listing defines a class named 

EventTest, use the name EventTest.as to save the ActionScript file.

3 Copy the code listing into the ActionScript file and save the file.

4 In the document, click a blank part of the Stage or work space to activate the document Property inspector.

5 In the Property inspector, in the Document Class field, enter the name of the ActionScript class you copied from 

the text.

6 Run the program using Control > Test Movie

You will see the results of the example in the Output panel.

These techniques for testing example code listings are explained in more detail in “Testing in-chapter example code 

listings” on page 34.

How ActionScript 3.0 event handling differs from earlier 
versions

The most noticeable difference between event handling in ActionScript 3.0 and event handling in previous versions of 

ActionScript is that in ActionScript 3.0 there is only one system for event handling, whereas in previous versions of 

ActionScript there are several different event-handling systems. This section begins with an overview of how event 

handling worked in previous versions of ActionScript, and then discusses how event handling has changed for 

ActionScript 3.0.

Event handling in previous versions of ActionScript

Versions of ActionScript before ActionScript 3.0 provided a number of different ways to handle events:

• on() event handlers that can be placed directly on Button and MovieClip instances

• onClipEvent() handlers that can be placed directly on MovieClip instances

Updated 11 February 2009



247PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

• Callback function properties, such as XML.onload and Camera.onActivity

• Event listeners that you register using the addListener() method

• The UIEventDispatcher class that partially implemented the DOM event model.

Each of these mechanisms presents its own set of advantages and limitations. The on() and onClipEvent() handlers 

are easy to use, but make subsequent maintenance of projects more difficult because code placed directly on buttons 

and movie clips can be difficult to find. Callback functions are also simple to implement, but limit you to only one 

callback function for any given event. Event listeners are more difficult to implement—they require not only the 

creation of a listener object and function, but also the registration of the listener with the object that generates the 

event. This increased overhead, however, enables you to create several listener objects and register them all for the 

same event.

The development of components for ActionScript 2.0 engendered yet another event model. This new model, 

embodied in the UIEventDispatcher class, was based on a subset of the DOM Events Specification. Developers who 

are familiar with component event handling will find the transition to the new ActionScript 3.0 event model relatively 

painless.

Unfortunately, the syntax used by the various event models overlap in various ways, and differ in others. For example, 

in ActionScript 2.0, some properties, such as TextField.onChanged, can be used as either a callback function or an 

event listener. However, the syntax for registering listener objects differs depending on whether you are using one of 

the six classes that support listeners or the UIEventDispatcher class. For the Key, Mouse, MovieClipLoader, Selection, 

Stage, and TextField classes, you use the addListener() method, but for components event handling, you use a 

method called addEventListener().

Another complexity introduced by the different event-handling models was that the scope of the event handler 

function varied widely depending on the mechanism used. In other words, the meaning of the this keyword was not 

consistent among the event-handling systems.

Event handling in ActionScript 3.0

ActionScript 3.0 introduces a single event-handling model that replaces the many different event-handling 

mechanisms that existed in previous versions of the language. The new event model is based on the Document Object 

Model (DOM) Level 3 Events Specification. Although the SWF file format does not adhere specifically to the 

Document Object Model standard, there are sufficient similarities between the display list and the structure of the 

DOM to make implementation of the DOM event model possible. An object on the display list is analogous to a node 

in the DOM hierarchical structure, and the terms display list object and node are used interchangeably throughout this 

discussion.

The Flash Player and AIR implementation of the DOM event model includes a concept named default behaviors. A 

default behavior is an action that Flash Player or AIR executes as the normal consequence of certain events.

Default behaviors

Developers are usually responsible for writing code that responds to events. In some cases, however, a behavior is so 

commonly associated with an event that Flash Player or AIR automatically executes the behavior unless the developer 

adds code to cancel it. Because Flash Player or AIR automatically exhibits the behavior, such behaviors are called 

default behaviors.

Updated 11 February 2009



248PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

For example, when a user enters text into a TextField object, the expectation that the text will be displayed in that 

TextField object is so common that the behavior is built into Flash Player and AIR. If you do not want this default 

behavior to occur, you can cancel it using the new event-handling system. When a user inputs text into a TextField 

object, Flash Player or AIR creates an instance of the TextEvent class to represent that user input. To prevent Flash 

Player or AIR from displaying the text in the TextField object, you must access that specific TextEvent instance and 

call that instance’s preventDefault() method.

Not all default behaviors can be prevented. For example, Flash Player and AIR generate a MouseEvent object when a 

user double-clicks a word in a TextField object. The default behavior, which cannot be prevented, is that the word 

under the cursor is highlighted.

Many types of event objects do not have associated default behaviors. For example, Flash Player dispatches a connect 

event object when a network connection is established, but there is no default behavior associated with it. The API 

documentation for the Event class and its subclasses lists each type of event and describes any associated default 

behavior, and whether that behavior can be prevented.

It is important to understand that default behaviors are associated only with event objects dispatched by Flash Player 

or AIR, and do not exist for event objects dispatched programmatically through ActionScript. For example, you can 

use the methods of the EventDispatcher class to dispatch an event object of type textInput, but that event object will 

not have a default behavior associated with it. In other words, Flash Player and AIR will not display a character in a 

TextField object as a result of a textInput event that you dispatched programmatically.

What’s new for event listeners in ActionScript 3.0

For developers with experience using the ActionScript 2.0 addListener() method, it may be helpful to point out the 

differences between the ActionScript 2.0 event listener model and the ActionScript 3.0 event model. The following list 

describes a few major differences between the two event models:

• To add event listeners in ActionScript 2.0, you use addListener() in some cases and addEventListener() in 

others, whereas in ActionScript 3.0, you use addEventListener() in all situations.

• There is no event flow in ActionScript 2.0, which means that the addListener() method can be called only on the 

object that broadcasts the event, whereas in ActionScript 3.0, the addEventListener() method can be called on 

any object that is part of the event flow. 

• In ActionScript 2.0, event listeners can be either functions, methods, or objects, whereas in ActionScript 3.0, only 

functions or methods can be event listeners.

The event flow

Flash Player or AIR dispatches event objects whenever an event occurs. If the event target is not on the display list, 

Flash Player or AIR dispatches the event object directly to the event target. For example, Flash Player dispatches the 

progress event object directly to a URLStream object. If the event target is on the display list, however, Flash Player 

dispatches the event object into the display list, and the event object travels through the display list to the event target. 

The event flow describes how an event object moves through the display list. The display list is organized in a hierarchy 

that can be described as a tree. At the top of the display list hierarchy is the Stage, which is a special display object 

container that serves as the root of the display list. The Stage is represented by the flash.display.Stage class and can only 

be accessed through a display object. Every display object has a property named stage that refers to the Stage for that 

application.

Updated 11 February 2009



249PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

When Flash Player or AIR dispatches an event object for a display list-related event, that event object makes a 

roundtrip journey from the Stage to the target node. The DOM Events Specification defines the target nodeas the node 

representing the event target. In other words, the target node is the display list object where the event occurred. For 

example, if a user clicks on a display list object named child1, Flash Player or AIR will dispatch an event object using 

child1 as the target node.

The event flow is conceptually divided into three parts. The first part is called the capture phase; this phase comprises 

all of the nodes from the Stage to the parent of the target node. The second part is called the target phase, which consists 

solely of the target node. The third part is called the bubbling phase. The bubbling phase comprises the nodes 

encountered on the return trip from the parent of the target node back to the Stage.

The names of the phases make more sense if you conceive of the display list as a vertical hierarchy with the Stage at the 

top, as shown in the following diagram:

If a user clicks on Child1 Node, Flash Player or AIR dispatches an event object into the event flow. As the following 

image shows, the object’s journey starts at Stage, moves down to Parent Node, then moves to Child1 Node, and 

then “bubbles” back up to Stage, moving through Parent Node again on its journey back to Stage. 

In this example, the capture phase comprises Stage and Parent Node during the initial downward journey. The target 

phase comprises the time spent at Child1 Node. The bubbling phase comprises Parent Node and Stage as they are 

encountered during the upward journey back to the root node.

The event flow contributes to a more powerful event-handling system than that previously available to ActionScript 

programmers. In previous versions of ActionScript, the event flow does not exist, which means that event listeners can 

be added only to the object that generates the event. In ActionScript 3.0, you can add event listeners not only to a target 

node, but also to any node along the event flow. 

Stage

Parent Node

Child1  Node Child2 Node

Stage

Parent Node

Child1  Node Child2 Node

Capture

Phase

Bubbling

Phase

Target Phase

Updated 11 February 2009



250PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

The ability to add event listeners along the event flow is useful when a user interface component comprises more than 

one object. For example, a button object often contains a text object that serves as the button’s label. Without the ability 

to add a listener to the event flow, you would have to add a listener to both the button object and the text object to 

ensure that you receive notification about click events that occur anywhere on the button. The existence of the event 

flow, however, allows you to place a single event listener on the button object that handles click events that occur either 

on the text object or on the areas of the button object that are not obscured by the text object. 

Not every event object, however, participates in all three phases of the event flow. Some types of events, such as the 

enterFrame and init event types, are dispatched directly to the target node and participate in neither the capture 

phase nor the bubbling phase. Other events may target objects that are not on the display list, such as events dispatched 

to an instance of the Socket class. These event objects will also flow directly to the target object, without participating 

in the capture and bubbling phases.

To find out how a particular event type behaves, you can either check the API documentation or examine the event 

object's properties. Examining the event object’s properties is described in the following section.

Event objects

Event objects serve two main purposes in the new event-handling system. First, event objects represent actual events 

by storing information about specific events in a set of properties. Second, event objects contain a set of methods that 

allow you to manipulate event objects and affect the behavior of the event-handling system.

To facilitate access to these properties and methods, the Flash Player API defines an Event class that serves as the base 

class for all event objects. The Event class defines a fundamental set of properties and methods that are common to all 

event objects.

This section begins with a discussion of the Event class properties, continues with a description of the Event class 

methods, and concludes with an explanation of why subclasses of the Event class exist.

Understanding Event class properties

The Event class defines a number of read-only properties and constants that provide important information about an 

event object.The following are especially important:

• Event object types are represented by constants and stored in the Event.type property.

• Whether an event’s default behavior can be prevented is represented by a Boolean value and stored in the 

Event.cancelable property.

• Event flow information is contained in the remaining properties.

Event object types

Every event object has an associated event type. Event types are stored in the Event.type property as string values. It 

is useful to know the type of an event object so that your code can distinguish objects of different types from one 

another. For example, the following code specifies that the clickHandler() listener function should respond to any 

mouse click event objects that are passed to myDisplayObject:

 myDisplayObject.addEventListener(MouseEvent.CLICK, clickHandler);

Some two dozen event types are associated with the Event class itself and are represented by Event class constants, 

some of which are shown in the following excerpt from the Event class definition:

Updated 11 February 2009



251PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

 package flash.events  
 {  
 public class Event  
 {  
 // class constants  
 public static const ACTIVATE:String = "activate";  
 public static const ADDED:String= "added";  
 // remaining constants omitted for brevity  
 }  
 }

These constants provide an easy way to refer to specific event types. You should use these constants instead of the 

strings they represent. If you misspell a constant name in your code, the compiler will catch the mistake, but if you 

instead use strings, a typographical error may not manifest at compile time and could lead to unexpected behavior that 

could be difficult to debug. For example, when adding an event listener, use the following code:

 myDisplayObject.addEventListener(MouseEvent.CLICK, clickHandler);

rather than:

 myDisplayObject.addEventListener("click", clickHandler);

Default behavior information

Your code can check whether the default behavior for any given event object can be prevented by accessing the 

cancelable property. The cancelable property holds a Boolean value that indicates whether or not a default 

behavior can be prevented. You can prevent, or cancel, the default behavior associated with a small number of events 

using the preventDefault() method. For more information, see Cancelling default event behavior under 

“Understanding Event class methods” on page 252.

Event flow information

The remaining Event class properties contain important information about an event object and its relationship to the 

event flow, as described in the following list: 

• The bubbles property contains information about the parts of the event flow in which the event object participates. 

• The eventPhase property indicates the current phase in the event flow. 

• The target property stores a reference to the event target. 

• The currentTarget property stores a reference to the display list object that is currently processing the event 

object.

The bubbles property

An event is said to bubble if its event object participates in the bubbling phase of the event flow, which means that the 

event object is passed from the target node back through its ancestors until it reaches the Stage. The Event.bubbles 

property stores a Boolean value that indicates whether the event object participates in the bubbling phase. Because all 

events that bubble also participate in the capture and target phases, any event that bubbles participates in all three of 

the event flow phases. If the value is true, the event object participates in all three phases. If the value is false, the 

event object does not participate in the bubbling phase.

The eventPhase property

You can determine the event phase for any event object by investigating its eventPhase property. The eventPhase 

property contains an unsigned integer value that represents one of the three phases of the event flow. The Flash Player 

API defines a separate EventPhase class that contains three constants that correspond to the three unsigned integer 

values, as shown in the following code excerpt:

Updated 11 February 2009



252PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

 package flash.events  
 {  
 public final class EventPhase  
 {  
 public static const CAPTURING_PHASE:uint = 1;  
 public static const AT_TARGET:uint = 2;  
 public static const BUBBLING_PHASE:uint= 3;  
 }  
 }

These constants correspond to the three valid values of the eventPhase property. You can use these constants to make 

your code more readable. For example, if you want to ensure that a function named myFunc() is called only if the event 

target is in the target stage, you can use the following code to test for this condition:

 if (event.eventPhase == EventPhase.AT_TARGET)  
 {  
 myFunc();  
 }

The target property

The target property holds a reference to the object that is the target of the event. In some cases, this is straightforward, 

such as when a microphone becomes active, the target of the event object is the Microphone object. If the target is on 

the display list, however, the display list hierarchy must be taken into account. For example, if a user inputs a mouse 

click on a point that includes overlapping display list objects, Flash Player and AIR always choose the object that is 

farthest away from the Stage as the event target. 

For complex SWF files, especially those in which buttons are routinely decorated with smaller child objects, the 

target property may not be used frequently because it will often point to a button’s child object instead of the button. 

In these situations, the common practice is to add event listeners to the button and use the currentTarget property 

because it points to the button, whereas the target property may point to a child of the button. 

The currentTarget property

The currentTarget property contains a reference to the object that is currently processing the event object. Although 

it may seem odd not to know which node is currently processing the event object that you are examining, keep in mind 

that you can add a listener function to any display object in that event object's event flow, and the listener function can 

be placed in any location. Moreover, the same listener function can be added to different display objects. As a project 

increases in size and complexity, the currentTarget property becomes more and more useful.

Understanding Event class methods

There are three categories of Event class methods:

• Utility methods, which can create copies of an event object or convert it to a string

• Event flow methods, which remove event objects from the event flow

• Default behavior methods, which prevent default behavior or check whether it has been prevented

Event class utility methods

There are two utility methods in the Event class. The clone() method allows you to create copies of an event object. 

The toString() method allows you to generate a string representation of the properties of an event object along with 

their values. Both of these methods are used internally by the event model system, but are exposed to developers for 

general use.

Updated 11 February 2009



253PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

For advanced developers creating subclasses of the Event class, you must override and implement versions of both 

utility methods to ensure that the event subclass will work properly.

Stopping event flow

You can call either the Event.stopPropagation() method or the Event.stopImmediatePropagation() method 

to prevent an event object from continuing on its way through the event flow. The two methods are nearly identical 

and differ only in whether the current node’s other event listeners are allowed to execute:

• The Event.stopPropagation() method prevents the event object from moving on to the next node, but only after 

any other event listeners on the current node are allowed to execute.

• The Event.stopImmediatePropagation() method also prevents the event object from moving on to the next 

node, but does not allow any other event listeners on the current node to execute.

Calling either of these methods has no effect on whether the default behavior associated with an event occurs. Use the 

default behavior methods of the Event class to prevent default behavior.

Cancelling default event behavior

The two methods that pertain to cancelling default behavior are the preventDefault() method and the 

isDefaultPrevented() method. Call the preventDefault() method to cancel the default behavior associated with 

an event. To check whether preventDefault() has already been called on an event object, call the 

isDefaultPrevented() method, which returns a value of true if the method has already been called and false 

otherwise.

The preventDefault() method will work only if the event’s default behavior can be cancelled. You can check 

whether this is the case by referring to the API documentation for that event type, or by using ActionScript to examine 

the cancelable property of the event object.

Cancelling the default behavior has no effect on the progress of an event object through the event flow. Use the event 

flow methods of the Event class to remove an event object from the event flow.

Subclasses of the Event class

For many events, the common set of properties defined in the Event class is sufficient. Other events, however, have 

unique characteristics that cannot be captured by the properties available in the Event class. For these events, 

ActionScript 3.0 defines several subclasses of the Event class. 

Each subclass provides additional properties and event types that are unique to that category of events. For example, 

events related to mouse input have several unique characteristics that cannot be captured by the properties defined in 

the Event class. The MouseEvent class extends the Event class by adding ten properties that contain information such 

as the location of the mouse event and whether specific keys were pressed during the mouse event. 

An Event subclass also contains constants that represent the event types that are associated with the subclass. For 

example, the MouseEvent class defines constants for several mouse event types, include the click, doubleClick, 

mouseDown, and mouseUp event types.

As described in the section on Event class utility methods under “Event objects” on page 250, when creating an Event 

subclass you must override the clone() and toString() methods to provide functionality specific to the subclass.

Updated 11 February 2009



254PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

Event listeners

Event listeners, which are also called event handlers, are functions that Flash Player and AIR execute in response to 

specific events. Adding an event listener is a two-step process. First, you create a function or class method for Flash 

Player or AIR to execute in response to the event. This is sometimes called the listener function or the event handler 

function. Second, you use the addEventListener() method to register your listener function with the target of the 

event or any display list object that lies along the appropriate event flow. 

Creating a listener function

The creation of listener functions is one area where the ActionScript 3.0 event model deviates from the DOM event 

model. In the DOM event model, there is a clear distinction between an event listener and a listener function: an event 

listener is an instance of a class that implements the EventListener interface, whereas a listener function is a method 

of that class named handleEvent(). In the DOM event model, you register the class instance that contains the listener 

function rather than the actual listener function. 

In the ActionScript 3.0 event model, there is no distinction between an event listener and a listener function. 

ActionScript 3.0 does not have an EventListener interface, and listener functions can be defined outside a class or as 

part of a class. Moreover, listener functions do not have to be named handleEvent()—they can be named with any 

valid identifier. In ActionScript 3.0, you register the name of the actual listener function.

Listener function defined outside of a class

The following code creates a simple SWF file that displays a red square shape. A listener function named 

clickHandler(), which is not part of a class, listens for mouse click events on the red square.

Updated 11 February 2009



255PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

 package  
 {  
 import flash.display.Sprite;  
   
 public class ClickExample extends Sprite  
 {  
 public function ClickExample()  
 {  
 var child:ChildSprite = new ChildSprite();  
 addChild(child);  
 }  
 }  
 }  
   
 import flash.display.Sprite;  
 import flash.events.MouseEvent;  
   
 class ChildSprite extends Sprite  
 {  
 public function ChildSprite()  
 {  
 graphics.beginFill(0xFF0000);  
 graphics.drawRect(0,0,100,100);  
 graphics.endFill();  
 addEventListener(MouseEvent.CLICK, clickHandler);  
 }  
 }  
   
 function clickHandler(event:MouseEvent):void  
 {  
 trace("clickHandler detected an event of type: " + event.type);  
 trace("the this keyword refers to: " + this);  
 }

When a user interacts with the resulting SWF file by clicking on the square, Flash Player or AIR generates the following 

trace output:

 clickHandler detected an event of type: click  
 the this keyword refers to: [object global]

Notice that the event object is passed as an argument to clickHandler(). This allows your listener function to 

examine the event object. In this example, you use the event object's type property to ascertain that the event is a click 

event.

The example also checks the value of the this keyword. In this case, this represents the global object, which makes 

sense because the function is defined outside of any custom class or object.

Listener function defined as a class method

The following example is identical to the previous example that defines the ClickExample class except that the 

clickHandler() function is defined as a method of the ChildSprite class: 

Updated 11 February 2009



256PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

 package  
 {  
 import flash.display.Sprite;  
   
 public class ClickExample extends Sprite  
 {  
 public function ClickExample()  
 {  
 var child:ChildSprite = new ChildSprite();  
 addChild(child);  
 }  
 }  
 }  
   
 import flash.display.Sprite;  
 import flash.events.MouseEvent;  
   
 class ChildSprite extends Sprite  
 {  
 public function ChildSprite()  
 {  
 graphics.beginFill(0xFF0000);  
 graphics.drawRect(0,0,100,100);  
 graphics.endFill();  
 addEventListener(MouseEvent.CLICK, clickHandler);  
 }  
 private function clickHandler(event:MouseEvent):void  
 {  
 trace("clickHandler detected an event of type: " + event.type);  
 trace("the this keyword refers to: " + this);  
 }  
 }

When a user interacts with the resulting SWF file by clicking on the red square, Flash Player or AIR generates the 

following trace output:

 clickHandler detected an event of type: click  
 the this keyword refers to: [object ChildSprite]

Note that the this keyword refers to the ChildSprite instance named child. This is a change in behavior from 

ActionScript 2.0. If you used components in ActionScript 2.0, you may remember that when a class method was passed 

in to UIEventDispatcher.addEventListener(), the scope of the method was bound to the component that 

broadcast the event instead of the class in which the listener method was defined. In other words, if you used this 

technique in ActionScript 2.0, the this keyword would refer to the component broadcasting the event instead of the 

ChildSprite instance. 

This was a significant issue for some programmers because it meant that they could not access other methods and 

properties of the class containing the listener method. As a workaround, ActionScript 2.0 programmers could use the 

mx.util.Delegate class to change the scope of the listener method. This is no longer necessary, however, because 

ActionScript 3.0 creates a bound method when addEventListener() is called. As a result, the this keyword refers 

to the ChildSprite instance named child, and the programmer has access to the other methods and properties of the 

ChildSprite class.

Updated 11 February 2009



257PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

Event listener that should not be used

There is a third technique in which you create a generic object with a property that points to a dynamically assigned 

listener function, but it is not recommended. It is discussed here because it was commonly used in ActionScript 2.0, 

but should not be used in ActionScript 3.0. This technique is not recommended because the this keyword will refer 

to the global object instead of your listener object. 

The following example is identical to the previous ClickExample class example, except that the listener function is 

defined as part of a generic object named myListenerObj:

 package  
 {  
 import flash.display.Sprite;  
   
 public class ClickExample extends Sprite  
 {  
 public function ClickExample()  
 {  
 var child:ChildSprite = new ChildSprite();  
 addChild(child);  
 }  
 }  
 }  
   
 import flash.display.Sprite;  
 import flash.events.MouseEvent;  
   
 class ChildSprite extends Sprite  
 {  
 public function ChildSprite()  
 {  
 graphics.beginFill(0xFF0000);  
 graphics.drawRect(0,0,100,100);  
 graphics.endFill();  
 addEventListener(MouseEvent.CLICK, myListenerObj.clickHandler);  
 }  
 }  
   
 var myListenerObj:Object = new Object();  
 myListenerObj.clickHandler = function (event:MouseEvent):void  
 {  
 trace("clickHandler detected an event of type: " + event.type);  
 trace("the this keyword refers to: " + this);  
 }

The results of the trace will look like this:

 clickHandler detected an event of type: click  
 the this keyword refers to: [object global]

You would expect that this would refer to myListenerObj and that the trace output would be [object Object], 

but instead it refers to the global object. When you pass in a dynamic property name as an argument to 

addEventListener(), Flash Player or AIR is unable to create a bound method. This is because what you are passing 

as the listener parameter is nothing more than the memory address of your listener function, and Flash Player and 

AIR have no way to link that memory address with the myListenerObj instance.

Updated 11 February 2009



258PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

Managing event listeners

You can manage your listener functions using the methods of the IEventDispatcher interface. The IEventDispatcher 

interface is the ActionScript 3.0 version of the EventTarget interface of the DOM event model. Although the name 

IEventDispatcher may seem to imply that its main purpose is to send (or dispatch) event objects, the methods of this 

class are actually used much more frequently to register event listeners, check for event listeners, and remove event 

listeners. The IEventDispatcher interface defines five methods, as shown in the following code:

 package flash.events  
 {  
 public interface IEventDispatcher  
 {  
 function addEventListener(eventName:String,   
 listener:Object,  
 useCapture:Boolean=false,  
 priority:Integer=0,  
 useWeakReference:Boolean=false):Boolean;  
   
 function removeEventListener(eventName:String,   
 listener:Object,  
 useCapture:Boolean=false):Boolean;  
   
 function dispatchEvent(eventObject:Event):Boolean;  
   
 function hasEventListener(eventName:String):Boolean;  
 function willTrigger(eventName:String):Boolean;  
 }  
 }

The Flash Player API implements the IEventDispatcher interface with the EventDispatcher class, which serves as a 

base class for all classes that can be event targets or part of an event flow. For example, the DisplayObject class inherits 

from the EventDispatcher class. This means that any object on the display list has access to the methods of the 

IEventDispatcher interface.

Adding event listeners

The addEventListener() method is the workhorse of the IEventDispatcher interface. You use it to register your 

listener functions. The two required parameters are type and listener. You use the type parameter to specify the 

type of event. You use the listener parameter to specify the listener function that will execute when the event occurs. 

The listener parameter can be a reference to either a function or a class method.

Do not use parentheses when you specify the listener parameter. For example, the clickHandler() function is 

specified without parentheses in the following call to the addEventListener() method: 

addEventListener(MouseEvent.CLICK, clickHandler)

The useCapture parameter of the addEventListener() method allows you to control the event flow phase on which 

your listener will be active. If useCapture is set to true, your listener will be active during the capture phase of the 

event flow. If useCapture is set to false, your listener will be active during the target and bubbling phases of the event 

flow. To listen for an event during all phases of the event flow, you must call addEventListener() twice, once with 

useCapture set to true, and then again with useCapture set to false.

Updated 11 February 2009



259PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

The priority parameter of the addEventListener() method is not an official part of the DOM Level 3 event model. 

It is included in ActionScript 3.0 to provide you with more flexibility in organizing your event listeners. When you call 

addEventListener(), you can set the priority for that event listener by passing an integer value as the priority 

parameter. The default value is 0, but you can set it to negative or positive integer values. The higher the number, the 

sooner that event listener will be executed. Event listeners with the same priority are executed in the order that they 

were added, so the earlier a listener is added, the sooner it will be executed. 

The useWeakReference parameter allows you to specify whether the reference to the listener function is weak or 

normal. Setting this parameter to true allows you to avoid situations in which listener functions persist in memory 

even though they are no longer needed. Flash Player and AIR use a technique called garbage collection to clear objects 

from memory that are no longer in use. An object is considered no longer in use if no references to it exist. The garbage 

collector disregards weak references, which means that a listener function that has only a weak reference pointing to 

it is eligible for garbage collection.

Removing event listeners

You can use the removeEventListener() method to remove an event listener that you no longer need. It is a good 

idea to remove any listeners that will no longer be used. Required parameters include the eventName and listener 

parameters, which are the same as the required parameters for the addEventListener() method. Recall that you can 

listen for events during all event phases by calling addEventListener() twice, once with useCapture set to true, 

and then again with it set to false. To remove both event listeners, you would need to call removeEventListener() 

twice, once with useCapture set to true, and then again with it set to false.

Dispatching events

The dispatchEvent() method can be used by advanced programmers to dispatch a custom event object into the 

event flow. The only parameter accepted by this method is a reference to an event object, which must be an instance 

of the Event class or a subclass of the Event class. Once dispatched, the target property of the event object is set to 

the object on which dispatchEvent() was called.

Checking for existing event listeners

The final two methods of the IEventDispatcher interface provide useful information about the existence of event 

listeners. The hasEventListener() method returns true if an event listener is found for a specific event type on a 

particular display list object. The willTrigger() method also returns true if a listener is found for a particular 

display list object, but willTrigger() checks for listeners not only on that display object, but also on all of that display 

list object’s ancestors for all phases of the event flow. 

Updated 11 February 2009



260PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

Error events without listeners

Exceptions, rather than events, are the primary mechanism for error handling in ActionScript 3.0, but exception 

handling does not work for asynchronous operations such as loading files. If an error occurs during such an 

asynchronous operation, Flash Player and AIR dispatch an error event object. If you do not create a listener for the 

error event, the debugger versions of Flash Player and AIR will bring up a dialog box with information about the error. 

For example,the debugger version of Flash Player produces the following dialog box describing the error when the 

application attempts to load a file from an invalid URL:

Most error events are based on the ErrorEvent class, and as such will have a property named text that is used to store 

the error message that Flash Player or AIR displays. The two exceptions are the StatusEvent and NetStatusEvent 

classes. Both of these classes have a level property (StatusEvent.level and NetStatusEvent.info.level). 

When the value of the level property is "error", these event types are considered to be error events.

An error event will not cause a SWF file to stop running. It will manifest only as a dialog box on the debugger versions 

of the browser plug-ins and stand-alone players, as a message in the output panel in the authoring player, and as an 

entry in the log file for Adobe Flex Builder 3. It will not manifest at all in the release versions of Flash Player or AIR.

Example: Alarm Clock

The Alarm Clock example consists of a clock that allows the user to specify a time at which an alarm will go off, as well 

as a message to be displayed at that time. The Alarm Clock example builds on the SimpleClock application from 

“Working with dates and times” on page 130 Alarm Clock illustrates several aspects of working with events in 

ActionScript 3.0, including:

• Listening and responding to an event

• Notifying listeners of an event

• Creating a custom event type

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Alarm 

Clock application files can be found in the Samples/AlarmClock folder. The application includes these files:

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


261PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

Alarm Clock overview

The primary functionality of the clock in this example, including tracking the time and displaying the clock face, reuses 

the SimpleClock application code, which is described in “Example: Simple analog clock” on page 135. The AlarmClock 

class extends the SimpleClock class from that example by adding the functionality required for an alarm clock, 

including setting the alarm time and providing notification when the alarm “goes off.” 

Providing notification when something happens is the job that events are made for. The AlarmClock class exposes the 

Alarm event, which other objects can listen for in order to perform desired actions. In addition, the AlarmClock class 

uses an instance of the Timer class to determine when to trigger its alarm. Like the AlarmClock class, the Timer class 

provides an event to notify other objects (an AlarmClock instance, in this case) when a certain amount of time has 

passed. As with most ActionScript applications, events form an important part of the functionality of the Alarm Clock 

sample application.

Triggering the alarm

As mentioned previously, the only functionality that the AlarmClock class actually provides relates to setting and 

triggering the alarm. The built-in Timer class (flash.utils.Timer) provides a way for a developer to define code that will 

be executed after a specified amount of time. The AlarmClock class uses a Timer instance to determine when to set off 

the alarm.

 import flash.events.TimerEvent;  
 import flash.utils.Timer;  
   
 /**  
  * The Timer that will be used for the alarm.  
  */  
 public var alarmTimer:Timer;  
 ...  
 /**  
  * Instantiates a new AlarmClock of a given size.  
  */  
 public override function initClock(faceSize:Number = 200):void  
 {  
 super.initClock(faceSize);  
 alarmTimer = new Timer(0, 1);  
 alarmTimer.addEventListener(TimerEvent.TIMER, onAlarm);  
 }

File Description

AlarmClockApp.mxml

or

AlarmClockApp.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/clock/AlarmClock.as A class which extends the SimpleClock class, adding alarm clock 

functionality.

com/example/programmingas3/clock/AlarmEvent.as A custom event class (a subclass of flash.events.Event) which serves as 

the event object for the AlarmClock class’s alarm event.

com/example/programmingas3/clock/AnalogClockFace.as Draws a round clock face and hour, minute, and seconds hands based 

on the time (described in the SimpleClock example).

com/example/programmingas3/clock/SimpleClock.as A clock interface component with simple timekeeping functionality 

(described in the SimpleClock example).

Updated 11 February 2009



262PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

The Timer instance defined in the AlarmClock class is named alarmTimer. The initClock() method, which 

performs necessary setup operations for the AlarmClock instance, does two things with the alarmTimer variable. 

First, the variable is instantiated with parameters instructing the Timer instance to wait 0 milliseconds and only trigger 

its timer event one time. After instantiating alarmTimer, the code calls that variable’s addEventListener() method 

to indicate that it wants to listen to that variable’s timer event. A Timer instance works by dispatching its timer event 

after a specified amount of time has passed. The AlarmClock class will need to know when the timer event is 

dispatched in order to set off its own alarm. By calling addEventListener(), the AlarmClock code registers itself as 

a listener with alarmTimer. The two parameters indicate that the AlarmClock class wants to listen for the timer event 

(indicated by the constant TimerEvent.TIMER), and that when the event happens, the AlarmClock class’s onAlarm() 

method should be called in response to the event.

In order to actually set the alarm, the AlarmClock class’s setAlarm() method is called, as follows: 

 /**  
  * Sets the time at which the alarm should go off.  
  * @param hour The hour portion of the alarm time.  
  * @param minutes The minutes portion of the alarm time.  
  * @param message The message to display when the alarm goes off.  
  * @return The time at which the alarm will go off.  
  */  
 public function setAlarm(hour:Number = 0, minutes:Number = 0, message:String = "Alarm!"):Date  
 {  
 this.alarmMessage = message;  
 var now:Date = new Date();  
 // Create this time on today's date.  
 alarmTime = new Date(now.fullYear, now.month, now.date, hour, minutes);  
   
 // Determine if the specified time has already passed today.  
 if (alarmTime <= now)  
 {  
 alarmTime.setTime(alarmTime.time + MILLISECONDS_PER_DAY);  
 }  
   
 // Stop the alarm timer if it's currently set.  
 alarmTimer.reset();  
 // Calculate how many milliseconds should pass before the alarm should  
 // go off (the difference between the alarm time and now) and set that  
 // value as the delay for the alarm timer.  
 alarmTimer.delay = Math.max(1000, alarmTime.time - now.time);  
 alarmTimer.start();  
   
 return alarmTime;  
 }

This method does several things, including storing the alarm message and creating a Date object (alarmTime) 

representing the actual moment in time when the alarm is to go off. Of most relevance to the current discussion, in the 

final several lines of the method, the alarmTimer variable’s timer is set and activated. First, its reset() method is 

called, stopping the timer and resetting it in case it is already running. Next, the current time (represented by the now 

variable) is subtracted from the alarmTime variable’s value to determine how many milliseconds need to pass before 

the alarm goes off. The Timer class doesn’t trigger its timer event at an absolute time, so it is this relative time 

difference that is assigned to the delay property of alarmTimer. Finally, the start() method is called to actually start 

the timer.

Once the specified amount of time has passed, alarmTimer dispatches the timer event. Because the AlarmClock class 

registered its onAlarm() method as a listener for that event, when the timer event happens, onAlarm() is called.

Updated 11 February 2009



263PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

 /**  
  * Called when the timer event is dispatched.  
  */  
 public function onAlarm(event:TimerEvent):void   
 {  
 trace("Alarm!");  
 var alarm:AlarmEvent = new AlarmEvent(this.alarmMessage);  
 this.dispatchEvent(alarm);  
 }

A method that is registered as an event listener must be defined with the appropriate signature (that is, the set of 

parameters and return type of the method). To be a listener for the Timer class’s timer event, a method must define 

one parameter whose data type is TimerEvent (flash.events.TimerEvent), a subclass of the Event class. When the Timer 

instance calls its event listeners, it passes a TimerEvent instance as the event object.

Notifying others of the alarm

Like the Timer class, the AlarmClock class provides an event that allows other code to receive notifications when the 

alarm goes off. For a class to use the event-handling framework built into ActionScript, that class must implement the 

flash.events.IEventDispatcher interface. Most commonly, this is done by extending the flash.events.EventDispatcher 

class, which provides a standard implementation of IEventDispatcher (or by extending one of EventDispatcher’s 

subclasses). As described previously, the AlarmClock class extends the SimpleClock class, which in turn extends the 

Sprite class, which (through a chain of inheritance) extends the EventDispatcher class. All of this means that the 

AlarmClock class already has built-in functionality to provide its own events.

Other code can register to be notified of the AlarmClock class’s alarm event by calling the addEventListener() 

method that AlarmClock inherits from EventDispatcher. When an AlarmClock instance is ready to notify other code 

that its alarm event has been raised, it does so by calling the dispatchEvent() method, which is also inherited from 

EventDispatcher.

 var alarm:AlarmEvent = new AlarmEvent(this.alarmMessage);  
 this.dispatchEvent(alarm);

These lines of code are taken from the AlarmClock class’s onAlarm() method (shown in its entirety previously). The 

AlarmClock instance’s dispatchEvent() method is called, which in turn notifies all the registered listeners that the 

AlarmClock instance’s alarm event has been triggered. The parameter that is passed to dispatchEvent() is the event 

object that will be passed along to the listener methods. In this case, it is an instance of the AlarmEvent class, an Event 

subclass created specifically for this example.

Providing a custom alarm event

All event listeners receive an event object parameter with information about the particular event being triggered. In 

many cases, the event object is an instance of the Event class. However, in some cases it is useful to provide additional 

information to event listeners. As described earlier in the chapter, a common way to accomplish this is to define a new 

class, a subclass of the Event class, and use an instance of that class as the event object. In this example, an AlarmEvent 

instance is used as the event object when the AlarmClock class’s alarm event is dispatched. The AlarmEvent class, 

shown here, provides additional information about the alarm event, specifically the alarm message:

Updated 11 February 2009



264PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

 import flash.events.Event;  
   
 /**  
  * This custom Event class adds a message property to a basic Event.  
  */  
 public class AlarmEvent extends Event   
 {  
 /**  
  * The name of the new AlarmEvent type.  
  */  
 public static const ALARM:String = "alarm";  
   
 /**  
  * A text message that can be passed to an event handler  
  * with this event object.  
  */  
 public var message:String;  
   
 /**  
  *Constructor.  
  *@param message The text to display when the alarm goes off.  
  */  
 public function AlarmEvent(message:String = "ALARM!")  
 {  
 super(ALARM);  
 this.message = message;  
 }  
 ...  
 }

The best way to create a custom event object class is to define a class that extends the Event class, as shown in the 

preceding example. To supplement the inherited functionality, the AlarmEvent class defines a property message that 

contains the text of the alarm message associated with the event; the message value is passed in as a parameter in the 

AlarmEvent constructor. The AlarmEvent class also defines the constant ALARM, which can be used to refer to the 

specific event (alarm) when calling the AlarmClock class’s addEventListener() method.

In addition to adding custom functionality, every Event subclass must override the inherited clone() method as part 

of the ActionScript event-handling framework. Event subclasses can also optionally override the inherited 

toString() method to include the custom event’s properties in the value returned when the toString() method is 

called.

Updated 11 February 2009



265PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Handling events

 /**  
  * Creates and returns a copy of the current instance.  
  * @return A copy of the current instance.  
  */  
 public override function clone():Event  
 {  
 return new AlarmEvent(message);  
 }  
   
 /**  
  * Returns a String containing all the properties of the current  
  * instance.  
  * @return A string representation of the current instance.  
  */  
 public override function toString():String  
 {  
 return formatToString("AlarmEvent", "type", "bubbles", "cancelable", "eventPhase", 
"message");  
 }

The overridden clone() method needs to return a new instance of the custom Event subclass, with all the custom 

properties set to match the current instance. In the overridden toString() method, the utility method 

formatToString() (inherited from Event) is used to provide a string with the name of the custom type, as well as the 

names and values of all its properties.

Updated 11 February 2009



266

Chapter 13: Display programming

Display programming in Adobe® ActionScript® 3.0 allows you to work with elements that appear on the Stage of 

Adobe® Flash® Player or Adobe® AIR™. This chapter describes the basic concepts for working with on-screen elements. 

You’ll learn the details about programmatically organizing visual elements. You’ll also learn about creating your own 

custom classes for display objects.

Basics of display programming

Introduction to display programming

Each application built with ActionScript 3.0 has a hierarchy of displayed objects known as the display list, illustrated 

below. The display list contains all the visible elements in the application. 

Display Object
 Container

Display ObjectDisplay Object
 Container

Display Object
 Container

Instance of 
the main class of

 the SWF file

StageStage

Display Object
 Container

Display Object

Display Object

Updated 11 February 2009



267PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

As the illustration shows, display elements fall into one or more of the following groups:

• The Stage

The Stage is the base container of display objects. Each application has one Stage object, which contains all on-

screen display objects. The Stage is the top-level container and is at the top of the display list hierarchy:

Each SWF file has an associated ActionScript class, known as the main class of the SWF file. When a SWF file opens 

in Flash Player or Adobe AIR, Flash Player or AIR calls the constructor function for that class and the instance that 

is created (which is always a type of display object) is added as a child of the Stage object. The main class of a SWF 

file always extends the Sprite class (for more information, see “Advantages of the display list approach” on 

page 271). 

You can access the Stage through the stage property of any DisplayObject instance. For more information, see 

“Setting Stage properties” on page 279.

• Display objects

In ActionScript 3.0, all elements that appear on screen in an application are types of display objects. The 

flash.display package includes a DisplayObject class, which is a base class extended by a number of other classes. 

These different classes represent different types of display objects, such as vector shapes, movie clips, and text fields, 

to name a few. For an overview of these classes, see “Advantages of the display list approach” on page 271.

• Display object containers

Display object containers are special types of display objects that, in addition to having their own visual 

representation, can also contain child objects that are also display objects.

The DisplayObjectContainer class is a subclass of the DisplayObject class. A DisplayObjectContainer object can 

contain multiple display objects in its childlist. For example, the following illustration shows a type of 

DisplayObjectContainer object known as a Sprite that contains various display objects:

A. A SimpleButton object. This type of display object has different “up,” “down,” and “over” states.  B. A Bitmap object. In this case, the 
Bitmap object was loaded from an external JPEG through a Loader object.  C. A Shape object. The “picture frame” contains a rounded 
rectangle that is drawn in ActionScript. This Shape object has a Drop Shadow filter applied to it.  D. A TextField object.  

In the context of discussing display objects, DisplayObjectContainer objects are also known as display object 

containers or simply containers. As noted earlier, the Stage is a display object container.

A

B

DC

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Sprite.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/DisplayObject.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/DisplayObjectContainer.html


268PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Although all visible display objects inherit from the DisplayObject class, the type of each is of a specific subclass of 

DisplayObject class. For example, there is a constructor function for the Shape class or the Video class, but there is 

no constructor function for the DisplayObject class. 

Common display programming tasks

Since so much of ActionScript programming involves creating and manipulating visual elements, there are numerous 

tasks that are related to display programming. This chapter describes common tasks that apply to all display objects, 

including:

• Working with the display list and display object containers

• Adding display objects to the display list

• Removing objects from the display list

• Moving objects among display containers

• Moving objects in front of or behind other objects

• Working with the Stage

• Setting the frame rate

• Controlling Stage scaling

• Working with full-screen mode

• Handling display object events

• Positioning display objects, including creating drag-and-drop interaction

• Resizing, scaling, and rotating display objects

• Applying blending modes, color transformations, and transparency to display objects

• Masking display objects

• Animating display objects

• Loading external display content (such as SWF files or images)

Later chapters in this manual describe additional tasks for working with display objects. These tasks include both tasks 

that apply to any display object and tasks associated with specific types of display objects:

• Drawing vector graphics with ActionScript on display objects, described in “Using the drawing API” on page 314

• Applying geometric transformations to display objects, described in “Working with geometry” on page 334

• Applying graphical filter effects such as blur, glow, drop shadow and more to display objects, described in “Filtering 

display objects” on page 346

• Working with MovieClip-specific characteristics, described in “Working with movie clips” on page 398

• Working with TextField objects, described in “Working with text” on page 424

• Working with bitmap graphics, described in “Working with bitmaps” on page 474

• Working with video elements, described in “Working with video” on page 515

Updated 11 February 2009



269PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Alpha: The color value representing the amount of transparency (or more correctly, the amount of opacity) in a 

color. For example, a color with an alpha channel value of 60% only shows 60% of its full strength, and is 40% 

transparent.

• Bitmap graphic: A graphic that is defined in the computer as a grid (rows and columns) of colored pixels. 

Commonly bitmap graphics include digital photos and similar images.

• Blending mode: A specification of how the contents of two overlapping images should interact. Commonly an 

opaque image on top of another image simply blocks the image underneath so that it isn’t visible at all; however, 

different blending modes cause the colors of the images to blend together in different ways so the resulting content 

is some combination of the two images.

• Display list: The hierarchy of display objects that will be rendered as visible screen content by Flash Player and AIR. 

The Stage is the root of the display list, and all the display objects that are attached to the Stage or one of its children 

form the display list (even if the object isn’t actually rendered, for example if it’s outside the boundaries of the 

Stage).

• Display object: An object which represents some type of visual content in Flash Player or AIR. Only display objects 

can be included in the display list, and all display object classes are subclasses of the DisplayObject class.

• Display object container: A special type of display object which can contain child display objects in addition to 

(generally) having its own visual representation.

• Main class of the SWF file: The class that defines the behavior for the outermost display object in a SWF file, which 

conceptually is the class for the SWF file itself. For instance, a SWF created in Flash authoring has a “main timeline” 

which contains all other timelines; the main class of the SWF file is the class of which the main timeline is an 

instance.

• Masking: A technique of hiding from view certain parts of an image (or conversely, only allowing certain parts of 

an image to display). The portions of the mask image become transparent, so content underneath shows through. 

The term is related to painter’s masking tape that is used to prevent paint from being applied to certain areas.

• Stage: The visual container that is the base or background of all visual content in a SWF.

• Transformation: An adjustment to a visual characteristic of a graphic, such as rotating the object, altering its scale, 

skewing or distorting its shape, or altering its color.

• Vector graphic: A graphic that is defined in the computer as lines and shapes drawn with particular characteristics 

(such as thickness, length, size, angle, and position).

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Because 

this chapter is about creating and manipulating visual content, essentially all the code listings in this chapter create 

visual objects and display them on the screen; testing the sample will involve viewing the result in Flash Player or AIR 

rather than viewing values of variables as in previous chapters. To test the code listings in this chapter:

1 Create an empty document using the Flash authoring tool

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

Updated 11 February 2009



270PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

You will see the results of the code displayed on the screen, and any trace() function calls will display in the 

Output panel.

Techniques for testing example code listings are explained in more detail in “Testing in-chapter example code listings” 

on page 34.

Core display classes

The ActionScript 3.0 flash.display package includes classes for visual objects that can appear in Flash Player or AIR. 

The following illustration shows the subclass relationships of these core display object classes. 

The illustration shows the class inheritance of display object classes. Note that some of these classes, specifically 

StaticText, TextField, and Video, are not in the flash.display package, but they still inherit from the DisplayObject class.

All classes that extend the DisplayObject class inherit its methods and properties. For more information, see 

“Properties and methods of the DisplayObject class” on page 273.

You can instantiate objects of the following classes contained in the flash.display package: 

• Bitmap—You use the Bitmap class to define bitmap objects, either loaded from external files or rendered through 

ActionScript. You can load bitmaps from external files through the Loader class. You can load GIF, JPG, or PNG 

files. You can also create a BitmapData object with custom data and then create a Bitmap object that uses that data. 

You can use the methods of the BitmapData class to alter bitmaps, whether they are loaded or created in 

ActionScript. For more information, see “Loading display objects” on page 305 and “Working with bitmaps” on 

page 474.

• Loader—You use the Loader class to load external assets (either SWF files or graphics). For more information, see 

“Loading display content dynamically” on page 304.

• Shape—You use the Shape class to create vector graphics, such as rectangles, lines, circles, and so on. For more 

information, see “Using the drawing API” on page 314.

• SimpleButton—A SimpleButton object is the ActionScript representation of a button symbol created in the Flash 

authoring tool. A SimpleButton instance has four button states: up, down, over, and hit test (the area that responds 

to mouse and keyboard events).

MorphShape

DisplayObject

AVM1Movie Shape StaticText Video

DisplayObjectContainer TextField

Bitmap InteractiveObject

SimpleButton

StageLoader

MovieClip

Sprite

Updated 11 February 2009



271PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

• Sprite—A Sprite object can contain graphics of its own, and it can contain child display objects. (The Sprite class 

extends the DisplayObjectContainer class). For more information, see “Working with display object containers” on 

page 274 and “Using the drawing API” on page 314.

• MovieClip—A MovieClip object is the ActionScript form of a movie clip symbol created in the Flash authoring 

tool. In practice, a MovieClip is similar to a Sprite object, except that it also has a timeline. For more information, 

see “Working with movie clips” on page 398.

The following classes, which are not in the flash.display package, are subclasses of the DisplayObject class:

• The TextField class, included in the flash.text package, is a display object for text display and input. For more 

information, see “Working with text” on page 424. 

• The Video class, included in the flash.media package, is the display object used for displaying video files. For more 

information, see “Working with video” on page 515. 

The following classes in the flash.display package extend the DisplayObject class, but you cannot create instances of 

them. Instead, they serve as parent classes for other display objects, combining common functionality into a single 

class.

• AVM1Movie—The AVM1Movie class is used to represent loaded SWF files that are authored in ActionScript 1.0 

and 2.0. 

• DisplayObjectContainer—The Loader, Stage, Sprite, and MovieClip classes each extend the 

DisplayObjectContainer class. For more information, see “Working with display object containers” on page 274.

• InteractiveObject—InteractiveObject is the base class for all objects used to interact with the mouse and keyboard. 

SimpleButton, TextField, Loader, Sprite, Stage, and MovieClip objects are all subclasses of the InteractiveObject 

class. For more information on creating mouse and keyboard interaction, see “Capturing user input” on page 584.

• MorphShape—These objects are created when you create a shape tween in the Flash authoring tool. You cannot 

instantiate them using ActionScript, but they can be accessed from the display list. 

• Stage—The Stage class extends the DisplayObjectContainer class. There is one Stage instance for an application, 

and it is at the top of the display list hierarchy. To access the Stage, use the stage property of any DisplayObject 

instance. For more information, see “Setting Stage properties” on page 279.

Also, the StaticText class, in the flash.text package, extends the DisplayObject class, but you cannot create an instance 

of it in code. Static text fields are created only in Flash.

Advantages of the display list approach

In ActionScript 3.0, there are separate classes for different types of display objects. In ActionScript 1.0 and 2.0, many 

of the same types of objects are all included in one class: the MovieClip class.

This individualization of classes and the hierarchical structure of display lists have the following benefits: 

• More efficient rendering and reduced memory usage

• Improved depth management

• Full traversal of the display list

• Off-list display objects

• Easier subclassing of display objects

Updated 11 February 2009



272PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

More efficient rendering and smaller file sizes

In ActionScript 1.0 and 2.0, you could draw shapes only in a MovieClip object. In ActionScript 3.0, there are simpler 

display object classes in which you can draw shapes. Because these ActionScript 3.0 display object classes do not 

include the full set of methods and properties that a MovieClip object includes, they are less taxing on memory and 

processor resources.

For example, each MovieClip object includes properties for the timeline of the movie clip, whereas a Shape object does 

not. The properties for managing the timeline can use a lot of memory and processor resources. In ActionScript 3.0, 

using the Shape object results in better performance. The Shape object has less overhead than the more complex 

MovieClip object. Flash Player and AIR do not need to manage unused MovieClip properties, which improves speed 

and reduces the memory footprint the object uses.

Improved depth management

In ActionScript 1.0 and 2.0, depth was managed through a linear depth management scheme and methods such as 

getNextHighestDepth(). 

ActionScript 3.0 includes the DisplayObjectContainer class, which has more convenient methods and properties for 

managing the depth of display objects.

In ActionScript 3.0, when you move a display object to a new position in the child list of a DisplayObjectContainer 

instance, the other children in the display object container are repositioned automatically and assigned appropriate 

child index positions in the display object container.

Also, in ActionScript 3.0 it is always possible to discover all of the child objects of any display object container. Every 

DisplayObjectContainer instance has a numChildren property, which lists the number of children in the display object 

container. And since the child list of a display object container is always an indexed list, you can examine every object 

in the list from index position 0 through the last index position (numChildren - 1). This was not possible with the 

methods and properties of a MovieClip object in ActionScript 1.0 and 2.0.

In ActionScript 3.0, you can easily traverse the display list sequentially; there are no gaps in the index numbers of a 

child list of a display object container. Traversing the display list and managing the depth of objects is much easier than 

was possible in ActionScript 1.0 and 2.0. In ActionScript 1.0 and 2.0, a movie clip could contain objects with 

intermittent gaps in the depth order, which could make it difficult to traverse the list of object. In ActionScript 3.0, 

each child list of a display object container is cached internally as an array, resulting in very fast lookups (by index). 

Looping through all children of a display object container is also very fast.

In ActionScript 3.0, you can also access children in a display object container by using the getChildByName() method 

of the DisplayObjectContainer class. 

Full traversal of the display list

In ActionScript 1.0 and 2.0, you could not access some objects, such as vector shapes, that were drawn in the Flash 

authoring tool. In ActionScript 3.0, you can access all objects on the display list—both those created using ActionScript 

and all display objects created in the Flash authoring tool. For details, see “Traversing the display list” on page 278.

Off-list display objects

In ActionScript 3.0, you can create display objects that are not on the visible display list. These are known as off-list 

display objects. A display object is added to the visible display list only when you call the addChild() or 

addChildAt() method of a DisplayObjectContainer instance that has already been added to the display list.

Updated 11 February 2009



273PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

You can use off-list display objects to assemble complex display objects, such as those that have multiple display object 

containers containing multiple display objects. By keeping display objects off-list, you can assemble complicated 

objects without using the processing time to render these display objects. You can then add an off-list display object 

to the display list when it is needed. Also, you can move a child of a display object container on and off the display list 

and to any desired position in the display list at will. 

Easier subclassing of display objects

In ActionScript 1.0 and 2.0, you would often have to add new MovieClip objects to a SWF file to create basic shapes 

or to display bitmaps. In ActionScript 3.0, the DisplayObject class includes many built-in subclasses, including Shape 

and Bitmap. Because the classes in ActionScript 3.0 are more specialized for specific types of objects, it is easier to 

create basic subclasses of the built-in classes. 

For example, in order to draw a circle in ActionScript 2.0, you could create a CustomCircle class that extends the 

MovieClip class when an object of the custom class is instantiated. However, that class would also include a number 

of properties and methods from the MovieClip class (such as totalFrames) that do not apply to the class. In 

ActionScript 3.0, however, you can create a CustomCircle class that extends the Shape object, and as such does not 

include the unrelated properties and methods that are contained in the MovieClip class. The following code shows an 

example of a CustomCircle class:

 import flash.display.*;  
   
 public class CustomCircle extends Shape  
 {  
 var xPos:Number;  
 var yPos:Number;  
 var radius:Number;  
 var color:uint;  
 public function CustomCircle(xInput:Number,   
 yInput:Number,   
 rInput:Number,   
 colorInput:uint)  
 {  
 xPos = xInput;  
 yPos = yInput;  
 radius = rInput;  
 color = colorInput;  
 this.graphics.beginFill(color);  
 this.graphics.drawCircle(xPos, yPos, radius);  
 }  
 }

Working with display objects

Now that you understand the basic concepts of the Stage, display objects, display object containers, and the display list, 

this section provides you with some more specific information about working with display objects in ActionScript 3.0.

Properties and methods of the DisplayObject class

All display objects are subclasses of the DisplayObject class, and as such they inherit the properties and methods of the 

DisplayObject class. The properties inherited are basic properties that apply to all display objects. For example, each 

display object has an x property and a y property that specifies the object’s position in its display object container. 

Updated 11 February 2009



274PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

You cannot create a DisplayObject instance using the DisplayObject class constructor. You must create another type 

of object (an object that is a subclass of the DisplayObject class), such as a Sprite, to instantiate an object with the new 

operator. Also, if you want to create a custom display object class, you must create a subclass of one of the display object 

subclasses that has a usable constructor function (such as the Shape class or the Sprite class). For more information, 

see the DisplayObject class description in the ActionScript 3.0 Language and Components Reference.

Adding display objects to the display list

When you instantiate a display object, it will not appear on-screen (on the Stage) until you add the display object 

instance to a display object container that is on the display list. For example, in the following code, the myText 

TextField object would not be visible if you omitted the last line of code. In the last line of code, the this keyword must 

refer to a display object container that is already added to the display list.

 import flash.display.*;  
 import flash.text.TextField;  
 var myText:TextField = new TextField();  
 myText.text = "Buenos dias.";  
 this.addChild(myText);

When you add any visual element to the Stage, that element becomes a child of the Stage object. The first SWF file 

loaded in an application (for example, the one that you embed in an HTML page) is automatically added as a child of 

the Stage. It can be an object of any type that extends the Sprite class.

Any display objects that you create without using ActionScript—for example, by adding an MXML tag in Adobe Flex 

Builder 3 or by placing an item on the Stage in Flash—are added to the display list. Although you do not add these 

display objects through ActionScript, you can access them through ActionScript. For example, the following code 

adjusts the width of an object named button1 that was added in the authoring tool (not through ActionScript): 

 button1.width = 200;

Working with display object containers

If a DisplayObjectContainer object is deleted from the display list, or if it is moved or transformed in some other way, 

each display object in the DisplayObjectContainer is also deleted, moved, or transformed. 

A display object container is itself a type of display object—it can be added to another display object container. For 

example, the following image shows a display object container, pictureScreen, that contains one outline shape and 

four other display object containers (of type PictureFrame): 

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/DisplayObject.html


275PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

A. A shape defining the border of the pictureScreen display object container  B. Four display object containers that are children of the 
pictureScreen object  

In order to have a display object appear in the display list, you must add it to a display object container that is on the 

display list. You do this by using the addChild() method or the addChildAt() method of the container object. For 

example, without the final line of the following code, the myTextField object would not be displayed:

 var myTextField:TextField = new TextField();  
 myTextField.text = "hello";  
 this.root.addChild(myTextField);

In this code sample, this.root points to the MovieClip display object container that contains the code. In your actual 

code, you may specify a different container. 

Use the addChildAt() method to add the child to a specific position in the child list of the display object container. 

These zero-based index positions in the child list relate to the layering (the front-to-back order) of the display objects. 

For example, consider the following three display objects. Each object was created from a custom class called Ball.

A B

Updated 11 February 2009



276PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The layering of these display objects in their container can be adjusted using the addChildAt() method. For example, 

consider the following code:

 ball_A = new Ball(0xFFCC00, "a");  
 ball_A.name = "ball_A";  
 ball_A.x = 20;  
 ball_A.y = 20;  
 container.addChild(ball_A);  
   
 ball_B = new Ball(0xFFCC00, "b");  
 ball_B.name = "ball_B";  
 ball_B.x = 70;  
 ball_B.y = 20;  
 container.addChild(ball_B);  
   
 ball_C = new Ball(0xFFCC00, "c");  
 ball_C.name = "ball_C";  
 ball_C.x = 40;  
 ball_C.y = 60;  
 container.addChildAt(ball_C, 1);

After executing this code, the display objects are positioned as follows in the container DisplayObjectContainer 

object. Notice the layering of the objects.

To reposition an object to the top of the display list, simply re-add it to the list. For example, after the previous code, 

to move ball_A to the top of the stack, use this line of code:

 container.addChild(ball_A);

This code effectively removes ball_A from its location in container’s display list, and re-adds it to the top of the list—

which has the end result of moving it to the top of the stack.

You can use the getChildAt() method to verify the layer order of the display objects. The getChildAt() method 

returns child objects of a container based on the index number you pass it. For example, the following code reveals 

names of display objects at different positions in the child list of the container DisplayObjectContainer object:

 trace(container.getChildAt(0).name); // ball_A  
 trace(container.getChildAt(1).name); // ball_C  
 trace(container.getChildAt(2).name); // ball_B

If you remove a display object from the parent container’s child list, the higher elements on the list each move down a 

position in the child index. For example, continuing with the previous code, the following code shows how the display 

object that was at position 2 in the container DisplayObjectContainer moves to position 1 if a display object that is 

lower in the child list is removed:

Updated 11 February 2009



277PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 container.removeChild(ball_C);  
 trace(container.getChildAt(0).name); // ball_A  
 trace(container.getChildAt(1).name); // ball_B

The removeChild() and removeChildAt() methods do not delete a display object instance entirely. They simply 

remove it from the child list of the container. The instance can still be referenced by another variable. (Use the delete 

operator to completely remove an object.)

Because a display object has only one parent container, you can add an instance of a display object to only one display 

object container. For example, the following code shows that the display object tf1 can exist in only one container (in 

this case, a Sprite, which extends the DisplayObjectContainer class):

 tf1:TextField = new TextField();  
 tf2:TextField = new TextField();  
 tf1.name = "text 1";  
 tf2.name = "text 2";  
   
 container1:Sprite = new Sprite();  
 container2:Sprite = new Sprite();  
   
 container1.addChild(tf1);  
 container1.addChild(tf2);  
 container2.addChild(tf1);  
   
 trace(container1.numChildren); // 1  
 trace(container1.getChildAt(0).name); // text 2  
 trace(container2.numChildren); // 1  
 trace(container2.getChildAt(0).name); // text 1

If you add a display object that is contained in one display object container to another display object container, it is 

removed from the first display object container’s child list.

In addition to the methods described above, the DisplayObjectContainer class defines several methods for working 

with child display objects, including the following:

• contains(): Determines whether a display object is a child of a DisplayObjectContainer.

• getChildByName(): Retrieves a display object by name.

• getChildIndex(): Returns the index position of a display object.

• setChildIndex(): Changes the position of a child display object.

• swapChildren(): Swaps the front-to-back order of two display objects.

• swapChildrenAt(): Swaps the front-to-back order of two display objects, specified by their index values.

For more information, see the relevant entries in the ActionScript 3.0 Language and Components Reference.

Recall that a display object that is off the display list—one that is not included in a display object container that is a 

child of the Stage—is known as an off-list display object.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en


278PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Traversing the display list 

As you’ve seen, the display list is a tree structure. At the top of the tree is the Stage, which can contain multiple display 

objects. Those display objects that are themselves display object containers can contain other display objects, or display 

object containers. 

The DisplayObjectContainer class includes properties and methods for traversing the display list, by means of the child 

lists of display object containers. For example, consider the following code, which adds two display objects, title and 

pict, to the container object (which is a Sprite, and the Sprite class extends the DisplayObjectContainer class): 

 var container:Sprite = new Sprite();  
 var title:TextField = new TextField();  
 title.text = "Hello";  
 var pict:Loader = new Loader();  
 var url:URLRequest = new URLRequest("banana.jpg");  
 pict.load(url);  
 pict.name = "banana loader";  
 container.addChild(title);  
 container.addChild(pict);

The getChildAt() method returns the child of the display list at a specific index position:

 trace(container.getChildAt(0) is TextField); // true

You can also access child objects by name. Each display object has a name property, and if you don’t assign it, Flash 

Player or AIR assigns a default value, such as "instance1". For example, the following code shows how to use the 

getChildByName() method to access a child display object with the name "banana loader":

 trace(container.getChildByName("banana loader") is Loader); // true

Using the getChildByName() method can result in slower performance than using the getChildAt() method.

Display Object
 Container

Display ObjectDisplay Object
 Container

Display Object
 Container

Instance of 
the main class of

 the SWF file

StageStage

Display Object
 Container

Display Object

Display Object

Updated 11 February 2009



279PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Since a display object container can contain other display object containers as child objects in its display list, you can 

traverse the full display list of the application as a tree. For example, in the code excerpt shown earlier, once the load 

operation for the pict Loader object is complete, the pict object will have one child display object, which is the 

bitmap, loaded. To access this bitmap display object, you can write pict.getChildAt(0). You can also write 

container.getChildAt(0).getChildAt(0) (since container.getChildAt(0) == pict).

The following function provides an indented trace() output of the display list from a display object container:

 function traceDisplayList(container:DisplayObjectContainer,indentString:String = ""):void  
 {  
 var child:DisplayObject;  
 for (var i:uint=0; i < container.numChildren; i++)  
 {  
 child = container.getChildAt(i);  
 trace(indentString, child, child.name);   
 if (container.getChildAt(i) is DisplayObjectContainer)  
 {  
 traceDisplayList(DisplayObjectContainer(child), indentString + "")  
 }  
 }  
 }

Setting Stage properties

The Stage class overrides most properties and methods of the DisplayObject class. If you call one of these overridden 

properties or methods, Flash Player and AIR throw an exception. For example, the Stage object does not have x or y 

properties, since its position is fixed as the main container for the application. The x and y properties refer to the 

position of a display object relative to its container, and since the Stage is not contained in another display object 

container, these properties do not apply.

Note: Some properties and methods of the Stage class are only available to display objects that are in the same security 

sandbox as the first SWF file loaded. For details, see “Stage security” on page 702.

Controlling the playback frame rate

The framerate property of the Stage class is used to set the frame rate for all SWF files loaded into the application. 

For more information, see the ActionScript 3.0 Language and Components Reference.

Controlling Stage scaling

When the portion of the screen representing Flash Player or AIR is resized, Flash Player or AIR automatically adjusts 

the Stage contents to compensate. The Stage class’s scaleMode property determines how the Stage contents are 

adjusted. This property can be set to four different values, defined as constants in the flash.display.StageScaleMode 

class. 

For three of the scaleMode values (StageScaleMode.EXACT_FIT, StageScaleMode.SHOW_ALL, and 

StageScaleMode.NO_BORDER), Flash Player and AIR will scale the contents of the Stage to fit within its boundaries. 

The three options differ in determining how the scaling is accomplished:

• StageScaleMode.EXACT_FIT scales the SWFproportionally.

• StageScaleMode.SHOW_ALL determines whether a border appears, like the black bars that appear when viewing 

a wide-screen movie on a standard television. 

• StageScaleMode.NO_BORDER determines whether thecontent can be partially cropped or not.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en


280PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Alternatively, if scaleMode is set to StageScaleMode.NO_SCALE, the Stage contents maintain their defined size when 

the viewer resizes the Flash Player or AIR window. In this scale mode only, the stageWidth and stageHeight properties 

of the Stage class can be used to determine the actual pixel dimensions of the resized window. (In the other scale modes, 

the stageWidth and stageHeight properties always reflect the original width and height of the SWF.) In addition, 

when scaleMode is set to StageScaleMode.NO_SCALE and the SWF file is resized, the Stage class’s resize event is 

dispatched, allowing you to make adjustments accordingly.

Consequently, having scaleMode set to StageScaleMode.NO_SCALE allows you to have greater control over how the 

screen contents adjust to the window resizing if you desire. For example, in a SWF containing a video and a control 

bar, you might want to make the control bar stay the same size when the Stage is resized, and only change the size of 

the video window to accommodate the Stage size change. This is demonstrated in the following example:

 // videoScreen is a display object (e.g. a Video instance) containing a  
 // video; it is positioned at the top-left corner of the Stage, and  
 // it should resize when the SWF resizes.  
   
 // controlBar is a display object (e.g. a Sprite) containing several  
 // buttons; it should stay positioned at the bottom-left corner of the  
 // Stage (below videoScreen) and it should not resize when the SWF  
 // resizes.  
   
 import flash.display.Stage;  
 import flash.display.StageAlign;  
 import flash.display.StageScaleMode;  
 import flash.events.Event;  
   
 var swfStage:Stage = videoScreen.stage;  
 swfStage.scaleMode = StageScaleMode.NO_SCALE;  
 swfStage.align = StageAlign.TOP_LEFT;  
   
 function resizeDisplay(event:Event):void  
 {  
 var swfWidth:int = swfStage.stageWidth;  
 var swfHeight:int = swfStage.stageHeight;  
   
 // Resize the video window.  
 var newVideoHeight:Number = swfHeight - controlBar.height;  
 videoScreen.height = newVideoHeight;  
 videoScreen.scaleX = videoScreen.scaleY;  
   
 // Reposition the control bar.  
 controlBar.y = newVideoHeight;  
 }  
   
 swfStage.addEventListener(Event.RESIZE, resizeDisplay);

Working with full-screen mode

Full-screen mode allows you to set a movie’s stage to fill a viewer’s entire monitor without any container borders or 

menus. The Stage class’s displayState property is used to toggle full-screen mode on and off for a SWF. The 

displayState property can be set to one of the values defined by the constants in the flash.display.StageDisplayState 

class. To turn on full-screen mode, set the displayState property to StageDisplayState.FULL_SCREEN:

 stage.displayState = StageDisplayState.FULL_SCREEN; 

Updated 11 February 2009



281PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

In Flash Player, full-screen mode can only be initiated through ActionScript in response to a mouse click (including 

right-click) or keypress. AIR content running in the application security sandbox does not require that full-screen 

mode be entered in response to a user gesture.

To exit full-screen mode, set the displayState property to StageDisplayState.NORMAL.

 stage.displayState = StageDisplayState.NORMAL; 

In addition, a user can choose to leave full-screen mode by switching focus to a different window or by using one of 

several key combinations: the Esc key (all platforms), Control-W (Windows), Command-W (Mac), or Alt-F4 

(Windows).

Enabling full-screen mode in Flash Player

To enable full-screen mode for a SWF file embedded in an HTML page, the HTML code to embed Flash Player must 

include a param tag and embed attribute with the name allowFullScreen and value true, like this:

 <object>  
 ...  
 <param name="allowFullScreen" value="true" />  
 <embed ... allowfullscreen="true" />  
 </object>

In the Flash authoring tool, select File -> Publish Settings and in the Publish Settings dialog box, on the HTML tab, 

select the Flash Only - Allow Full Screen template. 

In Flex, ensure that the HTML template includes <object> and <embed> tags that support full screen.

If you are using JavaScript in a web page to generate the SWF-embedding tags, you must alter the JavaScript to add the 

allowFullScreen param tag and attribute. For example, if your HTML page uses the AC_FL_RunContent() function 

(which is used by both Flex Builder and Flash-generated HTML pages), you should add the allowFullScreen 

parameter to that function call as follows:

 AC_FL_RunContent(  
 ...  
 'allowFullScreen','true',  
 ...  
 ); //end AC code

This does not apply to SWF files running in the stand-alone Flash Player.

Note: If you set the Window Mode (wmode in the HTML) to Opaque Windowless (opaque) or Transparent Windowless 

(transparent), the full-screen window is always opaque

There are also security-related restrictions for using full-screen mode with Flash Player in a browser. These restrictions 

are described in “Flash Player security” on page 685.

Full screen stage size and scaling

The Stage.fullScreenHeight and Stage.fullScreenWidth properties return the height and the width of the 

monitor that’s used when going to full-screen size, if that state is entered immediately. These values can be incorrect 

if the user has the opportunity to move the browser from one monitor to another after you retrieve these values but 

before entering full-screen mode. If you retrieve these values in the same event handler where you set the 

Stage.displayState property to StageDisplayState.FULL_SCREEN, the values are correct.For users with multiple 

Updated 11 February 2009



282PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

monitors, the SWF content expands to fill only one monitor. Flash Player and AIR use a metric to determine which 

monitor contains the greatest portion of the SWF, and uses that monitor for full-screen mode. The fullScreenHeight 

and fullScreenWidth properties only reflect the size of the monitor that is used for full-screen mode.For more 

information, see Stage.fullScreenHeight and Stage.fullScreenWidth in the ActionScript 3.0 Language and 

Components Reference.

Stage scaling behavior for full-screen mode is the same as under normal mode; the scaling is controlled by the Stage 

class’s scaleMode property. If the scaleMode property is set to StageScaleMode.NO_SCALE, the Stage’s stageWidth 

and stageHeight properties change to reflect the size of the screen area occupied by the SWF (the entire screen, in 

this case); if viewed in the browser the HTML parameter for this controls the setting.

You can use the Stage class’s fullScreen event to detect and respond when full-screen mode is turned on or off. For 

example, you might want to reposition, add, or remove items from the screen when entering or leaving full-screen 

mode, as in this example:

 import flash.events.FullScreenEvent;  
   
 function fullScreenRedraw(event:FullScreenEvent):void  
 {  
 if (event.fullScreen)  
 {  
 // Remove input text fields.  
 // Add a button that closes full-screen mode.  
 }  
 else  
 {  
 // Re-add input text fields.  
 // Remove the button that closes full-screen mode.  
 }  
 }  
   
 mySprite.stage.addEventListener(FullScreenEvent.FULL_SCREEN, fullScreenRedraw);

As this code shows, the event object for the fullScreen event is an instance of the flash.events.FullScreenEvent class, 

which includes a fullScreen property indicating whether full-screen mode is enabled (true) or not (false).

Keyboard support in full-screen mode

When Flash Player runs in a browser, all keyboard-related ActionScript, such as keyboard events and text entry in 

TextField instances, is disabled in full-screen mode. The exceptions (the keys that are enabled) are:

• Selected non-printing keys, specifically the arrow keys, space bar, and tab key

• Keyboard shortcuts that terminate full-screen mode: Esc (Windows and Mac), Control-W (Windows), Command-

W (Mac), and Alt-F4

These restrictions are not present for SWF content running in the stand-alone Flash Player or in AIR. AIR supports 

an interactive full-screen mode that allows keyboard input.

Hardware scaling in full-screen mode

You can use the Stage class’s fullScreenSourceRect property to set Flash Player or AIR to scale a specific region of 

the stage to full-screen mode. Flash Player and AIR scale in hardware, if available, using the graphics and video card 

on a user's computer, and generally display content more quickly than software scaling.

To take advantage of hardware scaling, you set the whole stage or part of the stage to full-screen mode. The following 

ActionScript 3.0 code sets the whole stage to full-screen mode:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Stage.html#fullScreenHeight
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Stage.html#fullScreenWidth


283PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 import flash.geom.*;   
 {  

 stage.fullScreenSourceRect = new Rectangle(0,0,320,240);  
 stage.displayState = StageDisplayState.FULL_SCREEN;  
 }

When this property is set to a valid rectangle and the displayState property is set to full-screen mode, Flash Player 

and AIR scale the specified area. The actual Stage size in pixels within ActionScript does not change. Flash Player and 

AIR enforce a minimum limit for the size of the rectangle to accommodate the standard “Press Esc to exit full-screen 

mode” message. This limit is usually around 260 by 30 pixels but can vary depending on platform and Flash Player 

version.

The fullScreenSourceRect property can only be set when Flash Player or AIR is not in full-screen mode. To use 

this property correctly, set this property first, then set the displayState property to full-screen mode.

To enable scaling, set the fullScreenSourceRect property to a rectangle object.

 stage.fullScreenSourceRect = new Rectangle(0,0,320,240);

To disable scaling, set the fullScreenSourceRect property to null.

 stage.fullScreenSourceRect = null;

To take advantage of all hardware acceleration features with Flash Player, enable it through the Flash Player Settings 

dialog box. To load the dialog box, right-click (Windows) or Control-click (Mac) inside Flash Player content in your 

browser. Select the Display tab, which is the first tab, and click the checkbox: Enable hardware acceleration.

Direct and GPU-compositing window modes

Flash Player 10 introduces two window modes, direct and GPU compositing, which you can enable through the 

publish settings in the Flash authoring tool. These modes are not supported in AIR. To take advantage of these modes, 

you must enable hardware acceleration for Flash Player.

Direct mode uses the fastest, most direct path to push graphics to the screen, which is advantageous for video playback.

GPU Compositing uses the graphics processing unit on the video card to accelerate compositing. Video compositing 

is the process of layering multiple images to create a single video image. When compositing is accelerated with the 

GPU it can improve the performance of YUV conversion, color correction, rotation or scaling, and blending. YUV 

conversion refers to the color conversion of composite analog signals, which are used for transmission, to the RGB 

(red, green, blue) color model that video cameras and displays use. Using the GPU to accelerate compositing reduces 

the memory and computational demands that are otherwise placed on the CPU. It also results in smoother playback 

for standard-definition video.

Be cautious in implementing these window modes. Using GPU compositing can be expensive for memory and CPU 

resources. If some operations (such as blend modes, filtering, clipping or masking) cannot be carried out in the GPU, 

they are done by the software. Adobe recommends limiting yourself to one SWF file per HTML page when using these 

modes and you should not enable these modes for banners. The Flash Test Movie facility does not use hardware 

acceleration but you can use it through the Publish Preview option. 

Setting a frame rate in your SWF file that is higher than 60, the maximum screen refresh rate, is useless. Setting the 

frame rate from 50 through 55 allows for dropped frames, which can occur for various reasons from time to time. 

Using direct mode requires Microsoft DirectX 9 with VRAM 128 MB on Windows and OpenGL for Apple Macintosh, 

Mac OS X v10.2 or higher. GPU compositing requires Microsoft DirectX 9 and Pixel Shader 2.0 support on Windows 

with 128 MB of VRAM. On Mac OS X and Linux, GPU compositing requires OpenGL 1.5 and several OpenGL 

extensions (framebuffer object, multitexture, shader objects, shading language, fragment shader).

Updated 11 February 2009



284PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

You can activate direct and gpu acceleration modes on a per-SWF basis through the Flash Publish Settings dialog 

box, using the Hardware Acceleration menu on the Flash tab. If you choose None, the window mode reverts to 

default, transparent, or opaque, as specified by the Window Mode setting on the HTML tab.

Handling events for display objects

The DisplayObject class inherits from the EventDispatcher class. This means that every display object can participate 

fully in the event model (described in “Handling events” on page 244). Every display object can use its 

addEventListener() method—inherited from the EventDispatcher class—to listen for a particular event, but only if 

the listening object is part of the event flow for that event.

When Flash Player or AIR dispatches an event object, that event object makes a round-trip journey from the Stage to 

the display object where the event occurred. For example, if a user clicks on a display object named child1, Flash 

Player dispatches an event object from the Stage through the display list hierarchy down to the child1 display object. 

The event flow is conceptually divided into three phases, as illustrated in this diagram:

For more information, see “Handling events” on page 244.

One important issue to keep in mind when working with display object events is the effect that event listeners can have 

on whether display objects are automatically removed from memory (garbage collected) when they’re removed from 

the display list. If a display object has objects subscribed as listeners to its events, that display object will not be removed 

from memory even when it’s removed from the display list, because it will still have references to those listener objects. 

For more information, see “Managing event listeners” on page 258.

Choosing a DisplayObject subclass

With several options to choose from, one of the important decisions you’ll make when you’re working with display 

objects is which display object to use for what purpose. Here are some guidelines to help you decide. These same 

suggestions apply whether you need an instance of a class or you’re choosing a base class for a class you’re creating:

• If you don’t need an object that can be a container for other display objects (that is, you just need one that serves as 

a stand-alone screen element), choose one of these DisplayObject or InteractiveObject subclasses, depending on 

what it will be used for:

• Bitmap for displaying a bitmap image.

• TextField for adding text.

• Video for displaying video.

• Shape for a “canvas” for drawing content on-screen. In particular, if you want to create an instance for drawing 

shapes on the screen, and it won’t be a container for other display objects, you’ll gain significant performance 

benefits using Shape instead of Sprite or MovieClip.

Stage

Parent Node

Child1  Node Child2 Node

Capture

Phase

Bubbling

Phase

Target Phase

Updated 11 February 2009



285PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

• MorphShape, StaticText, or SimpleButton for items created by the Flash authoring tool. (You can’t create 

instances of these classes programmatically, but you can create variables with these data types to refer to items 

created using the Flash authoring tool.)

• If you need a variable to refer to the main Stage, use the Stage class as its data type.

• If you need a container for loading an external SWF file or image file, use a Loader instance. The loaded content 

will be added to the display list as a child of the Loader instance. Its data type will depend on the nature of the loaded 

content, as follows:

• A loaded image will be a Bitmap instance.

• A loaded SWF file written in ActionScript 3.0 will be a Sprite or MovieClip instance (or an instance of a subclass 

of those classes, as specified by the content creator).

• A loaded SWF file written in ActionScript 1.0 or ActionScript 2.0 will be an AVM1Movie instance.

• If you need an object to serve as a container for other display objects (whether or not you’ll also be drawing onto 

the display object using ActionScript), choose one of the DisplayObjectContainer subclasses:

• Sprite if the object will be created using only ActionScript, or as the base class for a custom display object that 

will be created and manipulated solely with ActionScript.

• MovieClip if you’re creating a variable to refer to a movie clip symbol created in the Flash authoring tool.

• If you are creating a class that will be associated with a movie clip symbol in the Flash library, choose one of these 

DisplayObjectContainer subclasses as your class’s base class:

• MovieClip if the associated movie clip symbol has content on more than one frame

• Sprite if the associated movie clip symbol has content only on the first frame

Manipulating display objects

Regardless of which display object you choose to use, there are a number of manipulations that all display objects have 

in common as elements that are displayed on the screen. For example, they can all be positioned on the screen, moved 

forward or backward in the stacking order of display objects, scaled, rotated, and so forth. Because all display objects 

inherit this functionality from their common base class (DisplayObject), this functionality behaves the same whether 

you’re manipulating a TextField instance, a Video instance, a Shape instance, or any other display object. The 

following sections detail several of these common display object manipulations.

Changing position

The most basic manipulation to any display object is positioning it on the screen. To set a display object’s position, 

change the object’s x and y properties.

 myShape.x = 17;  
 myShape.y = 212;

The display object positioning system treats the Stage as a Cartesian coordinate system (the common grid system with 

a horizontal x axis and vertical y axis). The origin of the coordinate system (the 0,0 coordinate where the x and y axes 

meet) is at the top-left corner of the Stage. From there, x values are positive going right and negative going left, while 

(in contrast to typical graphing systems) y values are positive going down and negative going up. For example, the 

previous lines of code move the object myShape to the x coordinate 17 (17 pixels to the right of the origin) and y 

coordinate 212 (212 pixels below the origin).

Updated 11 February 2009



286PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

By default, when a display object is created using ActionScript, the x and y properties are both set to 0, placing the 

object at the top-left corner of its parent content.

Changing position relative to the Stage

It’s important to remember that the x and y properties always refer to the position of the display object relative to the 

0,0 coordinate of its parent display object’s axes. So for a Shape instance (such as a circle) contained inside a Sprite 

instance, setting the Shape object’s x and y properties to 0 will place the circle at the top-left corner of the Sprite, which 

is not necessarily the top-left corner of the Stage. To position an object relative to the global Stage coordinates, you can 

use the globalToLocal() method of any display object to convert coordinates from global (Stage) coordinates to local 

(display object container) coordinates, like this:

 // Position the shape at the top-left corner of the Stage,   
 // regardless of where its parent is located.  
   
 // Create a Sprite, positioned at x:200 and y:200.  
 var mySprite:Sprite = new Sprite();  
 mySprite.x = 200;  
 mySprite.y = 200;  
 this.addChild(mySprite);  
   
 // Draw a dot at the Sprite's 0,0 coordinate, for reference.  
 mySprite.graphics.lineStyle(1, 0x000000);  
 mySprite.graphics.beginFill(0x000000);  
 mySprite.graphics.moveTo(0, 0);  
 mySprite.graphics.lineTo(1, 0);  
 mySprite.graphics.lineTo(1, 1);  
 mySprite.graphics.lineTo(0, 1);  
 mySprite.graphics.endFill();  
   
 // Create the circle Shape instance.  
 var circle:Shape = new Shape();  
 mySprite.addChild(circle);  
   
 // Draw a circle with radius 50 and center point at x:50, y:50 in the Shape.  
 circle.graphics.lineStyle(1, 0x000000);  
 circle.graphics.beginFill(0xff0000);  
 circle.graphics.drawCircle(50, 50, 50);  
 circle.graphics.endFill();  
   
 // Move the Shape so its top-left corner is at the Stage's 0, 0 coordinate.  
 var stagePoint:Point = new Point(0, 0);  
 var targetPoint:Point = mySprite.globalToLocal(stagePoint);  
 circle.x = targetPoint.x;  
 circle.y = targetPoint.y;

You can likewise use the DisplayObject class’s localToGlobal() method to convert local coordinates to Stage 

coordinates.

Creating drag-and-drop interaction

One common reason for moving a display object is to create a drag-and-drop interaction, so that when the user clicks 

an object, the object moves as the mouse moves, until the mouse button is released. Drag-and-drop interaction can be 

created in two ways in ActionScript. In either case, two mouse events are used: when the mouse button is pressed 

down, the object is told to follow the mouse cursor, and when it’s released, the object is told to stop following the mouse 

cursor.

Updated 11 February 2009



287PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The first way, using the startDrag() method, is simpler, but more limited. When the mouse button is pressed, the 

startDrag() method of the display object to be dragged is called. When the mouse button is released, the 

stopDrag() method is called.

 // This code creates a drag-and-drop interaction using the startDrag()  
 // technique.  
 // square is a DisplayObject (e.g. a MovieClip or Sprite instance).  
   
 import flash.events.MouseEvent;  
   
 // This function is called when the mouse button is pressed.  
 function startDragging(event:MouseEvent):void  
 {  
 square.startDrag();  
 }  
   
 // This function is called when the mouse button is released.  
 function stopDragging(event:MouseEvent):void  
 {  
 square.stopDrag();  
 }  
   
 square.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);  
 square.addEventListener(MouseEvent.MOUSE_UP, stopDragging);

This technique suffers from one fairly significant limitation: only one item at a time can be dragged using 

startDrag(). If one display object is being dragged and the startDrag() method is called on another display object, 

the first display object stops following the mouse immediately. For example, if the startDragging() function is 

changed as shown here, only the circle object will be dragged, in spite of the square.startDrag() method call:

 function startDragging(event:MouseEvent):void  
 {  
 square.startDrag();  
 circle.startDrag();  
 }

As a consequence of the fact that only one object can be dragged at a time using startDrag(), the stopDrag() 

method can be called on any display object and it stops whatever object is currently being dragged.

If you need to drag more than one display object, or to avoid the possibility of conflicts where more than one object 

might potentially use startDrag(), it’s best to use the mouse-following technique to create the dragging effect. With 

this technique, when the mouse button is pressed, a function is subscribed as a listener to the mouseMove event of the 

Stage. This function, which is then called every time the mouse moves, causes the dragged object to jump to the x, y 

coordinate of the mouse. Once the mouse button is released, the function is unsubscribed as a listener, meaning it is 

no longer called when the mouse moves and the object stops following the mouse cursor. Here is some code that 

demonstrates this technique:

Updated 11 February 2009



288PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 // This code creates a drag-and-drop interaction using the mouse-following  
 // technique.  
 // circle is a DisplayObject (e.g. a MovieClip or Sprite instance).  
   
 import flash.events.MouseEvent;  
   
 var offsetX:Number;  
 var offsetY:Number;  
   
 // This function is called when the mouse button is pressed.  
 function startDragging(event:MouseEvent):void  
 {  
 // Record the difference (offset) between where  
 // the cursor was when the mouse button was pressed and the x, y  
 // coordinate of the circle when the mouse button was pressed.  
 offsetX = event.stageX - circle.x;  
 offsetY = event.stageY - circle.y;  
   
 // tell Flash Player to start listening for the mouseMove event  
 stage.addEventListener(MouseEvent.MOUSE_MOVE, dragCircle);  
 }  
   
 // This function is called when the mouse button is released.  
 function stopDragging(event:MouseEvent):void  
 {  
 // Tell Flash Player to stop listening for the mouseMove event.  
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, dragCircle);  
 }  
   
 // This function is called every time the mouse moves,  
 // as long as the mouse button is pressed down.  
 function dragCircle(event:MouseEvent):void  
 {  
 // Move the circle to the location of the cursor, maintaining   
 // the offset between the cursor's location and the   
 // location of the dragged object.  
 circle.x = event.stageX - offsetX;  
 circle.y = event.stageY - offsetY;  
   
 // Instruct Flash Player to refresh the screen after this event.  
 event.updateAfterEvent();  
 }  
   
 circle.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);  
 circle.addEventListener(MouseEvent.MOUSE_UP, stopDragging);

In addition to making a display object follow the mouse cursor, a common part of drag-and-drop interaction includes 

moving the dragged object to the front of the display, so that it appears to be floating above all the other objects. For 

example, suppose you have two objects, a circle and a square, that both have a drag-and-drop interaction. If the circle 

happens to be below the square on the display list, and you click and drag the circle so that the cursor is over the square, 

the circle will appear to slide behind the square, which breaks the drag-and-drop illusion. Instead, you can make it so 

that when the circle is clicked, it moves to the top of the display list, and thus always appears on top of any other 

content. 

Updated 11 February 2009



289PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The following code (adapted from the previous example) creates a drag-and-drop interaction for two display objects, 

a circle and a square. Whenever the mouse button is pressed over either one, that item is moved to the top of the Stage’s 

display list, so that the dragged item always appears on top. Code that is new or changed from the previous listing 

appears in boldface.

 // This code creates a drag-and-drop interaction using the mouse-following  
 // technique.  
 // circle and square are DisplayObjects (e.g. MovieClip or Sprite   
 // instances).  
   
 import flash.display.DisplayObject;  
 import flash.events.MouseEvent;  
   
 var offsetX:Number;  
 var offsetY:Number;  
 var draggedObject:DisplayObject;  
   
 // This function is called when the mouse button is pressed.  
 function startDragging(event:MouseEvent):void  
 {  
 // remember which object is being dragged  
 draggedObject = DisplayObject(event.target);  
   
 // Record the difference (offset) between where the cursor was when  
 // the mouse button was pressed and the x, y coordinate of the  
 // dragged object when the mouse button was pressed.  
 offsetX = event.stageX - draggedObject.x;  
 offsetY = event.stageY - draggedObject.y;  
   
 // move the selected object to the top of the display list  
 stage.addChild(draggedObject);  
   
 // Tell Flash Player to start listening for the mouseMove event.  
 stage.addEventListener(MouseEvent.MOUSE_MOVE, dragObject);  
 }  
   
 // This function is called when the mouse button is released.  
 function stopDragging(event:MouseEvent):void  
 {  
 // Tell Flash Player to stop listening for the mouseMove event.  
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, dragObject);  
 }  

Updated 11 February 2009



290PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

   
 // This function is called every time the mouse moves,  
 // as long as the mouse button is pressed down.  
 function dragObject(event:MouseEvent):void  
 {  
 // Move the dragged object to the location of the cursor, maintaining   
 // the offset between the cursor's location and the location   
 // of the dragged object.  
 draggedObject.x = event.stageX - offsetX;  
 draggedObject.y = event.stageY - offsetY;  
   
 // Instruct Flash Player to refresh the screen after this event.  
 event.updateAfterEvent();  
 }  
   
 circle.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);  
 circle.addEventListener(MouseEvent.MOUSE_UP, stopDragging);  
   
 square.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);  
 square.addEventListener(MouseEvent.MOUSE_UP, stopDragging);

To extend this effect further, such as for a game where tokens or cards are moved among piles, you could add the 

dragged object to the Stage’s display list when it’s “picked up,” and then add it to another display list—such as the “pile” 

where it is dropped—when the mouse button is released.

Finally, to enhance the effect, you could apply a drop shadow filter to the display object when it is clicked (when you 

start dragging it) and remove the drop shadow when the object is released. For details on using the drop shadow filter 

and other display object filters in ActionScript, see “Filtering display objects” on page 346.

Panning and scrolling display objects

If you have a display object that is too large for the area in which you want it to display it, you can use the scrollRect 

property to define the viewable area of the display object. In addition, by changing the scrollRect property in 

response to user input, you can cause the content to pan left and right or scroll up and down.

The scrollRect property is an instance of the Rectangle class, which is a class that combines the values needed to 

define a rectangular area as a single object. To initially define the viewable area of the display object, create a new 

Rectangle instance and assign it to the display object’s scrollRect property. Later, to scroll or pan, you read the 

scrollRect property into a separate Rectangle variable, and change the desired property (for instance, change the 

Rectangle instance’s x property to pan or y property to scroll). Then you reassign that Rectangle instance to the 

scrollRect property to notify the display object of the changed value.

For example, the following code defines the viewable area for a TextField object named bigText that is too tall to fit 

in the SWF file’s boundaries. When the two buttons named up and down are clicked, they call functions that cause the 

contents of the TextField object to scroll up or down by modifying the y property of the scrollRect Rectangle 

instance.

Updated 11 February 2009



291PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 import flash.events.MouseEvent;  
 import flash.geom.Rectangle;  
   
 // Define the initial viewable area of the TextField instance:  
 // left: 0, top: 0, width: TextField's width, height: 350 pixels.  
 bigText.scrollRect = new Rectangle(0, 0, bigText.width, 350);  
   
 // Cache the TextField as a bitmap to improve performance.  
 bigText.cacheAsBitmap = true;  
   
 // called when the "up" button is clicked  
 function scrollUp(event:MouseEvent):void  
 {  
 // Get access to the current scroll rectangle.  
 var rect:Rectangle = bigText.scrollRect;  
 // Decrease the y value of the rectangle by 20, effectively   
 // shifting the rectangle down by 20 pixels.  
 rect.y -= 20;  
 // Reassign the rectangle to the TextField to "apply" the change.  
 bigText.scrollRect = rect;  
 }  
   
 // called when the "down" button is clicked   
 function scrollDown(event:MouseEvent):void  
 {  
 // Get access to the current scroll rectangle.  
 var rect:Rectangle = bigText.scrollRect;  
 // Increase the y value of the rectangle by 20, effectively   
 // shifting the rectangle up by 20 pixels.  
 rect.y += 20;  
 // Reassign the rectangle to the TextField to "apply" the change.  
 bigText.scrollRect = rect;  
 }  
   
 up.addEventListener(MouseEvent.CLICK, scrollUp);  
 down.addEventListener(MouseEvent.CLICK, scrollDown);

As this example illustrates, when you work with the scrollRect property of a display object, it’s best to specify that 

Flash Player or AIR should cache the display object’s content as a bitmap, using the cacheAsBitmap property. When 

you do so, Flash Player and AIR don’t have to re-draw the entire contents of the display object each time it is scrolled, 

and can instead use the cached bitmap to render the necessary portion directly to the screen. For details, see “Caching 

display objects” on page 294.

Manipulating size and scaling objects

You can measure and manipulate the size of a display object in two ways, using either the dimension properties (width 

and height) or the scale properties (scaleX and scaleY).

Every display object has a width property and a height property, which are initially set to the size of the object in 

pixels. You can read the values of those properties to measure the size of the display object. You can also specify new 

values to change the size of the object, as follows:

Updated 11 February 2009



292PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 // Resize a display object.  
 square.width = 420;  
 square.height = 420;  
   
 // Determine the radius of a circle display object.  
 var radius:Number = circle.width / 2;

Changing the height or width of a display object causes the object to scale, meaning its contents stretch or squeeze 

to fit in the new area. If the display object contains only vector shapes, those shapes will be redrawn at the new scale, 

with no loss in quality. Any bitmap graphic elements in the display object will be scaled rather than redrawn. So, for 

example, a digital photo whose width and height are increased beyond the actual dimensions of the pixel information 

in the image will be pixelated, making it look jagged.

When you change the width or height properties of a display object, Flash Player and AIR update the scaleX and 

scaleY properties of the object as well.

Note:  TextField objects are an exception to this scaling behavior. Text fields need to resize themselves to accommodate 

text wrapping and font sizes, so they reset their scaleX or scaleY values to 1 after resizing. However, if you adjust the scaleX 

or scaleY values of a TextField object, the width and height values change to accommodate the scaling values you provide.

These properties represent the relative size of the display object compared to its original size. The scaleX and scaleY 

properties use fraction (decimal) values to represent percentage. For example, if a display object’s width has been 

changed so that it’s half as wide as its original size, the object’s scaleX property will have the value .5, meaning 50 

percent. If its height has been doubled, its scaleY property will have the value 2, meaning 200 percent.

 // circle is a display object whose width and height are 150 pixels.  
 // At original size, scaleX and scaleY are 1 (100%).  
 trace(circle.scaleX); // output: 1  
 trace(circle.scaleY); // output: 1  
   
 // When you change the width and height properties,   
 // Flash Player changes the scaleX and scaleY properties accordingly.  
 circle.width = 100;  
 circle.height = 75;  
 trace(circle.scaleX); // output: 0.6622516556291391  
 trace(circle.scaleY); // output: 0.4966887417218543

Size changes are not proportional. In other words, if you change the height of a square but not its width, its 

proportions will no longer be the same, and it will be a rectangle instead of a square. If you want to make relative 

changes to the size of a display object, you can set the values of the scaleX and scaleY properties to resize the object, 

as an alternative to setting the width or height properties. For example, this code changes the width of the display 

object named square, and then alters the vertical scale (scaleY) to match the horizontal scale, so that the size of the 

square stays proportional.

 // Change the width directly.  
 square.width = 150;  
   
 // Change the vertical scale to match the horizontal scale,   
 // to keep the size proportional.  
 square.scaleY = square.scaleX;

Updated 11 February 2009



293PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Controlling distortion when scaling

Normally when a display object is scaled (for example, stretched horizontally), the resulting distortion is spread equally 

across the object, so that each part is stretched the same amount. For graphics and design elements, this is probably 

what you want. However, sometimes it’s preferable to have control over which portions of the display object stretch 

and which portions remain unchanged. One common example of this is a button that’s a rectangle with rounded 

corners. With normal scaling, the corners of the button will stretch, making the corner radius change as the button 

resizes.

However, in this case it would be preferable to have control over the scaling—to be able to designate certain areas 

which should scale (the straight sides and middle) and areas which shouldn’t (the corners)—so that scaling happens 

without visible distortion.

You can use 9-slice scaling (Scale-9) to create display objects where you have control over how the objects scale. With 

9-slice scaling, the display object is divided into nine separate rectangles (a 3 by 3 grid, like the grid of a tic-tac-toe 

board). The rectangles aren’t necessarily the same size—you designate where the grid lines are placed. Any content that 

lies in the four corner rectangles (such as the rounded corners of a button) will not be stretched or compressed when 

the display object scales. The top-center and bottom-center rectangles will scale horizontally but not vertically, while 

the left-middle and right-middle rectangles will scale vertically but not horizontally. The center rectangle will scale 

both horizontally and vertically.

Keeping this in mind, if you’re creating a display object and you want certain content to never scale, you just have to 

make sure that the dividing lines of the 9-slice scaling grid are placed so that the content ends up in one of the corner 

rectangles.

In ActionScript, setting a value for the scale9Grid property of a display object turns on 9-slice scaling for the object 

and defines the size of the rectangles in the object’s Scale-9 grid. You use an instance of the Rectangle class as the value 

for the scale9Grid property, as follows:

 myButton.scale9Grid = new Rectangle(32, 27, 71, 64);

Updated 11 February 2009



294PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The four parameters of the Rectangle constructor are the x coordinate, y coordinate, width, and height. In this 

example, the rectangle’s top-left corner is placed at the point x: 32, y: 27 on the display object named myButton. The 

rectangle is 71 pixels wide and 64 pixels tall (so its right edge is at the x coordinate 103 on the display object and its 

bottom edge is at the y coordinate 92 on the display object).

The actual area contained in the region defined by the Rectangle instance represents the center rectangle of the Scale-

9 grid. The other rectangles are calculated by Flash Player and AIR by extending the sides of the Rectangle instance, as 

shown here:

In this case, as the button scales up or down, the rounded corners will not stretch or compress, but the other areas will 

adjust to accommodate the scaling.

A. myButton.width = 131;myButton.height = 106;  B. myButton.width = 73;myButton.height = 69;  C. myButton.width = 54;myButton.height 
= 141;  

Caching display objects

As your designs in Flash grow in size, whether you are creating an application or complex scripted animations, you 

need to consider performance and optimization. When you have content that remains static (such as a rectangle Shape 

instance), Flash Player and AIR do not optimize the content. Therefore, when you change the position of the rectangle, 

Flash Player or AIR redraws the entire Shape instance.

You can cache specified display objects to improve the performance of your SWF file. The display object is a surface, 

essentially a bitmap version of the instance’s vector data, which is data that you do not intend to change much over the 

course of your SWF file. Therefore, instances with caching turned on are not continually redrawn as the SWF file plays, 

letting the SWF file render quickly.

Note: You can update the vector data, at which time the surface is recreated. Therefore, the vector data cached in the 

surface does not need to remain the same for the entire SWF file.

Setting a display object’s cacheAsBitmap property to true makes the display object cache a bitmap representation of 

itself. Flash Player or AIR creates a surface object for the instance, which is a cached bitmap instead of vector data. If 

you change the bounds of the display object, the surface is recreated instead of resized. Surfaces can nest within other 

surfaces. The child surface copies its bitmap onto its parent surface. For more information, see “Enabling bitmap 

caching” on page 296.

CBA

Updated 11 February 2009



295PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The DisplayObject class’s opaqueBackground property and scrollRect property are related to bitmap caching using 

the cacheAsBitmap property. Although these three properties are independent of each other, the opaqueBackground 

and scrollRect properties work best when an object is cached as a bitmap—you see performance benefits for the 

opaqueBackground and scrollRect properties only when you set cacheAsBitmap to true. For more information 

about scrolling display object content, see “Panning and scrolling display objects” on page 290. For more information 

about setting an opaque background, see “Setting an opaque background color” on page 296.

For information on alpha channel masking, which requires you to set the cacheAsBitmap property to true, see 

“Masking display objects” on page 300.

When to enable caching 

Enabling caching for a display object creates a surface, which has several advantages, such as helping complex vector 

animations to render fast. There are several scenarios in which you will want to enable caching. It might seem as 

though you would always want to enable caching to improve the performance of your SWF files; however, there are 

situations in which enabling caching does not improve performance, or can even decrease it. This section describes 

scenarios in which caching should be used, and when to use regular display objects.

Overall performance of cached data depends on how complex the vector data of your instances are, how much of the 

data you change, and whether or not you set the opaqueBackground property. If you are changing small regions, the 

difference between using a surface and using vector data could be negligible. You might want to test both scenarios 

with your work before you deploy the application.

When to use bitmap caching

The following are typical scenarios in which you might see significant benefits when you enable bitmap caching.

• Complex background image: An application that contains a detailed and complex background image of vector data 

(perhaps an image where you applied the trace bitmap command, or artwork that you created in Adobe 

Illustrator®). You might animate characters over the background, which slows the animation because the 

background needs to continuously regenerate the vector data. To improve performance, you can set the 

opaqueBackground property of the background display object to true. The background is rendered as a bitmap 

and can be redrawn quickly, so that your animation plays much faster.

• Scrolling text field: An application that displays a large amount of text in a scrolling text field. You can place the 

text field in a display object that you set as scrollable with scrolling bounds (the scrollRect property). This enables 

fast pixel scrolling for the specified instance. When a user scrolls the display object instance, Flash Player or AIR 

shifts the scrolled pixels up and generates the newly exposed region instead of regenerating the entire text field.

• Windowing system: An application with a complex system of overlapping windows. Each window can be open or 

closed (for example, web browser windows). If you mark each window as a surface (by setting the cacheAsBitmap 

property to true), each window is isolated and cached. Users can drag the windows so that they overlap each other, 

and each window doesn’t need to regenerate the vector content.

• Alpha channel masking: When you are using alpha channel masking, you must set the cacheAsBitmap property 

to true. For more information, see “Masking display objects” on page 300.

Enabling bitmap caching in all of these scenarios improves the responsiveness and interactivity of the application by 

optimizing the vector graphics.

In addition, whenever you apply a filter to a display object, cacheAsBitmap is automatically set to true, even if you 

explicitly set it to false. If you clear all the filters from the display object, the cacheAsBitmap property returns to the 

value it was last set to.

Updated 11 February 2009



296PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

When to avoid using bitmap caching 

Misusing this feature could negatively affect your SWF file. When you use bitmap caching, remember the following 

guidelines:

• Do not overuse surfaces (display objects with caching enabled). Each surface uses more memory than a regular 

display object, which means that you should only enable surfaces when you need to improve rendering 

performance. 

A cached bitmap can use significantly more memory than a regular display object. For example, if a Sprite instance 

on the Stage is 250 pixels by 250 pixels in size, when cached it might use 250 KB instead of 1 KB when it’s a regular 

(un-cached) Sprite instance.

• Avoid zooming into cached surfaces. If you overuse bitmap caching, a large amount of memory is consumed (see 

previous bullet), especially if you zoom in on the content.

• Use surfaces for display object instances that are largely static (non-animating). You can drag or move the instance, 

but the contents of the instance should not animate or change a lot. (Animation or changing content are more likely 

with a MovieClip instance containing animation or a Video instance.) For example, if you rotate or transform an 

instance, the instance changes between the surface and vector data, which is difficult to process and negatively 

affects your SWF file.

• If you mix surfaces with vector data, it increases the amount of processing that Flash Player and AIR (and 

sometimes the computer) need to do. Group surfaces together as much as possible—for example, when you create 

windowing applications.

Enabling bitmap caching

To enable bitmap caching for a display object, you set its cacheAsBitmap property to true:

 mySprite.cacheAsBitmap = true;

After you set the cacheAsBitmap property to true, you might notice that the display object automatically pixel-snaps 

to whole coordinates. When you test the SWF file, you should notice that any animation performed on a complex 

vector image renders much faster.

A surface (cached bitmap) is not created, even if cacheAsBitmap is set to true, if one or more of the following occurs:

• The bitmap is greater than 2880 pixels in height or width.

• The bitmap fails to allocate (because of an out-of-memory error).

Setting an opaque background color

You can set an opaque background for a display object. For example, when your SWF has a background that contains 

complex vector art, you can set the opaqueBackground property to a specified color (typically the same color as the 

Stage). The color is specified as a number (commonly a hexadecimal color value). The background is then treated as a 

bitmap, which helps optimize performance. 

When you set cacheAsBitmap to true, and also set the opaqueBackground property to a specified color, the 

opaqueBackground property allows the internal bitmap to be opaque and rendered faster. If you do not set 

cacheAsBitmap to true, the opaqueBackground property adds an opaque vector-square shape to the background of 

the display object. It does not create a bitmap automatically.

The following example shows how to set the background of a display object to optimize performance:

 myShape.cacheAsBitmap = true;  
 myShape.opaqueBackground = 0xFF0000;

Updated 11 February 2009



297PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

In this case, the background color of the Shape named myShape is set to red (0xFF0000). Assuming the Shape instance 

contains a drawing of a green triangle, on a Stage with a white background, this would show up as a green triangle with 

red in the empty space in the Shape instance’s bounding box (the rectangle that completely encloses the Shape).

Of course, this code would make more sense if it were used with a Stage with a solid red background. On another 

colored background, that color would be specified instead. For example, in a SWF with a white background, the 

opaqueBackground property would most likely be set to 0xFFFFFF, or pure white.

Applying blending modes

Blending modes involve combining the colors of one image (the base image) with the colors of another image (the 

blend image) to produce a third image—the resulting image is the one that is actually displayed on the screen. Each 

pixel value in an image is processed with the corresponding pixel value of the other image to produce a pixel value for 

that same position in the result.

Every display object has a blendMode property that can be set to one of the following blending modes. These are 

constants defined in the BlendMode class. Alternatively, you can use the String values (in parentheses) that are the 

actual values of the constants.

• BlendMode.ADD ("add"): Commonly used to create an animated lightening dissolve effect between two images.

• BlendMode.ALPHA ("alpha"): Commonly used to apply the transparency of the foreground on the background.

• BlendMode.DARKEN ("darken"): Commonly used to superimpose type.

• BlendMode.DIFFERENCE ("difference"): Commonly used to create more vibrant colors.

• BlendMode.ERASE ("erase"): Commonly used to cut out (erase) part of the background using the foreground 

alpha.

• BlendMode.HARDLIGHT ("hardlight"): Commonly used to create shading effects.

• BlendMode.INVERT ("invert"): Used to invert the background.

• BlendMode.LAYER ("layer"): Used to force the creation of a temporary buffer for precomposition for a particular 

display object.

• BlendMode.LIGHTEN ("lighten"): Commonly used to superimpose type.

• BlendMode.MULTIPLY ("multiply"): Commonly used to create shadows and depth effects.

• BlendMode.NORMAL ("normal"): Used to specify that the pixel values of the blend image override those of the base 

image.

• BlendMode.OVERLAY ("overlay"): Commonly used to create shading effects.

• BlendMode.SCREEN ("screen"): Commonly used to create highlights and lens flares.

• BlendMode.SHADER ("shader"): Used to specify that a Pixel Bender shader is used to create a custom blending 

effect. For more information about using shaders, see “Working with Pixel Bender shaders” on page 376.

• BlendMode.SUBTRACT ("subtract"): Commonly used to create an animated darkening dissolve effect between 

two images.

Updated 11 February 2009



298PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Adjusting DisplayObject colors

You can use the methods of the ColorTransform class (flash.geom.ColorTransform) to adjust the color of a display 

object. Each display object has a transform property, which is an instance of the Transform class, and contains 

information about various transformations that are applied to the display object (such as rotation, changes in scale or 

position, and so forth). In addition to its information about geometric transformations, the Transform class also 

includes a colorTransform property, which is an instance of the ColorTransform class, and provides access to make 

color adjustments to the display object. To access the color transformation information of a display object, you can use 

code such as this:

 var colorInfo:ColorTransform = myDisplayObject.transform.colorTransform;

Once you’ve created a ColorTransform instance, you can read its property values to find out what color 

transformations have already been applied, or you can set those values to make color changes to the display object. To 

update the display object after any changes, you must reassign the ColorTransform instance back to the 

transform.colorTransform property.

 var colorInfo:ColorTransform = my DisplayObject.transform.colorTransform;  
   
 // Make some color transformations here.  
   
 // Commit the change.  
 myDisplayObject.transform.colorTransform = colorInfo;

Setting color values with code

The color property of the ColorTransform class can be used to assign a specific red, green, blue (RGB) color value to 

the display object. The following example uses the color property to change the color of the display object named 

square to blue, when the user clicks a button named blueBtn:

 // square is a display object on the Stage.  
 // blueBtn, redBtn, greenBtn, and blackBtn are buttons on the Stage.  
   
 import flash.events.MouseEvent;  
 import flash.geom.ColorTransform;  
   
 // Get access to the ColorTransform instance associated with square.  
 var colorInfo:ColorTransform = square.transform.colorTransform;  
   
 // This function is called when blueBtn is clicked.  
 function makeBlue(event:MouseEvent):void  
 {  
 // Set the color of the ColorTransform object.  
 colorInfo.color = 0x003399;  
 // apply the change to the display object  
 square.transform.colorTransform = colorInfo;  
 }  
   
 blueBtn.addEventListener(MouseEvent.CLICK, makeBlue);

Note that when you change a display object’s color using the color property, it completely changes the color of the 

entire object, regardless of whether the object previously had multiple colors. For example, if there is a display object 

containing a green circle with black text on top, setting the color property of that object’s associated ColorTransform 

instance to a shade of red will make the entire object, circle and text, turn red (so the text will no longer be 

distinguishable from the rest of the object).

Updated 11 February 2009



299PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Altering color and brightness effects with code

Suppose you have a display object with multiple colors (for example, a digital photo) and you don’t want to completely 

recolor the object; you just want to adjust the color of a display object based on the existing colors. In this scenario, the 

ColorTransform class includes a series of multiplier and offset properties that you can use to make this type of 

adjustment. The multiplier properties, named redMultiplier, greenMultiplier, blueMultiplier, and 

alphaMultiplier, work like colored photographic filters (or colored sunglasses), amplifying or diminishing certain 

colors in the display object. The offset properties (redOffset, greenOffset, blueOffset, and alphaOffset) can be 

used to add extra amounts of a certain color to the object, or to specify the minimum value that a particular color can 

have.

These multiplier and offset properties are identical to the advanced color settings that are available for movie clip 

symbols in the Flash authoring tool when you choose Advanced from the Color pop-up menu on the Property 

inspector.

The following code loads a JPEG image and applies a color transformation to it, which adjusts the red and green 

channels as the mouse pointer moves along the x axis and y axis. In this case, because no offset values are specified, the 

color value of each color channel displayed on screen will be a percentage of the original color value in the image—

meaning that the most red or green displayed in any given pixel will be the original amount of red or green in that pixel.

 import flash.display.Loader;  
 import flash.events.MouseEvent;  
 import flash.geom.Transform;  
 import flash.geom.ColorTransform;  
 import flash.net.URLRequest;  
   
 // Load an image onto the Stage.  
 var loader:Loader = new Loader();  
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");  
 loader.load(url);  
 this.addChild(loader);  
   
 // This function is called when the mouse moves over the loaded image.  
 function adjustColor(event:MouseEvent):void  
 {  
 // Access the ColorTransform object for the Loader (containing the image)  
 var colorTransformer:ColorTransform = loader.transform.colorTransform;  
   
 // Set the red and green multipliers according to the mouse position.  
 // The red value ranges from 0% (no red) when the cursor is at the left  
 // to 100% red (normal image appearance) when the cursor is at the right.  
 // The same applies to the green channel, except it's controlled by the  
 // position of the mouse in the y axis.  
 colorTransformer.redMultiplier = (loader.mouseX / loader.width) * 1;  
 colorTransformer.greenMultiplier = (loader.mouseY / loader.height) * 1;  
   
 // Apply the changes to the display object.  
 loader.transform.colorTransform = colorTransformer;  
 }  
   
 loader.addEventListener(MouseEvent.MOUSE_MOVE, adjustColor);

Updated 11 February 2009



300PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Rotating objects

Display objects can be rotated using the rotation property. You can read this value to find out whether an object has 

been rotated, or to rotate the object you can set this property to a number (in degrees) representing the amount of 

rotation to be applied to the object. For instance, this line of code rotates the object named square 45 degrees (one 

eighth of one complete revolution):

 square.rotation = 45;

Alternatively, you can rotate a display object using a transformation matrix, described in “Working with geometry” on 

page 334.

Fading objects

You can control the transparency of a display object to make it partially (or completely transparent), or change the 

transparency to make the object appear to fade in or out. The DisplayObject class’s alpha property defines the 

transparency (or more accurately, the opacity) of a display object. The alpha property can be set to any value between 

0 and 1, where 0 is completely transparent, and 1 is completely opaque. For example, these lines of code make the 

object named myBall partially (50 percent) transparent when it is clicked with the mouse:

 function fadeBall(event:MouseEvent):void  
 {  
 myBall.alpha = .5;  
 }  
 myBall.addEventListener(MouseEvent.CLICK, fadeBall);

You can also alter the transparency of a display object using the color adjustments available through the 

ColorTransform class. For more information, see “Adjusting DisplayObject colors” on page 298.

Masking display objects

You can use a display object as a mask to create a hole through which the contents of another display object are visible.

Defining a mask

To indicate that a display object will be the mask for another display object, set the mask object as the mask property 

of the display object to be masked:

 // Make the object maskSprite be a mask for the object mySprite.  
 mySprite.mask = maskSprite;

The masked display object is revealed under all opaque (nontransparent) areas of the display object acting as the mask. 

For instance, the following code creates a Shape instance containing a red 100 by 100 pixel square and a Sprite instance 

containing a blue circle with a radius of 25 pixels. When the circle is clicked, it is set as the mask for the square, so that 

the only part of the square that shows is the part that is covered by the solid part of the circle. In other words, only a 

red circle will be visible.

Updated 11 February 2009



301PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 // This code assumes it's being run within a display object container  
 // such as a MovieClip or Sprite instance.  
   
 import flash.display.Shape;  
   
 // Draw a square and add it to the display list.  
 var square:Shape = new Shape();  
 square.graphics.lineStyle(1, 0x000000);  
 square.graphics.beginFill(0xff0000);  
 square.graphics.drawRect(0, 0, 100, 100);  
 square.graphics.endFill();  
 this.addChild(square);  
   
 // Draw a circle and add it to the display list.  
 var circle:Sprite = new Sprite();  
 circle.graphics.lineStyle(1, 0x000000);  
 circle.graphics.beginFill(0x0000ff);  
 circle.graphics.drawCircle(25, 25, 25);  
 circle.graphics.endFill();  
 this.addChild(circle);  
   
 function maskSquare(event:MouseEvent):void  
 {  
 square.mask = circle;  
 circle.removeEventListener(MouseEvent.CLICK, maskSquare);  
 }  
   
 circle.addEventListener(MouseEvent.CLICK, maskSquare);

The display object that is acting as a mask can be draggable, animated, resized dynamically, and can use separate shapes 

within a single mask. The mask display object doesn’t necessarily need to be added to the display list. However, if you 

want the mask object to scale when the Stage is scaled or if you want to enable user interaction with the mask (such as 

user-controlled dragging and resizing), the mask object must be added to the display list. The actual z-index (front-to-

back order) of the display objects doesn’t matter, as long as the mask object is added to the display list. (The mask 

object will not appear on the screen except as a mask.) If the mask object is a MovieClip instance with multiple frames, 

it plays all the frames in its timeline, the same as it would if it were not serving as a mask. You can remove a mask by 

setting the mask property to null:

 // remove the mask from mySprite  
 mySprite.mask = null;

You cannot use a mask to mask another mask. You cannot set the alpha property of a mask display object. Only fills 

are used in a display object that is used as a mask; strokes are ignored.

About masking device fonts

You can use a display object to mask text that is set in a device font. When you use a display object to mask text set in 

a device font, the rectangular bounding box of the mask is used as the masking shape. That is, if you create a non-

rectangular display object mask for device font text, the mask that appears in the SWF file is the shape of the 

rectangular bounding box of the mask, not the shape of the mask itself.

Alpha channel masking

Alpha channel masking is supported if both the mask and the masked display objects use bitmap caching, as shown here:

Updated 11 February 2009



302PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 // maskShape is a Shape instance which includes a gradient fill.  
 mySprite.cacheAsBitmap = true;  
 maskShape.cacheAsBitmap = true;  
 mySprite.mask = maskShape;

For instance, one application of alpha channel masking is to use a filter on the mask object independently of a filter 

that is applied to the masked display object.

In the following example, an external image file is loaded onto the Stage. That image (or more accurately, the Loader 

instance it is loaded into) will be the display object that is masked. A gradient oval (solid black center fading to 

transparent at the edges) is drawn over the image; this will be the alpha mask. Both display objects have bitmap caching 

turned on. The oval is set as a mask for the image, and it is then made draggable.

 // This code assumes it's being run within a display object container  
 // such as a MovieClip or Sprite instance.  
   
 import flash.display.GradientType;  
 import flash.display.Loader;  
 import flash.display.Sprite;  
 import flash.geom.Matrix;  
 import flash.net.URLRequest;  
   
 // Load an image and add it to the display list.  
 var loader:Loader = new Loader();  
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");  
 loader.load(url);  
 this.addChild(loader);  
   
 // Create a Sprite.  
 var oval:Sprite = new Sprite();  
 // Draw a gradient oval.  
 var colors:Array = [0x000000, 0x000000];  
 var alphas:Array = [1, 0];  
 var ratios:Array = [0, 255];  
 var matrix:Matrix = new Matrix();  
 matrix.createGradientBox(200, 100, 0, -100, -50);  
 oval.graphics.beginGradientFill(GradientType.RADIAL,  
 colors,  
 alphas,  
 ratios,  
 matrix);  
 oval.graphics.drawEllipse(-100, -50, 200, 100);  
 oval.graphics.endFill();  
 // add the Sprite to the display list  
 this.addChild(oval);  
   
 // Set cacheAsBitmap = true for both display objects.  
 loader.cacheAsBitmap = true;  
 oval.cacheAsBitmap = true;  
 // Set the oval as the mask for the loader (and its child, the loaded image)  
 loader.mask = oval;  
   
 // Make the oval draggable.  
 oval.startDrag(true);

Updated 11 February 2009



303PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

Animating objects

Animation is the process of making something move, or alternatively, of making something change over time. Scripted 

animation is a fundamental part of video games, and is often used to add polish and useful interaction clues to other 

applications.

The fundamental idea behind scripted animation is that a change needs to take place, and that change needs to be 

divided into increments over time. It’s easy to make something repeat in ActionScript, using a common looping 

statement. However, a loop will run through all its iterations before updating the display. To create scripted animation, 

you need to write ActionScript that performs some action repeatedly over time and also updates the screen each time 

it runs.

For example, imagine you want to create a simple animation, such as making a ball travel across the screen. 

ActionScript includes a simple mechanism that allows you to track the passage of time and update the screen 

accordingly—meaning you could write code that moves the ball a small amount each time, until it reaches its 

destination. After each move the screen would update, making the cross-Stage motion visible to the viewer.

From a practical standpoint, it makes sense to synchronize scripted animation with the SWF file’s frame rate (in other 

words, make one animation change each time a new frame displays or would display), since that defines how 

frequently Flash Player or AIR updates the screen. Each display object has an enterFrame event that is dispatched 

according to the frame rate of the SWF file—one event per frame. Most developers who create scripted animation use 

the enterFrame event as a way to create actions that repeat over time. You could write code that listens to the 

enterFrame event, moving the animated ball a certain amount each frame, and as the screen is updated (each frame), 

the ball would be redrawn in its new location, creating motion.

Note: Another way to perform an action repeatedly over time is to use the Timer class. A Timer instance triggers an event 

notification each time a specified amount of time has past. You could write code that performs animation by handling 

the Timer class’s timer event, setting the time interval to a small one (some fraction of a second). For more information 

about using the Timer class, see “Controlling time intervals” on page 133.

In the following example, a circle Sprite instance, named circle, is created on the Stage. When the user clicks the 

circle, a scripted animation sequence begins, causing circle to fade (its alpha property is decreased) until it is 

completely transparent:

Updated 11 February 2009



304PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 import flash.display.Sprite;  
 import flash.events.Event;  
 import flash.events.MouseEvent;  
   
 // draw a circle and add it to the display list  
 var circle:Sprite = new Sprite();  
 circle.graphics.beginFill(0x990000);  
 circle.graphics.drawCircle(50, 50, 50);  
 circle.graphics.endFill();  
 addChild(circle);  
   
 // When this animation starts, this function is called every frame.  
 // The change made by this function (updated to the screen every  
 // frame) is what causes the animation to occur.  
 function fadeCircle(event:Event):void  
 {  
 circle.alpha -= .05;  
   
 if (circle.alpha <= 0)  
 {  
 circle.removeEventListener(Event.ENTER_FRAME, fadeCircle);  
 }  
 }  
   
 function startAnimation(event:MouseEvent):void  
 {  
 circle.addEventListener(Event.ENTER_FRAME, fadeCircle);  
 }  
   
 circle.addEventListener(MouseEvent.CLICK, startAnimation);

When the user clicks the circle, the function fadeCircle() is subscribed as a listener of the enterFrame event, 

meaning it begins to be called once per frame. That function fades circle by changing its alpha property, so once per 

frame the circle’s alpha decreases by .05 (5 percent) and the screen is updated. Eventually, when the alpha value is 0 

(circle is completely transparent), the fadeCircle() function is removed as an event listener, ending the animation.

The same code could be used, for example, to create animated motion instead of fading. By substituting a different 

property for alpha in the function that is an enterFrame event listener, that property will be animated instead. For 

example, changing this line

 circle.alpha -= .05;

to this code

 circle.x += 5;

will animate the x property, causing the circle to move to the right across the Stage. The condition that ends the 

animation could be changed to end the animation (that is, unsubscribe the enterFrame listener) when the desired x 

coordinate is reached.

Loading display content dynamically

You can load any of the following external display assets into an ActionScript 3.0 application:

• A SWF file authored in ActionScript 3.0—This file can be a Sprite, MovieClip, or any class that extends Sprite. 

Updated 11 February 2009



305PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

• An image file—This includes JPG, PNG, and GIF files.

• An AVM1 SWF file—This is a SWF file written in ActionScript 1.0 or 2.0.

You load these assets by using the Loader class. 

Loading display objects

Loader objects are used to load SWF files and graphics files into an application. The Loader class is a subclass of the 

DisplayObjectContainer class. A Loader object can contain only one child display object in its display list—the display 

object representing the SWF or graphic file that it loads. When you add a Loader object to the display list, as in the 

following code, you also add the loaded child display object to the display list once it loads:

 var pictLdr:Loader = new Loader();  
 var pictURL:String = "banana.jpg"  
 var pictURLReq:URLRequest = new URLRequest(pictURL);  
 pictLdr.load(pictURLReq);  
 this.addChild(pictLdr);

Once the SWF file or image is loaded, you can move the loaded display object to another display object container, such 

as the container DisplayObjectContainer object in this example:

 import flash.display.*;  
 import flash.net.URLRequest;  
 import flash.events.Event;  
 var container:Sprite = new Sprite();  
 addChild(container);  
 var pictLdr:Loader = new Loader();  
 var pictURL:String = "banana.jpg"  
 var pictURLReq:URLRequest = new URLRequest(pictURL);  
 pictLdr.load(pictURLReq);  
 pictLdr.contentLoaderInfo.addEventListener(Event.COMPLETE, imgLoaded);   
 function imgLoaded(event:Event):void  
 {  
 container.addChild(pictLdr.content);   
 }

Monitoring loading progress

Once the file has started loading, a LoaderInfo object is created. A LoaderInfo object provides information such as load 

progress, the URLs of the loader and loadee, the number of bytes total for the media, and the nominal height and width 

of the media. A LoaderInfo object also dispatches events for monitoring the progress of the load.

Updated 11 February 2009



306PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The following diagram shows the different uses of the LoaderInfo object—for the instance of the main class of the SWF 

file, for a Loader object, and for an object loaded by the Loader object:

The LoaderInfo object can be accessed as a property of both the Loader object and the loaded display object. As soon 

as loading begins, the LoaderInfo object can be accessed through the contentLoaderInfo property of the Loader 

object. Once the display object has finished loading, the LoaderInfo object can also be accessed as a property of the 

loaded display object through the display object’s loaderInfo property. The loaderInfo property of the loaded 

display object refers to the same LoaderInfo object as the contentLoaderInfo property of the Loader object. In other 

words, a LoaderInfo object is shared between a loaded object and the Loader object that loaded it (between loader and 

loadee).

In order to access properties of loaded content, you will want to add an event listener to the LoaderInfo object, as in 

the following code:

 import flash.display.Loader;  
 import flash.display.Sprite;  
 import flash.events.Event;  
   
 var ldr:Loader = new Loader();  
 var urlReq:URLRequest = new URLRequest("Circle.swf");  
 ldr.load(urlReq);  
 ldr.contentLoaderInfo.addEventListener(Event.COMPLETE, loaded);  
 addChild(ldr);  
   
 function loaded(event:Event):void  
 {  
 var content:Sprite = event.target.content;  
 content.scaleX = 2;  
 }

For more information, see “Handling events” on page 244.

Specifying loading context

When you load an external file into Flash Player or AIR through the load() or loadBytes() method of the Loader 

class, you can optionally specify a context parameter. This parameter is a LoaderContext object.

Stage

Instance of
the main class of

the SWF file

Loader object

LoaderInfo object

content

contentLoaderInfo property

loaderInfo property

LoaderInfo object

loaderInfo property

Updated 11 February 2009



307PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The LoaderContext class includes three properties that let you define the context of how the loaded content can be 

used: 

• checkPolicyFile: Use this property only when loading an image file (not a SWF file). If you set this property to 

true, the Loader checks the origin server for a policy file (see “Website controls (policy files)” on page 691). This 

is necessary only for content originating from domains other than that of the SWF file containing the Loader object. 

If the server grants permission to the Loader domain, ActionScript from SWF files in the Loader domain can access 

data in the loaded image; in other words, you can use the BitmapData.draw() command to access data in the 

loaded image. 

Note that a SWF file from other domains than that of the Loader object can call Security.allowDomain() to 

permit a specific domain. 

• securityDomain: Use this property only when loading a SWF file (not an image). Specify this for a SWF file from 

a domain other than that of the file containing the Loader object. When you specify this option, Flash Player checks 

for the existence of a policy file, and if one exists, SWF files from the domains permitted in the cross-policy file can 

cross-script the loaded SWF content. You can specify flash.system.SecurityDomain.currentDomain as this 

parameter. 

• applicationDomain: Use this property only when loading a SWF file written in ActionScript 3.0 (not an image or 

a SWF file written in ActionScript 1.0 or 2.0). When loading the file, you can specify that the file be included in the 

same application domain as that of the Loader object, by setting the applicationDomain parameter to 

flash.system.ApplicationDomain.currentDomain. By putting the loaded SWF file in the same application 

domain, you can access its classes directly. This can be useful if you are loading a SWF file that contains embedded 

media, which you can access via their associated class names. For more information, see “Using the 

ApplicationDomain class” on page 640.

Here’s an example of checking for a policy file when loading a bitmap from another domain:

 var context:LoaderContext = new LoaderContext();  
 context.checkPolicyFile = true;  
 var urlReq:URLRequest = new URLRequest("http://www.[your_domain_here].com/photo11.jpg");  
 var ldr:Loader = new Loader();  
 ldr.load(urlReq, context);

Here’s an example of checking for a policy file when loading a SWF from another domain, in order to place the file in 

the same security sandbox as the Loader object. Additionally, the code adds the classes in the loaded SWF file to the 

same application domain as that of the Loader object:

 var context:LoaderContext = new LoaderContext();  
 context.securityDomain = SecurityDomain.currentDomain;  
 context.applicationDomain = ApplicationDomain.currentDomain;  
 var urlReq:URLRequest = new URLRequest("http://www.[your_domain_here].com/library.swf");  
 var ldr:Loader = new Loader();  
 ldr.load(urlReq, context);

For more information, see the LoaderContext class in the ActionScript 3.0 Language and Components Reference.

Example: SpriteArranger

The SpriteArranger sample application builds upon the Geometric Shapes sample application described separately 

(see “Example: GeometricShapes” on page 122).

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en


308PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The SpriteArranger sample application illustrates a number of concepts for dealing with display objects:

• Extending display object classes

• Adding objects to the display list

• Layering display objects and working with display object containers

• Responding to display object events

• Using properties and methods of display objects

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

SpriteArranger application files can be found in the folder Examples/SpriteArranger. The application consists of the 

following files:

Defining the SpriteArranger classes

The SpriteArranger application lets the user add a variety of display objects to the on-screen “canvas.” 

File Description

SpriteArranger.mxml

or

SpriteArranger.fla

The main application file in Flash (FLA) or Flex 

(MXML).

com/example/programmingas3/SpriteArranger/CircleSprite.as A class defining a type of Sprite object that renders 

a circle on-screen.

com/example/programmingas3/SpriteArranger/DrawingCanvas.as A class defining the canvas, which is a display 

object container that contains GeometricSprite 

objects.

com/example/programmingas3/SpriteArranger/SquareSprite.as A class defining a type of Sprite object that renders 

a square on-screen.

com/example/programmingas3/SpriteArranger/TriangleSprite.as A class defining a type of Sprite object that renders 

a triangle on-screen.

com/example/programmingas3/SpriteArranger/GeometricSprite.as A class that extends the Sprite object, used to 

define an on-screen shape. The CircleSprite, 

SquareSprite, and TriangleSprite each extend this 

class.

com/example/programmingas3/geometricshapes/IGeometricShape.as The base interface defining methods to be 

implemented by all geometric shape classes.

com/example/programmingas3/geometricshapes/IPolygon.as An interface defining methods to be implemented 

by geometric shape classes that have multiple 

sides.

com/example/programmingas3/geometricshapes/RegularPolygon.as A type of geometric shape that has sides of equal 

length positioned symmetrically around the 

shape’s center.

com/example/programmingas3/geometricshapes/Circle.as A type of geometric shape that defines a circle.

com/example/programmingas3/geometricshapes/EquilateralTriangle.as A subclass of RegularPolygon that defines a 

triangle with all sides the same length.

com/example/programmingas3/geometricshapes/Square.as A subclass of RegularPolygon defining a rectangle 

with all four sides the same length.

com/example/programmingas3/geometricshapes/GeometricShapeFactory.as A class containing a “factory method” for creating 

shapes given a shape type and size.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


309PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

The DrawingCanvas class defines a drawing area, a type of display object container, to which the user can add on-

screen shapes. These on-screen shapes are instances of one of the subclasses of the GeometricSprite class.

The DrawingCanvas class

The DrawingCanvas class extends the Sprite class, and this inheritance is defined in the DrawingCanvas class 

declaration, as follows:

 public class DrawingCanvas extends Sprite

The Sprite class is a subclass of the DisplayObjectContainer and DisplayObject classes, and the DrawingCanvas class 

uses methods and properties of those classes.

The DrawingCanvas() constructor method sets up a Rectangle object, bounds, which is property that is later used in 

drawing the outline of the canvas. It then calls the initCanvas() method, as follows:

 this.bounds = new Rectangle(0, 0, w, h);  
 initCanvas(fillColor, lineColor);

AS the following example shows, the initCanvas() method defines various properties of the DrawingCanvas object, 

which were passed as arguments to the constructor function:

 this.lineColor = lineColor;  
 this.fillColor = fillColor;  
 this.width = 500;  
 this.height = 200;

The initCanvas() method then calls the drawBounds() method, which draws the canvas using the DrawingCanvas 

class’s graphics property. The graphics property is inherited from the Shape class.

 this.graphics.clear();  
 this.graphics.lineStyle(1.0, this.lineColor, 1.0);  
 this.graphics.beginFill(this.fillColor, 1.0);  
 this.graphics.drawRect(bounds.left - 1,   
 bounds.top - 1,   
 bounds.width + 2,  
 bounds.height + 2);  
 this.graphics.endFill();

The following additional methods of the DrawingCanvas class are invoked based on user interactions with the 

application:

• The addShape() and describeChildren() methods, which are described in “Adding display objects to the 

canvas” on page 310

• The moveToBack(), moveDown(), moveToFront(), and moveUp() methods, which are described in “Rearranging 

display object layering” on page 312

• The onMouseUp() method, which is described in “Clicking and dragging display objects” on page 311

The GeometricSprite class and its subclasses

Each display object the user can add to the canvas is an instance of one of the following subclasses of the 

GeometricSprite class:

• CircleSprite

• SquareSprite

• TriangleSprite

The GeometricSprite class extends the flash.display.Sprite class:

Updated 11 February 2009



310PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 public class GeometricSprite extends Sprite

The GeometricSprite class includes a number of properties common to all GeometricSprite objects. These are set in 

the constructor function based on parameters passed to the function. For example:

 this.size = size;  
 this.lineColor = lColor;  
 this.fillColor = fColor;

The geometricShape property of the GeometricSprite class defines an IGeometricShape interface, which defines the 

mathematical properties, but not the visual properties, of the shape. The classes that implement the IGeometricShape 

interface are defined in the GeometricShapes sample application (see “Example: GeometricShapes” on page 122). 

The GeometricSprite class defines the drawShape() method, which is further refined in the override definitions in 

each subclass of GeometricSprite. For more information, see the “Adding display objects to the canvas” section, which 

follows.

The GeometricSprite class also provides the following methods:

• The onMouseDown() and onMouseUp() methods, which are described in “Clicking and dragging display objects” 

on page 311

• The showSelected() and hideSelected() methods, which are described in “Clicking and dragging display 

objects” on page 311

Adding display objects to the canvas

When the user clicks the Add Shape button, the application calls the addShape() method of the DrawingCanvas class. 

It instantiates a new GeometricSprite by calling the appropriate constructor function of one of the GeometricSprite 

subclasses, as the following example shows:

 public function addShape(shapeName:String, len:Number):void  
 {  
 var newShape:GeometricSprite;  
 switch (shapeName)  
 {  
 case "Triangle":  
 newShape = new TriangleSprite(len);  
 break;  
   
 case "Square":  
 newShape = new SquareSprite(len);  
 break;  
   
 case "Circle":  
 newShape = new CircleSprite(len);  
 break;  
 }  
 newShape.alpha = 0.8;  
 this.addChild(newShape);  
 }

Each constructor method calls the drawShape() method, which uses the graphics property of the class (inherited 

from the Sprite class) to draw the appropriate vector graphic. For example, the drawShape() method of the 

CircleSprite class includes the following code:

Updated 11 February 2009



311PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 this.graphics.clear();  
 this.graphics.lineStyle(1.0, this.lineColor, 1.0);  
 this.graphics.beginFill(this.fillColor, 1.0);  
 var radius:Number = this.size / 2;  
 this.graphics.drawCircle(radius, radius, radius);

The second to last line of the addShape() function sets the alpha property of the display object (inherited from the 

DisplayObject class), so that each display object added to the canvas is slightly transparent, letting the user see the 

objects behind it. 

The final line of the addChild() method adds the new display object to the child list of the instance of the 

DrawingCanvas class, which is already on the display list. This causes the new display object to appear on the Stage.

The interface for the application includes two text fields, selectedSpriteTxt and outputTxt. The text properties of 

these text fields are updated with information about the GeometricSprite objects that have been added to the canvas 

or selected by the user. The GeometricSprite class handles this information-reporting task by overriding the 

toString() method, as follows:

 public override function toString():String  
 {  
 return this.shapeType + " of size " + this.size + " at " + this.x + ", " + this.y;  
 }

The shapeType property is set to the appropriate value in the constructor method of each GeometricSprite subclass. 

For example, the toString() method might return the following value for a CircleSprite instance recently added to 

the DrawingCanvas instance:

 Circle of size 50 at 0, 0

The describeChildren() method of the DrawingCanvas class loops through the canvas’s child list, using the 

numChildren property (inherited from the DisplayObjectContainer class) to set the limit of the for loop. It generates 

a string listing each child, as follows:

 var desc:String = "";  
 var child:DisplayObject;  
 for (var i:int=0; i < this.numChildren; i++)  
 {  
 child = this.getChildAt(i);  
 desc += i + ": " + child + '\n';  
 }

The resulting string is used to set the text property of the outputTxt text field.

Clicking and dragging display objects

When the user clicks on a GeometricSprite instance, the application calls the onMouseDown() event handler. As the 

following shows, this event handler is set to listen for mouse down events in the constructor function of the 

GeometricSprite class:

 this.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);

The onMouseDown() method then calls the showSelected() method of the GeometricSprite object. If it is the first 

time this method has been called for the object, the method creates a new Shape object named selectionIndicator 

and it uses the graphics property of the Shape object to draw a red highlight rectangle, as follows:

 this.selectionIndicator = new Shape();  
 this.selectionIndicator.graphics.lineStyle(1.0, 0xFF0000, 1.0);  
 this.selectionIndicator.graphics.drawRect(-1, -1, this.size + 1, this.size + 1);  
 this.addChild(this.selectionIndicator);

Updated 11 February 2009



312PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

If this is not the first time the onMouseDown() method is called, the method simply sets the selectionIndicator 

shape’s visible property (inherited from the DisplayObject class), as follows:

 this.selectionIndicator.visible = true;

The hideSelected() method hides the selectionIndicator shape of the previously selected object by setting its 

visible property to false.

The onMouseDown() event handler method also calls the startDrag() method (inherited from the Sprite class), 

which includes the following code:

 var boundsRect:Rectangle = this.parent.getRect(this.parent);  
 boundsRect.width -= this.size;  
 boundsRect.height -= this.size;  
 this.startDrag(false, boundsRect);

This lets the user drag the selected object around the canvas, within the boundaries set by the boundsRect rectangle.

When the user releases the mouse button, the mouseUp event is dispatched. The constructor method of the 

DrawingCanvas sets up the following event listener:

 this.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);

This event listener is set for the DrawingCanvas object, rather than for the individual GeometricSprite objects. This is 

because when the GeometricSprite object is dragged, it could end up behind another display object (another 

GeometricSprite object) when the mouse is released. The display object in the foreground would receive the mouse up 

event but the display object the user is dragging would not. Adding the listener to the DrawingCanvas object ensures 

that the event is always handled. 

The onMouseUp() method calls the onMouseUp() method of the GeometricSprite object, which in turn calls the 

stopDrag() method of the GeometricSprite object.

Rearranging display object layering

The user interface for the application includes buttons labeled Move Back, Move Down, Move Up, and Move to Front. 

When the user clicks one of these buttons, the application calls the corresponding method of the DrawingCanvas class: 

moveToBack(), moveDown(), moveUp(), or moveToFront(). For example, the moveToBack() method includes the 

following code:

 public function moveToBack(shape:GeometricSprite):void  
 {  
 var index:int = this.getChildIndex(shape);  
 if (index > 0)  
 {  
 this.setChildIndex(shape, 0);  
 }  
 }

The method uses the setChildIndex() method (inherited from the DisplayObjectContainer class) to position the 

display object in index position 0 in the child list of the DrawingCanvas instance (this). 

The moveDown() method works similarly, except that it decrements the index position of the display object by 1 in the 

child list of the DrawingCanvas instance:

Updated 11 February 2009



313PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Display programming

 public function moveDown(shape:GeometricSprite):void  
 {  
 var index:int = this.getChildIndex(shape);  
 if (index > 0)  
 {  
 this.setChildIndex(shape, index - 1);  
 }  
 }

The moveUp() and moveToFront() methods work similarly to the moveToBack() and moveDown() methods.

Updated 11 February 2009



314

Chapter 14: Using the drawing API

Although imported images and artwork are important, the functionality known as the drawing API, which allows you 

to draw lines and shapes in ActionScript, gives you the freedom to start an application with the computer equivalent 

of a blank canvas, on which you can create whatever images you wish. The ability to create your own graphics opens 

up broad possibilities for your applications. With the techniques covered in this chapter you can create a drawing 

program, make animated, interactive art, or programmatically create your own user interface elements, among many 

possibilities.

Basics of using the drawing API

Introduction to using the drawing API

The drawing API is the name for the functionality built into ActionScript that allows you to create vector graphics—

lines, curves, shapes, fills, and gradients—and display them on the screen using ActionScript. The 

flash.display.Graphics class provides this functionality. You can draw with ActionScript on any Shape, Sprite, or 

MovieClip instance, using the graphics property defined in each of those classes. (Each of those classes’ graphics 

property is in fact an instance of the Graphics class.)

If you’re just getting started with drawing with code, the Graphics class includes several methods that make it easy to 

draw common shapes like circles, ellipses, rectangles, and rectangles with rounded corners. You can draw them as 

empty lines or filled shapes. When you need more advanced functionality, the Graphics class also includes methods 

for drawing lines and quadratic Bézier curves, which you can use in conjunction with the trigonometry functions in 

the Math class to create any shape you need.

Flash Player 10 and Adobe AIR 1.5 add an additional API for drawing, which allow you to programmatically draw 

entire shapes with a single command. Once you’re familiar with the Graphics class and tasks covered in “Basics of 

using the drawing API”, continue to “Advanced use of the drawing API” on page 326 to learn more about these 

drawing API features.

Common drawing API tasks

The following tasks are things you’ll likely want to accomplish using the drawing API in ActionScript, which are 

described in this chapter:

• Defining line styles and fill styles for drawing shapes

• Drawing straight lines and curves

• Using methods for drawing shapes such as circles, ellipses, and rectangles

• Drawing with gradient lines and fills

• Defining a matrix for creating a gradient

• Using trigonometry with the drawing API

• Incorporating the drawing API into animation

Updated 11 February 2009



315PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Anchor point: One of the two end points of a quadratic Bézier curve.

• Control point: The point that defines the direction and amount of curve of a quadratic Bézier curve. The curved 

line never reaches the control point; however, the line curves as though being drawn toward the control point.

• Coordinate space: The graph of coordinates contained in a display object, on which its child elements are 

positioned.

• Fill: The solid inner portion of a shape that has a line filled in with color, or all of a shape that has no outline.

• Gradient: A color that consists of a gradual transition from one color to one or more other colors (as opposed to a 

solid color).

• Point: A single location in a coordinate space. In the 2-d coordinate system used in ActionScript, a point is defined 

by its location along the x axis and the y axis (the point’s coordinates).

• Quadratic Bézier curve: A type of curve defined by a particular mathematical formula. In this type of curve, the 

shape of the curve is calculated based on the positions of the anchor points (the end points of the curve) and a 

control point that defines the amount and direction of the curve.

• Scale: The size of an object relative to its original size. When used as a verb, to scale an object means to change its 

size by stretching or shrinking the object.

• Stroke: The outline portion of a shape that has a line filled in with color, or the lines of an un-filled shape.

• Translate: To change a point’s coordinates from one coordinate space to another.

• X axis: The horizontal axis in the 2-d coordinate system used in ActionScript.

• Y axis: The vertical axis in the 2-d coordinate system used in ActionScript.

Working through in-chapter examples

While you’re working through the chapter you may want to test some of the example code listings. Because this chapter 

deals with drawing visual content, testing the code listings involves running the code and viewing the results in the 

SWF that’s created. To test the code listings:

1 Create an empty Flash document.

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

You will see the results of the code listing in the SWF file that’s created.

Updated 11 February 2009



316PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Understanding the Graphics class

Each Shape, Sprite, and MovieClip object has a graphics property, which is an instance of the Graphics class. The 

Graphics class includes properties and methods for drawing lines, fills, and shapes. If you want a display object to use 

solely as a canvas for drawing content, you can use a Shape instance. A Shape instance will perform better than other 

display objects for drawing, because it doesn’t have the overhead of the additional functionality in the Sprite and 

MovieClip classes. If you want a display object on which you can draw graphical content and also want that object to 

contain other display objects, you can use a Sprite instance. For more information on determining which display object 

to use for various tasks, see “Choosing a DisplayObject subclass” on page 284.

Drawing lines and curves

All drawing that you do with a Graphics instance is based on basic drawing with lines and curves. Consequently, all 

ActionScript drawing must be performed using the same series of steps:

• Define line and fill styles

• Set the initial drawing position

• Draw lines, curves, and shapes (optionally moving the drawing point)

• If necessary, finish creating a fill

Defining line and fill styles

To draw with the graphics property of a Shape, Sprite, or MovieClip instance, you must first define the style (line size 

and color, fill color) to use when drawing. Just like when you use the drawing tools in Adobe® Flash® CS4 Professional 

or another drawing application, when you’re using ActionScript to draw you can draw with or without a stroke, and 

with or without a fill color. You specify the appearance of the stroke using the lineStyle() or 

lineGradientStyle() method. To create a solid line, use the lineStyle() method. When calling this method, the 

most common values you’ll specify are the first three parameters: line thickness, color, and alpha. For example, this 

line of code tells the Shape named myShape to draw lines that are 2 pixels thick, red (0x990000), and 75% opaque:

 myShape.graphics.lineStyle(2, 0x990000, .75);

The default value for the alpha parameter is 1.0 (100%), so you can leave that parameter off if you want a completely 

opaque line. The lineStyle() method also accepts two additional parameters for pixel hinting and scale mode; for 

more information about using those parameters see the description of the Graphics.lineStyle() method in the 

ActionScript 3.0 Language and Components Reference.

To create a gradient line, use the lineGradientStyle() method. This method is described in “Creating gradient lines 

and fills” on page 319.

If you want to create a filled shape, you call the beginFill(), beginGradientFill(), beginBitmapFill(), or 

beginShaderFill() methods before starting the drawing. The most basic of these, the beginFill() method, accepts 

two parameters: the fill color, and (optionally) an alpha value for the fill color. For example, if you want to draw a shape 

with a solid green fill, you would use the following code (assuming you’re drawing on an object named myShape):

 myShape.graphics.beginFill(0x00FF00);

Calling any fill method implicitly ends any previous fill before starting a new one. Calling any method that specifies a 

stroke style replaces the previous stroke, but does not alter a previously specified fill, and vice versa.

Updated 11 February 2009



317PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Once you have specified the line style and fill properties, the next step is to indicate the starting point for your drawing. 

The Graphics instance has a drawing point, like the tip of a pen on a piece of paper. Wherever the drawing point is 

located, that is where the next drawing action will begin. Initially a Graphics object begins with its drawing point at the 

point 0, 0 in the coordinate space of the object on which it’s drawing. To start the drawing at a different point, you can 

first call the moveTo() method before calling one of the drawing methods. This is analogous to lifting the pen tip off 

of the paper and moving it to a new position.

With the drawing point in place you draw using a series of calls to the drawing methods lineTo() (for drawing 

straight lines) and curveTo() (for drawing curved lines).

While you are drawing, you can call the moveTo() method at any time to move the drawing point to a new position 

without drawing.

While drawing, if you have specified a fill color, you can tell Adobe Flash Player or Adobe® AIR™ to close off the fill by 

calling the endFill() method. If you have not drawn a closed shape (in other words, if at the time you call endFill() 

the drawing point is not at the starting point of the shape), when you call the endFill() method Flash Player or AIR 

automatically closes the shape by drawing a straight line from the current drawing point to the location specified in 

the most recent moveTo() call. If you have started a fill and not called endFill(), calling beginFill() (or one of the 

other fill methods) closes the current fill and starts the new one.

Drawing straight lines

When you call the lineTo() method, the Graphics object draws a straight line from the current drawing point to the 

coordinates you specify as the two parameters in the method call, drawing with the line style you have specified. For 

example, this line of code puts the drawing point at the point 100, 100 then draws a line to the point 200, 200:

 myShape.graphics.moveTo(100, 100);  
 myShape.graphics.lineTo(200, 200);

The following example draws red and green triangles with a height of 100 pixels:

 var triangleHeight:uint = 100;  
 var triangle:Shape = new Shape();  
   
 // red triangle, starting at point 0, 0  
 triangle.graphics.beginFill(0xFF0000);  
 triangle.graphics.moveTo(triangleHeight / 2, 0);  
 triangle.graphics.lineTo(triangleHeight, triangleHeight);  
 triangle.graphics.lineTo(0, triangleHeight);  
 triangle.graphics.lineTo(triangleHeight / 2, 0);  
   
 // green triangle, starting at point 200, 0  
 triangle.graphics.beginFill(0x00FF00);  
 triangle.graphics.moveTo(200 + triangleHeight / 2, 0);  
 triangle.graphics.lineTo(200 + triangleHeight, triangleHeight);  
 triangle.graphics.lineTo(200, triangleHeight);  
 triangle.graphics.lineTo(200 + triangleHeight / 2, 0);  
   
 this.addChild(triangle);

Updated 11 February 2009



318PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Drawing curves

The curveTo() method draws a quadratic Bézier curve. This draws an arc that connects two points (called anchor 

points) while bending toward a third point (called the control point). The Graphics object uses the current drawing 

position as the first anchor point. When you call the curveTo() method, you pass four parameters: the x and y 

coordinates of the control point, followed by the x and y coordinates of the second anchor point. For example, the 

following code draws a curve starting at point 100, 100 and ending at point 200, 200. Because the control point is at 

point 175, 125, this creates a curve that moves to the right and then downward:

 myShape.graphics.moveTo(100, 100);  
 myShape.graphics.curveTo(175, 125, 200, 200);

The following example draws red and green circular objects with a width and height of 100 pixels. Note that due to the 

nature of the quadratic Bézier equation, these are not perfect circles:

 var size:uint = 100;  
 var roundObject:Shape = new Shape();  
   
 // red circular shape  
 roundObject.graphics.beginFill(0xFF0000);  
 roundObject.graphics.moveTo(size / 2, 0);  
 roundObject.graphics.curveTo(size, 0, size, size / 2);  
 roundObject.graphics.curveTo(size, size, size / 2, size);  
 roundObject.graphics.curveTo(0, size, 0, size / 2);  
 roundObject.graphics.curveTo(0, 0, size / 2, 0);  
   
 // green circular shape  
 roundObject.graphics.beginFill(0x00FF00);  
 roundObject.graphics.moveTo(200 + size / 2, 0);  
 roundObject.graphics.curveTo(200 + size, 0, 200 + size, size / 2);  
 roundObject.graphics.curveTo(200 + size, size, 200 + size / 2, size);  
 roundObject.graphics.curveTo(200, size, 200, size / 2);  
 roundObject.graphics.curveTo(200, 0, 200 + size / 2, 0);  
   
 this.addChild(roundObject);

Drawing shapes using built-in methods

For convenience when drawing common shapes such as circles, ellipses, rectangles, and rectangles with rounded 

corners, ActionScript 3.0 has methods that draw these common shapes for you. These are the drawCircle(), 

drawEllipse(), drawRect(), drawRoundRect(), and drawRoundRectComplex() methods of the Graphics class. 

These methods may be used in place of the lineTo() and curveTo() methods. Note, however, that you must still 

specify line and fill styles before calling these methods.

The following example recreates the example of drawing red, green, and blue squares with width and height of 100 

pixels. This code uses the drawRect() method, and additionally specifies that the fill color has an alpha of 50% (0.5):

Updated 11 February 2009



319PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

 var squareSize:uint = 100;  
 var square:Shape = new Shape();  
 square.graphics.beginFill(0xFF0000, 0.5);  
 square.graphics.drawRect(0, 0, squareSize, squareSize);  
 square.graphics.beginFill(0x00FF00, 0.5);  
 square.graphics.drawRect(200, 0, squareSize, squareSize);  
 square.graphics.beginFill(0x0000FF, 0.5);  
 square.graphics.drawRect(400, 0, squareSize, squareSize);  
 square.graphics.endFill();  
 this.addChild(square);

In a Sprite or MovieClip object, the drawing content created with the graphics property always appears behind all 

child display objects that are contained by the object. Also, the graphics property content is not a separate display 

object so it does not appear in the list of a Sprite or MovieClip object’s children. For example, the following Sprite 

object has a circle drawn with its graphics property, and it has a TextField object in its list of child display objects:

 var mySprite:Sprite = new Sprite();  
 mySprite.graphics.beginFill(0xFFCC00);  
 mySprite.graphics.drawCircle(30, 30, 30);  
 var label:TextField = new TextField();  
 label.width = 200;  
 label.text = "They call me mellow yellow...";  
 label.x = 20;  
 label.y = 20;  
 mySprite.addChild(label);  
 this.addChild(mySprite);

Note that the TextField appears on top of the circle drawn with the graphics object.

Creating gradient lines and fills

The graphics object can also draw strokes and fills with gradients rather than solid colors. A gradient stroke is created 

with the lineGradientStyle() method and a gradient fill is created with the beginGradientFill() method.

Both methods accept the same parameters. The first four are required: type, colors, alphas, and ratios. The remaining 

four are optional but are useful for advanced customizing.

• The first parameter specifies the type of gradient you are creating. Acceptable values are GradientType.LINEAR or 

GradientType.RADIAL.

• The second parameter specifies the array of the color values to use. In a linear gradient, the colors will be arranged 

from left to right. In a radial gradient, they will be arranged from inside to outside. The order of the colors of the 

array represents the order that the colors will be drawn in the gradient.

• The third parameter specifies the alpha transparency values of the corresponding colors in the previous parameter.

• The fourth parameter specifies ratios, or the emphasis each color has within the gradient. Acceptable values range 

from 0-255. These values do not represent any width or height, but rather the position within the gradient; 0 

represents the beginning of the gradient, 255 represents the end of the gradient. The array of ratios must increase 

sequentially and have the same number of entries as both the color and alpha arrays specified in the second and 

third parameters.

Although the fifth parameter, the transformation matrix, is optional, it is commonly used because it provides an easy 

and powerful way to control the gradient’s appearance. This parameter accepts a Matrix instance. The easiest way to 

create a Matrix object for a gradient is to use the Matrix class’s createGradientBox() method.

Updated 11 February 2009



320PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Defining a Matrix object for use with a gradient

You use the beginGradientFill() and lineGradientStyle() methods of the flash.display.Graphics class to define 

gradients for use in shapes. When you define a gradient, you supply a matrix as one of the parameters of these methods.

The easiest way to define the matrix is by using the Matrix class’s createGradientBox() method, which creates a 

matrix that is used to define the gradient. You define the scale, rotation, and position of the gradient using the 

parameters passed to the createGradientBox() method. The createGradientBox() method accepts the following 

parameters:

• Gradient box width: the width (in pixels) to which the gradient will spread

• Gradient box height: the height (in pixels) to which the gradient will spread

• Gradient box rotation: the rotation (in radians) that will be applied to the gradient

• Horizontal translation: how far (in pixels) the gradient is shifted horizontally

• Vertical translation: how far (in pixels) the gradient is shifted vertically

For example, consider a gradient with the following characteristics: 

• GradientType.LINEAR

• Two colors, green and blue, with the ratios array set to [0, 255]

• SpreadMethod.PAD

• InterpolationMethod.LINEAR_RGB

The following examples show gradients in which the rotation parameter of the createGradientBox() method 

differs as indicated, but all other settings stay the same:

The following examples show the effects on a green-to-blue linear gradient in which the rotation, tx, and ty 

parameters of the createGradientBox() method differ as indicated, but all other settings stay the same:

width = 100; 

height = 100; 

rotation = 0; 

tx = 0; 

ty = 0; 

width = 100; 

height = 100; 

rotation = Math.PI/4; // 45° 

tx = 0; 

ty = 0; 

width = 100; 

height = 100; 

rotation = Math.PI/2; // 90° 

tx = 0; 

ty = 0; 

Updated 11 February 2009



321PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

The width, height, tx, and ty parameters of the createGradientBox() method affect the size and position of a 

radial gradient fill as well, as the following example shows:

The following code produces the last radial gradient illustrated:

width = 50; 

height = 100; 

rotation = 0; 

tx = 0; 

ty = 0; 

width = 50; 

height = 100; 

rotation = 0 

tx = 50; 

ty = 0; 

width = 100; 

height = 50; 

rotation = Math.PI/2; // 90° 

tx = 0; 

ty = 0; 

width = 100; 

height = 50; 

rotation = Math.PI/2; // 90° 

tx = 0; 

ty = 50; 

width = 50; 

height = 100; 

rotation = 0; 

tx = 25; 

ty = 0; 

Updated 11 February 2009



322PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

 import flash.display.Shape;  
 import flash.display.GradientType;  
 import flash.geom.Matrix;  
   
 var type:String = GradientType.RADIAL;  
 var colors:Array = [0x00FF00, 0x000088];  
 var alphas:Array = [1, 1];  
 var ratios:Array = [0, 255];  
 var spreadMethod:String = SpreadMethod.PAD;  
 var interp:String = InterpolationMethod.LINEAR_RGB;  
 var focalPtRatio:Number = 0;  
   
 var matrix:Matrix = new Matrix();  
 var boxWidth:Number = 50;  
 var boxHeight:Number = 100;  
 var boxRotation:Number = Math.PI/2; // 90°  
 var tx:Number = 25;  
 var ty:Number = 0;  
 matrix.createGradientBox(boxWidth, boxHeight, boxRotation, tx, ty);  
   
 var square:Shape = new Shape;  
 square.graphics.beginGradientFill(type,   
 colors,  
 alphas,  
 ratios,   
 matrix,   
 spreadMethod,   
 interp,   
 focalPtRatio);  
 square.graphics.drawRect(0, 0, 100, 100);  
 addChild(square);

Note that the width and height of the gradient fill is determined by the width and height of the gradient matrix rather 

than the width or height that is drawn using the Graphics object. When drawing with the Graphics object, you draw 

what exists at those coordinates in the gradient matrix. Even if you use one of the shape methods of a Graphics object 

such as drawRect(), the gradient does not stretch itself to the size of the shape that is drawn—the gradient’s size must 

be specified in the gradient matrix itself.

The following illustrates the visual difference between the dimensions of the gradient matrix and the dimensions of 

the draw itself:

 var myShape:Shape = new Shape();  
 var gradientBoxMatrix:Matrix = new Matrix();  
 gradientBoxMatrix.createGradientBox(100, 40, 0, 0, 0);  
 myShape.graphics.beginGradientFill(GradientType.LINEAR, [0xFF0000, 0x00FF00, 0x0000FF], [1, 
1, 1], [0, 128, 255], gradientBoxMatrix);  
 myShape.graphics.drawRect(0, 0, 50, 40);  
 myShape.graphics.drawRect(0, 50, 100, 40);  
 myShape.graphics.drawRect(0, 100, 150, 40);  
 myShape.graphics.endFill();  
 this.addChild(myShape);

This code draws three gradients with the same fill style, specified with an equal distribution of red, green, and blue. 

The gradients are drawn using the drawRect() method with pixel widths of 50, 100, and 150 respectively. The gradient 

matrix which is specified in the beginGradientFill() method is created with a width of 100 pixels. This means that 

the first gradient will encompass only half of the gradient spectrum, the second will encompass all of it, and the third 

will encompass all of it and have an additional 50 pixels of blue extending to the right.

Updated 11 February 2009



323PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

The lineGradientStyle() method works similarly to beginGradientFill() except that in addition to defining the 

gradient, you must specify the thickness of the stroke using the lineStyle() method before drawing. The following 

code draws a box with a red, green, and blue gradient stroke:

 var myShape:Shape = new Shape();  
 var gradientBoxMatrix:Matrix = new Matrix();  
 gradientBoxMatrix.createGradientBox(200, 40, 0, 0, 0);  
 myShape.graphics.lineStyle(5, 0);  
 myShape.graphics.lineGradientStyle(GradientType.LINEAR, [0xFF0000, 0x00FF00, 0x0000FF], [1, 
1, 1], [0, 128, 255], gradientBoxMatrix);  
 myShape.graphics.drawRect(0, 0, 200, 40);  
 this.addChild(myShape);

For more information on the Matrix class, see “Using Matrix objects” on page 340.

Using the Math class with drawing methods

A Graphics object draws circles and squares, but can also draw more complex forms, particularly when the drawing 

methods are used in combination with the properties and methods of the Math class. The Math class contains 

constants of common mathematical interest, such as Math.PI (approximately 3.14159265...), a constant for the ratio 

of the circumference of a circle to its diameter. It also contains methods for trigonometry functions, including 

Math.sin(), Math.cos(), and Math.tan() among others. Drawing shapes using these methods and constants create 

more dynamic visual effects, particularly when used with repetition or recursion.

Many methods of the Math class expect circular measurements in units of radians rather than degrees. Converting 

between these two types of units is a common use of the Math class:

 var degrees = 121;  
 var radians = degrees * Math.PI / 180;  
 trace(radians) // 2.111848394913139

The following example creates a sine wave and a cosine wave, to highlight the difference between the Math.sin() and 

Math.cos() methods for a given value.

 var sinWavePosition = 100;  
 var cosWavePosition = 200;  
 var sinWaveColor:uint = 0xFF0000;  
 var cosWaveColor:uint = 0x00FF00;  
 var waveMultiplier:Number = 10;  
 var waveStretcher:Number = 5;  
   
 var i:uint;  
 for(i = 1; i < stage.stageWidth; i++)  
 {  
 var sinPosY:Number = Math.sin(i / waveStretcher) * waveMultiplier;  
 var cosPosY:Number = Math.cos(i / waveStretcher) * waveMultiplier;  
   
 graphics.beginFill(sinWaveColor);  
 graphics.drawRect(i, sinWavePosition + sinPosY, 2, 2);   
 graphics.beginFill(cosWaveColor);  
 graphics.drawRect(i, cosWavePosition + cosPosY, 2, 2);  
 }

Updated 11 February 2009



324PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Animating with the drawing API

One advantage of creating content with the drawing API is that you are not limited to positioning your content once. 

What you draw can be modified by maintaining and modifying the variables you use to draw. You can convey 

animation by changing variables and redrawing, either over a period of frames or with a timer.

For example, the following code changes the display with each passing frame (by listening to the Event.ENTER_FRAME 

event), incrementing the current degree count, and directs the graphics object to clear and redraw with the updated 

position.

 stage.frameRate = 31;  
   
 var currentDegrees:Number = 0;  
 var radius:Number = 40;  
 var satelliteRadius:Number = 6;  
   
 var container:Sprite = new Sprite();  
 container.x = stage.stageWidth / 2;  
 container.y = stage.stageHeight / 2;  
 addChild(container);  
 var satellite:Shape = new Shape();  
 container.addChild(satellite);  
   
 addEventListener(Event.ENTER_FRAME, doEveryFrame);  
   
 function doEveryFrame(event:Event):void  
 {  
 currentDegrees += 4;  
 var radians:Number = getRadians(currentDegrees);  
 var posX:Number = Math.sin(radians) * radius;  
 var posY:Number = Math.cos(radians) * radius;  
 satellite.graphics.clear();  
 satellite.graphics.beginFill(0);  
 satellite.graphics.drawCircle(posX, posY, satelliteRadius);  
 }  
 function getRadians(degrees:Number):Number  
 {  
 return degrees * Math.PI / 180;  
 }

To produce a significantly different result, you can experiment by modifying the initial seed variables at the beginning 

of the code, currentDegrees, radius, and satelliteRadius. For example, try shrinking the radius variable and/or 

increasing the totalSatellites variable. This is only one example of how the drawing API can create a visual display 

whose complexity conceals the simplicity of its creation.

Example: Algorithmic Visual Generator

The Algorithmic Visual Generator example dynamically draws to the stage several “satellites”, or circles moving in a 

circular orbit. Among the features explored are:

• Using the drawing API to draw a basic shape with dynamic appearances

• Connecting user interaction with the properties that are used in a draw

Updated 11 February 2009



325PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

• Conveying animation by clearing the stage on each frame and redrawing

The example in the previous subsection animated a solitary “satellite” using the Event.ENTER_FRAME event. This 

example expands upon this, building a control panel with series of sliders that immediately update the visual display 

of several satellites. This example formalizes the code into external classes and wraps the satellite creation code into a 

loop, storing a reference to each satellite in a satellites array.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

application files can be found in the folder Samples/AlgorithmicVisualGenerator. This folder contains the following 

files:

Setting the listeners

The application first creates three listeners. The first listens for a dispatched event from the control panel that a rebuild 

of the satellites is necessary. The second listens to changes to the size of the SWF file’s stage. The third listens for each 

passing frame in the SWF file and to redraw using the doEveryFrame() function.

Creating the satellites

Once these listeners are set, the build() function is called. This function first calls the clear() function, which 

empties the satellites array and clears any previous draws to the stage. This is necessary since the build() function 

could be recalled whenever the control panel sends an event to do so, such as when the color settings have been 

changed. In such a case, the satellites must be removed and recreated.

The function then creates the satellites, setting the initial properties needed for creation, such as a the position 

variable, which starts at a random position in the orbit, and the color variable, which in this example does not change 

once the satellite has been created.

As each satellite is created, a reference to it is added to the satellites array. When the doEveryFrame() function is 

called, it will update to all satellites in this array.

Updating the satellite position

The doEveryFrame() function is the heart of the application’s animation process. It is called for every frame, at a rate 

equal the framerate of the SWF file. Because the variables of the draw change slightly, this conveys the appearance of 

animation.

File Description

AlgorithmicVisualGenerator.fla The main application file in Flash (FLA).

com/example/programmingas3/algorithmic/AlgorithmicVisualGenerator.as The class that provides the main functionality of the 

application, including drawing satellites on the stage 

and responding to events from the control panel to 

update the variables that affect the drawing of 

satellites.

com/example/programmingas3/algorithmic/ControlPanel.as A class that manages user interaction with several 

sliders and dispatching events when this occurs.

com/example/programmingas3/algorithmic/Satellite.as A class which represents the display object that rotates 

in an orbit around a central point and contains 

properties related to its current draw state.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


326PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

The function first clears all previous draws and redraws the background. Then, it loops through each satellite container 

and increments the position property of each satellite, and updates the radius and orbitRadius properties that 

may have changed from user interaction with the control panel. Finally, the satellite updates to its new position by 

calling the draw() method of the Satellite class. 

Note that the counter, i, only increments up to the visibleSatellites variable. This is because if the user has 

limited the amount of satellites that are displayed through the control panel, the remaining satellites in the loop should 

not be redrawn but should instead be hidden. This occurs in a loop which immediately follows the loop responsible 

for drawing.

When the doEveryFrame() function completes, the number of visibleSatellites update in position across the 

screen.

Responding to user interaction

User interaction occurs via the control panel, which is managed by the ControlPanel class. This class sets a listener 

along with the individual minimum, maximum, and default values of each slider. As the user moves these sliders, the 

changeSetting() function is called. This function updates the properties of the control panel. If the change requires 

a rebuild of the display, an event is dispatched which is then handled in the main application file. As the control panel 

settings change, the doEveryFrame() function draws each satellite with the updated variables.

Customizing further

This example is only a basic schematic of how to generate visuals using the drawing API. It uses relatively few lines of 

code to create an interactive experience that appears quite complex. Even so, this example could be extended with 

minor changes. A few ideas:

• The doEveryFrame() function could increment the color value of the satellite.

• The doEveryFrame() function could shrink or expand the satellite radius over time.

• The satellite radius does not have to be circular; it could use the Math class to move according to a sine wave, for 

example.

• Satellites could use hit detection with other satellites.

The drawing API can be used as an alternative to creating visual effects in the Flash authoring environment, drawing 

basic shapes at run time. But it can also be used to create visual effects of a variety and scope that are not possible to 

create by hand. Using the drawing API and a bit of mathematics, the ActionScript author can give life to many 

unexpected creations.

Advanced use of the drawing API

Introduction to using the advanced drawing API

Flash Player 10 and Adobe AIR 1.5 introduce support for an advanced set of drawing features. The drawing API 

enhancements expand upon the drawing methods from previous releases so you can establish data sets to generate 

shapes, alter shapes at runtime, and create three-dimensional effects. The drawing API enhancements consolidate 

existing methods into alternative commands. These commands leverage vector arrays and enumeration classes to 

provide data sets for drawing methods. Using vector arrays allows for more complex shapes to render quickly and for 

developers to change the array values programmatically for dynamic shape rendering at runtime.

Updated 11 February 2009



327PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

The drawing features introduced in Flash Player 10 are described in the following sections: “Drawing Paths” on 

page 327, “Defining winding rules” on page 329, “Using graphics data classes” on page 331, and “About using 

drawTriangles()” on page 333.

Common advanced drawing API tasks

The following tasks are things you’ll likely want to accomplish using the advanced drawing API in ActionScript:

• Using Vector objects to store data for drawing methods

• Defining paths for drawing shapes programmatically

• Defining winding rules to determine how overlapping shapes are filled

• Using graphics data classes

• Using triangles and drawing methods for three-dimensional effects

Important concepts and terms

The following reference list contains important terms that you will encounter in this section:

• Vector: An array of values all of the same data type. A Vector object can store an array of values that drawing 

methods use to construct lines and shapes with a single command. For more information on Vector objects, see 

“Indexed arrays” on page 155.

• Path: A path is made up of one or more straight or curved segments. The beginning and end of each segment are 

marked by coordinates, which work like pins holding a wire in place. A path can be closed (for example, a circle), 

or open, with distinct endpoints (for example, a wavy line).

• Winding: The direction of a path as interpreted by the renderer; either positive (clockwise) or negative (counter-

clockwise).

• GraphicsStroke: A class for setting the line style. While the term “stroke” isn’t part of the drawing API 

enhancements, the use of a class to designate a line style with its own fill property is. You can dynamically adjust a 

line’s style using the GraphicsStroke class.

• Fill object: Objects created using display classes like flash.display.GraphicsBitmapFill and 

flash.display.GraphicsGradientFill that are passed to the drawing command Graphics.drawGraphicsData(). Fill 

objects and the enhanced drawing commands introduce a more object-oriented programming approach to 

replicating Graphics.beginBitmapFill() and Graphics.beginGradientFill(). 

Drawing Paths

The section on drawing lines and curves (see “Drawing lines and curves” on page 316) introduced the commands for 

drawing a single line (Graphics.lineTo()) or curve (Graphics.curveTo()) and then moving the line to another 

point (Graphics.moveTo()) to form a shape. Flash Player 10 and Adobe AIR 1.5 introduce support for ActionScript 

drawing API enhancements, like Graphics.drawPath().and Graphics.drawTriangles(), which utilize the 

existing drawing commands as parameters. So, a series of Graphics.lineTo(), Graphics.curveTo(), or 

Graphics.moveTo() commands are run in a single statement.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Graphics.html#drawPath()
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Graphics.html#drawTriangles()


328PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Two of the drawing API enhancements allow Graphics.drawPath() and Graphics.drawTriangles() to 

consolidate existing commands: 

• The GraphicsPathCommand enumeration class: The GraphicsPathCommand class associates several drawing 

commands with constant values. You use a series of these values as parameters for the Graphics.drawPath() 

method. Then with a single command, you can render an entire shape, or several shapes. You can also dynamically 

alter the values passed to these methods to change an existing shape.

• Vector arrays: Vector arrays contain a series of values of a specific data type. So, you store a series of 

GraphicsPathCommand constants in a Vector object, and a series of coordinates in another Vector object. 

Graphics.drawPath() or Graphics.drawTriangles() assigns those values together to generate a drawing path 

or shape.

You no longer need separate commands for each segment of a shape. For example, the Graphics.drawPath() 

method consolidates Graphics.moveTo(), Graphics.lineTo(), and Graphics.curveTo() into a single method. 

Instead of each method called separately, they are abstracted into numeric identifiers as defined in the 

GraphicsPathCommand class. A moveTo() operation is signified by a 1, while a lineTo() operation is a 2. Store an 

array of these values in a Vector.<int> object for use in the commands parameter. Then, create another array containing 

coordinates in a Vector.<Number> object for the data parameter. Each GraphicsPathCommand value corresponds to 

the coordinate values stored in the data parameter where two consecutive numbers define a location in the target 

coordinate space.

Note: The values in the vector are not Point objects; the vector is a series of numbers where each group of two numbers 

represents an x/y coordinate pair. 

The Graphics.drawPath() method matches each command with its respective point values (a collection of two or 

four numbers) to generate a path in the Graphics object:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/GraphicsPathCommand.html


329PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

package{  
import flash.display.*;  
  
public class DrawPathExample extends Sprite {  

public function DrawPathExample(){  
  

var square_commands:Vector.<int> = new Vector.<int>(5,true);  
square_commands[0] = 1;//moveTo  
square_commands[1] = 2;//lineTo  
square_commands[2] = 2;  
square_commands[3] = 2;  
square_commands[4] = 2;  

  
var square_coord:Vector.<Number> = new Vector.<Number>(10,true);  
square_coord[0] = 20; //x  
square_coord[1] = 10; //y  
square_coord[2] = 50;  
square_coord[3] = 10;  
square_coord[4] = 50;  
square_coord[5] = 40;  
square_coord[6] = 20;  
square_coord[7] = 40;  
square_coord[8] = 20;  
square_coord[9] = 10;  

  
graphics.beginFill(0x442266);//set the color  
graphics.drawPath(square_commands, square_coord);  
}  

}  
}

Defining winding rules

Flash Player 10 and Adobe AIR 1.5 also introduce the concept of path “winding”: the direction for a path. The winding 

for a path is either positive (clockwise) or negative (counter-clockwise). The order in which the renderer interprets the 

coordinates provided by the vector for the data parameter determines the winding.

Positive and negative winding
A. Arrows indicate drawing direction  B. Positively wound (clockwise)  C. Negatively wound (counter-clockwise)  

Additionally, notice that the Graphics.drawPath() method has an optional third parameter called “winding”:

drawPath(commands:Vector.<int>, data:Vector.<Number>, winding:String = "evenOdd"):void

B

1

23

0

1 2

30

C

A

Updated 11 February 2009



330PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

In this context, the third parameter is a string or a constant that specifies the winding or fill rule for intersecting paths. 

(The constant values are defined in the GraphicsPathWinding class as GraphicsPathWinding.EVEN_ODD or 

GraphicsPathWinding.NON_ZERO.) The winding rule is important when paths intersect. 

The even-odd rule is the standard winding rule and is the rule used by the legacy drawing API. The Even-odd rule is 

also the default rule for the Graphics.drawPath() method. With the even-odd winding rule, any intersecting paths 

alternate between open and closed fills. If two squares drawn with the same fill intersect, the area in which the 

intersection occurs is filled. Generally, adjacent areas are neither both filled nor both unfilled.

The non-zero rule, on the other hand, depends on winding (drawing direction) to determine whether areas defined by 

intersecting paths are filled. When paths of opposite winding intersect, the area defined is unfilled, much like with 

even-odd. For paths of the same winding, the area that would be unfilled is filled:

Winding rules for intersecting areas
A. Even-odd winding rule  B. Non-zero winding rule  

Winding rule names

The names refer to a more specific rule that defines how these fills are managed. Positively wound paths are assigned 

a value of +1; negatively wound paths are assigned a value of -1. Starting from a point within an enclosed area of a 

shape, draw a line from that point extending out indefinitely. The number of times that line crosses a path, and the 

combined values of those paths, are used to determine the fill. For even-odd winding, the count of times the line crosses 

a path is used. When the count is odd, the area is filled. For even counts, the area is unfilled. For non-zero winding, the 

values assigned to the paths are used. When the combined values of the path are not 0, the area is filled. When the 

combined value is 0, the area is unfilled.

Winding rule counts and fills
A. Even-odd winding rule  B. Non-zero winding rule  

A B

A B

Updated 11 February 2009



331PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

Using winding rules

These fill rules are complicated, but in some situations they are necessary. For example, consider drawing a star shape. 

With the standard even-odd rule, the shape would require ten different lines. With the non-zero winding rule, those 

ten lines are reduced to five. Here is the ActionScript for a star with five lines and a non-zero winding rule:

fill.graphics.beginFill(0x60A0FF);graphics.drawPath( Vector.<int>([1,2,2,2,2]),  
Vector.<Number>([66,10, 23,127, 122,50, 10,49, 109,127]),   GraphicsPathWinding.NON_ZERO);

And here is the star shape:

A star shape using different winding rules
A. Even-odd 10 lines  B. Even-odd 5 lines  C. Non-zero 5 lines  

And, as images are animated or used as textures on three-dimensional objects and overlap, the winding rules become 

more important.

Using graphics data classes

Flash Player 10 and Adobe AIR 1.5 introduce a collection of classes in the flash.display package of the type 

IGraphicsData (an interface each of the classes implement). The classes that implement the IGraphicsData interface 

serve as data containers for the methods of the drawing API.

The following classes implement the IGraphicsData interface:

• GraphicsBitmapFill

• GraphicsEndFill

• GraphicsGradientFill

• GraphicsPath

• GraphicsShaderFill

• GraphicsSolidFill

• GraphicsStroke

• GraphicsTrianglePath

With these classes, you can store complete drawings in a vector object array of IGraphicsData type 

(Vector.<IGraphicsData>) that can be reused as the data source for other shape instances or to store drawing 

information for later use.

Notice you have multiple fill classes for each style of fill, but only one stroke class. ActionScript has only one stroke 

IGraphicsData class because the stroke class uses the fill classes to define its style. So every stroke is actually the stroke 

class and a fill class. Otherwise, the API for these graphics data classes mirror the methods they represent in the 

flash.display.Graphics class:

A B C

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/IGraphicsData.html


332PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

In addition, the GraphicsPath class has its own GraphicsPath.moveTo(), GraphicsPath.lineTo(), 

GraphicsPath.curveTo(), GraphicsPath.wideLineTo(), and GraphicsPath.wideMoveTo() utility methods to 

easily define those commands for a GraphicsPath instance. These utility methods ease defining or updating the 

commands and data values directly.

Once you have a collection of IGraphicsData instances, use Graphics.drawGraphicsData() method to render the 

graphics. The Graphics.drawGraphicsData() method runs a vector of IGraphicsData instances through the 

drawing API in sequential order:

// stroke object  
var stroke:GraphicsStroke = new GraphicsStroke(3);  
stroke.joints = JointStyle.MITER;  
stroke.fill = new GraphicsSolidFill(0x102020);// solid stroke  
  
// fill object  
var fill:GraphicsGradientFill = new GraphicsGradientFill();  
fill.colors = [0x0000FF, 0xEEFFEE];  
fill.matrix = new Matrix();  
fill.matrix.createGradientBox(70,70, Math.PI/2);  
// path object  
var path:GraphicsPath = new GraphicsPath(new Vector.<int>(), new Vector.<Number>());  
path.commands.push(1,2,2);  
path.data.push(125,0, 50,100, 175,0);  
  
// combine objects for complete drawing  
var drawing:Vector.<IGraphicsData> = new Vector.<IGraphicsData>();  
drawing.push(stroke, fill, path);  
  
// draw the drawing  
graphics.drawGraphicsData(drawing);

By modifying one value in the path used by the drawing in the example, the shape can be redrawn multiple times for 

a more complex image:

Graphics Method Data Class

beginBitmapFill() GraphicsBitmapFill

beginFill() GraphicsSolidFill

beginGradientFill() GraphicsGradientFill

beginShaderFill() GraphicsShaderFill

lineBitmapStyle() GraphicsStroke + GraphicsBitmapFill

lineGradientStyle() GraphicsStroke + GraphicsGradientFill

lineShaderStyle()  GraphicsStroke + GraphicsShaderFill

lineStyle() GraphicsStroke + GraphicsSolidFill

moveTo()

lineTo()

curveTo()

drawPath()

GraphicsPath

drawTriangles() GraphicsTrianglePath

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/GraphicsPath.html


333PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the drawing API

// draw the drawing multiple times  
// change one value to modify each variation  
graphics.drawGraphicsData(drawing);  
path.data[2] += 200;  
graphics.drawGraphicsData(drawing);  
path.data[2] -= 150;  
graphics.drawGraphicsData(drawing);  
path.data[2] += 100;  
graphics.drawGraphicsData(drawing);  
path.data[2] -= 50;graphicsS.drawGraphicsData(drawing);

Though IGraphicsData objects can define fill and stroke styles, the fill and stroke styles are not a requirement. In other 

words, Graphics class methods can be used to set styles while IGraphicsData objects can be used to draw a saved 

collection of paths, or vice-versa. 

Note: Use the Graphics.clear() method to clear out a previous drawing before starting a new one; unless you're adding 

on to the original drawing, as seen in the example above. As you change a single portion of a path or collection of 

IGraphicsData objects, redraw the entire drawing to see the changes. 

When using graphics data classes, the fill is rendered whenever three or more points are drawn, because the shape is 

inherently closed at that point. Even though the fill closes, the stroke does not, and this behavior is different than when 

using multiple Graphics.lineTo() or Graphics.moveTo() commands.

About using drawTriangles()

Another advanced method introduced in Flash Player 10 and Adobe AIR 1.5, Graphics.drawTriangles(), is like the 

Graphics.drawPath() method. The Graphics.drawTriangles() method also uses a Vector.<Number> object to 

specify point locations for drawing a path.

However, the real purpose for the Graphics.drawTriangles() method is to facilitate three-dimensional effects 

through ActionScript. For information about using Graphics.drawTriangles() to produce three-dimensional 

effects, see “Using triangles for 3D effects” on page 507.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Graphics.html#drawTriangles()
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Graphics.html#drawPath()


334

Chapter 15: Working with geometry

The flash.geom package contains classes that define geometric objects such as points, rectangles, and transformation 

matrixes. You use these classes to define the properties of objects that are used in other classes. 

Basics of geometry

Introduction to working with geometry

Geometry may be a subject many people try to get through in school while retaining as little as possible, but a little 

geometry knowledge can be a powerful tool in ActionScript.

The flash.geom package contains classes that define geometric objects such as points, rectangles, and transformation 

matrixes. These classes don’t necessarily provide functionality by themselves; however, they are used to define the 

properties of objects that are used in other classes.

All the geometry classes are based around the notion that locations on the screen are represented as a two-dimensional 

plane. The screen is treated like a flat graph with a horizontal (x) axis and a vertical (y) axis. Any location (or point) on 

the screen can be represented as a pair of x and y values—the coordinates of that location.

Every display object, include the Stage, has its own coordinate space—essentially its own graph for plotting the 

locations of child display objects, drawings, and so forth. Commonly, the origin (the place with the coordinate 0, 0 

where the x and y axes meet) is placed at the top-left corner of the display object. While this is always true for the Stage, 

it is not necessarily true for any other display object. As in standard two-dimensional coordinate systems, values on 

the x axis get bigger going toward the right, and smaller going toward the left—for locations to the left of the origin, 

the x coordinate is negative. However, contrary to traditional coordinate systems, in ActionScript values on the y axis 

get bigger going down and smaller going up the screen (with values above the origin having a negative y coordinate). 

Since the top-left corner of the Stage is the origin of its coordinate space, any object on the Stage will have an x 

coordinate greater than 0 and smaller than the Stage width, and will have a y coordinate larger than 0 and smaller than 

the Stage height.

You can use Point class instances to represent individual points in a coordinate space. You can create a Rectangle 

instance to represent a rectangular region in a coordinate space. For advanced users, you can use a Matrix instance to 

apply multiple or complex transformations to a display object. Many simple transformations, such as rotation, 

position, and scale changes, can be applied directly to a display object using that object’s properties. For more 

information on applying transformations using display object properties, see “Manipulating display objects” on 

page 285.

Common geometry tasks

The following tasks are things you’ll likely want to accomplish using the geometry classes in ActionScript:

• Calculating distance between two points

• Determining coordinates of a point in different coordinate spaces

• Moving a display object using angle and distance

• Working with Rectangle instances:

• Repositioning a Rectangle instance

Updated 11 February 2009



335PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

• Resizing a Rectangle instance

• Determining combined size or overlapping areas of Rectangle instances

• Creating Matrix objects

• Using a Matrix object to apply transformations to a display object

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Cartesian coordinates: Coordinates are commonly written as a pair of number (like 5, 12 or 17, -23). The two 

numbers are the x coordinate and the y coordinate, respectively.

• Coordinate space: The graph of coordinates contained in a display object, on which its child elements are 

positioned.

• Origin: The point in a coordinate space where the x axis meets the y axis. This point has the coordinate 0, 0.

• Point: A single location in a coordinate space. In the 2-d coordinate system used in ActionScript, a point is defined 

by its location along the x axis and the y axis (the point’s coordinates).

• Registration point: In a display object, the origin (0, 0 coordinate) of its coordinate space.

• Scale: The size of an object relative to its original size. When used as a verb, to scale an object means to change its 

size by stretching or shrinking the object.

• Translate: To change a point’s coordinates from one coordinate space to another.

• Transformation: An adjustment to a visual characteristic of a graphic, such as rotating the object, altering its scale, 

skewing or distorting its shape, or altering its color.

• X axis: The horizontal axis in the 2-d coordinate system used in ActionScript.

• Y axis: The vertical axis in the 2-d coordinate system used in ActionScript.

Working through in-chapter examples

Many of the examples in this chapter demonstrate calculations or changing values; most of those examples include the 

appropriate trace() function calls to demonstrate the results of the code. To test these examples, do the following:

1 Create an empty document using the Flash authoring tool.

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

You will see the results of the code listing’s trace() functions in the Output panel.

Some of the chapter’s examples demonstrate applying transformations to display objects. For those examples, the 

results of the example will be seen visually rather than through text output. To test the transformation examples, do 

the following:

1 Create an empty document using the Flash authoring tool.

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Create a movie clip symbol instance on the Stage. For example, draw a shape, select it, choose Modify > Convert to 

symbol, and give the symbol a name.

Updated 11 February 2009



336PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

5 With the Stage movie clip selected, in the Property inspector, give the instance an instance name. The name should 

match the name used for the display object in the example code listing—for example, if the code listing applies a 

transformation to an object named myDisplayObject, you should name your movie clip instance 

myDisplayObject as well.

6 Run the program using Control > Test Movie.

On the screen you will see the results of the transformations applied to the object as specified in the code listing.

Techniques for testing example code listings are explained in more detail in “Testing in-chapter example code listings” 

on page 34.

Using Point objects

A Point object defines a Cartesian pair of coordinates. It represents location in a two-dimensional coordinate system, 

where x represents the horizontal axis and y represents the vertical axis.

To define a Point object, you set its x and y properties, as follows:

 import flash.geom.*;  
 var pt1:Point = new Point(10, 20); // x == 10; y == 20  
 var pt2:Point = new Point();  
 pt2.x = 10;  
 pt2.y = 20;

Finding the distance between two points

You can use the distance() method of the Point class to find the distance between two points in a coordinate space. 

For example, the following code finds the distance between the registration points of two display objects, circle1 and 

circle2, in the same display object container:

 import flash.geom.*;  
 var pt1:Point = new Point(circle1.x, circle1.y);  
 var pt2:Point = new Point(circle2.x, circle2.y);  
 var distance:Number = Point.distance(pt1, pt2);

Translating coordinate spaces

If two display objects are in different display object containers, they may be in different coordinate spaces. You can use 

the localToGlobal() method of the DisplayObject class to translate the coordinates to the same (global) coordinate 

space, that of the Stage. For example, the following code finds the distance between the registration points of two 

display objects, circle1 and circle2, in the different display object containers:

 import flash.geom.*;  
 var pt1:Point = new Point(circle1.x, circle1.y);  
 pt1 = circle1.localToGlobal(pt1);  
 var pt2:Point = new Point(circle2.x, circle2.y);  
 pt2 = circle2.localToGlobal(pt2);  
 var distance:Number = Point.distance(pt1, pt2);

Similarly, to find the distance of the registration point of a display object named target from a specific point on the 

Stage, you can use the localToGlobal() method of the DisplayObject class:

Updated 11 February 2009



337PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

 import flash.geom.*;  
 var stageCenter:Point = new Point();  
 stageCenter.x = this.stage.stageWidth / 2;  
 stageCenter.y = this.stage.stageHeight / 2;  
 var targetCenter:Point = new Point(target.x, target.y);  
 targetCenter = target.localToGlobal(targetCenter);  
 var distance:Number = Point.distance(stageCenter, targetCenter);

Moving a display object by a specified angle and distance

You can use the polar() method of the Point class to move a display object a specific distance by a specific angle. For 

example, the following code moves the myDisplayObject object 100 pixels by 60 degrees: 

 import flash.geom.*;  
 var distance:Number = 100;  
 var angle:Number = 2 * Math.PI * (90 / 360);  
 var translatePoint:Point = Point.polar(distance, angle);  
 myDisplayObject.x += translatePoint.x;  
 myDisplayObject.y += translatePoint.y;

Other uses of the Point class

You can use Point objects with the following methods and properties:

Using Rectangle objects

A Rectangle object defines a rectangular area. A Rectangle object has a position, defined by the x and y coordinates of 

its top-left corner, a width property, and a height property. You can define these properties for a new Rectangle 

object by invoking the Rectangle() constructor function, as follows:

Class Methods or properties Description

DisplayObjectContainer areInaccessibleObjectsUnderPoint()getObject
sUnderPoint()

Used to return a list of objects under a point in 

a display object container.

BitmapData hitTest() Used to define the pixel in the BitmapData 

object as well as the point that you are 

checking for a hit.

BitmapData applyFilter()

copyChannel()

merge()

paletteMap()

pixelDissolve()

threshold()

Used to define the positions of rectangles that 

define the operations.

Matrix deltaTransformPoint()

transformPoint()

Used to define points for which you want to 

apply a transformation.

Rectangle bottomRight

size

topLeft

Used to define these properties.

Updated 11 February 2009



338PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

 import flash.geom.Rectangle;  
 var rx:Number = 0;  
 var ry:Number = 0;  
 var rwidth:Number = 100;  
 var rheight:Number = 50;  
 var rect1:Rectangle = new Rectangle(rx, ry, rwidth, rheight);

Resizing and repositioning Rectangle objects

There are a number of ways to resize and reposition Rectangle objects. 

You can directly reposition the Rectangle object by changing its x and y properties. This has no effect on the width or 

height of the Rectangle object.

 import flash.geom.Rectangle;  
 var x1:Number = 0;  
 var y1:Number = 0;  
 var width1:Number = 100;  
 var height1:Number = 50;  
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);  
 trace(rect1) // (x=0, y=0, w=100, h=50)  
 rect1.x = 20;   
 rect1.y = 30;  
 trace(rect1); // (x=20, y=30, w=100, h=50)

As the following code shows, if you change the left or top property of a Rectangle object, it is also repositioned, with 

its x and y properties matching the left and top properties, respectively. However, the position of the bottom-left 

corner of the Rectangle object does not change, so it is resized.

 import flash.geom.Rectangle;  
 var x1:Number = 0;  
 var y1:Number = 0;  
 var width1:Number = 100;  
 var height1:Number = 50;  
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);  
 trace(rect1) // (x=0, y=0, w=100, h=50)  
 rect1.left = 20;   
 rect1.top = 30;  
 trace(rect1); // (x=20, y=30, w=80, h=20)

Similarly, as the following example shows, if you change the bottom or right property of a Rectangle object, the 

position of its top-left corner does not change, so it is resized accordingly:

 import flash.geom.Rectangle;  
 var x1:Number = 0;  
 var y1:Number = 0;  
 var width1:Number = 100;  
 var height1:Number = 50;  
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);  
 trace(rect1) // (x=0, y=0, w=100, h=50)  
 rect1.right = 60;  
 trect1.bottom = 20;   
 trace(rect1); // (x=0, y=0, w=60, h=20)

You can also reposition a Rectangle object by using the offset() method, as follows:

Updated 11 February 2009



339PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

 import flash.geom.Rectangle;  
 var x1:Number = 0;  
 var y1:Number = 0;  
 var width1:Number = 100;  
 var height1:Number = 50;  
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);  
 trace(rect1) // (x=0, y=0, w=100, h=50)  
 rect1.offset(20, 30);   
 trace(rect1); // (x=20, y=30, w=100, h=50)

The offsetPt() method works similarly, except that it takes a Point object as its parameter, rather than x and y offset 

values. 

You can also resize a Rectangle object by using the inflate() method, which includes two parameters, dx and dy. 

The dx parameter represents the number of pixels that the left and right sides of the rectangle will move from the 

center, and the dy parameter represents the number of pixels that the top and bottom of the rectangle will move from 

the center:

 import flash.geom.Rectangle;  
 var x1:Number = 0;  
 var y1:Number = 0;  
 var width1:Number = 100;  
 var height1:Number = 50;  
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);  
 trace(rect1) // (x=0, y=0, w=100, h=50)  
 rect1.inflate(6,4);   
 trace(rect1); // (x=-6, y=-4, w=112, h=58)

The inflatePt() method works similarly, except that it takes a Point object as its parameter, rather than dx and dy 

values. 

Finding unions and intersections of Rectangle objects

You use the union() method to find the rectangular region formed by the boundaries of two rectangles:

 import flash.display.*;  
 import flash.geom.Rectangle;  
 var rect1:Rectangle = new Rectangle(0, 0, 100, 100);  
 trace(rect1); // (x=0, y=0, w=100, h=100)  
 var rect2:Rectangle = new Rectangle(120, 60, 100, 100);  
 trace(rect2); // (x=120, y=60, w=100, h=100)  
 trace(rect1.union(rect2)); // (x=0, y=0, w=220, h=160)

You use the intersection() method to find the rectangular region formed by the overlapping region of two 

rectangles:

 import flash.display.*;  
 import flash.geom.Rectangle;  
 var rect1:Rectangle = new Rectangle(0, 0, 100, 100);  
 trace(rect1); // (x=0, y=0, w=100, h=100)  
 var rect2:Rectangle = new Rectangle(80, 60, 100, 100);  
 trace(rect2); // (x=120, y=60, w=100, h=100)  
 trace(rect1.intersection(rect2)); // (x=80, y=60, w=20, h=40)

Updated 11 February 2009



340PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

You use the intersects() method to find out whether two rectangles intersect. You can also use the intersects() 

method to find out whether a display object is in a certain region of the Stage. For example, in the following code, 

assume that the coordinate space of the display object container that contains the circle object is the same as that of 

the Stage. The example shows how to use the intersects() method to determine if a display object, circle, 

intersects specified regions of the Stage, defined by the target1 and target2 Rectangle objects: 

 import flash.display.*;  
 import flash.geom.Rectangle;  
 var circle:Shape = new Shape();  
 circle.graphics.lineStyle(2, 0xFF0000);  
 circle.graphics.drawCircle(250, 250, 100);  
 addChild(circle);  
 var circleBounds:Rectangle = circle.getBounds(stage);  
 var target1:Rectangle = new Rectangle(0, 0, 100, 100);  
 trace(circleBounds.intersects(target1)); // false  
 var target2:Rectangle = new Rectangle(0, 0, 300, 300);  
 trace(circleBounds.intersects(target2)); // true

Similarly, you can use the intersects() method to find out whether the bounding rectangles of two display objects 

overlap. You can use the getRect() method of the DisplayObject class to include any additional space that the strokes 

of a display object may add to a bounding region.

Other uses of Rectangle objects

Rectangle objects are used in the following methods and properties:

Using Matrix objects

The Matrix class represents a transformation matrix that determines how to map points from one coordinate space to 

another. You can perform various graphical transformations on a display object by setting the properties of a Matrix 

object, applying that Matrix object to the matrix property of a Transform object, and then applying that Transform 

object as the transform property of the display object. These transformation functions include translation (x and y 

repositioning), rotation, scaling, and skewing.

Class Methods or properties Description

BitmapData applyFilter(), colorTransform(), 
copyChannel(), copyPixels(), draw(), 
fillRect(), generateFilterRect(), 
getColorBoundsRect(), getPixels(), merge(), 
paletteMap(), pixelDissolve(), setPixels(), 
and threshold()

Used as the type for some parameters to define a region 

of the BitmapData object.

DisplayObject getBounds(), getRect(), scrollRect, 
scale9Grid

Used as the data type for the property or the data type 

returned.

PrintJob addPage() Used to define the printArea parameter.

Sprite startDrag() Used to define the bounds parameter.

TextField getCharBoundaries() Used as the return value type.

Transform pixelBounds Used as the data type.

Updated 11 February 2009



341PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

Defining Matrix objects

Although you could define a matrix by directly adjusting the properties (a, b, c, d, tx, ty) of a Matrix object, it is easier 

to use the createBox() method. This method includes parameters that let you directly define the scaling, rotation, 

and translation effects of the resulting matrix. For example, the following code creates a Matrix object that has the 

effect of scaling an object horizontally by 2.0, scaling it vertically by 3.0, rotating it by 45 degrees, moving (translating) 

it 10 pixels to the right, and moving it 20 pixels down:

 var matrix:Matrix = new Matrix();  
 var scaleX:Number = 2.0;  
 var scaleY:Number = 3.0;  
 var rotation:Number = 2 * Math.PI * (45 / 360);  
 var tx:Number = 10;  
 var ty:Number = 20;  
 matrix.createBox(scaleX, scaleY, rotation, tx, ty);

You can also adjust the scaling, rotation, and translation effects of a Matrix object by using the scale(), rotate(), 

and translate() methods. Note that these methods combine with the values of the existing Matrix object. For 

instance, the following code sets a Matrix object that scales an object by a factor of 4 and rotates it 60 degrees, since the 

scale() and rotate() methods are called twice: 

 var matrix:Matrix = new Matrix();  
 var rotation:Number = 2 * Math.PI * (30 / 360); // 30°  
 var scaleFactor:Number = 2;  
 matrix.scale(scaleFactor, scaleFactor);  
 matrix.rotate(rotation);  
 matrix.scale(scaleX, scaleY);  
 matrix.rotate(rotation);  
   
 myDisplayObject.transform.matrix = matrix;

To apply a skew transformation to a Matrix object, adjust its b or c property. Adjusting the b property skews the matrix 

vertically, and adjusting the c property skews the matrix horizontally. The following code skews the myMatrix Matrix 

object vertically by a factor of 2:

 var skewMatrix:Matrix = new Matrix();  
 skewMatrix.b = Math.tan(2);  
 myMatrix.concat(skewMatrix);

You can apply a Matrix transformation to the transform property of a display object. For example, the following code 

applies a matrix transformation to a display object named myDisplayObject: 

 var matrix:Matrix = myDisplayObject.transform.matrix;  
 var scaleFactor:Number = 2;  
 var rotation:Number = 2 * Math.PI * (60 / 360); // 60°  
 matrix.scale(scaleFactor, scaleFactor);  
 matrix.rotate(rotation);  
   
 myDisplayObject.transform.matrix = matrix;

The first line sets a Matrix object to the existing transformation matrix used by the myDisplayObject display object 

(the matrix property of the transformation property of the myDisplayObject display object). This way, the Matrix 

class methods that you call will have a cumulative effect on the display object’s existing position, scale, and rotation.

Note: The ColorTransform class is also included in the flash.geometry package. This class is used to set the 

colorTransform property of a Transform object. Since it does not apply any sort of geometrical transformation, it is not 

discussed in this chapter. For more information, see the ColorTransform class in the ActionScript 3.0 Language and 

Components Reference.

Updated 11 February 2009



342PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

Example: Applying a matrix transformation to a display 
object

The DisplayObjectTransformer sample application shows a number of features of using the Matrix class to transform 

a display object, including the following: 

• Rotating the display object

• Scaling the display object

• Translating (repositioning) the display object

• Skewing the display object

The application provides an interface for adjusting the parameters of the matrix transformation, as follows:

When the user clicks the Transform button, the application applies the appropriate transformation.

The original display object, and the display object rotated by -45°  and scaled by 50%

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

DisplayObjectTransformer application files can be found in the folder Samples/DisplayObjectTransformer. The 

application consists of the following files:

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


343PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

Defining the MatrixTransformer class

The MatrixTransformer class includes static methods that apply geometric transformations of Matrix objects. 

The transform() method

The transform() method includes parameters for each of the following: 

• sourceMatrix—The input matrix, which the method transforms

• xScale and yScale—The x and y scale factor

• dx and dy—The x and y translation amounts, in pixels

• rotation—The rotation amount, in degrees

• skew—The skew factor, as a percentage

• skewType—The direction in which the skew, either "right" or "left"

The return value is the resulting matrix.

The transform() method calls the following static methods of the class:

• skew()

• scale()

• translate()

• rotate()

Each returns the source matrix with the applied transformation.

The skew() method

The skew() method skews the matrix by adjusting the b and c properties of the matrix. An optional parameter, unit, 

determines the units used to define the skew angle, and if necessary, the method converts the angle value to radians:

 if (unit == "degrees")   
 {  
 angle = Math.PI * 2 * angle / 360;  
 }  
 if (unit == "gradients")  
 {  
 angle = Math.PI * 2 * angle / 100;  
 }

A skewMatrix Matrix object is created and adjusted to apply the skew transformation. Initially, it is the identity 

matrix, as follows:

File Description

DisplayObjectTransformer.mxml

or

DisplayObjectTransformer.fla

The main application file in Flash (FLA) or Flex (MXML)

com/example/programmingas3/geometry/MatrixTransformer.as A class that contains methods for applying matrix 

transformations.

img/ A directory containing sample image files used by the 

application.

Updated 11 February 2009



344PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

 var skewMatrix:Matrix = new Matrix();

The skewSide parameter determines the side to which the skew is applied. If it is set to "right", the following code 

sets the b property of the matrix:

 skewMatrix.b = Math.tan(angle);

Otherwise, the bottom side is skewed by adjusting the c property of the Matrix, as follows:

 skewMatrix.c = Math.tan(angle);

The resulting skew is then applied to the existing matrix by concatenating the two matrixes, as the following example 

shows:

 sourceMatrix.concat(skewMatrix);  
 return sourceMatrix;

The scale() method

As the following example shows, the scale() method first adjusts the scale factor if it is provided as a percentage, and 

then uses the scale() method of the matrix object:

 if (percent)  
 {  
 xScale = xScale / 100;  
 yScale = yScale / 100;  
 }  
 sourceMatrix.scale(xScale, yScale);  
 return sourceMatrix;

The translate() method

The translate() method simply applies the dx and dy translation factors by calling the translate() method of the 

matrix object, as follows:

 sourceMatrix.translate(dx, dy);  
 return sourceMatrix;

The rotate() method

The rotate() method converts the input rotation factor to radians (if it is provided in degrees or gradients), and then 

calls the rotate() method of the matrix object:

 if (unit == "degrees")  
 {  
 angle = Math.PI * 2 * angle / 360;  
 }  
 if (unit == "gradients")  
 {  
 angle = Math.PI * 2 * angle / 100;  
 }  
 sourceMatrix.rotate(angle);  
 return sourceMatrix;

Calling the MatrixTransformer.transform() method from the application

The application contains a user interface for getting the transformation parameters from the user. It then passes these, 

along with the matrix property of the transform property of the display object, to the Matrix.transform() method, 

as follows:

Updated 11 February 2009



345PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with geometry

 tempMatrix = MatrixTransformer.transform(tempMatrix,   
 xScaleSlider.value,   
 yScaleSlider.value,  
 dxSlider.value,   
 dySlider.value,  
 rotationSlider.value,  
 skewSlider.value,   
 skewSide );

The application then applies the return value to the matrix property of the transform property of the display object, 

thereby triggering the transformation:

 img.content.transform.matrix = tempMatrix;

Updated 11 February 2009



346

Chapter 16: Filtering display objects

Historically, the application of filter effects to bitmap images has been the domain of specialized image editing software 

such as Adobe Photoshop® and Adobe Fireworks®. ActionScript 3.0 includes the flash.filters package, which contains 

a series of bitmap effect filter classes to allow developers to programmatically apply filters to bitmaps and display 

objects to achieve many of the same effects that are available in graphics manipulation applications.

Basics of filtering display objects

Introduction to filtering display objects

One of the ways to add polish to an application is to add simple graphic effects, such as a drop shadow behind a photo 

to create the illusion of 3-d, or a glow around a button to show that it is active. ActionScript 3.0 includes nine filters 

that you can apply to any display object or to a BitmapData instance. These range from basic filters, such as the drop 

shadow and glow filters, to complex filters for creating various effects, such as the displacement map filter and the 

convolution filter.

Common filtering tasks

The following tasks are things you’ll likely want to accomplish using filters in ActionScript:

• Creating a filter

• Applying a filter to a display object

• Removing a filter from a display object

• Applying a filter to the image data in a BitmapData instance

• Removing filters from an object

• Creating various filter effects, such as glow, blur, drop shadow, sharpness, displacement, edge detection, embossing, 

and other effects

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Bevel: An edge created by lightening pixels on two sides and darkening pixels on the opposite two sides, creating a 

three-dimensional border effect commonly used for raised or indented buttons and similar graphics.

• Convolution: Distorting pixels in an image by combining each pixel’s value with the values of some or all of its 

neighboring pixels, using various ratios.

• Displacement: Shifting or moving pixels in an image to a new position.

• Matrix: A grid of numbers used to perform certain mathematical calculations by applying the numbers in the grid 

to various values, then combining the results.

Updated 11 February 2009



347PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Working through in-chapter examples

While you’re working through the chapter, you may want to test the example code listings that are provided. Because 

this chapter deals with creating and manipulating visual content, testing the code involves running the code and 

viewing the results in the SWF that’s created. Nearly all the examples either create content using the drawing API or 

load images to which filters are applied.

To test the code in this chapter:

1 Create an empty document using the Flash authoring tool.

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code into the Script pane.

4 Run the program using Control > Test Movie.

You see the results of the code in the SWF file that’s created.

Nearly all the example code includes code that creates a bitmap image, so you can just test the code directly without 

needing to provide any bitmap content. Alternatively you can change the code listings to load your own images and 

use those in place of the ones in the examples.

Creating and applying filters

Filters allow you to apply a range of effects to bitmap and display objects, ranging from drop shadows to bevels and 

blurs. Each filter is defined as a class, so applying filters involves creating instances of filter objects, which is no different 

from constructing any other object. Once you’ve created an instance of a filter object, it can easily be applied to a 

display object by using the object’s filters property, or in the case of a BitmapData object, by using the 

applyFilter() method.

Creating a new filter

To create a new filter object, simply call the constructor method of your selected filter class. For example, to create a 

new DropShadowFilter object, use the following code: 

 import flash.filters.DropShadowFilter;  
 var myFilter:DropShadowFilter = new DropShadowFilter();

Although not shown here, the DropShadowFilter() constructor (like all the filter classes’ constructors) accepts 

several optional parameters that can be used to customize the appearance of the filter effect.

Applying a filter

Once you've constructed a filter object, you can apply it to a display object or a BitmapData object; how you apply the 

filter depends on the object to which you’re applying it.

Applying a filter to a display object

When you apply filter effects to a display object, you apply them through the filters property. The filters 

property of a display object is an Array instance, whose elements are the filter objects applied to the display object. To 

apply a single filter to a display object, create the filter instance, add it to an Array instance, and assign that Array object 

to the display object’s filters property:

Updated 11 February 2009



348PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
 import flash.filters.DropShadowFilter;  
   
 // Create a bitmapData object and render it to screen  
 var myBitmapData:BitmapData = new BitmapData(100,100,false,0xFFFF3300);  
 var myDisplayObject:Bitmap = new Bitmap(myBitmapData);  
 addChild(myDisplayObject);  
   
 // Create a DropShadowFilter instance.  
 var dropShadow:DropShadowFilter = new DropShadowFilter();  
   
 // Create the filters array, adding the filter to the array by passing it as   
 // a parameter to the Array() constructor.  
 var filtersArray:Array = new Array(dropShadow);  
   
 // Assign the filters array to the display object to apply the filter.  
 myDisplayObject.filters = filtersArray;

If you want to assign multiple filters to the object, simply add all the filters to the Array instance before assigning it to 

the filters property. You can add multiple objects to an Array by passing them as parameters to its constructor. For 

example, this code applies a bevel filter and a glow filter to the previously created display object:

 import flash.filters.BevelFilter;  
 import flash.filters.GlowFilter;  
   
 // Create the filters and add them to an array.  
 var bevel:BevelFilter = new BevelFilter();  
 var glow:GlowFilter = new GlowFilter();  
 var filtersArray:Array = new Array(bevel, glow);  
   
 // Assign the filters array to the display object to apply the filter.  
 myDisplayObject.filters = filtersArray;

When you’re creating the array containing the filters, you can create it using the new Array() constructor (as shown 

in the previous examples) or you can use Array literal syntax, wrapping the filters in square brackets ([]). For instance, 

this line of code: 

var filters:Array = new Array(dropShadow, blur); 

does the same thing as this line of code: 

var filters:Array = [dropShadow, blur];

If you apply multiple filters to display objects, they are applied in a cumulative, sequential manner. For example, if a 

filters array has two elements, a bevel filter added first and a drop shadow filter added second, the drop shadow filter 

is applied to both the bevel filter and the display object. This is because of the drop shadow filter’s second position in 

the filters array. If you want to apply filters in a noncumulative manner, you must apply each filter to a new copy of 

the display object.

If you’re only assigning one or a few filters to a display object, you can create the filter instance and assign it to the 

object in a single statement. For instance, the following line of code applies a blur filter to a display object called 

myDisplayObject:

 myDisplayObject.filters = [new BlurFilter()];

The previous code creates an Array instance using Array literal syntax (square braces), creates a new BlurFilter 

instance as an element in the Array, and assigns that Array to the filters property of the display object named 

myDisplayObject.

Updated 11 February 2009



349PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Removing filters from a display object

Removing all filters from a display object is as simple as assigning a null value to the filters property:

 myDisplayObject.filters = null;

If you’ve applied multiple filters to an object and want to remove only one of the filters, you must go through several 

steps to change the filters property array. For more information, see “Potential issues for working with filters” on 

page 349.

Applying a filter to a BitmapData object

Applying a filter to a BitmapData object requires the use of the BitmapData object’s applyFilter() method:

 var rect:Rectangle = new Rectangle();  
var origin:Point = new Point();  
myBitmapData.applyFilter(sourceBitmapData, rect, origin, new BlurFilter());

The applyFilter() method applies a filter to a source BitmapData object, producing a new, filtered image. This 

method does not modify the original source image; instead, the result of the filter being applied to the source image is 

stored in the BitmapData instance on which the applyFilter() method is called.

How filters work

Display object filtering works by caching a copy of the original object as a transparent bitmap.

Once a filter has been applied to a display object, Adobe Flash Player or Adobe® AIR™ caches the object as a bitmap for 

as long as the object has a valid filter list. This source bitmap is then used as the original image for all subsequently 

applied filter effects.

Each display object usually contains two bitmaps: one with the original unfiltered source display object and another 

for the final image after filtering. The final image is used when rendering. As long as the display object does not change, 

the final image does not need updating.

Potential issues for working with filters

There are several potential sources of confusion or trouble to keep in mind when you’re working with filters. These are 

described in the following sections.

Filters and bitmap caching

To apply a filter to a display object, bitmap caching must be enabled for that object. When you apply a filter to a display 

object whose cacheAsBitmap property is set to false, Flash Player or AIR automatically sets the value of the object’s 

cacheAsBitmap property to true. If you later remove all the filters from the display object, Flash Player or AIR resets 

the cacheAsBitmap property to the last value it was set to.

Changing filters at run time

If a display object already has one or more filters applied to it, you can’t change the set of filters by adding additional 

filters to or removing filters from the filters property array. Instead, to add to or change the set of filters being 

applied, you must make your changes to a separate array, then assign that array to the filters property of the display 

object for the filters to be applied to the object. The simplest way to do this is to read the filters property array into 

an Array variable and make your modifications to this temporary array. You then reassign this array back to the 

filters property of the display object. In more complex cases, you might need to keep a separate master array of 

filters. You make any changes to that master filter array, and reassign the master array to the display object’s filters 

property after each change.

Updated 11 February 2009



350PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Adding an additional filter

The following code demonstrates the process of adding an additional filter to a display object that already has one or 

more filters applied to it. Initially, a glow filter is applied to the display object named myDisplayObject; later, when 

the display object is clicked, the addFilters() function is called. In this function, two additional filters are applied to 

myDisplayObject:

 import flash.events.MouseEvent;  
 import flash.filters.*;  
   
 myDisplayObject.filters = [new GlowFilter()];  
   
 function addFilters(event:MouseEvent):void  
 {  
 // Make a copy of the filters array.  
 var filtersCopy:Array = myDisplayObject.filters;  
   
 // Make desired changes to the filters (in this case, adding filters).  
 filtersCopy.push(new BlurFilter());  
 filtersCopy.push(new DropShadowFilter());  
   
 // Apply the changes by reassigning the array to the filters property.  
 myDisplayObject.filters = filtersCopy;  
 }  
   
 myDisplayObject.addEventListener(MouseEvent.CLICK, addFilters);

Removing one filter from a set of filters

If a display object has multiple filters applied to it, and you want to remove one of the filters while the other filters 

continue to be applied to the object, you copy the filters into a temporary array, remove the unwanted filter from that 

array, and reassign the temporary array to the display object’s filters property. Several ways to remove one or more 

elements from any array are described in “Retrieving values and removing array elements” on page 159.

The most straightforward situation is to remove the top-most filter on the object (the last filter applied to the object). 

You use the Array class’s pop() method to remove the filter from the array:

 // Example of removing the top-most filter from a display object   
 // named "filteredObject".  
   
 var tempFilters:Array = filteredObject.filters;  
   
 // Remove the last element from the Array (the top-most filter).  
 tempFilters.pop();  
   
 // Apply the new set of filters to the display object.  
 filteredObject.filters = tempFilters;

Similarly, to remove the bottom-most filter (the first one applied to the object) you use the same code, substituting the 

Array class’s shift() method in place of the pop() method.

To remove a filter from the middle of an array of filters (assuming that the array has more than two filters) you can use 

the splice() method. You must know the index (the position in the array) of the filter you want to remove. For 

example, the following code removes the second filter (the filter at index 1) from a display object:

Updated 11 February 2009



351PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 // Example of removing a filter from the middle of a stack of filters  
 // applied to a display object named "filteredObject".  
   
 var tempFilters:Array = filteredObject.filters;  
   
 // Remove the second filter from the array. It's the item at index 1   
 // because Array indexes start from 0.  
 // The first "1" indicates the index of the filter to remove; the   
 // second "1" indicates how many elements to remove.  
 tempFilters.splice(1, 1);  
   
 // Apply the new set of filters to the display object.  
 filteredObject.filters = tempFilters;

Determining a filter’s index

You need to know which filter to remove from the array, so that you know the index of the filter. You must either know 

(by virtue of the way the application is designed), or calculate the index of the filter to remove.

The best approach is to design your application so that the filter you want to remove is always in the same position in 

the set of filters. For example, if you have a single display object with a convolution filter and a drop-shadow filter 

applied to it (in that order), and you want to remove the drop-shadow filter but keep the convolution filter, the filter 

is in a known position (the top-most filter) so that you can know ahead of time which Array method to use (in this 

case Array.pop() to remove the drop-shadow filter).

If the filter you want to remove is always a certain type, but not necessarily always in the same position in the set of 

filters, you can check the data type of each filter in the array to determine which one to remove. For example, the 

following code determines which of a set of filters is a glow filter, and removes that filter from the set.

 // Example of removing a glow filter from a set of filters, where the  
//filter you want to remove is the only GlowFilter instance applied   
 // to the filtered object.  
   
 var tempFilters:Array = filteredObject.filters;  
   
 // Loop through the filters to find the index of the GlowFilter instance.  
 var glowIndex:int;  
 var numFilters:int = tempFilters.length;  
 for (var i:int = 0; i < numFilters; i++)  
 {  
 if (tempFilters[i] is GlowFilter)  
 {  
 glowIndex = i;  
 break;  
 }  
 }  
   
 // Remove the glow filter from the array.  
 tempFilters.splice(glowIndex, 1);  
   
 // Apply the new set of filters to the display object.  
 filteredObject.filters = tempFilters;

In a more complex case, such as if the filter to remove is selected at runtime, the best approach is to keep a separate, 

persistent copy of the filter array that serves as the master list of filters. Any time you make a change to the set of filters 

(add a filter or remove a filter), change the master list, then apply that filter array as the filters property of the display 

object.

Updated 11 February 2009



352PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

For example, in the following code listing, multiple convolution filters are applied to a display object to create different 

visual effects, and at a later point in the application one of those filters is removed while the others are retained. In this 

case, the code keeps a master copy of the filters array, as well as a reference to the filter to remove. Finding and 

removing the specific filter is similar to the preceding approach, except that instead of making a temporary copy of the 

filters array, the master copy is manipulated and then applied to the display object.

 // Example of removing a filter from a set of   
 // filters, where there may be more than one   
 // of that type of filter applied to the filtered   
 // object, and you only want to remove one.  
   
 // A master list of filters is stored in a separate,  
 // persistent Array variable.  
 var masterFilterList:Array;  
   
 // At some point, you store a reference to the filter you  
 // want to remove.  
 var filterToRemove:ConvolutionFilter;  
   
 // ... assume the filters have been added to masterFilterList,  
 // which is then assigned as the filteredObject.filters:  
 filteredObject.filters = masterFilterList;  
   
 // ... later, when it's time to remove the filter, this code gets called:  
   
 // Loop through the filters to find the index of masterFilterList.  
 var removeIndex:int = -1;  
 var numFilters:int = masterFilterList.length;  
 for (var i:int = 0; i < numFilters; i++)  
 {  
 if (masterFilterList[i] == filterToRemove)  
 {  
 removeIndex = i;  
 break;  
 }  
 }  
   
 if (removeIndex >= 0)  
 {  
 // Remove the filter from the array.  
 masterFilterList.splice(removeIndex, 1);  
   
 // Apply the new set of filters to the display object.  
 filteredObject.filters = masterFilterList;  
 }

In this approach (when you’re comparing a stored filter reference to the items in the filters array to determine which 

filter to remove), you must keep a separate copy of the filters array—the code does not work if you compare the stored 

filter reference to the elements in a temporary array copied from the display object’s filters property. This is because 

internally, when you assign an array to the filters property, Flash Player or AIR makes a copy of each filter object in 

the array. Those copies (rather than the original objects) are applied to the display object, and when you read the 

filters property into a temporary array, the temporary array contains references to the copied filter objects rather 

than references to the original filter objects. Consequently, if in the preceding example you try to determine the index 

of filterToRemove by comparing it to the filters in a temporary filters array, no match is found.

Updated 11 February 2009



353PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Filters and object transformations

No filtered region—a drop shadow, for example—outside of a display object’s bounding box rectangle is considered 

to be part of the surface for the purposes of hit detection (determining if an instance overlaps or intersects with another 

instance). Because the DisplayObject class’s hit detection methods are vector-based, you cannot perform a hit 

detection on the bitmap result. For example, if you apply a bevel filter to a button instance, hit detection is not available 

on the beveled portion of the instance.

Scaling, rotating, and skewing are not supported by filters; if the filtered display object itself is scaled (if scaleX and 

scaleY are not 100%), the filter effect does not scale with the instance. This means that the original shape of the 

instance rotates, scales, or skews; however, the filter does not rotate, scale, or skew with the instance.

You can animate an instance with a filter to create realistic effects, or nest instances and use the BitmapData class to 

animate filters to achieve this effect.

Filters and Bitmap objects

When you apply any filter to a BitmapData object, the cacheAsBitmap property is automatically set to true. In this 

way, the filter is actually applied to the copy of the object rather than to the original.

This copy is then placed on the main display (over the original object) as close as possible to the nearest pixel. If the 

bounds of the original bitmap change, the filtered copy bitmap is recreated from the original, rather than being 

stretched or distorted.

If you clear all filters for a display object, the cacheAsBitmap property is reset to what it was before the filter was 

applied.

Available display filters

ActionScript 3.0 includes ten filter classes that you can apply to display objects and BitmapData objects:

• Bevel filter (BevelFilter class)

• Blur filter (BlurFilter class)

• Drop shadow filter (DropShadowFilter class)

• Glow filter (GlowFilter class)

• Gradient bevel filter (GradientBevelFilter class)

• Gradient glow filter (GradientGlowFilter class)

• Color matrix filter (ColorMatrixFilter class)

• Convolution filter (ConvolutionFilter class)

• Displacement map filter (DisplacementMapFilter class)

• Shader filter (ShaderFilter class)

The first six filters are simple filters that can be used to create one specific effect, with some customization of the effect 

available. Those six filters can be applied using ActionScript, and can also be applied to objects in Adobe Flash CS4 

Professional using the Filters panel. Consequently, even if you’re applying filters using ActionScript, if you have the 

Flash authoring tool you can use the visual interface to quickly try out different filters and settings to figure out how 

to create a desired effect.

Updated 11 February 2009



354PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

The final four filters are available in ActionScript only. Those filters, the color matrix filter, convolution filter, 

displacement map filter, and shader filter, are much more flexible in the types of effects that they can be used to create. 

Rather than being optimized for a single effect, they provide power and flexibility. For example, by selecting different 

values for its matrix, the convolution filter can be used to create effects such as blurring, embossing, sharpening, 

finding color edges, transformations, and more.

Each of the filters, whether simple or complex, can be customized using their properties. Generally, you have two 

choices for setting filter properties. All the filters let you set the properties by passing parameter values to the filter 

object’s constructor. Alternatively, whether or not you set the filter properties by passing parameters, you can adjust 

the filters later by setting values for the filter object’s properties. Most of the example code listings set the properties 

directly, in order to make the example easier to follow. Nevertheless, you could usually achieve the same result in fewer 

lines of code by passing the values as parameters in the filter object’s constructor. For more details on the specifics of 

each filter, its properties and its constructor parameters, see the listings for the flash.filters package in the ActionScript 

3.0 Language and Components Reference.

Bevel filter

The BevelFilter class allows you to add a 3D beveled edge to the filtered object. This filter makes the hard corners or 

edges of your object look like they have been chiseled, or beveled, away.

The BevelFilter class properties allow you to customize the appearance of the bevel. You can set highlight and shadow 

colors, bevel edge blurs, bevel angles, and bevel edge placement; you can even create a knockout effect. 

The following example loads an external image and applies a bevel filter to it.

 import flash.display.*;  
 import flash.filters.BevelFilter;  
 import flash.filters.BitmapFilterQuality;  
 import flash.filters.BitmapFilterType;  
 import flash.net.URLRequest;  
   
 // Load an image onto the Stage.  
 var imageLoader:Loader = new Loader();  
 var url:String = "http://www.helpexamples.com/flash/images/image3.jpg";  
 var urlReq:URLRequest = new URLRequest(url);  
 imageLoader.load(urlReq);  
 addChild(imageLoader);  
   
 // Create the bevel filter and set filter properties.  
 var bevel:BevelFilter = new BevelFilter();  
   
 bevel.distance = 5;  
 bevel.angle = 45;  
 bevel.highlightColor = 0xFFFF00;  
 bevel.highlightAlpha = 0.8;  
 bevel.shadowColor = 0x666666;  
 bevel.shadowAlpha = 0.8;  
 bevel.blurX = 5;  
 bevel.blurY = 5;  
 bevel.strength = 5;  
 bevel.quality = BitmapFilterQuality.HIGH;  
 bevel.type = BitmapFilterType.INNER;  
 bevel.knockout = false;  
   
 // Apply filter to the image.  
 imageLoader.filters = [bevel];

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/package-detail.html
http://www.adobe.com/go/learn_flashcs4_langref_en
http://www.adobe.com/go/learn_flashcs4_langref_en
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/BevelFilter.html


355PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Blur filter

The BlurFilter class smears, or blurs, a display object and its contents. Blur effects are useful for giving the impression 

that an object is out of focus or for simulating fast movement, as in a motion blur. By setting the quality property of 

the blur filter to low, you can simulate a softly out-of-focus lens effect. Setting the quality property to high results in 

a smooth blur effect similar to a Gaussian blur.

The following example creates a circle object using the drawCircle() method of the Graphics class and applies a blur 

filter to it:

 import flash.display.Sprite;  
 import flash.filters.BitmapFilterQuality;  
 import flash.filters.BlurFilter;  
   
 // Draw a circle.  
 var redDotCutout:Sprite = new Sprite();  
 redDotCutout.graphics.lineStyle();  
 redDotCutout.graphics.beginFill(0xFF0000);  
 redDotCutout.graphics.drawCircle(145, 90, 25);  
 redDotCutout.graphics.endFill();  
   
 // Add the circle to the display list.  
 addChild(redDotCutout);  
   
 // Apply the blur filter to the rectangle.  
 var blur:BlurFilter = new BlurFilter();  
 blur.blurX = 10;  
 blur.blurY = 10;  
 blur.quality = BitmapFilterQuality.MEDIUM;  
 redDotCutout.filters = [blur];

Drop shadow filter

Drop shadows give the impression that there is a separate light source situated above a target object. The position and 

intensity of this light source can be modified to produce a variety of different drop shadow effects. 

The DropShadowFilter class uses an algorithm that is similar to the blur filter’s algorithm. The main difference is that 

the drop shadow filter has a few more properties that you can modify to simulate different light-source attributes (such 

as alpha, color, offset and brightness). 

The drop shadow filter also allows you to apply custom transformation options on the style of the drop shadow, 

including inner or outer shadow and knockout (also known as cutout) mode.

The following code creates a square box sprite and applies a drop shadow filter to it:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/BlurFilter.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/DropShadowFilter.html


356PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 import flash.display.Sprite;  
 import flash.filters.DropShadowFilter;  
   
 // Draw a box.  
 var boxShadow:Sprite = new Sprite();  
 boxShadow.graphics.lineStyle(1);  
 boxShadow.graphics.beginFill(0xFF3300);  
 boxShadow.graphics.drawRect(0, 0, 100, 100);  
 boxShadow.graphics.endFill();  
 addChild(boxShadow);  
   
 // Apply the drop shadow filter to the box.  
 var shadow:DropShadowFilter = new DropShadowFilter();  
 shadow.distance = 10;  
 shadow.angle = 25;  
   
 // You can also set other properties, such as the shadow color,  
 // alpha, amount of blur, strength, quality, and options for   
 // inner shadows and knockout effects.  
   
 boxShadow.filters = [shadow];

Glow filter

The GlowFilter class applies a lighting effect to display objects, making it appear that a light is being shined up from 

underneath the object to create a soft glow. 

Similar to the drop shadow filter, the glow filter includes properties to modify the distance, angle, and color of the light 

source to produce varying effects. The GlowFilter also has several options for modifying the style of the glow, including 

inner or outer glow and knockout mode. 

The following code creates a cross using the Sprite class and applies a glow filter to it: 

 import flash.display.Sprite;  
 import flash.filters.BitmapFilterQuality;  
 import flash.filters.GlowFilter;  
   
 // Create a cross graphic.  
 var crossGraphic:Sprite = new Sprite();  
 crossGraphic.graphics.lineStyle();  
 crossGraphic.graphics.beginFill(0xCCCC00);  
 crossGraphic.graphics.drawRect(60, 90, 100, 20);  
 crossGraphic.graphics.drawRect(100, 50, 20, 100);  
 crossGraphic.graphics.endFill();  
 addChild(crossGraphic);  
   
 // Apply the glow filter to the cross shape.  
 var glow:GlowFilter = new GlowFilter();  
 glow.color = 0x009922;  
 glow.alpha = 1;  
 glow.blurX = 25;  
 glow.blurY = 25;  
 glow.quality = BitmapFilterQuality.MEDIUM;  
   
 crossGraphic.filters = [glow];

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/GlowFilter.html


357PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Gradient bevel filter

The GradientBevelFilter class lets you apply an enhanced bevel effect to display objects or BitmapData objects. Using 

a gradient color on the bevel greatly improves the spatial depth of the bevel, giving edges a more realistic, 3D 

appearance.

The following code creates a rectangle object using the drawRect() method of the Shape class and applies a gradient 

bevel filter to it.

 import flash.display.Shape;  
 import flash.filters.BitmapFilterQuality;  
 import flash.filters.GradientBevelFilter;  
   
 // Draw a rectangle.  
 var box:Shape = new Shape();  
 box.graphics.lineStyle();  
 box.graphics.beginFill(0xFEFE78);  
 box.graphics.drawRect(100, 50, 90, 200);  
 box.graphics.endFill();  
   
 // Apply a gradient bevel to the rectangle.  
 var gradientBevel:GradientBevelFilter = new GradientBevelFilter();  
   
 gradientBevel.distance = 8;  
 gradientBevel.angle = 225; // opposite of 45 degrees  
 gradientBevel.colors = [0xFFFFCC, 0xFEFE78, 0x8F8E01];  
 gradientBevel.alphas = [1, 0, 1];  
 gradientBevel.ratios = [0, 128, 255];  
 gradientBevel.blurX = 8;  
 gradientBevel.blurY = 8;  
 gradientBevel.quality = BitmapFilterQuality.HIGH;  
   
 // Other properties let you set the filter strength and set options  
 // for inner bevel and knockout effects.  
   
 box.filters = [gradientBevel];  
   
 // Add the graphic to the display list.  
 addChild(box);

Gradient glow filter

The GradientGlowFilter class lets you apply an enhanced glow effect to display objects or BitmapData objects. The 

effect gives you greater color control of the glow, and in turn produces a more realistic glow effect. Additionally, the 

gradient glow filter allows you to apply a gradient glow to the inner, outer, or upper edges of an object.

The following example draws a circle on the Stage, and applies a gradient glow filter to it. As you move the mouse 

further to the right and down, the amount of blur increases in the horizontal and vertical directions respectively. In 

addition, any time you click on the Stage, the strength of the blur increases.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/GradientBevelFilter.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/GradientGlowFilter.html


358PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 import flash.events.MouseEvent;  
 import flash.filters.BitmapFilterQuality;  
 import flash.filters.BitmapFilterType;  
 import flash.filters.GradientGlowFilter;  
   
 // Create a new Shape instance.  
 var shape:Shape = new Shape();  
   
 // Draw the shape.  
 shape.graphics.beginFill(0xFF0000, 100);  
 shape.graphics.moveTo(0, 0);  
 shape.graphics.lineTo(100, 0);  
 shape.graphics.lineTo(100, 100);  
 shape.graphics.lineTo(0, 100);  
 shape.graphics.lineTo(0, 0);  
 shape.graphics.endFill();  
   
 // Position the shape on the Stage.  
 addChild(shape);  
 shape.x = 100;  
 shape.y = 100;  
   
 // Define a gradient glow.  
 var gradientGlow:GradientGlowFilter = new GradientGlowFilter();  
 gradientGlow.distance = 0;  
 gradientGlow.angle = 45;  
 gradientGlow.colors = [0x000000, 0xFF0000];  
 gradientGlow.alphas = [0, 1];  
 gradientGlow.ratios = [0, 255];  
 gradientGlow.blurX = 10;  
 gradientGlow.blurY = 10;  
 gradientGlow.strength = 2;  
 gradientGlow.quality = BitmapFilterQuality.HIGH;  
 gradientGlow.type = BitmapFilterType.OUTER;  
   
 // Define functions to listen for two events.  
 function onClick(event:MouseEvent):void  
 {  
 gradientGlow.strength++;  
 shape.filters = [gradientGlow];  
 }  
   
 function onMouseMove(event:MouseEvent):void  
 {  
 gradientGlow.blurX = (stage.mouseX / stage.stageWidth) * 255;  
 gradientGlow.blurY = (stage.mouseY / stage.stageHeight) * 255;  
 shape.filters = [gradientGlow];  
 }  
 stage.addEventListener(MouseEvent.CLICK, onClick);  
 stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

Example: Combining basic filters

The following code example uses several basic filters, combined with a Timer for creating repeating actions, to create 

an animated traffic light simulation.

Updated 11 February 2009



359PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 import flash.display.Shape;  
 import flash.events.TimerEvent;  
 import flash.filters.BitmapFilterQuality;  
 import flash.filters.BitmapFilterType;  
 import flash.filters.DropShadowFilter;  
 import flash.filters.GlowFilter;  
 import flash.filters.GradientBevelFilter;  
 import flash.utils.Timer;  
   
 var count:Number = 1;  
 var distance:Number = 8;  
 var angleInDegrees:Number = 225; // opposite of 45 degrees  
 var colors:Array = [0xFFFFCC, 0xFEFE78, 0x8F8E01];  
 var alphas:Array = [1, 0, 1];  
 var ratios:Array = [0, 128, 255];  
 var blurX:Number = 8;  
 var blurY:Number = 8;  
 var strength:Number = 1;  
 var quality:Number = BitmapFilterQuality.HIGH;  
 var type:String = BitmapFilterType.INNER;  
 var knockout:Boolean = false;  
   
 // Draw the rectangle background for the traffic light.  
 var box:Shape = new Shape();  
 box.graphics.lineStyle();  
 box.graphics.beginFill(0xFEFE78);  
 box.graphics.drawRect(100, 50, 90, 200);  
 box.graphics.endFill();  
   
 // Draw the 3 circles for the three lights.  
 var stopLight:Shape = new Shape();  
 stopLight.graphics.lineStyle();  
 stopLight.graphics.beginFill(0xFF0000);  
 stopLight.graphics.drawCircle(145,90,25);  
 stopLight.graphics.endFill();  
   
 var cautionLight:Shape = new Shape();  
 cautionLight.graphics.lineStyle();  
 cautionLight.graphics.beginFill(0xFF9900);  
 cautionLight.graphics.drawCircle(145,150,25);  
 cautionLight.graphics.endFill();  
   
 var goLight:Shape = new Shape();  
 goLight.graphics.lineStyle();  
 goLight.graphics.beginFill(0x00CC00);  
 goLight.graphics.drawCircle(145,210,25);  
 goLight.graphics.endFill();  
   
 // Add the graphics to the display list.  
 addChild(box);  
 addChild(stopLight);  
 addChild(cautionLight);  
 addChild(goLight);  
   
 // Apply a gradient bevel to the traffic light rectangle.  
 var gradientBevel:GradientBevelFilter = new GradientBevelFilter(distance, angleInDegrees, 
colors, alphas, ratios, blurX, blurY, strength, quality, type, knockout);  

Updated 11 February 2009



360PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 box.filters = [gradientBevel];  
   
 // Create the inner shadow (for lights when off) and glow   
 // (for lights when on).  
 var innerShadow:DropShadowFilter = new DropShadowFilter(5, 45, 0, 0.5, 3, 3, 1, 1, true, 
false);  
 var redGlow:GlowFilter = new GlowFilter(0xFF0000, 1, 30, 30, 1, 1, false, false);  
 var yellowGlow:GlowFilter = new GlowFilter(0xFF9900, 1, 30, 30, 1, 1, false, false);  
 var greenGlow:GlowFilter = new GlowFilter(0x00CC00, 1, 30, 30, 1, 1, false, false);  
   
 // Set the starting state of the lights (green on, red/yellow off).  
 stopLight.filters = [innerShadow];  
 cautionLight.filters = [innerShadow];  
 goLight.filters = [greenGlow];  
   
 // Swap the filters based on the count value.  
 function trafficControl(event:TimerEvent):void  
 {  
 if (count == 4)  
 {  
 count = 1;  
 }  
   
 switch (count)  
 {  
 case 1:  
 stopLight.filters = [innerShadow];  
 cautionLight.filters = [yellowGlow];  
 goLight.filters = [innerShadow];  
 break;  
 case 2:  
 stopLight.filters = [redGlow];  
 cautionLight.filters = [innerShadow];  
 goLight.filters = [innerShadow];  
 break;  
 case 3:  
 stopLight.filters = [innerShadow];  
 cautionLight.filters = [innerShadow];  
 goLight.filters = [greenGlow];  
 break;  
 }  
   
 count++;  
 }  
   
 // Create a timer to swap the filters at a 3 second interval.  
 var timer:Timer = new Timer(3000, 9);  
 timer.addEventListener(TimerEvent.TIMER, trafficControl);  
 timer.start();

Color matrix filter

The ColorMatrixFilter class is used to manipulate the color and alpha values of the filtered object. This allows you to 

create saturation changes, hue rotation (shifting a palette from one range of colors to another), luminance-to-alpha 

changes, and other color manipulation effects using values from one color channel and potentially applying them to 

other channels.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/ColorMatrixFilter.html


361PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Conceptually, the filter goes through the pixels in the source image one by one and separates each pixel into its red, 

green, blue, and alpha components. It then multiplies values provided in the color matrix by each of these values, 

adding the results together to determine the resulting color value that will be displayed on the screen for that pixel. The 

matrix property of the filter is an array of 20 numbers that are used in calculating the final color. For details of the 

specific algorithm used to calculate the color values, see the entry describing the ColorMatrixFilter class’s matrix 

property in the ActionScript 3.0 Language and Components Reference.

Further information and examples of the color matrix filter can be found in the article “Using Matrices for 

Transformations, Color Adjustments, and Convolution Effects in Flash” on the Adobe Developer Center web site.

Convolution filter

The ConvolutionFilter class can be used to apply a wide range of imaging transformations to BitmapData objects or 

display objects, such as blurring, edge detection, sharpening, embossing, and beveling. 

The convolution filter conceptually goes through each pixel in the source image one by one and determines the final 

color of that pixel using the value of the pixel and its surrounding pixels. A matrix, specified as an array of numeric 

values, indicates to what degree the value of each particular neighboring pixel affects the final resulting value.

Consider the most commonly used type of matrix, which is a three by three matrix. The matrix includes nine values:

 N N N  
 N P N  
 N N N

When Flash Player or AIR is applying the convolution filter to a certain pixel, it will look at the color value of the pixel 

itself (“P” in the example), as well as the values of the surrounding pixels (labelled “N” in the example). However, by 

setting values in the matrix, you specify how much priority certain pixels have in affecting the resulting image.

For example, the following matrix, applied using a convolution filter, will leave an image exactly as it was:

 0 0 0  
 0 1 0  
 0 0 0

The reason the image is unchanged is because the original pixel’s value has a relative strength of 1 in determining the 

final pixel color, while the surrounding pixels’ values have relative strength of 0—meaning their colors don’t affect the 

final image.

Similarly, this matrix will cause the pixels of an image to shift one pixel to the left:

 0 0 0  
 0 0 1  
 0 0 0

Notice that in this case, the pixel itself has no effect on the final value of the pixel displayed in that location on the final 

image—only the value of the pixel to the right is used to determine the pixel’s resulting value.

In ActionScript, you create the matrix as a combination of an Array instance containing the values and two properties 

specifying the number of rows and columns in the matrix. The following example loads an image and, when the image 

finishes loading, applies a convolution filter to the image using the matrix in the previous listing:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/ColorMatrixFilter.html#matrix
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/ColorMatrixFilter.html#matrix
http://www.adobe.com/go/learn_flashcs4_langref_en
http://www.adobe.com/devnet/flash/articles/matrix_transformations.html
http://www.adobe.com/devnet/flash/articles/matrix_transformations.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/ConvolutionFilter.html


362PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 // Load an image onto the Stage.  
 var loader:Loader = new Loader();  
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");  
 loader.load(url);  
 this.addChild(loader);  
   
 function applyFilter(event:MouseEvent):void  
 {  
 // Create the convolution matrix.  
 var matrix:Array = [0, 0, 0,  
  0, 0, 1,  
  0, 0, 0];  
   
 var convolution:ConvolutionFilter = new ConvolutionFilter();  
 convolution.matrixX = 3;  
 convolution.matrixY = 3;  
 convolution.matrix = matrix;  
 convolution.divisor = 1;  
   
 loader.filters = [convolution];  
 }  
   
 loader.addEventListener(MouseEvent.CLICK, applyFilter);

Something that isn’t obvious in this code is the effect of using values other than 1 or 0 in the matrix. For example, the 

same matrix, with the number 8 instead of 1 in the right-hand position, performs the same action (shifting the pixels 

to the left). In addition, it affects the colors of the image, making them 8 times brighter. This is because the final pixel 

color values are calculated by multiplying the matrix values by the original pixel colors, adding the values together, and 

dividing by the value of the filter’s divisor property. Notice that in the example code, the divisor property is set to 

1. As a general rule, if you want the brightness of the colors to stay about the same as in the original image, you should 

make the divisor equal to the sum of the matrix values. So with a matrix where the values add up to 8, and a divisor of 

1, the resulting image is going to be roughly 8 times brighter than the original image.

Although the effect of this matrix isn’t very noticeable, other matrix values can be used to create various effects. Here 

are several standard sets of matrix values for different effects using a three by three matrix:

• Basic blur (divisor 5):

  0 1 0  
  1 1 1  
  0 1 0

• Sharpening (divisor 1):

  0, -1, 0  
 -1, 5, -1  
  0, -1, 0

• Edge detection (divisor 1):

  0, -1, 0  
 -1, 4, -1  
  0, -1, 0

• Embossing effect (divisor 1):

 -2, -1, 0  
 -1, 1, 1  
  0, 1, 2

Updated 11 February 2009



363PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Notice that with most of these effects, the divisor is 1. This is because the negative matrix values added to the 

positive matrix values result in 1 (or 0 in the case of edge detection, but the divisor property’s value cannot be 0).

Displacement map filter

The DisplacementMapFilter class uses pixel values from a BitmapData object (known as the displacement map image) 

to perform a displacement effect on a new object. The displacement map image is typically different than the actual 

display object or BitmapData instance to which the filter is being applied. A displacement effect involves displacing 

pixels in the filtered image—in other words, shifting them away from their original location to some extent. This filter 

can be used to create a shifted, warped, or mottled effect.

The location and amount of displacement applied to a given pixel is determined by the color value of the displacement 

map image. When working with the filter, in addition to specifying the map image, you specify the following values to 

control how the displacement is calculated from the map image:

• Map point: The location on the filtered image at which the top-left corner of the displacement filter will be applied. 

You can use this if you only want to apply the filter to part of an image.

• X component: Which color channel of the map image affects the x position of pixels.

• Y component: Which color channel of the map image affects the y position of pixels.

• X scale: A multiplier value that specifies how strong the x axis displacement is.

• Y scale: A multiplier value that specifies how strong the y axis displacement is.

• Filter mode: Determines what Flash Player or AIR should do in any empty spaces created by pixels being shifted 

away. The options, defined as constants in the DisplacementMapFilterMode class, are to display the original pixels 

(filter mode IGNORE), to wrap the pixels around from the other side of the image (filter mode WRAP, which is the 

default), to use the nearest shifted pixel (filter mode CLAMP), or to fill in the spaces with a color (filter mode COLOR).

To understand how the displacement map filter works, consider a basic example. In the following code, an image is 

loaded, and when it finishes loading it is centered on the Stage and a displacement map filter is applied to it, causing 

the pixels in the entire image to shift horizontally to the left.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/DisplacementMapFilter.html


364PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 import flash.display.BitmapData;  
 import flash.display.Loader;  
 import flash.events.MouseEvent;  
 import flash.filters.DisplacementMapFilter;  
 import flash.geom.Point;  
 import flash.net.URLRequest;  
   
 // Load an image onto the Stage.  
 var loader:Loader = new Loader();  
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image3.jpg");  
 loader.load(url);  
 this.addChild(loader);  
   
 var mapImage:BitmapData;  
 var displacementMap:DisplacementMapFilter;  
   
 // This function is called when the image finishes loading.  
 function setupStage(event:Event):void   
 {  
 // Center the loaded image on the Stage.  
 loader.x = (stage.stageWidth - loader.width) / 2;   
 loader.y = (stage.stageHeight - loader.height) / 2;  
   
 // Create the displacement map image.  
 mapImage = new BitmapData(loader.width, loader.height, false, 0xFF0000);  
   
 // Create the displacement filter.  
 displacementMap = new DisplacementMapFilter();  
 displacementMap.mapBitmap = mapImage;  
 displacementMap.mapPoint = new Point(0, 0);  
 displacementMap.componentX = BitmapDataChannel.RED;  
 displacementMap.scaleX = 250;  
 loader.filters = [displacementMap];  
 }  
   
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, setupStage);

The properties used to define the displacement are as follows:

• Map bitmap: The displacement bitmap is a new BitmapData instance created by the code. Its dimensions match the 

dimensions of the loaded image (so the displacement is applied to the entire image). It is filled with solid red pixels.

• Map point: This value is set to the point 0, 0—again, causing the displacement to be applied to the entire image.

• X component: This value is set to the constant BitmapDataChannel.RED, meaning the red value of the map bitmap 

will determine how much the pixels are displaced (how much they move) along the x axis.

• X scale: This value is set to 250. The full amount of displacement (from the map image being completely red) only 

displaces the image by a small amount (roughly one-half of a pixel), so if this value was set to 1 the image would 

only shift .5 pixels horizontally. By setting it to 250, the image shifts by approximately 125 pixels.

Updated 11 February 2009



365PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

These settings cause the filtered image’s pixels to shift 250 pixels to the left. The direction (left or right) and amount of 

shift is based on the color value of the pixels in the map image. Conceptually, Flash Player or AIR goes through the 

pixels of the filtered image one by one (at least, the pixels in the region where the filter is applied, which in this case 

means all the pixels), and does the following with each pixel:

1 It finds the corresponding pixel in the map image. For example, when Flash Player or AIR is calculating the 

displacement amount for the pixel in the top-left corner of the filtered image, it looks at the pixel in the top-left 

corner of the map image.

2 It determines the value of the specified color channel in the map pixel. In this case, the x component color channel 

is the red channel, so Flash Player and AIR look to see what the value of the red channel of the map image is at the 

pixel in question. Since the map image is solid red, the pixel’s red channel is 0xFF, or 255. This is used as the 

displacement value.

3 It compares the displacement value to the “middle” value (127, which is halfway between 0 and 255). If the 

displacement value is lower than the middle value, the pixel shifts in a positive direction (to the right for x 

displacement; down for y displacement). On the other hand, if the displacement value is higher than the middle 

value (as in this example), the pixel shifts in a negative direction (to the left for x displacement; up for y 

displacement). To be more precise, Flash Player and AIR subtract the displacement value from 127, and the result 

(positive or negative) is the relative amount of displacement that is applied.

4 Finally, it determines the actual amount of displacement by determining what percentage of full displacement the 

relative displacement value represents. In this case, full red means 100% displacement. That percentage is then 

multiplied by the x scale or y scale value to determine the number of pixels of displacement that will be applied. In 

this example, 100% times a multiplier of 250 determines the amount of displacement—roughly 125 pixels to the left.

Because no values are specified for y component and y scale, the defaults (which cause no displacement) are used—

that’s why the image doesn’t shift at all in the vertical direction.

The default filter mode setting, WRAP, is used in the example, so as the pixels shift to the left the empty space on the 

right is filled in by the pixels that shifted off the left edge of the image. You can experiment with this value to see the 

different effects. For instance, if you add the following line to the portion of code where the displacement properties 

are being set (before the line loader.filters = [displacementMap]), it will make the image look as though it has 

been smeared across the Stage:

 displacementMap.mode = DisplacementMapFilterMode.CLAMP;

For a more complex example, the following listing uses a displacement map filter to create a magnifying glass effect on 

an image:

Updated 11 February 2009



366PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
 import flash.display.BitmapDataChannel;  
 import flash.display.GradientType;  
 import flash.display.Loader;  
 import flash.display.Shape;  
 import flash.events.MouseEvent;  
 import flash.filters.DisplacementMapFilter;  
 import flash.filters.DisplacementMapFilterMode;  
 import flash.geom.Matrix;  
 import flash.geom.Point;  
 import flash.net.URLRequest;  
   
 // Create the gradient circles that will together form the   
 // displacement map image  
 var radius:uint = 50;  
   
 var type:String = GradientType.LINEAR;  
 var redColors:Array = [0xFF0000, 0x000000];  
 var blueColors:Array = [0x0000FF, 0x000000];  
 var alphas:Array = [1, 1];  
 var ratios:Array = [0, 255];  
 var xMatrix:Matrix = new Matrix();  
 xMatrix.createGradientBox(radius * 2, radius * 2);  
 var yMatrix:Matrix = new Matrix();  
 yMatrix.createGradientBox(radius * 2, radius * 2, Math.PI / 2);  
   
 var xCircle:Shape = new Shape();  
 xCircle.graphics.lineStyle(0, 0, 0);  
 xCircle.graphics.beginGradientFill(type, redColors, alphas, ratios, xMatrix);  
 xCircle.graphics.drawCircle(radius, radius, radius);  
   
 var yCircle:Shape = new Shape();  
 yCircle.graphics.lineStyle(0, 0, 0);  
 yCircle.graphics.beginGradientFill(type, blueColors, alphas, ratios, yMatrix);  
 yCircle.graphics.drawCircle(radius, radius, radius);  
   
 // Position the circles at the bottom of the screen, for reference.  
 this.addChild(xCircle);  
 xCircle.y = stage.stageHeight - xCircle.height;  
 this.addChild(yCircle);  
 yCircle.y = stage.stageHeight - yCircle.height;  
 yCircle.x = 200;  
   
 // Load an image onto the Stage.  
 var loader:Loader = new Loader();  
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");  
 loader.load(url);  
 this.addChild(loader);  
   
 // Create the map image by combining the two gradient circles.  
 var map:BitmapData = new BitmapData(xCircle.width, xCircle.height, false, 0x7F7F7F);  
 map.draw(xCircle);  
 var yMap:BitmapData = new BitmapData(yCircle.width, yCircle.height, false, 0x7F7F7F);  
 yMap.draw(yCircle);  
 map.copyChannel(yMap, yMap.rect, new Point(0, 0), BitmapDataChannel.BLUE, 
BitmapDataChannel.BLUE);  

Updated 11 February 2009



367PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

 yMap.dispose();  
   
 // Display the map image on the Stage, for reference.  
 var mapBitmap:Bitmap = new Bitmap(map);  
 this.addChild(mapBitmap);  
 mapBitmap.x = 400;  
 mapBitmap.y = stage.stageHeight - mapBitmap.height;  
   
 // This function creates the displacement map filter at the mouse location.  
 function magnify():void  
 {  
 // Position the filter.  
 var filterX:Number = (loader.mouseX) - (map.width / 2);  
 var filterY:Number = (loader.mouseY) - (map.height / 2);  
 var pt:Point = new Point(filterX, filterY);  
 var xyFilter:DisplacementMapFilter = new DisplacementMapFilter();  
 xyFilter.mapBitmap = map;  
 xyFilter.mapPoint = pt;  
 // The red in the map image will control x displacement.  
 xyFilter.componentX = BitmapDataChannel.RED;  
 // The blue in the map image will control y displacement.  
 xyFilter.componentY = BitmapDataChannel.BLUE;  
 xyFilter.scaleX = 35;  
 xyFilter.scaleY = 35;  
 xyFilter.mode = DisplacementMapFilterMode.IGNORE;  
 loader.filters = [xyFilter];  
 }  
   
 // This function is called when the mouse moves. If the mouse is  
 // over the loaded image, it applies the filter.  
 function moveMagnifier(event:MouseEvent):void  
 {  
 if (loader.hitTestPoint(loader.mouseX, loader.mouseY))  
 {  
 magnify();  
 }  
 }  
 loader.addEventListener(MouseEvent.MOUSE_MOVE, moveMagnifier);

Updated 11 February 2009



368PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

The code first generates two gradient circles, which are combined together to form the displacement map image. The 

red circle creates the x axis displacement (xyFilter.componentX = BitmapDataChannel.RED), and the blue circle 

creates the y axis displacement (xyFilter.componentY = BitmapDataChannel.BLUE). To help you understand 

what the displacement map image looks like, the code adds the original circles as well as the combined circle that serves 

as the map image to the bottom of the screen.

The code then loads an image and, as the mouse moves, applies the displacement filter to the portion of the image that’s 

under the mouse. The gradient circles used as the displacement map image causes the displaced region to spread out 

away from the mouse pointer. Notice that the gray regions of the displacement map image don’t cause any 

displacement. The gray color is 0x7F7F7F. The blue and red channels of that shade of gray exactly match the middle 

shade of those color channels, so there is no displacement in a gray area of the map image. Likewise, in the center of 

the circle there is no displacement. Although the color there isn’t gray, that color’s blue channel and red channel are 

identical to the blue channel and red channel of medium gray, and since blue and red are the colors that cause 

displacement, no displacement happens there.

Shader filter

The ShaderFilter class lets you use a custom filter effect defined as a Pixel Bender shader. Because the filter effect is 

written as a Pixel Bender shader, the effect can be completely customized. The filtered content is passed in to the shader 

as an image input, and the result of the shader operation becomes the filter result.

Note: The Shader filter is available in ActionScript starting with Flash Player 10 and Adobe AIR 1.5.

To apply a shader filter to an object, you first create a Shader instance representing the Pixel Bender shader that you 

are using. For details on the procedure for creating a Shader instance and on how to specify input image and parameter 

values, see “Working with Pixel Bender shaders” on page 376.

When using a shader as a filter, there are three important things to keep in mind:

• The shader must be defined to accept at least one input image.

• The filtered object (the display object or BitmapData object to which the filter is applied) is passed to the shader as 

the first input image value. Because of this, you should not manually specify a value for the first image input.

• If the shader defines more that one input image, the additional inputs must be specified manually (that is, by setting 

the input property of any ShaderInput instance that belongs to the Shader instance).

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/filters/ShaderFilter.html


369PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Once you have a Shader object for your shader, you create a ShaderFilter instance. This is the actual filter object that 

you use like any other filter. To create a ShaderFilter that uses a Shader object, call the ShaderFilter() constructor 

and pass the Shader object as an argument, as shown in this listing:

var myFilter:ShaderFilter = new ShaderFilter(myShader);

For a complete example of using a shader filter, see “Using a shader as a filter” on page 393.

Example: Filter Workbench

The Filter Workbench provides a user interface to apply different filters to images and other visual content and see the 

resulting code that can be used to generate the same effect in ActionScript. In addition to providing a tool for 

experimenting with filters, this application demonstrates the following techniques:

• Creating instances of various filters

• Applying multiple filters to a display object

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Filter 

Workbench application files can be found in the Samples/FilterWorkbench folder. The application consists of the 

following files:

File Description

com/example/programmingas3/filterWorkbench/FilterWorkbenchController.as Class that provides the main functionality of the 

application, including switching content to which 

filters are applied, and applying filters to content.

com/example/programmingas3/filterWorkbench/IFilterFactory.as Interface defining common methods that are 

implemented by each of the filter factory classes. 

This interface defines the common functionality that 

the FilterWorkbenchController class uses to interact 

with the individual filter factory classes.

in folder com/example/programmingas3/filterWorkbench/:

BevelFactory.as

BlurFactory.as

ColorMatrixFactory.as

ConvolutionFactory.as

DropShadowFactory.as

GlowFactory.as

GradientBevelFactory.as

GradientGlowFactory.as

Set of classes, each of which implements the 

IFilterFactory interface. Each of these classes 

provides the functionality of creating and setting 

values for a single type of filter. The filter property 

panels in the application use these factory classes to 

create instances of their particular filters, which the 

FilterWorkbenchController class retrieves and 

applies to the image content.

com/example/programmingas3/filterWorkbench/IFilterPanel.as Interface defining common methods that are 

implemented by classes that define the user 

interface panels that are used to manipulate filter 

values in the application.

com/example/programmingas3/filterWorkbench/ColorStringFormatter.as Utility class that includes a method to convert a 

numeric color value to hexadecimal String format

com/example/programmingas3/filterWorkbench/GradientColor.as Class that serves as a value object, combining into a 

single object the three values (color, alpha, and 

ratio) that are associated with each color in the 

GradientBevelFilter and GradientGlowFilter

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


370PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Experimenting with ActionScript filters

The Filter Workbench application is designed to help you experiment with various filter effects and generate the 

relevant ActionScript code for that effect. The application lets you select from three different files containing visual 

content, including bitmap images and an animation created by Flash, and apply eight different ActionScript filters to 

the selected image, either individually or in combination with other filters. The application includes the following 

filters:

• Bevel (flash.filters.BevelFilter)

• Blur (flash.filters.BlurFilter)

• Color matrix (flash.filters.ColorMatrixFilter)

• Convolution (flash.filters.ConvolutionFilter)

User interface (Flash)

FilterWorkbench.fla The main file defining the application’s user 

interface.

flashapp/FilterWorkbench.as Class that provides the functionality for the main 

application’s user interface; this class is used as the 

document class for the application FLA file.

In folder flashapp/filterPanels:

BevelPanel.as

BlurPanel.as

ColorMatrixPanel.as

ConvolutionPanel.as

DropShadowPanel.as

GlowPanel.as

GradientBevelPanel.as

GradientGlowPanel.as

Set of classes that provide the functionality for each 

panel that is used to set options for a single filter.

For each class, there is also an associated MovieClip 

symbol in the library of the main application FLA file, 

whose name matches the name of the class (for 

example, the symbol “BlurPanel” is linked to the 

class defined in BlurPanel.as). The components that 

make up the user interface are positioned and 

named within those symbols.

flashapp/ImageContainer.as A display object that serves as a container for the 

loaded image on the screen

flashapp/BGColorCellRenderer.as Custom cell renderer used to change the 

background color of a cell in the DataGrid 

component

flashapp/ButtonCellRenderer.as Custom cell renderer used to include a button 

component in a cell in the DataGrid component

Filtered image content

com/example/programmingas3/filterWorkbench/ImageType.as This class serves as a value object containing the 

type and URL of a single image file to which the 

application can load and apply filters. The class also 

includes a set of constants representing the actual 

image files available.

images/sampleAnimation.swf,

images/sampleImage1.jpg,

images/sampleImage2.jpg

Images and other visual content to which filters are 

applied in the application.

File Description

Updated 11 February 2009



371PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

• Drop shadow (flash.filters.DropShadowFilter)

• Glow (flash.filters.GlowFilter)

• Gradient bevel (flash.filters.GradientBevelFilter)

• Gradient glow (flash.filters.GradientGlowFilter)

Once a user has selected an image and a filter to apply to that image, the application displays a panel with controls for 

setting the specific properties of the selected filter. For example, the following image shows the application with the 

Bevel filter selected:

As the user adjusts the filter properties, the preview updates in real time. The user can also apply multiple filters by 

customizing one filter, clicking the Apply button, customizing another filter, clicking the Apply button, and so forth.

There are a few features and limitations in the application’s filter panels:

• The color matrix filter includes a set of controls for directly manipulating common image properties including 

brightness, contrasts, saturation, and hue. In addition, custom color matrix values can be specified.

• The convolution filter, which is only available using ActionScript, includes a set of commonly used convolution 

matrix values, or custom values can be specified. However, while the ConvolutionFilter class accepts a matrix of 

any size, the Filter Workbench application uses a fixed 3 x 3 matrix, the most commonly used filter size.

• The displacement map filter and shader filter, which are only available in ActionScript, are not available in the Filter 

Workbench application. A displacement map filter requires a map image in addition to the filtered image content. 

The displacement map filter’s map image is the primary input that determines the result of the filter, so without the 

ability to load or create a map image, the ability to experiment with the displacement map filter would be extremely 

limited. Likewise, a shader filter requires a Pixel Bender bytecode file in addition to the filtered image content. 

Without the ability to load the shader bytecode it is impossible to use a shader filter.

Updated 11 February 2009



372PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Creating filter instances

The Filter Workbench application includes a set of classes, one for each of the available filters, which are used by the 

individual panels to create the filters. When a user selects a filter, the ActionScript code associated with the filter panel 

creates an instance of the appropriate filter factory class. (These classes are known as factory classes because their 

purpose is to create instances of other objects, much like a real-world factory creates individual products.)

Whenever the user changes a property value on the panel, the panel’s code calls the appropriate method in the factory 

class. Each factory class includes specific methods that the panel uses to create the appropriate filter instance. For 

example, if the user selects the Blur filter, the application creates a BlurFactory instance. The BlurFactory class includes 

a modifyFilter() method that accepts three parameters: blurX, blurY, and quality, which together are used to 

create the desired BlurFilter instance:

 private var _filter:BlurFilter;  
   
 public function modifyFilter(blurX:Number = 4, blurY:Number = 4, quality:int = 1):void  
 {  
 _filter = new BlurFilter(blurX, blurY, quality);  
 dispatchEvent(new Event(Event.CHANGE));  
 }

On the other hand, if the user selects the Convolution filter, that filter allows for much greater flexibility and 

consequently has a larger set of properties to control. In the ConvolutionFactory class, the following code is called 

when the user selects a different value on the filter panel:

 private var _filter:ConvolutionFilter;  
   
 public function modifyFilter(matrixX:Number = 0,   
 matrixY:Number = 0,   
 matrix:Array = null,   
 divisor:Number = 1.0,   
 bias:Number = 0.0,   
 preserveAlpha:Boolean = true,   
 clamp:Boolean = true,   
 color:uint = 0,   
 alpha:Number = 0.0):void  
 {  
 _filter = new ConvolutionFilter(matrixX, matrixY, matrix, divisor, bias, preserveAlpha, 
clamp, color, alpha);  
 dispatchEvent(new Event(Event.CHANGE));  
 }

Notice that in each case, when the filter values are changed, the factory object dispatches an Event.CHANGE event to 

notify listeners that the filter’s values have changed. The FilterWorkbenchController class, which does the work of 

actually applying filters to the filtered content, listens for that event to ascertain when it needs to retrieve a new copy 

of the filter and re-apply it to the filtered content.

The FilterWorkbenchController class doesn’t need to know specific details of each filter factory class—it just needs to 

know that the filter has changed and to be able to access a copy of the filter. To support this, the application includes 

an interface, IFilterFactory, that defines the behavior a filter factory class needs to provide so the application’s 

FilterWorkbenchController instance can do its job. The IFilterFactory defines the getFilter() method that’s used in 

the FilterWorkbenchController class:

 function getFilter():BitmapFilter;

Updated 11 February 2009



373PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Notice that the getFilter() interface method definition specifies that it returns a BitmapFilter instance rather than 

a specific type of filter. The BitmapFilter class does not define a specific type of filter. Rather, BitmapFilter is the base 

class on which all the filter classes are built. Each filter factory class defines a specific implementation of the 

getFilter() method in which it returns a reference to the filter object it has built. For example, here is an abbreviated 

version of the ConvolutionFactory class’s source code:

 public class ConvolutionFactory extends EventDispatcher implements IFilterFactory  
 {  
 // ------- Private vars -------  
 private var _filter:ConvolutionFilter;  
 ...  
 // ------- IFilterFactory implementation -------  
 public function getFilter():BitmapFilter  
 {  
 return _filter;  
 }  
 ...  
 }

In the ConvolutionFactory class’s implementation of the getFilter() method, it returns a ConvolutionFilter 

instance, although any object that calls getFilter() doesn’t necessarily know that—according to the definition of the 

getFilter() method that ConvolutionFactory follows, it must return any BitmapFilter instance, which could be an 

instance of any of the ActionScript filter classes.

Applying filters to display objects

As explained in the previous section, the Filter Workbench application uses an instance of the 

FilterWorkbenchController class (hereafter referred to as the “controller instance”), which performs the actual task of 

applying filters to the selected visual object. Before the controller instance can apply a filter, it first needs to know what 

image or visual content the filter should be applied to. When the user selects an image, the application calls the 

setFilterTarget() method in the FilterWorkbenchController class, passing in one of the constants defined in the 

ImageType class:

 public function setFilterTarget(targetType:ImageType):void  
 {  
 ...  
 _loader = new Loader();  
 ...  
 _loader.contentLoaderInfo.addEventListener(Event.COMPLETE, targetLoadComplete);  
 ...  
 }

Using that information the controller instance loads the designated file, storing it in an instance variable named 

_currentTarget once it loads:

 private var _currentTarget:DisplayObject;  
   
 private function targetLoadComplete(event:Event):void  
 {  
 ...  
 _currentTarget = _loader.content;  
 ...  
 }

Updated 11 February 2009



374PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

When the user selects a filter, the application calls the controller instance’s setFilter() method, giving the controller 

a reference to the relevant filter factory object, which it stores in an instance variable named _filterFactory.

 private var _filterFactory:IFilterFactory;  
   
 public function setFilter(factory:IFilterFactory):void  
 {  
 ...  
   
 _filterFactory = factory;  
 _filterFactory.addEventListener(Event.CHANGE, filterChange);  
 }

Notice that, as described previously, the controller instance doesn’t know the specific data type of the filter factory 

instance that it is given; it only knows that the object implements the IFilterFactory instance, meaning it has a 

getFilter() method and it dispatches a change (Event.CHANGE) event when the filter changes.

When the user changes a filter’s properties in the filter’s panel, the controller instance finds out that the filter has 

changed through the filter factory’s change event, which calls the controller instance’s filterChange() method. That 

method, in turn, calls the applyTemporaryFilter() method:

 private function filterChange(event:Event):void  
 {  
 applyTemporaryFilter();  
 }  
   
 private function applyTemporaryFilter():void  
 {  
 var currentFilter:BitmapFilter = _filterFactory.getFilter();  
   
 // Add the current filter to the set temporarily  
 _currentFilters.push(currentFilter);  
   
 // Refresh the filter set of the filter target  
 _currentTarget.filters = _currentFilters;  
   
 // Remove the current filter from the set  
 // (This doesn't remove it from the filter target, since   
 // the target uses a copy of the filters array internally.)  
 _currentFilters.pop();  
 }

The work of applying the filter to the display object occurs within the applyTemporaryFilter() method. First, the 

controller retrieves a reference to the filter object by calling the filter factory’s getFilter() method.

 var currentFilter:BitmapFilter = _filterFactory.getFilter();

The controller instance has an Array instance variable named _currentFilters, in which it stores all the filters that 

have been applied to the display object. The next step is to add the newly updated filter to that array:

 _currentFilters.push(currentFilter);

Next, the code assigns the array of filters to the display object’s filters property, which actually applies the filters to 

the image:

 _currentTarget.filters = _currentFilters;

Updated 11 February 2009



375PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Filtering display objects

Finally, since this most recently added filter is still the “working” filter, it shouldn’t be permanently applied to the 

display object, so it is removed from the _currentFilters array:

 _currentFilters.pop();

Removing this filter from the array doesn’t affect the filtered display object, because a display object makes a copy of 

the filters array when it is assigned to the filters property, and it uses that internal array rather than the original one. 

For this reason, any changes that are made to the array of filters don’t affect the display object until the array is assigned 

to the display object’s filters property again.

Updated 11 February 2009



376

Chapter 17: Working with Pixel Bender 
shaders

Adobe Pixel Bender Toolkit allows developers to write shaders that create graphical effects and perform other image 

and data processing. The Pixel Bender bytecode can be executed in ActionScript to apply the effect to image data or 

visual content. Using Pixel Bender shaders in ActionScript gives you the capability to create custom visual effects and 

perform data processing beyond the built-in capabilities in ActionScript.

Note: Pixel Bender support is available starting in Flash Player 10 and Adobe AIR 1.5.

Basics of Pixel Bender shaders

Introduction to working with Pixel Bender shaders

Adobe Pixel Bender is a programming language that is used to create or manipulate image content. Using Pixel Bender 

you create a kernel, also known in this document as a shader. The shader defines a single function that executes on 

each of the pixels of an image individually. The result of each call to the function is the output color at that pixel 

coordinate in the image. Input images and parameter values can be specified to customize the operation. In a single 

execution of a shader, input and parameter values are constant. The only thing that varies is the coordinate of the pixel 

whose color is the result of the function call.

Where possible, the shader function is called for multiple output pixel coordinates in parallel. This improves shader 

performance and can provide high-performance processing.

In Flash Player and Adobe AIR, three types of effects can be easily created using a shader:

• drawing fill

• blend mode

• filter

A shader can also be executed in stand-alone mode. Using stand-alone mode a shader’s result is accessed directly 

rather than pre-specifying its intended use. The result can be accessed as image data or as binary or number data. The 

data need not be image data at all. In this way you can give a shader a set of data as an input. The shader processes the 

data, and you can access the result data returned by the shader.

Note: Pixel Bender support is available starting in Flash Player 10 and Adobe AIR 1.5.

Common Pixel Bender shader tasks

The following tasks are things you’ll likely want to accomplish using filters in ActionScript:

• Loading a shader into a running SWF application, or embedding the shader at compile time and accessing it at run time

• Accessing shader metadata

• Identifying and specifying values for shader inputs (usually images)

• Identifying and specifying values for shader parameters

Updated 11 February 2009



377PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

• Using a shader in the following ways:

• As a drawing fill

• As a blend mode

• As a filter

• In stand-alone mode

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Kernel: For Pixel Bender, a kernel is the same thing as a shader. Using Pixel Bender your code defines a kernel, 

which defines a single function that executes on each of the pixels of an image individually.

• Pixel Bender bytecode: When a Pixel Bender kernel is compiled it is transformed into Pixel Bender bytecode. The 

bytecode is accessed and executed by Flash Player or Adobe AIR at run time.

• Pixel Bender language: The programming language used to create a Pixel Bender kernel.

• Pixel Bender Toolkit: The application that is used to create a Pixel Bender bytecode file from Pixel Bender source 

code. The toolkit allows you to write, test, and compile Pixel Bender source code.

• Shader: For the purposes of this document, a shader is a set of functionality written in the Pixel Bender language. 

A shader’s code creates a visual effect or performs a calculation. In either case, the shader returns a set of data 

(usually the pixels of an image). The shader performs the same operation on each data point, with the only 

difference being the coordinates of the output pixel.

The shader is not written in ActionScript. It is written in the Pixel Bender language and compiled into Pixel Bender 

bytecode. It can be embedded into a SWF file at compile time or loaded as an external file at run time. In either case 

it is accessed in ActionScript by creating a Shader object and linking that object to the shader bytecode.

• Shader input: A complex input, usually bitmap image data, that is provided to a shader to use in its calculations. 

For each input variable defined in a shader, a single value (that is, a single image or set of binary data) is used for 

the entire execution of the shader.

• Shader parameter: A single value (or limited set of values) that is provided to a shader to use in its calculations. Each 

parameter value is defined for a single shader execution, and the same value is used throughout the shader 

execution.

Working through in-chapter examples

While you’re working through the chapter, you may want to test the example code listings that are provided. Because 

this chapter deals with creating and manipulating visual content, testing the code involves running the code and 

viewing the results in the SWF that’s created. All the examples create content using the drawing API which uses or is 

modified by the shader effect.

Most of the example code listings include two parts. One part is the Pixel Bender source code for the shader used in 

the example. You must first use the Pixel Bender Toolkit to compile the source code to a Pixel Bender bytecode file. 

Follow these steps to create the Pixel Bender bytecode file:

1 Open Adobe Pixel Bender Toolkit. If necessary, from the Build menu choose “Turn on Flash Player warnings and 

errors.”

2 Copy the Pixel Bender code listing and paste it into the code editor pane of the Pixel Bender Toolkit.

3 From the File menu, choose “Export kernel filter for Flash Player.”

Updated 11 February 2009



378PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

4 Save the Pixel Bender bytecode file in the same directory as the Flash document. The file’s name should match the 

name specified in the example description.

The ActionScript part of each example is written as a class file. To test the example:

1 Create an empty Flash document and save it to your computer.

2 Create a new ActionScript file and save it in the same directory as the Flash document. The file’s name should match 

the name of the class in the code listing. For instance, if the code listing defines a class named MyApplication, use 

the name MyApplication.as to save the ActionScript file.

3 Copy the code listing into the ActionScript file and save the file.

4 In the Flash document, click a blank part of the Stage or work space to activate the document Property inspector.

5 In the Property inspector, in the Document Class field, enter the name of the ActionScript class you copied from 

the text.

6 Run the program using Control > Test Movie

You will see the results of the example in the preview window.

These techniques for testing example code listings are explained in more detail in “Testing in-chapter example code 

listings” on page 34.

Loading or embedding a shader

The first step in using a Pixel Bender shader in ActionScript is to get access to the shader in your ActionScript code. 

Because a shader is created using the Adobe Pixel Bender Toolkit, and written in the Pixel Bender language, it cannot 

be directly accessed in ActionScript. Instead, you create an instance of the Shader class that represents the Pixel Bender 

shader to ActionScript. The Shader object allows you to find out information about the shader, such as whether it 

expects parameters or input image values. You pass the Shader object to other objects to actually use the shader. For 

example, to use the shader as a filter you assign the Shader object to a ShaderFilter object’s shader property. 

Alternatively, to use the shader as a drawing fill, you pass the Shader object as an argument to the 

Graphics.beginShaderFill() method.

Your ActionScript code can access a shader created by Adobe Pixel Bender Toolkit (a .pbj file) in two ways:

• Loaded at run time: the shader file can be loaded as an external asset using a URLLoader object. This technique is 

like loading an external asset such as a text file. The following example demonstrates loading a shader bytecode file 

at run time and linking it to a Shader instance:

Updated 11 February 2009



379PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

var loader:URLLoader = new URLLoader();  
loader.dataFormat = URLLoaderDataFormat.BINARY;  
loader.addEventListener(Event.COMPLETE, onLoadComplete);  
loader.load(new URLRequest("myShader.pbj"));  
  
var shader:Shader;  
  
function onLoadComplete(event:Event):void {  

// Create a new shader and set the loaded data as its bytecode  
shader = new Shader();  
shader.byteCode = loader.data;  
  
// You can also pass the bytecode to the Shader() constructor like this:  
// shader = new Shader(loader.data);  
  
 // do something with the shader  

}

• Embedded in the SWF file: the shader file can be embedded in the SWF file at compile time using the [Embed] 

metadata tag. The [Embed] metadata tag is only available if you use the Flex SDK to compile the SWF file. The 

[Embed] tag’s source parameter points to the shader file, and its mimeType parameter is "application/octet-

stream", as in this example:

[Embed(source="myShader.pbj", mimeType="application/octet-stream")]  
var MyShaderClass:Class;  
  
// ...  
  
// create a shader and set the embedded shader as its bytecode  
var shader:Shader = new Shader();  
shader.byteCode = new MyShaderClass();  
  
// You can also pass the bytecode to the Shader() constructor like this:  
// var shader:Shader = new Shader(new MyShaderClass());  
  
// do something with the shader

In either case, you link the raw shader bytecode (the URLLoader.data property or an instance of the [Embed] data 

class) to the Shader instance. As the previous examples demonstrate, you can assign the bytecode to the Shader 

instance in two ways. You can pass the shader bytecode as an argument to the Shader() constructor. Alternatively, 

you can set it as the Shader instance's byteCode property.

Once a Pixel Bender shader has been created and linked to a Shader object, you can use the shader to create effects in 

several ways. You can use it as a filter, a blend mode, a bitmap fill, or for stand-alone processing of bitmap or other 

data. You can also use the Shader object’s data property to access the shader’s metadata, specify input images, and set 

parameter values.

Accessing shader metadata

While creating a Pixel Bender shader kernel, the author can specify metadata about the shader in the Pixel Bender 

source code. While using a shader in ActionScript, you can examine the shader and extract its metadata.

Updated 11 February 2009



380PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

When you create a Shader instance and link it to a Pixel Bender shader, a ShaderData object containing data about the 

shader is created and stored in the Shader object’s data property. The ShaderData class doesn’t define any properties 

of its own. However, at run time a property is dynamically added to the ShaderData object for each metadata value 

defined in the shader source code. The name given to each property is the same as the name specified in the metadata. 

For example, suppose the source code of a Pixel Bender shader includes the following metadata definition:

namespace : "Adobe::Example";  
vendor : "Bob Jones";  
version : 1;  
description : "Creates a version of the specified image with the specified brightness.";

The ShaderData object created for that shader is created with the following properties and values:

• namespace (String): "Adobe::Example"

• vendor (String): "Bob Jones"

• version (String): "1"

• description (String): "Creates a version of the specified image with the specified brightness"

Because metadata properties are dynamically added to the ShaderData object, you can use a for..in loop to examine 

the ShaderData object. Using this technique you can find out whether the shader has any metadata and what the 

metadata values are. In addition to metadata properties, a ShaderData object can have properties representing inputs 

and parameters that are defined in the shader. When you use a for..in loop to examine a ShaderData object, check 

the data type of each property to determine whether the property is an input (a ShaderInput instance), a parameter (a 

ShaderParameter instance), or a metadata value (a String instance). The following example shows how to use a 

for..in loop to examine the dynamic properties of a shader’s data property. Each metadata value is added to a Vector 

instance named metadata. Note that this example assumes a Shader instance named myShader is already created:

var shaderData:ShaderData = myShader.data;  
var metadata:Vector.<String> = new Vector.<String>();  
  
for (var prop:String in shaderData)  
{  

if (!(shaderData[prop] is ShaderInput) && !(shaderData[prop] is ShaderParameter))  
{  

metadata[metadata.length] = shaderData[prop];  
}  

}  
  
// do something with the metadata

For a version of this example that also extracts shader inputs and parameters, see “Identifying shader inputs and 

parameters” on page 381. For more information about input and parameter properties, see “Specifying shader input 

and parameter values” on page 380.

Specifying shader input and parameter values

Many Pixel Bender shaders are defined to use one or more input images that are used in the shader processing. For 

example, it’s common for a shader to accept a source image and output that image with a particular effect applied to 

it. Depending on how the shader is used the input value may be specified automatically or you may need to explicitly 

provide a value. Similarly, many shaders specify parameters that are used to customize the output of the shader. You 

must also explicitly set a value for each parameter before using the shader.

Updated 11 February 2009



381PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

You use the Shader object’s data property to set shader inputs and parameters and to determine whether a particular 

shader expects inputs or parameters. The data property is a ShaderData instance.

Identifying shader inputs and parameters

The first step in specifying shader input and parameter values is to find out whether the particular shader you’re using 

expects any input images or parameters. Each Shader instance has a data property containing a ShaderData object. If 

the shader defines any inputs or parameters, they are accessed as properties of that ShaderData object. The properties’ 

names match the names specified for the inputs and parameters in the shader source code. For example, if a shader 

defines an input named src, the ShaderData object has a property named src representing that input. Each property 

that represents an input is a ShaderInput instance, and each property that represents a parameter is a ShaderParameter 

instance.

Ideally, the author of the shader provides documentation for the shader, indicating what input image values and 

parameters the shader expects, what they represent, the appropriate values, and so forth.

However, if the shader isn’t documented (and you don’t have its source code) you can inspect the shader data to 

identify the inputs and parameters. The properties representing inputs and parameters are dynamically added to the 

ShaderData object. Consequently, you can use a for..in loop to examine the ShaderData object to find out whether 

its associated shader defines any inputs or parameters. As described in “Accessing shader metadata” on page 379, any 

metadata value defined for a shader is also accessed as a dynamic property added to the Shader.data property. When 

you use this technique to identify shader inputs and parameters, check the data type of the dynamic properties. If a 

property is a ShaderInput instance it represents an input. If it is a ShaderParameter instance it represents a parameter. 

Otherwise, it is a metadata value. The following example shows how to use a for..in loop to examine the dynamic 

properties of a shader’s data property. Each input (ShaderInput object) is added to a Vector instance named inputs. 

Each parameter (ShaderParameter object) is added to a Vector instance named parameters. Finally, any metadata 

properties are added to a Vector instance named metadata. Note that this example assumes a Shader instance named 

myShader is already created:

var shaderData:ShaderData = myShader.data;  
var inputs:Vector.<ShaderInput> = new Vector.<ShaderInput>();  
var parameters:Vector.<ShaderParameter> = new Vector.<ShaderParameter>();  
var metadata:Vector.<String> = new Vector.<String>();  
  
for (var prop:String in shaderData)  
{  

if (shaderData[prop] is ShaderInput)  
{  

inputs[inputs.length] = shaderData[prop];  
}  
else if (shaderData[prop] is ShaderParameter)  
{  

parameters[parameters.length] = shaderData[prop];  
}  
else  
{  

metadata[metadata.length] = shaderData[prop];  
}  

}  
  
// do something with the inputs or properties

Updated 11 February 2009



382PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

Specifying shader input values

Many shaders expect one or more input images that are used in the shader processing. However, in many cases an 

input is specified automatically when the Shader object is used. For example, suppose a shader requires one input, and 

that shader is used as a filter. When the filter is applied to a display object or BitmapData object, that object is 

automatically set as the input. In that case you do not explicitly set an input value.

However, in some cases, especially if a shader defines multiple inputs, you do explicitly set a value for an input. Each 

input that is defined in a shader is represented in ActionScript by a ShaderInput object. The ShaderInput object is a 

property of the ShaderData instance in the Shader object’s data property, as described in “Identifying shader inputs 

and parameters” on page 381. For example, suppose a shader defines an input named src, and that shader is linked to 

a Shader object named myShader. In that case you access the ShaderInput object corresponding to the src input using 

the following identifier:

myShader.data.src

Each ShaderInput object has an input property that is used to set the value for the input. You set the input property 

to a BitmapData instance to specify image data. You can also set the input property to a BitmapData or 

Vector.<Number> instance to specify binary or number data. For details and restrictions on using a BitmapData or 

Vector.<Number> instance as an input, see the ShaderInput.input listing in the language reference.

In addition to the input property, a ShaderInput object has properties that can be used to determine what type of 

image the input expects. These properties include the width, height, and channels properties. Each ShaderInput 

object also has an index property that is useful for determining whether an explicit value must be provided for the 

input. If a shader expects more inputs than the number that are automatically set, then you set values for those inputs. 

For details on the different ways to use a shader, and whether input values are automatically set, see “Using a shader” 

on page 386.

Specifying shader parameter values

Some shaders define parameter values that the shader uses in creating its result. For example, a shader that alters the 

brightness of an image might specify a brightness parameter that determines how much the operation affects the 

brightness. A single parameter defined in a shader can expect a single value or multiple values, according to the 

parameter definition in the shader. Each parameter that is defined in a shader is represented in ActionScript by a 

ShaderParameter object. The ShaderParameter object is a property of the ShaderData instance in the Shader object’s 

data property, as described in “Identifying shader inputs and parameters” on page 381. For example, suppose a shader 

defines a parameter named brightness, and that shader is represented by a Shader object named myShader. In that 

case you access the ShaderParameter corresponding to the brightness parameter using the following identifier:

myShader.data.brightness

To set a value (or values) for the parameter, create an ActionScript array containing the value or values and assign that 

array to the ShaderParameter object’s value property. The value property is defined as an Array instance because it’s 

possible that a single shader parameter requires multiple values. Even if the shader parameter only expects a single 

value, you must wrap the value in an Array object to assign it to the ShaderParameter.value property. The following 

listing demonstrates setting a single value as the value property:

myShader.data.brightness.value = [75];

If the Pixel Bender source code for the shader defines a default value for the parameter, an array containing the default 

value or values is created and assigned to the ShaderParameter object’s value property when the Shader object is 

created. Once an array has been assigned to the value property (including if it’s the default array) the parameter value 

can be changed by changing the value of the array element. You do not need to create a new array and assign it to the 

value property.

Updated 11 February 2009



383PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

The following example demonstrates setting a shader’s parameter value in ActionScript. In this example the shader 

defines a parameter named color. The color parameter is declared as a float4 variable in the Pixel Bender source 

code, which means it is an array of four floating point numbers. In the example, the color parameter value is changed 

continuously, and each time it changes the shader is used to draw a colored rectangle on the screen. The result is an 

animated color change.

Note: The code for this example was written by Ryan Taylor. Thank you Ryan for sharing this example. You can see 

Ryan’s portfolio and read his writing at www.boostworthy.com/.

The ActionScript code centers around three methods:

• init(): In the init() method the code loads the Pixel Bender bytecode file containing the shader. When the file 

loads, the onLoadComplete() method is called.

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It also 

creates a Sprite instance named texture. In the renderShader() method, the code draws the shader result into 

texture once per frame.

• onEnterFrame(): The onEnterFrame() method is called once per frame, creating the animation effect. In this 

method, the code sets the shader parameter value to the new color, then calls the renderShader() method to draw 

the shader result as a rectangle.

• renderShader(): In the renderShader() method, the code calls the Graphics.beginShaderFill() method to 

specify a shader fill. It then draws a rectangle whose fill is defined by the shader output (the generated color) For 

more information on using a shader in this way, see “Using a shader as a drawing fill” on page 386.

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flex, or as the document class for the FLA file in the Flash authoring tool:

package  
{  

import flash.display.Shader;  
import flash.display.Sprite;  
import flash.events.Event;  
import flash.net.URLLoader;  
import flash.net.URLLoaderDataFormat;  
import flash.net.URLRequest;  
  
public class ColorFilterExample extends Sprite  
{  

private const DELTA_OFFSET:Number = Math.PI * 0.5;  
private var loader:URLLoader;  
private var shader:Shader;  
private var texture:Sprite;  
private var delta:Number = 0;  
  
public function ColorFilterExample()  
{  

init();  
}  
  
private function init():void  
{  

loader = new URLLoader();  
loader.dataFormat = URLLoaderDataFormat.BINARY;  
loader.addEventListener(Event.COMPLETE, onLoadComplete);  
loader.load(new URLRequest("ColorFilter.pbj"));  

}  

Updated 11 February 2009

http://www.boostworthy.com/


384PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

  
private function onLoadComplete(event:Event):void  
{  

shader = new Shader(loader.data);  
  
shader.data.point1.value = [topMiddle.x, topMiddle,y];  
shader.data.point2.value = [bottomLeft.x, bottomLeft.y];  
shader.data.point3.value = [bottomRight.x, bottomRight.y];  
texture = new Sprite();  
  
addChild(texture);  
  
addEventListener(Event.ENTER_FRAME, onEnterFrame);  

}  
private function onEnterFrame(event:Event):void  
{  

shader.data.color.value[0] = 0.5 + Math.cos(delta - DELTA_OFFSET) * 0.5;  
shader.data.color.value[1] = 0.5 + Math.cos(delta) * 0.5;  
shader.data.color.value[2] = 0.5 + Math.cos(delta + DELTA_OFFSET) * 0.5;  
// The alpha channel value (index 3) is set to 1 by the kernel's default  
// value. This value doesn't need to change.  
  
delta += 0.1;  
  
renderShader();  

}  
  
private function renderShader():void  
{  

texture:graphics.clear();  
texture.graphics.beginShaderFill(shader);  
texture.graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);  
texture.graphics.endFill();  

}  
}  

}

The following is the source code for the ColorFilter shader kernel, used to create the “ColorFilter.pbj” Pixel Bender 

bytecode file:

Updated 11 February 2009



385PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

<languageVersion : 1.0;>  
kernel ColorFilter  
<  

namespace : "boostworthy::Example";  
vendor : "Ryan Taylor";  
version : 1;  
description : "Creates an image where every pixel has the specified color value.";  

>  
{  

output pixel4 result;  
  
parameter float4 color  
<  

minValue:float4(0, 0, 0, 0);  
maxValue:float4(1, 1, 1, 1);  
defaultValue:float4(0, 0, 0, 1);  

>;  
  
void evaluatePixel()  
{  

result = color;  
}  

}

If you’re using a shader whose parameters aren’t documented, you can figure out how many elements of what type 

must be included in the array by checking the ShaderParameter object’s type property. The type property indicates 

the data type of the parameter as defined in the shader itself. For a list of the number and type of elements expected by 

each parameter type, see the ShaderParameter.value property listing in the language reference.

Each ShaderParameter object also has an index property that indicates where the parameter fits in the order of the 

shader’s parameters. In addition to these properties, a ShaderParameter object can have additional properties 

containing metadata values provided by the shader’s author. For example, the author can specify metadata values such 

as minimum, maximum, and default values for a parameter. Any metadata values that the author specifies are added 

to the ShaderParameter object as dynamic properties. To examine those properties, use a for..in loop to loop over 

the ShaderParameter object’s dynamic properties to identify its metadata. The following example shows how to use a 

for..in loop to identify a ShaderParameter object’s metadata. Each metadata value is added to a Vector instance 

named metadata. Note that this example assumes a Shader instance named myShader is already created, and that it is 

known to have a parameter named brightness:

var brightness:ShaderParameter = myShader.data.brightness;  
var metadata:Vector.<String> = new Vector.<String>();  
  
for (var prop:String in brightness)  
{  

if (brightness[prop] is String)  
{  

metadata[metadata.length] = brightness[prop];  
}  

}  
  
// do something with the metadata

Updated 11 February 2009



386PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

Using a shader

Once a Pixel Bender shader is available in ActionScript as a Shader object, it can be used in several ways:

• Shader drawing fill: The shader defines the fill portion of a shape drawn using the drawing api

• Blend mode: The shader defines the blend between two overlapping display objects

• Filter: The shader defines a filter that modifies the appearance of visual content

• Stand-alone shader processing: The shader processing runs without specifying the intended use of the output. The 

shader can optionally run in the background, with the result is available when the processing completes. This 

technique can be used to generate bitmap data and also to process non-visual data.

Using a shader as a drawing fill

When you use a shader to create a drawing fill, you use the drawing api methods to create a vector shape. The shader’s 

output is used to fill in the shape, in the same way that any bitmap image can be used as a bitmap fill with the drawing 

api. To create a shader fill, at the point in your code at which you want to start drawing the shape, call the Graphics 

object’s beginShaderFill() method. Pass the Shader object as the first argument to the beginShaderFill() 

method, as shown in this listing:

var canvas:Sprite = new Sprite();  
canvas.graphics.beginShaderFill(myShader);  
canvas.graphics.drawRect(10, 10, 150, 150);  
canvas.graphics.endFill();  
// add canvas to the display list to see the result

When you use a shader as a drawing fill, you set any input image values and parameter values that the shader requires.

The following example demonstrates using a shader as a drawing fill. In this example, the shader creates a three-point 

gradient. This gradient has three colors, each at the point of a triangle, with a gradient blend between them. In addition, 

the colors rotate to create an animated spinning color effect.

Note: The code for this example was written by Petri Leskinen. Thank you Petri for sharing this example. You can see 

more of Petri’s examples and tutorials at http://pixelero.wordpress.com/.

The ActionScript code is in three methods:

• init(): The init() method is called when the application loads. In this method the code sets the initial values for 

the Point objects representing the points of the triangle. The also code creates a Sprite instance named canvas. 

Later, in the updateShaderFill(), the code draws the shader result into canvas once per frame. Finally, the code 

loads the shader bytecode file.

Updated 11 February 2009

http://pixelero.wordpress.com/


387PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It also 

sets the initial parameter values. Finally, the code adds the updateShaderFill() method as a listener for the 

enterFrame event, meaning that it is called once per frame to create an animation effect.

• updateShaderFill(): The updateShaderFill() method is called once per frame, creating the animation effect. 

In this method, the code calculates and sets the shader parameters’ values. The code then calls the 

beginShaderFill() method to create a shader fill and calls other drawing api methods to draw the shader result 

in a triangle.

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flex, or as the document class for the FLA file in the Flash authoring tool:

package  
{  

import flash.display.Shader;  
import flash.display.Sprite;  
import flash.events.Event;  
import flash.geom.Point;  
import flash.net.URLLoader;  
import flash.net.URLLoaderDataFormat;  
import flash.net.URLRequest;  
  
public class ThreePointGradient extends Sprite  
{  

private var canvas:Sprite;  
private var shader:Shader;  
private var loader:URLLoader;  
  
private var topMiddle:Point;  
private var bottomLeft:Point;  
private var bottomRight:Point;  
  
private var colorAngle:Number = 0.0;  
private const d120:Number = 120 / 180 * Math.PI; // 120 degrees in radians  
  
  
public function ThreePointGradient()  
{  

init();  
}  
  
private function init():void  
{  

canvas = new Sprite();  
addChild(canvas);  
  
var size:int = 400;  
topMiddle = new Point(size / 2, 10);  
bottomLeft = new Point(0, size - 10);  
bottomRight = new Point(size, size - 10);  
  
loader = new URLLoader();  
loader.dataFormat = URLLoaderDataFormat.BINARY;  
loader.addEventListener(Event.COMPLETE, onLoadComplete);  
loader.load(new URLRequest("ThreePointGradient.pbj"));  

}  
  

Updated 11 February 2009



388PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

private function onLoadComplete(event:Event):void  
{  

shader = new Shader(loader.data);  
  
shader.data.point1.value = [topMiddle.x, topMiddle.y];  
shader.data.point2.value = [bottomLeft.x, bottomLeft.y];  
shader.data.point3.value = [bottomRight.x, bottomRight.y];  
  
addEventListener(Event.ENTER_FRAME, updateShaderFill);  

}  
  
private function updateShaderFill(event:Event):void  
{  

colorAngle += .06;  
  
var c1:Number = 1 / 3 + 2 / 3 * Math.cos(colorAngle);  
var c2:Number = 1 / 3 + 2 / 3 * Math.cos(colorAngle + d120);  
var c3:Number = 1 / 3 + 2 / 3 * Math.cos(colorAngle - d120;  
  
shader.data.color1.value = [c1, c2, c3, 1.0];  
shader.data.color2.value = [c3, c1, c2, 1.0];  
shader.data.color3.value = [c2, c3, c1, 1.0];  
  
canvas.graphics.clear();  
canvas.graphics.beginShaderFill(shader);  
  
canvas.graphics.moveTo(topMiddle.x, topMiddle.y);  
canvas.graphics.lineTo(bottomLeft.x, bottomLeft.y);  
canvas.graphics.lineTo(bottomRight.x, bottomLeft.y);  
  
canvas.graphics.endFill();  

}  
}  

}

The following is the source code for the ThreePointGradient shader kernel, used to create the 

“ThreePointGradient.pbj” Pixel Bender bytecode file:

Updated 11 February 2009



389PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

<languageVersion : 1.0;>  
kernel ThreePointGradient  
<  

namespace : "Petri Leskinen::Example";  
vendor : "Petri Leskinen";  
version : 1;  
description : "Creates a gradient fill using three specified points and colors.";  

>  
{  

parameter float2 point1 // coordinates of the first point  
<  

minValue:float2(0, 0);  
maxValue:float2(4000, 4000);  
defaultValue:float2(0, 0);  

>;  
  
parameter float4 color1 // color at the first point, opaque red by default  
<  

defaultValue:float4(1.0, 0.0, 0.0, 1.0);  
>;  
  
parameter float2 point2 // coordinates of the second point  
<  

minValue:float2(0, 0);  
maxValue:float2(4000, 4000);  
defaultValue:float2(0, 500);  

>;  
  
parameter float4 color2 // color at the second point, opaque green by default  
<  

defaultValue:float4(0.0, 1.0, 0.0, 1.0);  
>;  
  
parameter float2 point3 // coordinates of the third point  
<  

minValue:float2(0, 0);  
maxValue:float2(4000, 4000);  
defaultValue:float2(0, 500);  

>;  
  
parameter float4 color3 // color at the third point, opaque blue by default  
<  

defaultValue:float4(0.0, 0.0, 1.0, 1.0);  
>;  

Updated 11 February 2009



390PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

  
output pixel4 dst;  
  
void evaluatePixel()  
{  

float2 d2 = point2 - point1;  
float2 d3 = point3 - point1;  
  
// transformation to a new coordinate system  
// transforms point 1 to origin, point2 to (1, 0), and point3 to (0, 1)  
float2x2 mtrx = float2x2(d3.y, -d2.y, -d3.x, d2.x) / (d2.x * d3.y - d3.x * d2.y);  
float2 pNew = mtrx * (outCoord() - point1);  
  
// repeat the edge colors on the outside  
pNew.xy = clamp(pNew.xy, 0.0, 1.0); // set the range to 0.0 ... 1.0  
  
// interpolating the output color or alpha value  
dst = mix(mix(color1, color2, pNew.x), color3, pNew.y);  

}  
}

For more information about drawing shapes using the drawing api, see “Using the drawing API” on page 314.

Using a shader as a blend mode

Using a shader as a blend mode is like using other blend modes. The shader defines the appearance resulting from two 

display objects being blended together visually. To use a shader as a blend mode, assign your Shader object to the 

blendShader property of the foreground display object. Assigning a value other than null to the blendShader 

property automatically sets the display object’s blendMode property to BlendMode.SHADER. The following listing 

demonstrates using a shader as a blend mode. Note that this example assumes that there is a display object named 

foreground contained in the same parent on the display list as other display content, with foreground overlapping 

the other content:

foreground.blendShader = myShader;

When you use a shader as a blend mode, the shader must be defined with at least two inputs. As the example shows, 

you do not set the input values in your code. Instead, the two blended images are automatically used as shader inputs. 

The foreground image is set as the second image. (This is the display object to which the blend mode is applied.) A 

background image is created by taking the composite of all the pixels behind the foreground image’s bounding box. 

This background image is set as the first input image. If you use a shader that expects more than two inputs, you 

provide a value for any input beyond the first two.

The following example demonstrates using a shader as a blend mode. This example uses a lighten blend mode based 

on luminosity. The result of the blend is that the lightest pixel value from either of the blended objects becomes the 

pixel that’s displayed.

Note: The code for this example was written by Mario Klingemann. Thank you Mario for sharing this example. You can 

see more of Mario’s work and read his writing at www.quasimondo.com/.

The important ActionScript code is in these two methods:

• init(): The init() method is called when the application loads. In this method the code loads the shader 

bytecode file.

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It then 

draws three objects. The first, backdrop, is a dark gray background behind the blended objects. The second, 

backgroundShape, is a green gradient ellipse. The third object, foregroundShape, is an orange gradient ellipse.

Updated 11 February 2009

http://www.quasimondo.com/


391PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

The foregroundShape ellipse is the foreground object of the blend. The background image of the blend is formed 

by the part of backdrop and the part of backgroundShape that are overlapped by the foregroundShape object’s 

bounding box. The foregroundShape object is the front-most object in the display list. It partially overlaps 

backgroundShape and completely overlaps backdrop. Because of this overlap, without a blend mode applied, the 

orange ellipse (foregroundShape) shows completely and part of the green ellipse (backgroundShape) is hidden 

by it: 

However, with the blend mode applied, the brighter part of the green ellipse “shows through” because it is lighter 

than the portion of foregroundShape that overlaps it:

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flex, or as the document class for the FLA file in the Flash authoring tool:

package  
{  

import flash.display.BlendMode;  
import flash.display.GradientType;  
import flash.display.Graphics;  
import flash.display.Shader;  
import flash.display.Shape;  
import flash.display.Sprite;  
import flash.events.Event;  
import flash.geom.Matrix;  
import flash.net.URLLoader;  
import flash.net.URLLoaderDataFormat;  
import flash.net.URLRequest;  
  
public class LumaLighten extends Sprite  
{  

private var shader:Shader;  
private var loader:URLLoader;  
  
public function LumaLighten()  
{  

init();  

Updated 11 February 2009



392PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

}  
  
private function init():void  
{  

loader = new URLLoader();  
loader.dataFormat = URLLoaderDataFormat.BINARY;  
loader.addEventListener(Event.COMPLETE, onLoadComplete);  
loader.load(new URLRequest("LumaLighten.pbj"));  

}  
  
  
private function onLoadComplete(event:Event):void  
{  

shader = new Shader(loader.data);  
  
var backdrop:Shape = new Shape();  
var g0:Graphics = backdrop.graphics;  
g0.beginFill(0x303030);  
g0.drawRect(0, 0, 400, 200);  
g0.endFill();  
addChild(backdrop);  
  
var backgroundShape:Shape = new Shape();  
var g1:Graphics = backgroundShape.graphics;  
var c1:Array = [0x336600, 0x80ff00];  
var a1:Array = [255, 255];  
var r1:Array = [100, 255];  
var m1:Matrix = new Matrix();  
m1.createGradientBox(300, 200);  
g1.beginGradientFill(GradientType.LINEAR, c1, a1, r1, m1);  
g1.drawEllipse(0, 0, 300, 200);  
g1.endFill();  
addChild(backgroundShape);  
  
var foregroundShape:Shape = new Shape();  
var g2:Graphics = foregroundShape.graphics;  
var c2:Array = [0xff8000, 0x663300];  
var a2:Array = [255, 255];  
var r2:Array = [100, 255];  
var m2:Matrix = new Matrix();  
m2.createGradientBox(300, 200);  
g2.beginGradientFill(GradientType.LINEAR, c2, a2, r2, m2);  
g2.drawEllipse(100, 0, 300, 200);  
g2.endFill();  
addChild(foregroundShape);  
  
foregroundShape.blendShader = shader;  
foregroundShape.blendMode = BlendMode.SHADER;  

}  
}  

}

The following is the source code for the LumaLighten shader kernel, used to create the “LumaLighten.pbj” Pixel 

Bender bytecode file:

Updated 11 February 2009



393PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

<languageVersion : 1.0;>  
kernel LumaLighten  
<  

namespace : "com.quasimondo.blendModes";  
vendor : "Quasimondo.com";  
version : 1;  
description : "Luminance based lighten blend mode";  

>  
{  

input image4 background;  
input image4 foreground;  

  
output pixel4 dst;  
  
const float3 LUMA = float3(0.212671, 0.715160, 0.072169);  

  
void evaluatePixel()  
{  

float4 a = sampleNearest(foreground, outCoord());  
float4 b = sampleNearest(background, outCoord());  
float luma_a = a.r * LUMA.r + a.g * LUMA.g + a.b * LUMA.b;  
float luma_b = b.r * LUMA.r + b.g * LUMA.g + b.b * LUMA.b;  
  
dst = luma_a > luma_b ? a : b;  

}  
}

For more information on using blend modes, see “Applying blending modes” on page 297.

Using a shader as a filter

Using a shader as a filter is like using any of the other filters in ActionScript. When you use a shader as a filter, the 

filtered image (a display object or BitmapData object) is passed to the shader. The shader uses the input image to create 

the filter output, which is usually a modified version of the original image. If the filtered object is a display object the 

shader’s output is displayed on the screen in place of the filtered display object. If the filtered object is a BitmapData 

object, the shader’s output becomes the content of the BitmapData object whose applyFilter() method is called.

To use a shader as a filter, you first create the Shader object as described in “Loading or embedding a shader” on 

page 378. Next you create a ShaderFilter object linked to the Shader object. The ShaderFilter object is the filter that is 

applied to the filtered object. You apply it to an object in the same way that you apply any filter. You pass it to the 

filters property of a display object or you call the applyFilter() method on a BitmapData object. For example, 

the following code creates a ShaderFilter object and applies the filter to a display object named homeButton.

var myFilter:ShaderFilter = new ShaderFilter(myShader);  
homeButton.filters = [myFilter];

When you use a shader as a filter, the shader must be defined with at least one input. As the example shows, you do 

not set the input value in your code. Instead, the filtered display object or BitmapData object is set as the input image. 

If you use a shader that expects more than one input, you provide a value for any input beyond the first one.

In some cases, a filter changes the dimensions of the original image. For example, a typical drop shadow effect adds 

extra pixels containing the shadow that’s added to the image. When you use a shader that changes the image 

dimensions, set the leftExtension, rightExtension, topExtension, and bottomExtension properties to indicate 

by how much you want the image size to change.

Updated 11 February 2009



394PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

The following example demonstrates using a shader as a filter. The filter in this example inverts the red, green, and 

blue channel values of an image. The result is the “negative” version of the image.

Note: The shader that this example uses is the invertRGB.pbk Pixel Bender kernel that is included with the Pixel Bender 

Toolkit. You can load the source code for the kernel from the Pixel Bender Toolkit installation directory. Compile the 

source code and save the bytecode file in the same directory as the source code.

The important ActionScript code is in these two methods:

• init(): The init() method is called when the application loads. In this method the code loads the shader 

bytecode file.

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It then 

creates and draws the contents of an object named target. The target object is a rectangle filled with a linear 

gradient color that is red on the left, yellow-green in the middle, and light blue on the right. The unfiltered object 

looks like this:

With the filter applied the colors are inverted, making the rectangle look like this:

The shader that this example uses is the “invertRGB.pbk” sample Pixel Bender kernel that is included with the Pixel 

Bender Toolkit. The source code is available in the file “invertRGB.pbk” in the Pixel Bender Toolkit installation 

directory. Compile the source code and save the bytecode file with the name “invertRGB.pbj” in the same directory as 

your ActionScript source code.

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flex, or as the document class for the FLA file in the Flash authoring tool:

Updated 11 February 2009



395PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

package  
{  

import flash.display.GradientType;  
import flash.display.Graphics;  
import flash.display.Shader;  
import flash.display.Shape;  
import flash.display.Sprite;  
import flash.filters.ShaderFilter;  
import flash.events.Event;  
import flash.geom.Matrix;  
import flash.net.URLLoader;  
import flash.net.URLLoaderDataFormat;  
import flash.net.URLRequest;  
  
public class InvertRGB extends Sprite  
{  

private var shader:Shader;  
private var loader:URLLoader;  
  
public function InvertRGB()  
{  

init();  
}  
  
private function init():void  
{  

loader = new URLLoader();  
loader.dataFormat = URLLoaderDataFormat.BINARY;  
loader.addEventListener(Event.COMPLETE, onLoadComplete);  
loader.load(new URLRequest("invertRGB.pbj"));  

}  
  
  
private function onLoadComplete(event:Event):void  
{  

shader = new Shader(loader.data);  
  
var target:Shape = new Shape();  
addChild(target);  
  
var g:Graphics = target.graphics;  
var c:Array = [0x990000, 0x445500, 0x007799];  
var a:Array = [255, 255, 255];  
var r:Array = [0, 127, 255];  
var m:Matrix = new Matrix();  
m.createGradientBox(w, h);  
g.beginGradientFill(GradientType.LINEAR, c, a, r, m);  
g.drawRect(10, 10, w, h);  
g.endFill();  
  
var invertFilter:ShaderFilter = new ShaderFilter(shader);  
target.filters = [invertFilter];  

}  
}  

}

For more information on applying filters, see “Creating and applying filters” on page 347.

Updated 11 February 2009



396PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

Using a shader in stand-alone mode

When you use a shader in stand-alone mode, the shader processing runs independent of how you intend to use the 

output. You specify a shader to execute, set input and parameter values, and designate an object into which the result 

data is placed. You can use a shader in stand-alone mode for two reasons:

• Processing non-image data: In stand-alone mode, you can choose to pass arbitrary binary or number data to the 

shader rather than bitmap image data. You can choose to have the shader result be returned as binary data or 

number data in addition to bitmap image data.

• Background processing: When you run a shader in stand-alone mode, by default the shader executes 

asynchronously. This means that the shader runs in the background while your application continues to run, and 

your code is notified when the shader processing finishes. You can use a shader that takes a long time to run and it 

doesn’t freeze up the application user interface or other processing while the shader is running.

You use a ShaderJob object to execute a shader in stand-alone mode. First you create the ShaderJob object and link it 

to the Shader object representing the shader to execute:

var job:ShaderJob = new ShaderJob(myShader);

Next, you set any input or parameter values that the shader expects. If you are executing the shader in the background, 

you also register a listener for the ShaderJob object’s complete event. Your listener is called when the shader finishes 

its work:

function completeHandler(event:ShaderEvent):void  
{  

// do something with the shader result  
}  
  
job.addEventListener(ShaderEvent.COMPLETE, completeHandler);

Next, you create an object into which the shader operation result is written when the operation finishes. You assign 

that object to the ShaderJob object’s target property:

var jobResult:BitmapData = new BitmapData(100, 75);  
job.target = jobResult;

Assign a BitmapData instance to the target property if you are using the ShaderJob to perform image processing. If 

you are processing binary or number data, assign a ByteArray object or Vector.<Number> instance to the target 

property. In that case, you must set the ShaderJob object’s width and height properties to specify the amount of data 

to output to the target object.

Note: You can set the ShaderJob object’s shader, target,width, and height properties in one step by passing arguments 

to the ShaderJob() constructor, like this:var job:ShaderJob = new ShaderJob(myShader, myTarget, myWidth, 

myHeight);

When you are ready to execute the shader, you call the ShaderJob object’s start() method:

job.start();

By default calling start() causes the ShaderJob to execute asynchronously. In that case program execution continues 

immediately with the next line of code rather than waiting for the shader to finish. When the shader operation finishes, 

the ShaderJob object calls its complete event listeners, notifying them that it is done. At that point (that is, in the body 

of your complete event listener) the target object contains the shader operation result.

Note: Instead of using the target property object, you can retrieve the shader result directly from the event object that’s 

passed to your listener method. The event object is a ShaderEvent instance. The ShaderEvent object has three properties 

that can be used to access the result, depending on the data type of the object you set as the target property: 

ShaderEvent.bitmapData, ShaderEvent.byteArray, and ShaderEvent.vector.

Updated 11 February 2009



397PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with Pixel Bender shaders

Alternatively, you can pass a true argument to the start() method. In that case the shader operation executes 

synchronously. All code (including interaction with the user interface and any other events) pauses while the shader 

executes. When the shader finishes, the target object contains the shader result and the program continues with the 

next line of code.

job.start(true);

Updated 11 February 2009



398

Chapter 18: Working with movie clips

The MovieClip class is the core class for animation and movie clip symbols created in Adobe® Flash® CS4 Professional. 

It has all the behaviors and functionality of display objects, but with additional properties and methods for controlling 

a movie clip’s timeline. This chapter explains how to use ActionScript to control movie clip playback and to create a 

movie clip dynamically.

Basics of movie clips

Introduction to working with movie clips

Movie clips are a key element for people who create animated content with the Flash authoring tool and want to 

control that content with ActionScript. Whenever you create a movie clip symbol in Flash, Flash adds the symbol to 

the library of that Flash document. By default, this symbol becomes an instance of the MovieClip class, and as such has 

the properties and methods of the MovieClip class. 

When an instance of a movie clip symbol is placed on the Stage, the movie clip automatically progresses through its 

timeline (if it has more than one frame) unless its playback is altered using ActionScript. It is this timeline that 

distinguishes the MovieClip class, allowing you to create animation through motion or shape tweens through the Flash 

authoring tool. By contrast, with a display object that is an instance of the Sprite class, you can create animation only 

by programmatically changing the object’s values.

In previous versions of ActionScript, the MovieClip class was the base class of all instances on the Stage. In 

ActionScript 3.0, a movie clip is only one of many display objects that can appear on the screen. If a timeline is not 

necessary for the function of a display object, using the Shape class or Sprite class in lieu of the MovieClip class may 

improve rendering performance. For more information on choosing the appropriate display object for a task, see 

“Choosing a DisplayObject subclass” on page 284.

Common movie clip tasks

The following common movie clips tasks are described in this chapter:

• Making movie clips play and stop

• Playing movie clips in reverse

• Moving the playhead to specific points in a movie clip’s timeline

• Working with frame labels in ActionScript

• Accessing scene information in ActionScript

• Creating instances of library movie clip symbols using ActionScript

• Loading and controlling external SWF files, including files created for previous Flash Player versions

• Building an ActionScript system for creating graphical assets to be loaded and used at run time

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/MovieClip.html


399PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

Important concepts and terms

The following reference list contains important terms used in this chapter:

• AVM1 SWF: A SWF file created using ActionScript 1.0 or ActionScript 2.0, usually targeting Flash Player 8 or 

earlier.

• AVM2 SWF: A SWF file created using ActionScript 3.0 for Adobe Flash Player 9 or later or Adobe AIR.

• External SWF: A SWF file that is created separately from the project SWF file and is intended to be loaded into the 

project SWF file and played back within that SWF file.

• Frame: The smallest division of time on the timeline. As with a motion picture filmstrip, each frame is like a 

snapshot of the animation in time, and when frames are played quickly in sequence, the effect of animation is 

created.

• Timeline: The metaphorical representation of the series of frames that make up a movie clip’s animation sequence. 

The timeline of a MovieClip object is equivalent to the timeline in the Flash authoring tool.

• Playhead: A marker identifying the location (frame) in the timeline that is being displayed at a given moment.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Because 

this chapter is about working with movie clips in ActionScript, essentially all the code listings in this chapter are 

written with the idea of manipulating a movie clip symbol that has been created and placed on the Stage. Testing the 

sample will involve viewing the result in Flash Player or AIR to see the effects of the code on the symbol. To test the 

code listings in this chapter:

1 Create an empty Flash document.

2 Select a keyframe in the timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Create a movie clip symbol instance on the Stage. For example, draw a shape, select it, choose Modify > Convert to 

symbol, and give the symbol a name.

5 With the movie clip selected, in the Property inspector, give it an instance name. The name should match the name 

used for the movie clip in the example code listing—for example, if the code listing manipulates a movie clip named 

myMovieClip, you should name your movie clip instance myMovieClip as well.

6 Run the program using Control > Test Movie.

On the screen you will see the results of the code manipulating the movie clip as specified in the code listing.

Other techniques for testing example code listings are explained in more detail in “Testing in-chapter example code 

listings” on page 34.

Updated 11 February 2009



400PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

Working with MovieClip objects

When you publish a SWF file, Flash converts all movie clip symbol instances on the Stage to MovieClip objects. You 

can make a movie clip symbol available to ActionScript by giving it an instance name in the Instance Name field of the 

Property inspector. When the SWF file is created, Flash generates the code that creates the MovieClip instance on the 

Stage and declares a variable using the instance name. If you have named movie clips that are nested inside other named 

movie clips, those child movie clips are treated like properties of the parent movie clip—you can access the child movie 

clip using dot syntax. For example, if a movie clip with the instance name childClip is nested within another clip with 

the instance name parentClip, you can make the child clip’s timeline animation play by calling this code:

 parentClip.childClip.play();

Note: : Children instances placed on the Stage in the Flash authoring tool cannot be accessed by code from within the 

constructor of a parent instance since they have not been created at that point in code execution. Before accessing the 

child, the parent must instead either create the child instance by code or delay access to a callback function that listens 

for the child to dispatch its Event.ADDED_TO_STAGE event.

While some legacy methods and properties of the ActionScript 2.0 MovieClip class remain the same, others have 

changed. All properties prefixed with an underscore have been renamed. For example, _width and _height 

properties are now accessed as width and height, while _xscale and _yscale are now accessed as scaleX and 

scaleY. For a complete list of the properties and methods of the MovieClip class, consult the ActionScript 3.0 

Language and Components Reference.

Controlling movie clip playback

Flash uses the metaphor of a timeline to convey animation or a change in state. Any visual element that employs a 

timeline must be either a MovieClip object or extend from the MovieClip class. While ActionScript can direct any 

movie clip to stop, play, or go to another point on the timeline, it cannot be used to dynamically create a timeline or 

add content at specific frames; this is only possible using the Flash authoring tool.

When a MovieClip is playing, it progresses along its timeline at a speed dictated by the frame rate of the SWF file. 

Alternatively, you can override this setting by setting the Stage.frameRate property in ActionScript.

Playing movie clips and stopping playback

The play() and stop() methods allow basic control of a movie clip across its timeline. For example, suppose you have 

a movie clip symbol on the Stage which contains an animation of a bicycle moving across the screen, with its instance 

name set to bicycle. If the following code is attached to a keyframe on the main timeline,

 bicycle.stop();

the bicycle will not move (its animation will not play). The bicycle’s movement could start through some other user 

interaction. For example, if you had a button named startButton, the following code on a keyframe on the main 

timeline would make it so that clicking the button causes the animation to play:

 // This function will be called when the button is clicked. It causes the   
 // bicycle animation to play.  
 function playAnimation(event:MouseEvent):void  
 {  
 bicycle.play();  
 }  
 // Register the function as a listener with the button.  
 startButton.addEventListener(MouseEvent.CLICK, playAnimation);

Updated 11 February 2009



401PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

Fast-forwarding and rewinding

The play() and stop() methods are not the only way of controlling playback in a movie clip. You can also move the 

playhead forward or backward along the timeline manually by using the nextFrame() and prevFrame() methods. 

Calling either of these methods stops playback and moves the playhead one frame forward or backward, respectively.

Using the play() method is analogous to calling nextFrame() every time the movie clip object’s enterFrame event 

is triggered. Along these lines, you could make the bicycle movie clip play backwards by creating an event listener 

for the enterFrame event and telling bicycle to go to its previous frame in the listener function, as follows:

 // This function is called when the enterFrame event is triggered, meaning   
 // it's called once per frame.  
 function everyFrame(event:Event):void  
 {  
 if (bicycle.currentFrame == 1)  
 {  
 bicycle.gotoAndStop(bicycle.totalFrames);  
 }  
 else  
 {  
 bicycle.prevFrame();  
 }  
 }  
 bicycle.addEventListener(Event.ENTER_FRAME, everyFrame);

In normal playback, if a movie clip contains more than a single frame, it will loop indefinitely when playing; that is, it 

will return to Frame 1 if it progresses past its final frame. When you use prevFrame() or nextFrame(), this behavior 

does not happen automatically (calling prevFrame() when the playhead is on Frame 1 doesn’t move the playhead to 

the last frame). The if condition in the example above checks to see if the playhead has progressed backwards to the 

first frame, and sets the playhead ahead to its final frame, effectively creating a continuous loop of the movie clip 

playing backwards.

Jumping to a different frame and using frame labels

Sending a movie clip to a new frame is a simple affair. Calling either gotoAndPlay() or gotoAndStop() will jump the 

movie clip to the frame number specified as a parameter. Alternatively, you can pass a string that matches the name of 

a frame label. Any frame on the timeline can be assigned a label. To do this, select a frame on the timeline and then 

enter a name in the Frame Label field on the Property inspector.

The advantages of using frame labels instead of numbers are particularly evident when creating a complex movie clip. 

When the number of frames, layers, and tweens in an animation becomes large, consider labeling important frames 

with explanatory descriptions that represent shifts in the behavior of the movie clip (for example, “off,” “walking,” or 

“running”). This improves code readability and also provides flexibility, since ActionScript calls that go to a labeled 

frame are pointers to a single reference—the label—rather than a specific frame number. If later on you decide to move 

a particular segment of the animation to a different frame, you will not need to change your ActionScript code as long 

as you keep the same label for the frames in the new location.

To represent frame labels in code, ActionScript 3.0 includes the FrameLabel class. Each instance of this class represents 

a single frame label, and has a name property representing the name of the frame label as specified in the Property 

inspector, and a frame property representing the frame number of the frame where the label is placed on the timeline.

In order to get access to the FrameLabel instances associated with a movie clip instance, the MovieClip class includes 

two properties that directly return FrameLabel objects. The currentLabels property returns an array that consists of 

all FrameLabel objects across the entire timeline of a movie clip. The currentLabel property returns a string 

containing the name of the frame label encountered most recently along the timeline.

Updated 11 February 2009



402PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

Suppose you were creating a movie clip named robot and had labeled the various states of its animation. You could 

set up a condition that checks the currentLabel property to access the current state of robot, as in the following code:

 if (robot.currentLabel == "walking")  
 {  
 // do something   
 }

Working with scenes

In the Flash authoring environment, you can use scenes to demarcate a series of timelines that a SWF file will progress 

through. Using the second parameter of the gotoAndPlay() or gotoAndStop() methods, you can specify a scene to 

send the playhead to. All FLA files start with only the initial scene, but you can create new scenes.

Using scenes is not always the best approach because scenes have a number of drawbacks. A Flash document that 

contains multiple scenes can be difficult to maintain, particularly in multiauthor environments. Multiple scenes can 

also be inefficient in bandwidth, because the publishing process merges all scenes into a single timeline. This causes a 

progressive download of all scenes, even if they are never played. For these reasons, use of multiple scenes is often 

discouraged except for organizing lengthy multiple timeline-based animations.

The scenes property of the MovieClip class returns an array of Scene objects representing all the scenes in the SWF 

file. The currentScene property returns a Scene object that represents the scene that is currently playing.

The Scene class has several properties that give information about a scene. The labels property returns an array of 

FrameLabel objects representing the frame labels in that scene. The name property returns the scene’s name as a string. 

The numFrames property returns an int representing the total number of frames in the scene.

Creating MovieClip objects with ActionScript

One way of adding content to the screen in Flash is by dragging assets from the library onto the Stage, but that is not 

the only workflow. For complex projects, experienced developers commonly prefer to create movie clips 

programatically. This approach brings several advantages: easier re-use of code, faster compile-time speed, and more 

sophisticated modifications that are available only to ActionScript.

The display list API of ActionScript 3.0 streamlines the process of dynamically creating MovieClip objects. The ability 

to instantiate a MovieClip instance directly, separate from the process of adding it to the display list, provides flexibility 

and simplicity without sacrificing control.

In ActionScript 3.0, when you create a movie clip (or any other display object) instance programatically, it is not visible 

on the screen until it is added to the display list by calling the addChild() or the addChildAt() method on a display 

object container. This allows you to create a movie clip, set its properties, and even call methods before it is rendered 

to the screen. For more information on working with the display list, see “Working with display object containers” on 

page 274.

Exporting library symbols for ActionScript

By default, instances of movie clip symbols in a Flash document’s library cannot be dynamically created (that is, 

created using only ActionScript). This is because each symbol that is exported for use in ActionScript adds to the size 

of your SWF file, and it’s recognized that some symbols might not be intended for use on the stage. For this reason, in 

order to make a symbol available in ActionScript, you must specify that the symbol should be exported for 

ActionScript.

Updated 11 February 2009



403PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

To export a symbol for ActionScript:

1 Select the symbol in the Library panel and open its Symbol Properties dialog box.

2 If necessary, activate the Advanced settings.

3 In the Linkage section, activate the Export for ActionScript checkbox.

This will activate the Class and Base Class fields.

By default, the Class field is populated with the symbol name, with spaces removed (for example, a symbol named 

“Tree House” would become “TreeHouse”). To specify that the symbol should use a custom class for its behavior, 

enter the full name of the class including its package in this field. If you want to be able to create instances of the 

symbol in ActionScript, but don’t need to add any additional behavior, you can leave the class name as-is.

The Base Class field’s value defaults to flash.display.MovieClip. If you want your symbol to extend the 

functionality of another customer class, you can specify that class’s name instead, as long as that class extends the 

Sprite (or MovieClip) class.

4 Press the OK button to save the changes.

At this point, if Flash can’t find an external ActionScript file with a definition for the specified class (for instance, if 

you didn’t need to add additional behavior for the symbol), a warning is displayed:

A definition for this class could not be found in the classpath, so one will be automatically generated in the SWF file 

upon export.

You can disregard this warning if your library symbol does not require unique functionality beyond the 

functionality of the MovieClip class.

If you do not provide a class for your symbol, Flash will create a class for your symbol equivalent to this one:

 package  
 {  
 import flash.display.MovieClip;  
   
 public class ExampleMovieClip extends MovieClip  
 {  
 public function ExampleMovieClip()  
 {  
 }  
 }  
 }

If you do want to add extra ActionScript functionality to your symbol, add the appropriate properties and methods to 

the code structure below. For example, suppose you have a movie clip symbol containing a circle of 50 pixels width 

and 50 pixels height, and the symbol is specified to be exported for ActionScript with a class named Circle. The 

following code, when placed in a Circle.as file, extends the MovieClip class and provides the symbol with the additional 

methods getArea() and getCircumference():

Updated 11 February 2009



404PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

 package   
 {  
 import flash.display.MovieClip;  
   
 public class Circle extends MovieClip  
 {  
 public function Circle()  
 {  
 }  
   
 public function getArea():Number  
 {  
 // The formula is Pi times the radius squared.  
 return Math.PI * Math.pow((width / 2), 2);  
 }  
   
 public function getCircumference():Number  
 {  
 // The formula is Pi times the diameter.  
 return Math.PI * width;  
 }  
 }  
 }

The following code, placed on a keyframe on Frame 1 of the Flash document, will create an instance of the symbol and 

display it on the screen:

 var c:Circle = new Circle();  
 addChild(c);  
 trace(c.width);  
 trace(c.height);  
 trace(c.getArea());  
 trace(c.getCircumference());

This code demonstrates ActionScript-based instantiation as an alternative to dragging individual assets onto the Stage. 

It creates a circle that has all of the properties of a movie clip and also has the custom methods defined in the Circle 

class. This is a very basic example—your library symbol can specify any number of properties and methods in its class.

ActionScript-based instantiation is powerful, because it allows you to dynamically create large quantities of instances 

that would be tedious to arrange manually. It is also flexible, because you can customize each instance’s properties as 

it is created. You can get a sense of both of these benefits by using a loop to dynamically create several Circle instances. 

With the Circle symbol and class described previously in your Flash document’s library, place the following code on a 

keyframe on Frame 1:

Updated 11 February 2009



405PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

 import flash.geom.ColorTransform;  
   
 var totalCircles:uint = 10;  
 var i:uint;  
 for (i = 0; i < totalCircles; i++)  
 {  
 // Create a new Circle instance.  
 var c:Circle = new Circle();  
 // Place the new Circle at an x coordinate that will space the circles  
 // evenly across the Stage.  
 c.x = (stage.stageWidth / totalCircles) * i;  
 // Place the Circle instance at the vertical center of the Stage.  
 c.y = stage.stageHeight / 2;  
 // Change the Circle instance to a random color  
 c.transform.colorTransform = getRandomColor();  
 // Add the Circle instance to the current timeline.  
 addChild(c);  
 }  
   
 function getRandomColor():ColorTransform  
 {  
 // Generate random values for the red, green, and blue color channels.  
 var red:Number = (Math.random() * 512) - 255;  
 var green:Number = (Math.random() * 512) - 255;  
 var blue:Number = (Math.random() * 512) - 255;  
   
 // Create and return a ColorTransform object with the random colors.  
 return new ColorTransform(1, 1, 1, 1, red, green, blue, 0);  
 }

This demonstrates how you can create and customize multiple instances of a symbol quickly using code. Each instance 

is positioned based on the current count within the loop, and each instance is given a random color by setting its 

transform property (which Circle inherits by extending the MovieClip class).

Loading an external SWF file

In ActionScript 3.0, SWF files are loaded using the Loader class. To load an external SWF file, your ActionScript needs 

to do four things:

1 Create a new URLRequest object with the url of the file.

2 Create a new Loader object.

3 Call the Loader object’s load() method, passing the URLRequest instance as a parameter.

4 Call the addChild() method on a display object container (such as the main timeline of a Flash document) to add 

the Loader instance to the display list.

Ultimately, the code looks like this:

 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/externalSwf.swf");  
 var loader:Loader = new Loader()  
 loader.load(request);  
 addChild(loader);

Updated 11 February 2009



406PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

This same code can be used to load an external image file such as a JPEG, GIF, or PNG image, by specifying the image 

file’s url rather than a SWF file’s url. A SWF file, unlike an image file, may contain ActionScript. Thus, although the 

process of loading a SWF file may be identical to loading an image, when loading an external SWF file both the SWF 

file doing the loading and the SWF file being loaded must reside in the same security sandbox if Flash Player or AIR is 

playing the SWF and you plan to use ActionScript to communicate in any way to the external SWF file. Additionally, 

if the external SWF file contains classes that share the same namespace as classes in the loading SWF file, you may need 

to create a new application domain for the loaded SWF file in order to avoid namespace conflicts. For more 

information on security and application domain considerations, see “Using the ApplicationDomain class” on page 640 

and “Loading SWF files and images” on page 698.

When the external SWF file is successfully loaded, it can be accessed through the Loader.content property. If the 

external SWF file is published for ActionScript 3.0, this will be either a movie clip or a sprite, depending on which class 

it extends.

Considerations for loading an older SWF file 

If the external SWF file has been published with an older version of ActionScript, there are important limitations to 

consider. Unlike an ActionScript 3.0 SWF file that runs in AVM2 (ActionScript Virtual Machine 2), a SWF file 

published for ActionScript 1.0 or 2.0 runs in AVM1 (ActionScript Virtual Machine 1).

When an AVM1 SWF file is successfully loaded, the loaded object (the Loader.content property) will be an 

AVM1Movie object. An AVM1Movie instance is not the same as a MovieClip instance. It is a display object, but unlike 

a movie clip, it does not include timeline-related methods or properties. The parent AVM2 SWF file will not have 

access to the properties, methods, or objects of the loaded AVM1Movie object.

There are additional restrictions on an AVM1 SWF file loaded by an AVM2 SWF file. For details, see the AVM1Movie 

class listing in the ActionScript 3.0 Language and Components Reference.

Example: RuntimeAssetsExplorer

The Export for ActionScript functionality can be especially advantageous for libraries that may be useful across more 

than one project. If Flash Player or AIR executes a SWF file, symbols that have been exported to ActionScript are 

available to any SWF file within the same security sandbox as the SWF that loads it. In this way, a single Flash 

document can generate a SWF file that is designated for the sole purpose of holding graphical assets. This technique is 

particularly useful for larger projects where designers working on visual assets can work in parallel with developers 

who create a “wrapper” SWF file that then loads the graphical assets SWF file at run time. You can use this method to 

maintain a series of versioned files where graphical assets are not dependent upon the progress of programming 

development.

The RuntimeAssetsExplorer application loads any SWF file that is a subclass of RuntimeAsset and allows you to 

browse the available assets of that SWF file. The example illustrates the following:

• Loading an external SWF file using Loader.load()

• Dynamic creation of a library symbol exported for ActionScript

• ActionScript control of MovieClip playback

Before beginning, note that each of the SWF files to run in Flash Player must be located in the same security sandbox. 

For more information, see “Security sandboxes” on page 686.

Updated 11 February 2009



407PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

RuntimeAssetsExplorer application files can be found in the folder Samples/RuntimeAssetsExplorer. The application 

consists of the following files:

Establishing a run-time library interface

In order for the explorer to properly interact with a SWF library, the structure of the run-time asset libraries must be 

formalized. We will accomplish this by creating an interface, which is similar to a class in that it’s a blueprint of 

methods that demarcate an expected structure, but unlike a class it includes no method bodies. The interface provides 

a way for both the run-time library and the explorer to communicate to one another. Each SWF of run-time assets that 

is loaded in our browser will implement this interface. For more information about interfaces and how they can be 

useful, see “Interfaces” on page 105.

The RuntimeLibrary interface will be very simple—we merely require a function that can provide the explorer with an 

array of classpaths for the symbols to be exported and available in the run-time library. To this end, the interface has 

a single method: getAssets().

 package com.example.programmingas3.runtimeassetexplorer  
 {  
 public interface RuntimeLibrary  
 {  
 function getAssets():Array;  
 }  
 }

Creating the asset library SWF file

By defining the RuntimeLibrary interface, it’s possible to create multiple asset library SWF files that can be loaded into 

another SWF file. Making an individual SWF library of assets involves four tasks:

• Creating a class for the asset library SWF file

• Creating classes for individual assets contained in the library

File Description

RuntimeAssetsExample.mxml

or

RuntimeAssetsExample.fla

The user interface for the application for Flex (MXML) 

or Flash (FLA).

RuntimeAssetsExample.as Document class for the Flash (FLA) application..

GeometricAssets.as An example class that implements the RuntimeAsset 

interface.

GeometricAssets.fla A FLA file linked to the GeometricAssets class (the 

document class of the FLA) containing symbols that 

are exported for ActionScript.

com/example/programmingas3/runtimeassetexplorer/RuntimeLibrary.as An interface that defines the required methods 

expected of all run-time asset SWF files that will be 

loaded into the explorer container.

com/example/programmingas3/runtimeassetexplorer/AnimatingBox.as The class of the library symbol in the shape of a 

rotating box.

com/example/programmingas3/runtimeassetexplorer/AnimatingStar.as The class of the library symbol in the shape of a 

rotating star.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


408PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

• Creating the actual graphic assets

• Associating graphic elements with classes and publishing the library SWF

Creating a class to implement the RuntimeLibrary interface

Next, we’ll create the GeometricAssets class that will implement the RuntimeLibrary interface. This will be the 

document class of the FLA. The code for this class is very similar to the RuntimeLibrary interface—the difference 

between them is that in the class definition the getAssets() method has a method body.

 package  
 {  
 import flash.display.Sprite;  
 import com.example.programmingas3.runtimeassetexplorer.RuntimeLibrary;  
   
 public class GeometricAssets extends Sprite implements RuntimeLibrary   
 {  
 public function GeometricAssets() {  
   
 }  
 public function getAssets():Array {  
 return [ "com.example.programmingas3.runtimeassetexplorer.AnimatingBox",  
  "com.example.programmingas3.runtimeassetexplorer.AnimatingStar" ];  
 }  
 }  
 }

If we were to create a second run-time library, we could create another FLA based upon another class (for example, 

AnimationAssets) that provides its own getAssets() implementation.

Creating classes for each MovieClip asset

For this example, we’ll merely extend the MovieClip class without adding any functionality to the custom assets. The 

following code for AnimatingStar is analogous to that of AnimatingBox:

 package com.example.programmingas3.runtimeassetexplorer  
 {  
 import flash.display.MovieClip;  
   
 public class AnimatingStar extends MovieClip  
 {  
 public function AnimatingStar() {  
 }  
 }  
 }

Publishing the library

We’ll now connect the MovieClip-based assets to the new class by creating a new FLA and entering GeometricAssets 

into the Document Class field of the Property inspector. For the purposes of this example, we’ll create two very basic 

shapes that use a timeline tween to make one clockwise rotation over 360 frames. Both the animatingBox and 

animatingStar symbols are set to Export for ActionScript and have the Class field set to the respective classpaths 

specified in the getAssets() implementation. The default base class of flash.display.MovieClip remains, as we 

want to subclass the standard MovieClip methods.

After setting up your symbol’s export settings, publish the FLA. You now have your first run-time library. This SWF 

file could be loaded into another AVM2 SWF file and the AnimatingBox and AnimatingStar symbols would be 

available to the new SWF file.

Updated 11 February 2009



409PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with movie clips

Loading the library into another SWF file

The last functional piece to deal with is the user interface for the asset explorer. In this example, the path to the run-

time library is hard-coded as a variable named ASSETS_PATH. Alternatively, you could use the FileReference class—for 

example, to create an interface that browses for a particular SWF file on your hard drive.

When the run-time library is successfully loaded, Flash Player calls the runtimeAssetsLoadComplete() method:

 private function runtimeAssetsLoadComplete(event:Event):void  
 {  
 var rl:* = event.target.content;  
 var assetList:Array = rl.getAssets();  
 populateDropdown(assetList);  
 stage.frameRate = 60;  
 }

In this method, the variable rl represents the loaded SWF file. The code calls the getAssets() method of the loaded 

SWF file, obtaining the list of assets that are available, and uses them to populate a ComboBox component with a list 

of available assets by calling the populateDropDown() method. That method in turn stores the full classpath of each 

asset. Clicking the Add button on the user interface triggers the addAsset() method:

 private function addAsset():void  
 {  
 var className:String = assetNameCbo.selectedItem.data;  
 var AssetClass:Class = getDefinitionByName(className) as Class;  
 var mc:MovieClip = new AssetClass();  
 ...  
 }

which gets the classpath of whichever asset is currently selected in the ComboBox 

(assetNameCbo.selectedItem.data), and uses the getDefinitionByName() function (from the flash.utils 

package) to obtain an actual reference to the asset’s class in order to create a new instance of that asset.

Updated 11 February 2009



410

Chapter 19: Working with motion tweens

“Animating objects” on page 303 describes how to implement scripted animation in ActionScript.

Here we describe a different technique for creating animation: motion tweens. This technique lets you create 

movement by setting up motion interactively in a FLA file using Adobe® Flash® CS4 Professional. Then you can use 

that motion in your dynamic ActionScript-based animation at runtime. 

Flash CS4 automatically generates the ActionScript that implements the motion tween and makes it available for you 

to copy and reuse. 

To create motion tweens, you must have a license for Adobe Flash CS4 Professional.

Basics of Motion Tweens

Introduction to motion tweens in ActionScript

Motion tweens provide an easy way to create animation. 

A motion tween modifies display object properties, such as position or rotation, on a frame-to-frame basis. A motion 

tween can also change the appearance of a display object while it moves by applying various filters and other 

properties. You create the motion tween interactively with Flash, which generates the ActionScript for the motion 

tween. From within Flash, use the Copy Motion as ActionScript 3.0 command to copy the ActionScript that created 

the motion tween. Then you can reuse the ActionScript to create movement in your own dynamic animation at 

runtime. 

See the Motion Tweens section in Using Flash CS4 Professional for information about creating a motion tween. 

Common motion tween tasks

The automatically generated ActionScript code that implements a motion tween does the following:

• Instantiates a motion object for the motion tween

• Sets the duration of the motion tween

• Adds the properties of the motion tween

• Adds filters to the motion tween

• Associates the motion tween with its display object or objects

Important terms and concepts

The following is an important term that you will encounter in this chapter: 

• Motion tween: A construct that generates intermediate frames of a display object in different states at different 

times; gives the appearance that the first state evolves smoothly into the second. Used to move a display object 

across the stage, as well as make it grow, shrink, rotate, fade, or change color over time.

Updated 11 February 2009



411PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with motion tweens

Copying motion tween scripts

A tween generates intermediate frames that show a display object in different states in two different frames on a 

timeline. It creates the appearance that the image in the first frame evolves smoothly into the image in the second. In 

a motion tween, the change in appearance typically involves changing the position of the display object, thus creating 

movement. In addition to repositioning the display object, a motion tween can also rotate, skew, resize, or apply filters 

to it.

Create a motion tween in Flash by moving a display object between keyframes along the timeline. Flash automatically 

generates the ActionScript code that describes the tween, which you can copy and save in a file. See the Motion Tweens 

section in Using Flash for information about creating a motion tween.

You can access the Copy Motion as ActionScript 3.0 command in Flash two ways. The first way is from a tween context 

menu on the stage:

1 Select the motion tween on the stage.

2 Right-click (Windows) or Control-click (Macintosh).

3 Choose Copy Motion as ActionScript 3.0 . . .

The second way is to choose the command directly from the Flash Edit menu:

1 Select the motion tween on the stage.

2 Select Edit > Timeline >Copy Motion as ActionScript 3.0.

Updated 11 February 2009



412PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with motion tweens

After copying the script, paste it into a file and save it.

After creating a motion tween and copying and saving the script, you can reuse it as is or modify it in your own 

dynamic ActionScript-based animation. 

Incorporating motion tween scripts

The header in the ActionScript code that you copy from Flash lists all the modules required to support the motion 

tween. 

Motion tween classes

The essential classes are the AnimatorFactory, MotionBase, and Motion classes from the fl.motion package. You 

could need additional classes, depending on the properties that the motion tween manipulates. For example, if the 

motion tween transforms or rotates the display object, import the appropriate flash.geom classes. If it applies filters, 

import the flash.filter classes. In ActionScript, a motion tween is an instance of the Motion class. The Motion class 

stores a keyframe animation sequence that can be applied to a visual object. The animation data includes position, 

scale, rotation, skew, color, filters, and easing.

The following ActionScript was copied from a motion tween that was created to animate a display object whose 

instance name is Symbol1_2. It declares a variable for a MotionBase object named __motion_Symbol1_2. The 

MotionBase class is the parent of the Motion class.

var __motion_Symbol1_2:MotionBase;

Then the script creates the Motion object:

__motion_Symbol1_2 = new Motion();

Motion object names

In the previous case, Flash automatically generates the name __motion_Symbol1_2 for the Motion object. It attaches 

the prefix __motion_ to the display object name. Thus, the automatically generated name is based on the instance 

name of the target object of the motion tween in the Flash authoring tool. The duration property of the Motion object 

indicates the total number of frames in the motion tween:

__motion_Symbol1_2.duration = 200;

When you reuse such ActionScript in your own animation, you can keep the name that Flash automatically generates 

for the tween. Or you can substitute a different name. By default, Flash automatically names the display object instance 

whose motion tween you are copying, if it does not already have an instance name. If you change the tween name, make 

sure that you change it throughout the script. Alternately, in Flash you can assign a name of your choosing to the target 

object of the motion tween. Then create the motion tween and copy the script. Whichever naming approach you use, 

make sure that each Motion object in your ActionScript code has a unique name.

Describing the animation

The addPropertyArray() method of the MotionBase class adds an array of values to describe every tweened 

property. 

Updated 11 February 2009



413PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with motion tweens

Potentially the array contains one array item for every keyframe in the motion tween. Often some of these arrays 

contain fewer items than the total number of keyframes in the motion tween. This situation occurs when the last value 

in the array does not change for the remaining frames.

If the length of the array argument is greater than the duration property of the Motion object, addPropertyArray() 

adjusts the value of the duration property accordingly. It does not add keyframes for the properties that were 

previously added. The newly added keyframes persist for the extra frames of the animation.

The x and y properties of the Motion object describe the changing position of the tweened object as the animation is 

running. These coordinates are the values that are most likely to change in every keyframe, if the position of the display 

object changes. You can add additional motion properties with the addPropertyArray() method. For example, add 

the scaleX and scaleY values if the tweened object is resized. Add the scewX and skewY values if it is skewed. Add the 

rotationConcat property if it rotates.

Use the addPropertyArray() method to define the following tween properties:

The properties that are added in the automatically generated script depend on the properties that were assigned to the 

motion tween in Flash. You can add, remove, or modify some of these properties when customizing your own version 

of the script.

The following code assigns values to the properties of a motion tween named __motion_Wheel. In this case, the 

tweened display object does not change location but rather spins in place throughout the 29 frames in the motion 

tween. The multiple values assigned to the rotationConcat array define the rotation. The other property values of 

this motion tween do not change. 

x horizontal position of the transformation point of the object in the coordinate space of its parent

y vertical position of the transformation point of the object in the coordinate space of its parent

z depth (z-axis) position of the transformation point of the object in the coordinate space of its parent

scaleX horizontal scale as a percentage of the object as applied from the transformation point

scaleY vertical scale as a percentage of the object as applied from the transformation point

skewX horizontal skew angle of the object in degrees as applied from the transformation point

skewY vertical skew angle of the object in degrees as applied from the transformation point

rotationX rotation of the object around the x-axis from its original orientation

rotationY rotation of the object around the y-axis from its original orientation

rotationConcat rotation (z-axis) values of the object in the motion relative to previous orientation as applied from the 

transformation point

useRotationConcat If set, causes the target object to rotate when addPropertyArray() supplies data for motion

blendMode BlendMode class value specifying mixture the colors of the object with graphics underneath

matrix3D matrix3D property if one exists for the keyframe; used for 3D tweens; if used, all the previous transform properties 

are ignored

rotationZ z-axis rotation of the object, in degrees, from its original orientation relative to the 3D parent container; used for 3D 

tweens instead of rotationConcat

Updated 11 February 2009



414PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with motion tweens

__motion_Wheel = new Motion();  
__motion_Wheel.duration = 29;  
__motion_Wheel.addPropertyArray("x", [0]);  
__motion_Wheel.addPropertyArray("y", [0]);  
__motion_Wheel.addPropertyArray("scaleX", [1.00]);  
__motion_Wheel.addPropertyArray("scaleY", [1.00]);  
__motion_Wheel.addPropertyArray("skewX", [0]);  
__motion_Wheel.addPropertyArray("skewY", [0]);  
__motion_Wheel.addPropertyArray("rotationConcat",  

[  
0,-13.2143,-26.4285,-39.6428,-52.8571,-66.0714,-79.2857,-92.4999,-105.714,  
-118.929,-132.143,-145.357,-158.571,-171.786,-185,-198.214,-211.429,-224.643,  
-237.857,-251.071,-264.286,-277.5,-290.714,-303.929,-317.143,-330.357,  
-343.571,-356.786,-370  

]  
);  
__motion_Wheel.addPropertyArray("blendMode", ["normal"]); 

In the next example, the display object named Leaf_1 moves across the stage. Its x and y property arrays contain 

different values for each of the 100 frames of the animation. In addition, the object rotates on its z axis as it moves 

across the stage. The multiple items in the rotationZ property array determine the rotation.

__motion_Leaf_1 = new MotionBase();  
__motion_Leaf_1.duration = 100;  
__motion_Symbol1_4.addPropertyArray("y",  

[   
0,5.91999,11.84,17.76,23.68,29.6,35.52,41.44,47.36,53.28,59.2,65.12,71.04,  
76.96,82.88,88.8,94.72,100.64,106.56,112.48,118.4,124.32,130.24,136.16,142.08,  
148,150.455,152.909,155.364,157.818,160.273,162.727,165.182,167.636,170.091,  
172.545,175,177.455,179.909,182.364,184.818,187.273,189.727,192.182,194.636,  
197.091,199.545,202,207.433,212.865,218.298,223.73,229.163,234.596,240.028,  
245.461,250.893,256.326,261.759,267.191,272.624,278.057,283.489,  
288.922,294.354,299.787,305.22,310.652,316.085,321.517,326.95,330.475,334,  
337.525,341.05,344.575,348.1,351.625,355.15,358.675,362.2,365.725,369.25,  
372.775,376.3,379.825,383.35,386.875,390.4,393.925,397.45,400.975,404.5,  
407.5,410.5,413.5,416.5,419.5,422.5,425.5  

]  
);  
__motion_Symbol1_4.addPropertyArray("scaleX", [1.00]);  
__motion_Symbol1_4.addPropertyArray("scaleY", [1.00]);  
__motion_Symbol1_4.addPropertyArray("skewX", [0]);  
__motion_Symbol1_4.addPropertyArray("skewY", [0]);  
__motion_Symbol1_4.addPropertyArray("z",  

[  
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  

]  
);  

Updated 11 February 2009



415PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with motion tweens

__motion_Symbol1_4.addPropertyArray("rotationX", [64.0361]);  
__motion_Symbol1_4.addPropertyArray("rotationY", [41.9578]);  
__motion_Symbol1_4.addPropertyArray("rotationZ",  

[  
-18.0336,-17.5536,-17.0736,-16.5936,-16.1136,-15.6336,-15.1536,-14.6736,  
-14.1936,-13.7136,-13.2336,-12.7536,-12.2736,-11.7936,-11.3136,-10.8336,  
-10.3536,-9.8736,-9.3936,-8.9136,-8.4336,-7.9536,-7.4736,-6.9936,-6.5136,  
-6.0336,-7.21542,-8.39723,-9.57905,-10.7609,-11.9427,-13.1245,-14.3063,  
-15.4881,-16.67,-17.8518,-19.0336,-20.2154,-21.3972,-22.5791,-23.7609,  
-24.9427,-26.1245,-27.3063,-28.4881,-29.67,-30.8518,-32.0336,-31.0771,  
-30.1206,-29.164,-28.2075,-27.251,-26.2945,-25.338,-24.3814,-23.4249,  
-22.4684,-21.5119,-20.5553,-19.5988,-18.6423,-17.6858,-16.7293,-15.7727  
-14.8162,-13.8597,-12.9032,-11.9466,-10.9901,-10.0336,-10.9427,-11.8518,  
-12.7609,-13.67,-14.5791,-15.4881,-16.3972,-17.3063,-18.2154,-19.1245,  
-20.0336,-20.9427,-21.8518,-22.7609,-23.67,-24.5791,-25.4881,-26.3972,  
-27.3063,-28.2154,-29.1245,-30.0336,-28.3193,-26.605,-24.8907,-23.1765,  
-21.4622,-19.7479,-18.0336  

]  
);  
__motion_Symbol1_4.addPropertyArray("blendMode", ["normal"]); 

Adding filters

If the target object of a motion tween contains filters, those filters are added using the initFilters() and 

addFilterPropertyArray() methods of the Motion class. 

Initializing the filters array

The initFilters() method initializes the filters. Its first argument is an array of the fully qualified class names of all 

the filters applied to the display object. This array of filter names is generated from the filters list for the motion tween 

in Flash. In your copy of the script, you can remove or add any of the filters in the flash.filters package to this 

array. The following call initializes the filters list for the target display object. It applies the DropShadowFilter, 

GlowFilter, and BevelFilter and copies the list to each keyframe in the Motion object.

__motion_Box.initFilters(["flash.filters.DropShadowFilter", "flash.filters.GlowFilter", 
"flash.filters.BevelFilter"], [0, 0, 0]);

Adding filters

The addFilterPropertyArray() method describes the properties of an initialized filter with the following 

arguments:

1 Its first argument identifies a filter by index. The index refers to the position of the filter name in the filter class 

names array passed in a previous call to initFilters().

2 Its second argument is the filter property to store for that filter in each keyframe.

3 Its third argument is the value of the specified filter property.

Given the previous call to initFilters(), the following calls to addFilterPropertyArray() assign a value of 5 to 

the blurX and blurY properties of the DropShadowFilter. The DropShadowFilter is the first (index 0) item in the 

initialized filters array:

__motion_Box.addFilterPropertyArray(0, "blurX", [5]);  
__motion_Box.addFilterPropertyArray(0, "blurY", [5]);

Updated 11 February 2009



416PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with motion tweens

The next three calls assign values to the quality, alpha, and color properties of the GlowFilter, the second item (index 

1) in the initialized filter array:

__motion_Box.addFilterPropertyArray(1, "quality", [BitmapFilterQuality.LOW]);  
__motion_Box.addFilterPropertyArray(1, "alpha", [1.00]);  
__motion_Box.addFilterPropertyArray(1, "color", [0xff0000]);

The next four calls assign values to the shadowAlpha, shadowColor, highlightAlpha, and highlightColor of the 

BevelFilter, the third (index 2) item in the initialized filters array:

__motion_Box.addFilterPropertyArray(2, "shadowAlpha", [1.00]);  
__motion_Box.addFilterPropertyArray(2, "shadowColor", [0x000000]);  
__motion_Box.addFilterPropertyArray(2, "highlightAlpha", [1.00]);  
__motion_Box.addFilterPropertyArray(2, "highlightColor", [0xffffff]);

Adjusting color with the ColorMatrixFilter

After the ColorMatrixFilter has been initialized, you can set the appropriate AdjustColor properties to adjust the 

brightness, contrast, saturation, and hue of the tweened display object. Typically, you apply the AdjustColor filter in 

Flash and can fine-tune it your copy of the ActionScript. The following example transforms the hue and saturation of 

the display object as it moves.

__motion_Leaf_1.initFilters(["flash.filters.ColorMatrix"], [0], -1, -1);  
__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorBrightness", [0], -1, -1);  
__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorContrast", [0], -1, -1);  
__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorSaturation",  

[  
0,-0.589039,1.17808,-1.76712,-2.35616,-2.9452,-3.53424,-4.12328,  
-4.71232,-5.30136,-5.89041, 6.47945,-7.06849,-7.65753,-8.24657,  
-8.83561,-9.42465,-10.0137,-10.6027,-11.1918,11.7808,-12.3699,  
-12.9589,-13.5479,-14.137,-14.726,-15.3151,-15.9041,-16.4931,  
17.0822,-17.6712,-18.2603,-18.8493,-19.4383,-20.0274,-20.6164,  
-21.2055,-21.7945,22.3836,-22.9726,-23.5616,-24.1507,-24.7397,  
-25.3288,-25.9178,-26.5068,-27.0959,27.6849,-28.274,-28.863,-29.452,  
-30.0411,-30.6301,-31.2192,-31.8082,-32.3973,32.9863,-33.5753,  
-34.1644,-34.7534,-35.3425,-35.9315,-36.5205,-37.1096,-37.6986,  
38.2877,-38.8767,-39.4657,-40.0548,-40.6438,-41.2329,-41.8219,  
-42.411,-43  

],  
-1, -1);  

__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorHue",  
[  

0,0.677418,1.35484,2.03226,2.70967,3.38709,4.06451,4.74193,5.41935,  
6.09677,6.77419,7.45161,8.12903,8.80645,9.48387,10.1613,10.8387,11.5161,  
12.1935,12.871,13.5484,14.2258,14.9032,15.5806,16.2581,16.9355,17.6129,  
18.2903,18.9677,19.6452,20.3226,21,22.4286,23.8571,25.2857,26.7143,28.1429,  
29.5714,31,32.4286,33.8571,35.2857,36.7143,38.1429,39.5714,41,42.4286,43.8571,  
45.2857,46.7143,48.1429,49.5714,51,54,57,60,63,66,69,72,75,78,81,84,87,  
90,93,96,99,102,105,108,111,114  

],  
-1, -1);

Associating a motion tween with its display objects

The last task is to associate the motion tween with the display object or objects that it manipulates.

Updated 11 February 2009



417PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with motion tweens

The AnimatorFactory class manages the association between a motion tween and its target display objects. The 

argument to the AnimatorFactory constructor is the Motion object:

var __animFactory_Wheel:AnimatorFactory = new AnimatorFactory(__motion_Wheel);

Use the addTarget() method of the AnimatorFactory class to associate the target display object with its motion 

tween. The ActionScript copied from Flash comments out the addTarget() line and does not specify an instance 

name:

// __animFactory_Wheel.addTarget(<instance name goes here>, 0);

In your copy, specify the display object to associate with the motion tween. In the following example, the targets are 

specified as greenWheel and redWheel:

__animFactory_Wheel.AnimatorFactory.addTarget(greenWheel, 0);  
__animFactory_Wheel.AnimationFactory.addTarget(redWheel, 0);

You can associate multiple display objects with the same motion tween using multiple calls to addTarget().

Updated 11 February 2009



418

Chapter 20: Working with inverse 
kinematics

Inverse kinematics (IK) is a great technique for creating realistic motion.

IK lets you create coordinated movements within a chain of connected parts called an IK armature, so that the parts 

move together in a lifelike way. The parts of the armature are its bones and joints. Given the end point of the armature, 

IK calculates the angles for the joints that are required to reach that end point.

Calculating those angles manually yourself would be challenging. The beauty of this feature is that you can create 

armatures interactively using Adobe® Flash® CS4 Professional. Then animate them using ActionScript. The IK engine 

included with the Flash authoring tool performs the calculations to describe the movement of the armature. You can 

limit the movement to certain parameters in your ActionScript code.

To create inverse kinematics armatures, you must have a license for Adobe Flash CS4 Professional.

Basics of Inverse Kinematics

Introduction to IK

Inverse kinematics (IK) lets you create life-like animation by linking parts so they move in relation to one another in 

a realistic manner.

For example, using IK you can move a leg to a certain position by articulating the movements of the joints in the leg 

required to achieve the desired pose. IK uses a framework of bones chained together in a structure called an IK 

armature. The fl.ik package helps you create animations resembling natural motion. It lets you animate multiple IK 

armatures seamlessly without having to know a lot about the physics behind the IK algorithms.

Create the IK armature with its ancillary bones and joints with Flash. Then you can access the IK classes to animate 

them at runtime.

See the Using inverse kinematics section in Using Flash CS4 Professional for detailed instructions on how to create an 

IK armature.

Common IK Tasks

Your ActionScript code to initiate and control the movement of an IK armature at runtime typically does the 

following:

• Declares variables for the armatures, bones, and joints involved in the motion

• Retrieves the armature, bone, and joint instances

• Instantiates the IK mover object

• Sets limits on the movement

• Moves the armature to a target point

Updated 11 February 2009



419PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with inverse kinematics

Important Terms and Concepts

The following reference list contains important terms that you will encounter in this chapter:

• Armature: A kinematic chain, consisting of bones and joints, used in computer animation to simulate realistic 

motion

• Bone: A rigid segment in an armature, analogous to a bone in an animal skeleton

• Inverse Kinematics (IK): Process of determining the parameters of a jointed flexible object called a kinematic chain 

or armature

• Joint: The location at which two bones make contact, constructed to enable movement of the bones; analogous to 

a joint in an animal

Animating IK Armatures Overview

After creating an IK armature, use the fl.ik classes to limit its movement, track its events, and animate it at runtime.

The following figure shows a movie clip named Wheel. The axle is an instance of an IKArmature named Axle. The 

IKMover class moves the armature in synchronization with the rotation of wheel. The IKBone, ikBone2, in the 

armature is attached to the wheel at its tail joint.

A. Wheel  B. Axle  C. ikBone2  

B

A

C

Updated 11 February 2009



420PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with inverse kinematics

At runtime, the wheel spins in association with the __motion_Wheel motion tween described in “Describing the 

animation” on page 412 in the Working with motion tweens chapter. An IKMover object initiates and controls the 

movement of the axle. The following figure shows two snapshots of the axle armature attached to the spinning wheel 

at different frames in the rotation.

At runtime, the following ActionScript:

• Gets information about the armature and its components

• Instantiates an IKMover object

• Moves the axle in conjunction with the rotation of the wheel

import fl.ik.*  
  
var tree:IKArmature = IKManager.getArmatureByName("Axle");  
var bone:IKBone = tree.getBoneByName("ikBone2");  
var endEffector:IKJoint = bone.tailJoint;  
var pos:Point = endEffector.position;  
  
var ik:IKMover = new IKMover(endEffector, pos);  
ik.limitByDistance = true;  
ik.distanceLimit = 0.1;  
ik.limitByIteration = true;  
ik.iterationLimit = 10;  
  
Wheel.addEventListener(Event.ENTER_FRAME, frameFunc);  
  
function frameFunc(event:Event)  
{  

if (Wheel != null)  
{  

var mat:Matrix = Wheel.transform.matrix;  
var pt = new Point(90, 0);  
pt = mat.transformPoint(pt);  
  
ik.moveTo(pt);  

}  
}

Updated 11 February 2009



421PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with inverse kinematics

The IK classes used to move the axle are:

• IKArmature: describes the armature, a tree structure consisting of bones and joints; must be created with Flash

• IKManager: container class for all the IK armatures in the document; must be created with Flash

• IKBone: a segment of an IK armature

• IKJoint: a connection between two IK bones

• IKMover: initiates and controls IK movement of armatures

For complete and detailed descriptions of these classes, see the ik package.

Getting information about an IK armature

First, declare variables for the armature, the bone, and the joint that make up the parts that you want to move. 

The following code uses the getArmatureByName() method of the IKManager class to assign the value of the Axle 

armature to the IKArmature variable tree. The Axle armature was previously created with Flash.

var tree:IKArmature = IKManager.getArmatureByName("Axle");

Similarly, the following code uses the getBoneByName() method of the IKArmature class to assign to the IKBone 

variable the value of the ikBone2 bone.

var bone:IKBone = tree.getBoneByName("ikBone2");

The tail joint of the ikBone2 bone is the part of the armature that attaches to the spinning wheel. 

The following line declares the variable endEffector and assigns to it the tailjoint property of the ikBone2 bone:

var endEffector:IKJoint = home.tailjoint;

The variable pos is a point that stores the current position of the endEffector joint.

var pos:Point = endEffector.position;

In this example, pos is the position of the joint at the end of the axle where it connects to the wheel. The original value 

of this variable is obtained from the position property of the IKJoint.

Instantiating an IK Mover and Limiting Its Movement

An instance of the IKMover class moves the axle.

The following line instantiates the IKMover object ik, passing to its constructor the element to move and the starting 

point for the movement:

var ik:IKMover = new IKMover(endEffector, pos);

The properties of the IKMover class let you limit the movement of an armature. You can limit movement based on the 

distance, iterations, and time of the movement.

The following pairs of properties enforce these limits. The pairs consist of a Boolean indicating whether the movement 

is limited and a number that specifies the limit:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?fl/ik/package-detail.html


422PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with inverse kinematics

Set the appropriate Boolean property to true to enforce the limit. By default, all the Booleans are set to false, so 

movement is not limited unless you explicitly set them. If you set the limit to a value without setting its corresponding 

Boolean, the limit is ignored. In this case, the IK engine continues to move the object until another limit or the target 

position of the IKMover is reached.

In the following example, the maximum distance of the armature movement is set to 0.1 pixels per iteration. The 

maximum number of iterations for every movement is set to ten.

ik.limitByDistance = true;  
ik.distanceLimit = 0.1;  
ik.limitByIteration = true;  
ik.iterationLimit = 10; 

Moving an IK Armature

The IKMover moves the axle inside the event listener for the wheel. On each enterFrame event of the wheel, a new 

target position for the armature is calculated. Using its moveTo() method, the IKMover moves the tail joint to its 

target position or as far as it can within the constraints set by its limitByDistance, limitByIteration, and 

limitByTime properties.

Wheel.addEventListener(Event.ENTER_FRAME, frameFunc);  
  
function frameFunc(event:Event)  
{  

if (Wheel != null)  
{  

var mat:Matrix = Wheel.transform.matrix;  
var pt = new Point(90,0);  
pt = mat.transformPoint(pt);  
  
ik.moveTo(pt);  

}  
} 

Using IK Events

The IKEvent class lets you create an event object that contains information about IK Events. IKEvent information 

describes motion that has terminated because the specified time, distance, or iteration limit was exceeded.

The following code shows an event listener and handler for tracking time limit events. This event handler reports on 

the time, distance, iteration count, and joint properties of an event that fires when the time limit of the IKMover is 

exceeded.

limitByDistance:Boolean distanceLimit:int Sets the maximum distance in pixels that the IK engine moves for each 

iteration.

limitByIteration:Boolean iterationLimit:int Sets the maximum number of iterations the IK engine performs for each 

movement.

limitByTime:Boolean timeLimit:int Sets the maximum time in milliseconds allotted to the IK engine to 

perform the movement.

Updated 11 February 2009



423PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with inverse kinematics

var ikmover:IKMover = new IKMover(endjoint, pos);  
ikMover.limitByTime = true;  
ikMover.timeLimit = 1000;  
  
ikmover.addEventListener(IKEvent.TIME_LIMIT, timeLimitFunction);  
  
function timeLimitFunction(evt:IKEvent):void  
{  

trace("timeLimit hit");  
trace("time is " + evt.time);  
trace("distance is " + evt.distance);  
trace("iterationCount is " + evt.iterationCount);  
trace("IKJoint is " + evt.joint.name);  

}

Updated 11 February 2009



424

Chapter 21: Working with text

To display text on the screen in Adobe® Flash® Player or Adobe® AIR™, use an instance of the TextField class or use the 

Flash Text Engine classes. These classes allow you to create, display, and format text.

You can establish specific content for text fields, or designate the source for the text, and then set the appearance of 

that text. You can also respond to user events as the user inputs text or clicks a hypertext link. 

Basics of working with text

Introduction to working with text

Both the TextField class and the Flash Text Engine classes allow you display and manage text in Flash Player and AIR.

You can use the TextField class to create text objects for display and input. The TextField class provides the basis for 

other text-based components like TextArea and TextInput that are provided in Flash and Adobe Flex. You can use the 

TextFormat class to set character and paragraph formatting for TextField objects and you can apply Cascading Style 

Sheets (CSS) using the Textfield.styleSheet property and the StyleSheet class. You can assign HTML-formatted text, 

which can contain embedded media (movie clips, SWF files, GIF files, PNG files, and JPEG files), directly to a text field.

The Flash Text Engine, available starting with Flash Player 10 and Adobe AIR 1.5, provides low-level support for 

sophisticated control of text metrics, formatting, and bi-directional text. It also offers improved text flow and enhanced 

language support. While you can use the Flash Text Engine to create and manage text elements, it is primarily designed 

as the foundation for creating text-handling components and requires greater programming expertise.

Common tasks for working with text

The following common tasks are covered for the TextField class:

• Modifying text field contents

• Using HTML in text fields

• Using images in text fields

• Selecting text and working with user-selected text

• Capturing text input

• Restricting text input

• Applying formatting and CSS styles to text

• Fine-tuning text display with sharpness, thickness, and anti-aliasing

• Accessing and working with static text fields from ActionScript

The following common tasks are covered for the Flash Text Engine classes:

• Creating and displaying text

• Handling events

• Formatting text

• Working with fonts

Updated 11 February 2009



425PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

• Controlling text

Important concepts and terms

The following reference list contains important terms that you will encounter:

• Cascading style sheets: A standard syntax for specifying styles and formatting for content that’s structured in XML 

(or HTML) format.

• Device font: A font that is installed on the user’s machine.

• Dynamic text field: A text field whose contents can be changed by ActionScript but not by user input.

• Embedded font: A font that has its character outline data stored in the application SWF file.

• HTML text: Text content entered into a text field using ActionScript that includes HTML formatting tags along 

with actual text content.

• Input text field: A text field whose contents can be changed either by user input or by ActionScript.

• Kerning: An adjustment of the spacing between pairs of characters to make the spacing in words more proportional 

and the text easier to read.

• Static text field: A text field created in the authoring tool, whose content cannot change when the SWF file is 

running.

• Text line metrics: Measurements of the size of various parts of the text content in a text field, such as the baseline 

of the text, the height of the top of the characters, size of descenders (the part of some lowercase letters that extends 

below the baseline), and so on.

• Tracking: An adjustment of spacing between groups of letters or blocks of text to increase or decrease the density 

and make the text more readable.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Essentially 

all the code listings involve manipulating text object, either one that has been created and placed on the Stage in the 

Flash authoring tool, or one that’s created using ActionScript. Testing a sample involves viewing the result in Flash 

Player or AIR to see the effects of the code on the text or the TextField object.

The examples in this topic fall into two groups. One type of example manipulates a TextField object without creating 

the object explicitly. To test these code listings, follow these steps:

1 Create an empty Flash document.

2 Select a keyframe in the timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Using the Text tool, create a dynamic text field on the Stage.

5 With the text field selected, in the Property inspector, give it an instance name. The name should match the name 

used for the text field in the example code listing—for example, if the code listing manipulates a text field named 

myTextField, you should name your text field myTextField as well.

6 Run the program using Control > Test Movie.

On the screen you see the results of the code manipulating the text field as specified in the code listing.

Updated 11 February 2009



426PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

The other type of example code listing consists of a class definition that is intended to be used as the document class 

for the SWF file. In those listings, the text objects are created by the example code, so you do not need to create them 

separately. To test this type of code listing:

1 Create an empty Flash document and save it to your computer.

2 Create a new ActionScript file and save it in the same directory as the Flash document. The name of the file should 

match the name of the class in the code listing. For example, if the code listing defines a class named TextFieldTest, 

use the name TextFieldTest.as to save the ActionScript file.

3 Copy the code listing into the ActionScript file and save the file.

4 In the Flash document, select Window -> Properties activate the document Property inspector.

5 In the Property inspector, in the Class field, enter the name of the ActionScript class you copied from the text.

6 Run the program using Control > Test Movie.

See the results of the example displayed on the screen.

Other techniques for testing example code listings are explained in more detail in “Testing in-chapter example code 

listings” on page 34.

Using the TextField class

The TextField class is the basis for other text-based components, like the TextArea components or the TextInput 

components, that are provided in the Adobe Flex framework and in the Flash authoring environment. For more 

information about using text components in the Flash authoring environment, see “About text controls” in Using 

Flash.

Text field content can be pre-specified in the SWF file, loaded from a text file or database, or entered by a user 

interacting with your application. Within a text field, the text can appear as rendered HTML content, with images 

embedded in the rendered HTML. After you create an instance of a text field, you can use flash.text classes, like 

TextFormat and StyleSheet, to control the appearance of the text. The flash.text package contains nearly all the classes 

related to creating, managing, and formatting text in ActionScript.

You can format text by defining the formatting with a TextFormat object and assigning that object to the text field. If 

your text field contains HTML text, you can apply a StyleSheet object to the text field to assign styles to specific pieces 

of the text field content. The TextFormat object or StyleSheet object contains properties defining the appearance of the 

text, such as color, size, and weight. The TextFormat object assigns the properties to all the content within a text field 

or to a range of text. For example, within the same text field, one sentence can be bold red text and the next sentence 

can be blue italic text.

For more information on text formats, see “Assigning text formats” on page 432.

For more information on HTML text in text fields, see “Displaying HTML text” on page 428.

For more information on style sheets, see “Applying cascading style sheets” on page 433.

In addition to the classes in the flash.text package, you can use the flash.events.TextEvent class to respond to user 

actions related to text.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/text/package-detail.html


427PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Displaying text

Although authoring tools like Adobe Flex Builder and the Flash authoring tool provide several options for displaying 

text, including text-related components or text tools, the primary way to display text programmatically is through a 

text field.

Types of text

The type of text within a text field is characterized by its source:

• Dynamic text

Dynamic text includes content that is loaded from an external source, such as a text file, an XML file, or even a 

remote web service. 

• Input text

Input text is any text entered by a user or dynamic text that a user can edit. You can set up a style sheet to format 

input text, or use the flash.text.TextFormat class to assign properties to the text field for the input content. For more 

information, see “Capturing text input” on page 431.

• Static text

Static text is created through the authoring tool only. You cannot create a static text instance using ActionScript 

3.0. However, you can use ActionScript classes like StaticText and TextSnapshot to manipulate an existing static 

text instance. For more information, see “Working with static text” on page 438.

Modifying the text field contents

You can define dynamic text by assigning a string to the flash.text.TextField.text property. You assign a string 

directly to the property, as follows:

 myTextField.text = "Hello World";

You can also assign the text property a value from a variable defined in your script, as in the following example:

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.*;  
   
 public class TextWithImage extends Sprite  
 {  
 private var myTextBox:TextField = new TextField();  
 private var myText:String = "Hello World";  
   
 public function TextWithImage()  
 {  
 addChild(myTextBox);  
 myTextBox.text = myText;  
 }  
 }  
 }

Alternatively, you can assign the text property a value from a remote variable. You have three options for loading text 

values from remote sources: 

• The flash.net.URLLoader and flash.net.URLRequest classes load variables for the text from a local or remote 

location. 

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/text/TextField.html#text


428PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

• The FlashVars attribute is embedded in the HTML page hosting the SWF file and can contain values for text 

variables.

• The flash.net.SharedObject class manages persistent storage of values. For more information, see “Storing local 

data” on page 612.

Displaying HTML text

The flash.text.TextField class has an htmlText property that you can use to identify your text string as one containing 

HTML tags for formatting the content. As in the following example, you must assign your string value to the htmlText 

property (not the text property) for Flash Player or AIR to render the text as HTML:

 var myText:String = "<p>This is <b>some</b> content to <i>render</i> as <u>HTML</u> text.</p>";  
 myTextBox.htmlText = myText;

Flash Player and AIR support a subset of HTML tags and entities for the htmlText property. The 

flash.text.TextField.htmlText property description in the ActionScript 3.0 Language and Components 

Reference provides detailed information about the supported HTML tags and entities. 

Once you designate your content using the htmlText property, you can use style sheets or the textformat tag to 

manage the formatting of your content. For more information, see “Formatting text” on page 432.

Using images in text fields

Another advantage to displaying your content as HTML text is that you can include images in the text field. You can 

reference an image, local or remote, using the img tag and have it appear within the associated text field. 

The following example creates a text field named myTextBox and includes a JPG image of an eye, stored in the same 

directory as the SWF file, within the displayed text:

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.*;  
   
 public class TextWithImage extends Sprite  
 {  
 private var myTextBox:TextField;  
 private var myText:String = "<p>This is <b>some</b> content to <i>test</i> and 
<i>see</i></p><p><img src='eye.jpg' width='20' height='20'></p><p>what can be 
rendered.</p><p>You should see an eye image and some <u>HTML</u> text.</p>";  
   
 public function TextWithImage()  
 {  
 myTextBox.width = 200;  
 myTextBox.height = 200;  
 myTextBox.multiline = true;  
 myTextBox.wordWrap = true;  
 myTextBox.border = true;  
   
 addChild(myTextBox);  
 myTextBox.htmlText = myText;  
 }  
 }  
 }

The img tag supports JPEG, GIF, PNG, and SWF files.

Updated 11 February 2009



429PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Scrolling text in a text field

In many cases, your text can be longer than the text field displaying the text. Or you may have an input field that allows 

a user to input more text than can be displayed at one time. You can use the scroll-related properties of the 

flash.text.TextField class to manage lengthy content, either vertically or horizontally. 

The scroll-related properties include TextField.scrollV, TextField.scrollH and maxScrollV and maxScrollH. 

Use these properties to respond to events, like a mouse click or a keypress.

The following example creates a text field that is a set size and contains more text than the field can display at one time. 

As the user clicks on the text field, the text scrolls vertically.

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.*;  
 import flash.events.MouseEvent;  
   
 public class TextScrollExample extends Sprite  
 {  
 private var myTextBox:TextField = new TextField();  
 private var myText:String = "Hello world and welcome to the show. It's really nice to 
meet you. Take your coat off and stay a while. OK, show is over. Hope you had fun. You can go 
home now. Don't forget to tip your waiter. There are mints in the bowl by the door. Thank you. 
Please come again.";  
   
 public function TextScrollExample()  
 {  
 myTextBox.text = myText;  
 myTextBox.width = 200;  
 myTextBox.height = 50;  
 myTextBox.multiline = true;  
 myTextBox.wordWrap = true;  
 myTextBox.background = true;  
 myTextBox.border = true;  
   
 var format:TextFormat = new TextFormat();  
 format.font = "Verdana";  
 format.color = 0xFF0000;  
 format.size = 10;  
   
 myTextBox.defaultTextFormat = format;  
 addChild(myTextBox);  
 myTextBox.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownScroll);  
 }  
   
 public function mouseDownScroll(event:MouseEvent):void  
 {  
 myTextBox.scrollV++;  
 }  
 }  
 }

Updated 11 February 2009



430PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Selecting and manipulating text

You can select dynamic or input text. Since the text selection properties and methods of the TextField class use index 

positions to set the range of text to manipulate, you can programmatically select dynamic or input text even if you 

don’t know the content.

Note: In the Flash authoring tool, if you choose the selectable option on a static text field, the text field that is exported 

and placed on the display list is a regular, dynamic text field. 

Selecting text

The flash.text.TextField.selectable property is true by default, and you can programmatically select text 

using the setSelection() method. 

For example, you can set specific text within a text field to be selected when the user clicks on the text field:

 var myTextField:TextField = new TextField();  
 myTextField.text = "No matter where you click on this text field the TEXT IN ALL CAPS is selected.";  
 myTextField.autoSize = TextFieldAutoSize.LEFT;  
 addChild(myTextField);  
 addEventListener(MouseEvent.CLICK, selectText);  
   
 function selectText(event:MouseEvent):void  
 {  
 myTextField.setSelection(49, 65);  
 }

Similarly, if you want text within a text field to be selected as the text is initially displayed, create an event handler 

function that is called as the text field is added to the display list.

Capturing user-selected text

The TextField selectionBeginIndex and selectionEndIndex properties, which are “read-only” so they can’t be set 

to programmatically select text, can be used to capture whatever the user has currently selected. Additionally, input 

text fields can use the caretIndex property.

For example, the following code traces the index values of user-selected text:

 var myTextField:TextField = new TextField();  
 myTextField.text = "Please select the TEXT IN ALL CAPS to see the index values for the first 
and last letters.";  
 myTextField.autoSize = TextFieldAutoSize.LEFT;  
 addChild(myTextField);  
 addEventListener(MouseEvent.MOUSE_UP, selectText);  
   
 function selectText(event:MouseEvent):void  
 {  
 trace("First letter index position: " + myTextField.selectionBeginIndex);  
 trace("Last letter index position: " + myTextField.selectionEndIndex);  
 }

You can apply a collection of TextFormat object properties to the selection to change the text appearance. For more 

information about applying a collection of TextFormat properties to selected text, see “Formatting ranges of text 

within a text field” on page 435.

Updated 11 February 2009



431PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Capturing text input

By default, the type property of a text field is set to dynamic. If you set the type property to input using the 

TextFieldType class, you can collect user input and save the value for use in other parts of your application. Input text 

fields are useful for forms and any application that wants the user to define a text value for use elsewhere in the 

program.

For example, the following code creates an input text field called myTextBox. As the user enters text in the field, the 

textInput event is triggered. An event handler called textInputCapture captures the string of text entered and 

assigns it a variable. Flash Player or AIR displays the new text in another text field, called myOutputBox.

 package  
 {  
 import flash.display.Sprite;  
 import flash.display.Stage;  
 import flash.text.*;  
 import flash.events.*;  
   
 public class CaptureUserInput extends Sprite  
 {  
 private var myTextBox:TextField = new TextField();  
 private var myOutputBox:TextField = new TextField();  
 private var myText:String = "Type your text here.";  
   
 public function CaptureUserInput()  
 {  
 captureText();  
 }  
   
 public function captureText():void  
 {  
 myTextBox.type = TextFieldType.INPUT;  
 myTextBox.background = true;  
 addChild(myTextBox);  
 myTextBox.text = myText;  
 myTextBox.addEventListener(TextEvent.TEXT_INPUT, textInputCapture);  
 }  
   
 public function textInputCapture(event:TextEvent):void  
 {  
 var str:String = myTextBox.text;  
 createOutputBox(str);  
 }  
   
 public function createOutputBox(str:String):void  
 {  
 myOutputBox.background = true;  
 myOutputBox.x = 200;  
 addChild(myOutputBox);  
 myOutputBox.text = str;  
 }  
   
 }  
 }

Updated 11 February 2009



432PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Restricting text input

Since input text fields are often used for forms or dialog boxes in applications, you may want to limit the types of 

characters a user can enter in a text field, or even keep the text hidden —for example, for a password. The 

flash.text.TextField class has a displayAsPassword property and a restrict property that you can set to control user 

input. 

The displayAsPassword property simply hides the text (displaying it as a series of asterisks) as the user types it. When 

displayAsPassword is set to true, the Cut and Copy commands and their corresponding keyboard shortcuts do not 

function. As the following example shows, you assign the displayAsPassword property just as you would other 

properties, such as background and color:

 myTextBox.type = TextFieldType.INPUT;  
 myTextBox.background = true;  
 myTextBox.displayAsPassword = true;  
 addChild(myTextBox);

The restrict property is a little more complicated since you need to specify what characters the user is allowed to 

type in an input text field. You can allow specific letters, numbers, or ranges of letters, numbers, and characters. The 

following code allows the user to enter only uppercase letters (and not numbers or special characters) in the text field:

 myTextBox.restrict = "A-Z";

ActionScript 3.0 uses hyphens to define ranges, and carets to define excluded characters. For more information about 

defining what is restricted in an input text field, see the flash.text.TextField.restrict property entry in the 

ActionScript 3.0 Language and Components Reference.

Formatting text

You have several options for programmatically formatting the display of text. You can set properties directly on the 

TextField instance—for example, the TextFIeld.thickness, TextField.textColor, and TextField.textHeight 

properties.Or you can designate the content of the text field using the htmlText property and use the supported 

HTML tags, such as b, i, and u. But you can also apply TextFormat objects to text fields containing plain text, or 

StyleSheet objects to text fields containing the htmlText property. Using TextFormat and StyleSheet objects provides 

the most control and consistency over the appearance of text throughout your application. You can define a 

TextFormat or StyleSheet object and apply it to many or all text fields in your application.

Assigning text formats

You can use the TextFormat class to set a number of different text display properties and to apply them to the entire 

contents of a TextField object, or to a range of text.

The following example applies one TextFormat object to an entire TextField object and applies a second TextFormat 

object to a range of text within that TextField object:

Updated 11 February 2009



433PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 var tf:TextField = new TextField();  
 tf.text = "Hello Hello";  
   
 var format1:TextFormat = new TextFormat();  
 format1.color = 0xFF0000;  
   
 var format2:TextFormat = new TextFormat();  
 format2.font = "Courier";  
   
 tf.setTextFormat(format1);  
 var startRange:uint = 6;  
 tf.setTextFormat(format2, startRange);  
   
 addChild(tf);

The TextField.setTextFormat() method only affects text that is already displayed in the text field. If the content 

in the TextField changes, your application might need to call the TextField.setTextFormat() method again to 

reapply the formatting. You can also set the TextField defaultTextFormat property to specify the format to be used 

for user-entered text.

Applying cascading style sheets

Text fields can contain either plain text or HTML-formatted text. Plain text is stored in the text property of the 

instance, and HTML text is stored in the htmlText property.

You can use CSS style declarations to define text styles that you can apply to many different text fields. CSS style 

declarations can be created in your application code or loaded in at run time from an external CSS file.

The flash.text.StyleSheet class handles CSS styles. The StyleSheet class recognizes a limited set of CSS properties. For a 

detailed list of the style properties that the StyleSheet class supports, see the flash.textStylesheet entry in the 

ActionScript 3.0 Language and Components Reference.

As the following example shows, you can create CSS in your code and apply those styles to HTML text by using a 

StyleSheet object:

 var style:StyleSheet = new StyleSheet();  
   
 var styleObj:Object = new Object();  
 styleObj.fontSize = "bold";  
 styleObj.color = "#FF0000";  
 style.setStyle(".darkRed", styleObj);  
   
 var tf:TextField = new TextField();  
 tf.styleSheet = style;  
 tf.htmlText = "<span class = 'darkRed'>Red</span> apple";  
   
 addChild(tf);

After creating a StyleSheet object, the example code creates a simple object to hold a set of style declaration properties. 

Then it calls the StyleSheet.setStyle() method, which adds the new style to the style sheet with the name 

“.darkred”. Next, it applies the style sheet formatting by assigning the StyleSheet object to the TextField styleSheet 

property.

For CSS styles to take effect, the style sheet should be applied to the TextField object before the htmlText property is set.

Updated 11 February 2009



434PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

By design, a text field with a style sheet is not editable. If you have an input text field and assign a style sheet to it, the 

text field shows the properties of the style sheet, but the text field does not allow users to enter new text into it. Also, 

you cannot use the following ActionScript APIs on a text field with an assigned style sheet:

• The TextField.replaceText() method

• The TextField.replaceSelectedText() method

• The TextField.defaultTextFormat property

• The TextField.setTextFormat() method

If a text field has a style sheet assigned to it, but later the TextField.styleSheet property is set to null, the contents 

of both TextField.text and TextField.htmlText properties add tags and attributes to their content to incorporate 

the formatting from the previously assigned style sheet. To preserve the original htmlText property, save it in a 

variable before setting the style sheet to null. 

Loading an external CSS file

The CSS approach to formatting is more powerful when you can load CSS information from an external file at run 

time. When the CSS data is external to the application itself, you can change the visual style of text in your application 

without having to change your ActionScript 3.0 source code. After your application has been deployed, you can change 

an external CSS file to change the look of the application, without having to redeploy the application SWF file.

The StyleSheet.parseCSS() method converts a string that contains CSS data into style declarations in the 

StyleSheet object. The following example shows how to read an external CSS file and apply its style declarations to a 

TextField object. 

First, here is the content of the CSS file to be loaded, which is named example.css:

 p {  
 font-family: Times New Roman, Times, _serif;  
 font-size: 14;  
 }  
   
 h1 {  
 font-family: Arial, Helvetica, _sans;  
 font-size: 20;  
 font-weight: bold;  
 }  
   
 .bluetext {  
 color: #0000CC;  
 }

Next is the ActionScript code for a class that loads the example.css file and applies the styles to TextField content:

Updated 11 February 2009



435PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 package  
 {  
 import flash.display.Sprite;  
 import flash.events.Event;  
 import flash.net.URLLoader;  
 import flash.net.URLRequest;  
 import flash.text.StyleSheet;  
 import flash.text.TextField;  
 import flash.text.TextFieldAutoSize;  
   
 public class CSSFormattingExample extends Sprite  
 {  
 var loader:URLLoader;  
 var field:TextField;  
 var exampleText:String = "<h1>This is a headline</h1>" +   
 "<p>This is a line of text. <span class='bluetext'>" +  
 "This line of text is colored blue.</span></p>";  
   
 public function CSSFormattingExample():void  
 {  
 field = new TextField();  
 field.width = 300;  
 field.autoSize = TextFieldAutoSize.LEFT;  
 field.wordWrap = true;  
 addChild(field);  
   
 var req:URLRequest = new URLRequest("example.css");  
   
 loader = new URLLoader();  
 loader.addEventListener(Event.COMPLETE, onCSSFileLoaded);  
 loader.load(req);  
 }  
   
 public function onCSSFileLoaded(event:Event):void  
 {  
 var sheet:StyleSheet = new StyleSheet();  
 sheet.parseCSS(loader.data);  
 field.styleSheet = sheet;  
 field.htmlText = exampleText;  
 }  
 }  
 }

When the CSS data is loaded, the onCSSFileLoaded() method executes and calls the StyleSheet.parseCSS() 

method to transfer the style declarations to the StyleSheet object.

Formatting ranges of text within a text field

A particularly useful method of the flash.text.TextField class is the setTextFormat() method. Using 

setTextFormat(), you can assign specific properties to the contents of a part of a text field to respond to user input, 

such as forms that need to remind users that certain entries are required or to change the emphasis of a subsection of 

a passage of text within a text field as a user selects parts of the text.

The following example uses TextField.setTextFormat() on a range of characters to change the appearance of part 

of the content of myTextField when the user clicks on the text field:

Updated 11 February 2009



436PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 var myTextField:TextField = new TextField();  
 myTextField.text = "No matter where you click on this text field the TEXT IN ALL CAPS changes 
format.";  
 myTextField.autoSize = TextFieldAutoSize.LEFT;  
 addChild(myTextField);  
 addEventListener(MouseEvent.CLICK, changeText);  
   
 var myformat:TextFormat = new TextFormat();  
 myformat.color = 0xFF0000;  
 myformat.size = 18;  
 myformat.underline = true;  
   
 function changeText(event:MouseEvent):void  
 {  
 myTextField.setTextFormat(myformat, 49, 65);  
 }

Advanced text rendering

ActionScript 3.0 provides a variety of classes in the flash.text package to control the properties of displayed text, 

including embedded fonts, anti-aliasing settings, alpha channel control, and other specific settings. The ActionScript 

3.0 Language and Components Reference provides detailed descriptions of these classes and properties, including the 

CSMSettings, Font, and TextRenderer classes.

Using embedded fonts

When you specify a specific font for a TextField in your application, Flash Player or AIR look for a device font (a font 

that resides on the user’s computer) with the same name. If it doesn’t find that font on the system, or if the user has a 

slightly different version of a font with that name, the text display could look very different from what you intend.

To make sure the user sees exactly the right font, you can embed that font in your application SWF file. Embedded 

fonts have a number of benefits:

• Embedded font characters are anti-aliased, making their edges appear smoother, especially for larger text.

• You can rotate text that uses embedded fonts.

• Embedded font text can be made transparent or semitransparent.

• You can use the kerning CSS style with embedded fonts.

The biggest limitation to using embedded fonts is that they increase the file size or download size of your application.

The exact method of embedding a font file into your application SWF file varies according to your development 

environment.

Once you have embedded a font you can make sure a TextField uses the correct embedded font:

• Set the embedFonts property of the TextField to true.

• Create a TextFormat object, set its fontFamily property to the name of the embedded font, and apply the 

TextFormat object to the TextField. When specifying an embedded font, the fontFamily property should only 

contain a single name; it cannot use a comma-delimited list of multiple font names.

• If using CSS styles to set fonts for TextFields or components, set the font-family CSS property to the name of the 

embedded font. The font-family property must contain a single name and not a list of names if you want to 

specify an embedded font.

Updated 11 February 2009



437PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Embedding a font in Flash

The Flash authoring tool lets you embed almost any font you have installed on your system, including TrueType fonts 

and Type 1 Postscript fonts.

You can embed fonts in an application in many ways, including:

• Setting the font and style properties of a TextField on the Stage and clicking the Embed Fonts checkbox

• Creating and referencing a font symbol

• Creating and using a run-time shared library containing embedded font symbols

For more details about how to embed fonts in applications, see “Embedded fonts for dynamic or input text fields” in 

Using Flash.

Controlling sharpness, thickness, and anti-aliasing

By default, Flash Player or AIR determines the settings for text display controls like sharpness, thickness, and anti-

aliasing as text resizes, changes color, or is displayed on various backgrounds. In some cases, like when you have very 

small or very large text, or text on a variety of unique backgrounds, you might want to maintain control over these 

settings. You can override Flash Player or AIR settings using the flash.text.TextRenderer class and its associated 

classes, like the CSMSettings class. These classes give you precise control over the rendering quality of embedded text. 

For more information about embedded fonts, see “Using embedded fonts” on page 436.

Note: The flash.text.TextField.antiAliasType property must have the value AntiAliasType.ADVANCED in order 

for you to set the sharpness, thickness, or the gridFitType property, or to use the 

TextRenderer.setAdvancedAntiAliasingTable() method.

The following example applies custom continuous stroke modulation (CSM) properties and formatting to displayed 

text using an embedded font called myFont. When the user clicks the displayed text, Flash Player or Adobe AIR applies 

the custom settings:

 var format:TextFormat = new TextFormat();  
 format.color = 0x336699;  
 format.size = 48;  
 format.font = "myFont";  
   
 var myText:TextField = new TextField();  
 myText.embedFonts = true;  
 myText.autoSize = TextFieldAutoSize.LEFT;  
 myText.antiAliasType = AntiAliasType.ADVANCED;  
 myText.defaultTextFormat = format;  
 myText.selectable = false;  
 myText.mouseEnabled = true;  
 myText.text = "Hello World";  
 addChild(myText);  
 myText.addEventListener(MouseEvent.CLICK, clickHandler);  
   
 function clickHandler(event:Event):void  
 {  
 var myAntiAliasSettings = new CSMSettings(48, 0.8, -0.8);  
 var myAliasTable:Array = new Array(myAntiAliasSettings);  
 TextRenderer.setAdvancedAntiAliasingTable("myFont", FontStyle.ITALIC, 
TextColorType.DARK_COLOR, myAliasTable);  
 }

Updated 11 February 2009



438PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Working with static text

Static text is created only within the authoring tool. You cannot programmatically instantiate static text using 

ActionScript. Static text is useful if the text is short and is not intended to change (as dynamic text can). Think of static 

text as similar to a graphic element like a circle or square drawn on the Stage in the Flash authoring tool. While static 

text is more limited than dynamic text, ActionScript 3.0 does allow you to read the property values of static text using 

the StaticText class. You can also use the TextSnapshot class to read values out of the static text.

Accessing static text fields with the StaticText class

Typically, you use the flash.text.StaticText class in the Actions panel of the Flash authoring tool to interact with a static 

text instance placed on the Stage. You may also work in ActionScript files that interact with a SWF file containing static 

text. In either case, you can’t instantiate a static text instance programmatically. Static text is created in the authoring 

tool. 

To create a reference to an existing static text field, iterate over the items in the display list and assign a variable. For 

example:

 for (var i = 0; i < this.numChildren; i++) {  
 var displayitem:DisplayObject = this.getChildAt(i);  
 if (displayitem instanceof StaticText) {  
 trace("a static text field is item " + i + " on the display list");  
 var myFieldLabel:StaticText = StaticText(displayitem);  
 trace("and contains the text: " + myFieldLabel.text);  
 }  
 }

Once you have a reference to a static text field, you can use the properties of that field in ActionScript 3.0. The following 

code is attached to a frame in the Timeline, and assumes that a variable named myFieldLabel is assigned to a static 

text reference. A dynamic text field named myField is positioned relative to the x and y values of myFieldLabel and 

displays the value of myFieldLabel again.

 var myField:TextField = new TextField();  
 addChild(myField);  
 myField.x = myFieldLabel.x;  
 myField.y = myFieldLabel.y + 20;  
 myField.autoSize = TextFieldAutoSize.LEFT;  
 myField.text = "and " + myFieldLabel.text

Using the TextSnapshot class

If you want to programmatically work with an existing static text instance, you can use the flash.text.TextSnapshot 

class to work with the textSnapshot property of a flash.display.DisplayObjectContainer. In other words, you create 

a TextSnapshot instance from the DisplayObjectContainer.textSnapshot property. You can then apply methods 

to that instance to retrieve values or select parts of the static text.

For example, place a static text field that contains the text "TextSnapshot Example" on the Stage. Add the following 

ActionScript to Frame 1 of the Timeline:

 var mySnap:TextSnapshot = this.textSnapshot;  
 var count:Number = mySnap.charCount;  
 mySnap.setSelected(0, 4, true);   
 mySnap.setSelected(1, 2, false);   
 var myText:String = mySnap.getSelectedText(false);   
 trace(myText); 

The TextSnapshot class is useful for getting the text out of static text fields in a loaded SWF file, if you want to use the 

text as a value in another part of an application.

Updated 11 February 2009



439PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

TextField Example: Newspaper-style text formatting

The News Layout example formats text to look something like a story in a printed newspaper. The input text can 

contain a headline, a subtitle, and the body of the story. Given a display width and height, this News Layout example 

formats the headline and the subtitle to take the full width of the display area. The story text is distributed across two 

or more columns.

This example illustrates the following ActionScript programming techniques:

• Extending the TextField class

• Loading and applying an external CSS file

• Converting CSS styles into TextFormat objects

• Using the TextLineMetrics class to get information about text display size

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The News 

Layout application files can be found in the folder Samples/NewsLayout. The application consists of the following files:

Reading the external CSS file

The News Layout application starts by reading story text from a local XML file. Then it reads an external CSS file that 

provides the formatting information for the headline, subtitle, and main text.

The CSS file defines three styles, a standard paragraph style for the story, and the h1 and h2 styles for the headline and 

subtitle respectively.

File Description

NewsLayout.mxml

or

NewsLayout.fla

The user interface for the application for Flex (MXML) or Flash (FLA).

com/example/programmingas3/ne

wslayout/StoryLayoutComponent.a

s

A Flex UIComponent class that places the StoryLayout instance.

com/example/programmingas3/ne

wslayout/StoryLayout.as

The main ActionScript class that arranges all the components of a news story for display.

com/example/programmingas3/ne

wslayout/FormattedTextField.as

A subclass of the TextField class that manages its own TextFormat object.

com/example/programmingas3/ne

wslayout/HeadlineTextField.as

A subclass of the FormattedTextField class that adjusts font sizes to fit a desired width.

com/example/programmingas3/ne

wslayout/MultiColumnTextField.as

An ActionScript class that splits text across two or more columns.

story.css A CSS file that defines text styles for the layout.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


440PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 p {  
 font-family: Georgia, "Times New Roman", Times, _serif;  
 font-size: 12;  
 leading: 2;  
 text-align: justify;  
 indent: 24;  
 }  
   
 h1 {  
 font-family: Verdana, Arial, Helvetica, _sans;  
 font-size: 20;  
 font-weight: bold;  
 color: #000099;  
 text-align: left;  
 }  
   
 h2 {  
 font-family: Verdana, Arial, Helvetica, _sans;  
 font-size: 16;  
 font-weight: normal;  
 text-align: left;  
 }

The technique used to read the external CSS file is the same as the technique described in “Loading an external CSS 

file” on page 434. When the CSS file has been loaded the application executes the onCSSFileLoaded() method, shown 

below.

 public function onCSSFileLoaded(event:Event):void  
 {  
 this.sheet = new StyleSheet();  
 this.sheet.parseCSS(loader.data);  
   
 h1Format = getTextStyle("h1", this.sheet);  
 if (h1Format == null)  
 {  
 h1Format = getDefaultHeadFormat();  
 }  
 h2Format = getTextStyle("h2", this.sheet);  
 if (h2Format == null)  
 {  
 h2Format = getDefaultHeadFormat();  
 h2Format.size = 16;  
 }  
 pFormat = getTextStyle("p", this.sheet);  
 if (pFormat == null)  
 {  
 pFormat = getDefaultTextFormat();  
 pFormat.size = 12;  
 }  
 displayText();  
 }

The onCSSFileLoaded() method creates a StyleSheet object and has it parse the input CSS data. The main text for the 

story is displayed in a MultiColumnTextField object, which can use a StyleSheet object directly. However, the headline 

fields use the HeadlineTextField class, which uses a TextFormat object for its formatting.

Updated 11 February 2009



441PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

The onCSSFileLoaded() method calls the getTextStyle() method twice to convert a CSS style declaration into a 

TextFormat object for use with each of the two HeadlineTextField objects. 

 public function getTextStyle(styleName:String, ss:StyleSheet):TextFormat  
 {  
 var format:TextFormat = null;  
   
 var style:Object = ss.getStyle(styleName);  
 if (style != null)  
 {  
 var colorStr:String = style.color;  
 if (colorStr != null && colorStr.indexOf("#") == 0)  
 {  
 style.color = colorStr.substr(1);  
 }  
 format = new TextFormat(style.fontFamily,   
 style.fontSize,   
 style.color,   
 (style.fontWeight == "bold"),  
 (style.fontStyle == "italic"),  
 (style.textDecoration == "underline"),   
 style.url,  
 style.target,  
 style.textAlign,  
 style.marginLeft,  
 style.marginRight,  
 style.indent,  
 style.leading);  
   
 if (style.hasOwnProperty("letterSpacing"))  
 {  
 format.letterSpacing = style.letterSpacing;  
 }  
 }  
 return format;  
 }

The property names and the meaning of the property values differ between CSS style declarations and TextFormat 

objects. The getTextStyle() method translates CSS property values into the values expected by the TextFormat 

object.

Arranging story elements on the page

The StoryLayout class formats and lays out the headline, subtitle, and main text fields into a newspaper-style 

arrangement. The displayText() method initially creates and places the various fields.

Updated 11 February 2009



442PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 public function displayText():void  
 {  
 headlineTxt = new HeadlineTextField(h1Format);  
 headlineTxt.wordWrap = true;  
 headlineTxt.x = this.paddingLeft;  
 headlineTxt.y = this.paddingTop;  
 headlineTxt.width = this.preferredWidth;  
 this.addChild(headlineTxt);  
   
 headlineTxt.fitText(this.headline, 1, true);  
   
 subtitleTxt = new HeadlineTextField(h2Format);   
 subtitleTxt.wordWrap = true;  
 subtitleTxt.x = this.paddingLeft;  
 subtitleTxt.y = headlineTxt.y + headlineTxt.height;  
 subtitleTxt.width = this.preferredWidth;  
 this.addChild(subtitleTxt);  
   
 subtitleTxt.fitText(this.subtitle, 2, false);  
   
 storyTxt = new MultiColumnText(this.numColumns, 20,   
 this.preferredWidth, 400, true, this.pFormat);  
 storyTxt.x = this.paddingLeft;  
 storyTxt.y = subtitleTxt.y + subtitleTxt.height + 10;  
 this.addChild(storyTxt);  
   
 storyTxt.text = this.content;  
 ...

Each field is placed below the previous field by setting its y property to equal the y property of the previous field plus 

its height. This dynamic placement calculation is needed because HeadlineTextField objects and 

MultiColumnTextField objects can change their height to fit their contents.

Altering font size to fit the field size

Given a width in pixels and a maximum number of lines to display, the HeadlineTextField alters the font size to make 

the text fit the field. If the text is short, the font size is very large, creating a tabloid-style headline. If the text is long, 

the font size is smaller.

The HeadlineTextField.fitText() method shown below does the font sizing work:

Updated 11 February 2009



443PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 public function fitText(msg:String, maxLines:uint = 1, toUpper:Boolean = false, 
targetWidth:Number = -1):uint  
 {  
 this.text = toUpper ? msg.toUpperCase() : msg;  
   
 if (targetWidth == -1)  
 {  
 targetWidth = this.width;  
 }  
   
 var pixelsPerChar:Number = targetWidth / msg.length;  
   
 var pointSize:Number = Math.min(MAX_POINT_SIZE, Math.round(pixelsPerChar * 1.8 * maxLines));  
   
 if (pointSize < 6)  
 {  
 // the point size is too small  
 return pointSize;  
 }  
   
 this.changeSize(pointSize);  
   
 if (this.numLines > maxLines)  
 {  
 return shrinkText(--pointSize, maxLines);  
 }  
 else  
 {  
 return growText(pointSize, maxLines);  
 }  
 }  
   
 public function growText(pointSize:Number, maxLines:uint = 1):Number  
 {  
 if (pointSize >= MAX_POINT_SIZE)  
 {  
 return pointSize;  
 }  
   
 this.changeSize(pointSize + 1);  
   
 if (this.numLines > maxLines)  
 {  
 // set it back to the last size  
 this.changeSize(pointSize);  
 return pointSize;  
 }  
 else  
 {  
 return growText(pointSize + 1, maxLines);  
 }  

Updated 11 February 2009



444PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 }  
   
 public function shrinkText(pointSize:Number, maxLines:uint=1):Number  
 {  
 if (pointSize <= MIN_POINT_SIZE)  
 {  
 return pointSize;  
 }  
   
 this.changeSize(pointSize);  
   
 if (this.numLines > maxLines)  
 {  
 return shrinkText(pointSize - 1, maxLines);  
 }  
 else  
 {  
 return pointSize;  
 }  
 }

The HeadlineTextField.fitText() method uses a simple recursive technique to size the font. First it guesses an 

average number of pixels per character in the text and from there calculates a starting point size. Then it changes the 

font size and checks whether the text has word wrapped to create more than the maximum number of text lines. If 

there are too many lines it calls the shrinkText() method to decrease the font size and try again. If there are not too 

many lines it calls the growText() method to increase the font size and try again. The process stops at the point where 

incrementing the font size by one more point would create too many lines.

Splitting text across multiple columns

The MultiColumnTextField class spreads text among multiple TextField objects which are then arranged like 

newspaper columns.

The MultiColumnTextField() constructor first creates an array of TextField objects, one for each column, as shown here:

 for (var i:int = 0; i < cols; i++)  
 {  
 var field:TextField = new TextField();  
 field.multiline = true;  
 field.autoSize = TextFieldAutoSize.NONE;  
 field.wordWrap = true;  
 field.width = this.colWidth;  
 field.setTextFormat(this.format);  
 this.fieldArray.push(field);  
 this.addChild(field);  
 }

Each TextField object is added to the array and added to the display list with the addChild() method.

Whenever the StoryLayout text property or styleSheet property changes, it calls the layoutColumns() method to 

redisplay the text. The layoutColumns() method calls the getOptimalHeight() method, to figure out the correct 

pixel height that is needed to fit all of the text within the given layout width.

Updated 11 February 2009



445PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 public function getOptimalHeight(str:String):int  
 {  
 if (field.text == "" || field.text == null)  
 {  
 return this.preferredHeight;  
 }  
 else  
 {  
 this.linesPerCol = Math.ceil(field.numLines / this.numColumns);  
   
 var metrics:TextLineMetrics = field.getLineMetrics(0);  
 this.lineHeight = metrics.height;  
 var prefHeight:int = linesPerCol * this.lineHeight;  
   
 return prefHeight + 4;  
 }  
 }

First the getOptimalHeight() method calculates the width of each column. Then it sets the width and htmlText 

property of the first TextField object in the array. The getOptimalHeight() method uses that first TextField object 

to discover the total number of word-wrapped lines in the text, and from that it identifies how many lines should be 

in each column. Next it calls the TextField.getLineMetrics() method to retrieve a TextLineMetrics object that 

contains details about size of the text in the first line. The TextLineMetrics.height property represents the full 

height of a line of text, in pixels, including the ascent, descent, and leading. The optimal height for the 

MultiColumnTextField object is then the line height multiplied by the number of lines per column, plus 4 to account 

for the two-pixel border at the top and the bottom of a TextField object.

Here is the code for the full layoutColumns() method:

 public function layoutColumns():void  
 {  
 if (this._text == "" || this._text == null)  
 {  
 return;  
 }  
   
 var field:TextField = fieldArray[0] as TextField;  
 field.text = this._text;  
 field.setTextFormat(this.format);  
   
 this.preferredHeight = this.getOptimalHeight(field);  
   
 var remainder:String = this._text;  
 var fieldText:String = "";  
 var lastLineEndedPara:Boolean = true;  
   
 var indent:Number = this.format.indent as Number;  
   
 for (var i:int = 0; i < fieldArray.length; i++)  
 {  
 field = this.fieldArray[i] as TextField;  
   
 field.height = this.preferredHeight;  
 field.text = remainder;  
   
 field.setTextFormat(this.format);  
   

Updated 11 February 2009



446PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 var lineLen:int;  
 if (indent > 0 && !lastLineEndedPara && field.numLines > 0)  
 {  
 lineLen = field.getLineLength(0);  
 if (lineLen > 0)  
 {  
 field.setTextFormat(this.firstLineFormat, 0, lineLen);  
 }  
 }  
   
 field.x = i * (colWidth + gutter);  
 field.y = 0;  
   
 remainder = "";  
 fieldText = "";  
   
 var linesRemaining:int = field.numLines;   
 var linesVisible:int = Math.min(this.linesPerCol, linesRemaining);  
   
 for (var j:int = 0; j < linesRemaining; j++)  
 {  
 if (j < linesVisible)  
 {  
 fieldText += field.getLineText(j);  
 }  
 else  
 {  
 remainder +=field.getLineText(j);  
 }  
 }  
   
 field.text = fieldText;  
   
 field.setTextFormat(this.format);  
   
 if (indent > 0 && !lastLineEndedPara)  
 {  
 lineLen = field.getLineLength(0);  
 if (lineLen > 0)  
 {  
 field.setTextFormat(this.firstLineFormat, 0, lineLen);  
 }  
 }  
   
 var lastLine:String = field.getLineText(field.numLines - 1);  
 var lastCharCode:Number = lastLine.charCodeAt(lastLine.length - 1);  

Updated 11 February 2009



447PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

   
 if (lastCharCode == 10 || lastCharCode == 13)  
 {  
 lastLineEndedPara = true;  
 }  
 else  
 {  
 lastLineEndedPara = false;  
 }  
   
 if ((this.format.align == TextFormatAlign.JUSTIFY) &&  
 (i < fieldArray.length - 1))  
 {  
 if (!lastLineEndedPara)  
 {  
 justifyLastLine(field, lastLine);  
 }  
 }  
 }  
 }

After the preferredHeight property has been set by calling the getOptimalHeight() method, the 

layoutColumns() method iterates through the TextField objects, setting the height of each to the preferredHeight 

value. The layoutColumns() method then distributes just enough lines of text to each field so that no scrolling occurs 

in any individual field, and the text in each successive field begins where the text in the previous field ended. If the text 

alignment style has been set to “justify” then the justifyLastLine() method is called to justify the final line of text 

in a field. Otherwise that last line would be treated as an end-of-paragraph line and not justified.

Using the Flash Text Engine

The Flash Text Engine (FTE) provides low-level support for sophisticated control of text metrics, formatting, and 

bidirectional text. It offers improved text flow and enhanced language support. While it can be used to create and 

manage simple text elements, the FTE is primarily designed as a foundation for developers to create text-handling 

components. As such, Flash Text Engine assumes a more advanced level of programming expertise. To display simple 

text elements, see the earlier sections that describe the use of the TextField and related objects.

Note: Flash Text Engine is available starting with Flash Player 10 and Adobe AIR 1.5.

Creating and displaying text

The classes that make up the Flash Text Engine enable you to create, format, and control text. The following classes 

are the basic building blocks for creating and displaying text with the Flash Text Engine:

• TextElement/GraphicElement/GroupElement - contain the content of a TextBlock instance

• ElementFormat - specifies formatting attributes for the content of a TextBlock instance

• TextBlock - the factory for building a paragraph of text

• TextLine - a line of text created from the TextBlock

To display text, create a TextElement object from a String and an ElementFormat object, which specifies formatting 

characteristics, and assign the TextElement to the content property of a TextBlock object. Create the lines of text for 

display by calling the TextBlock.createTextLine() method. The following code, for example, uses these FTE 

classes to display "Hello World! This is Flash Text Engine!", using default format and font values.

Updated 11 February 2009



448PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

package  
{  

import flash.text.engine.*;  
import flash.display.Sprite;  
  
public class HelloWorldExample extends Sprite  
{  

public function HelloWorldExample()  
{  

var str = "Hello World! This is Flash Text Engine!";  
var format:ElementFormat = new ElementFormat();  
var textElement:TextElement = new TextElement(str, format);  
var textBlock:TextBlock = new TextBlock();  
textBlock.content = textElement;  
  
var textLine1:TextLine = textBlock.createTextLine(null, 300);  
addChild(textLine1);  
textLine1.x = 30;  
textLine1.y = 30;  

}  
}  

}

The parameters for createTextLine() specify the line from which to begin the new line and the width of the line in 

pixels. The line from which to begin the new line is usually the previous line but, in the case of the first line, it is null.

Adding GraphicElement and GroupElement objects

You can assign a GraphicElement object to a TextBlock object to display an image or a graphic element. Simply create 

an instance of the GraphicElement class from a graphic or an image and assign the instance to the 

TextBlock.content property. Create the text line by calling TextBlock.createTextline() as you normally would. 

The following example creates two text lines, one with a GraphicElement object and one with a TextElement object.

package  
{  

import flash.text.engine.*;  
import flash.display.Sprite;  
import flash.display.Shape;  
import flash.display.Graphics;  

  
public class GraphicElementExample extends Sprite  
{  

public function GraphicElementExample()  
{  

var str:String = "Beware of Dog!";  
  

var triangle:Shape = new Shape();  
triangle.graphics.beginFill(0xFF0000, 1);  
triangle.graphics.lineStyle(3);  
triangle.graphics.moveTo(30, 0);  
triangle.graphics.lineTo(60, 50);  
triangle.graphics.lineTo(0, 50);  
triangle.graphics.lineTo(30, 0);  
triangle.graphics.endFill();  

  
var format:ElementFormat = new ElementFormat();  

Updated 11 February 2009



449PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

format.fontSize = 20;  
  
var graphicElement:GraphicElement = new GraphicElement(triangle, triangle.width, 

triangle.height, format);  
var textBlock:TextBlock = new TextBlock();  
textBlock.content = graphicElement;  
var textLine1:TextLine = textBlock.createTextLine(null, triangle.width);  
textLine1.x = 50;  
textLine1.y = 110;  
addChild(textLine1);  

  
var textElement:TextElement = new TextElement(str, format);  
textBlock.content = textElement;  
var textLine2 = textBlock.createTextLine(null, 300);  
addChild(textLine2);  
textLine2.x = textLine1.x - 30;  
textLine2.y = textLine1.y + 15;  

}  
}  

}

You can create a GroupElement object to create a group of TextElement, GraphicElement, and other GroupElement 

objects to assign to the content property of a TextBlock object. The parameter to the GroupElement() constructor is 

a Vector, which points to the text, graphic, and group elements that make up the group. The following example groups 

two graphic elements and a text element and assigns them as a unit to a text block.

package  
{  

import flash.text.engine.*;  
import flash.display.Sprite;  
import flash.display.Shape;  
import flash.display.Graphics;  
  
public class GroupElementExample extends Sprite  
{  

public function GroupElementExample()  
{  

var str:String = "Beware of Alligators!";  
  

var triangle1:Shape = new Shape();  
triangle1.graphics.beginFill(0xFF0000, 1);  
triangle1.graphics.lineStyle(3);  
triangle1.graphics.moveTo(30, 0);  
triangle1.graphics.lineTo(60, 50);  
triangle1.graphics.lineTo(0, 50);  
triangle1.graphics.lineTo(30, 0);  
triangle1.graphics.endFill();  
  
var triangle2:Shape = new Shape();  
triangle2.graphics.beginFill(0xFF0000, 1);  
triangle2.graphics.lineStyle(3);  
triangle2.graphics.moveTo(30, 0);  
triangle2.graphics.lineTo(60, 50);  
triangle2.graphics.lineTo(0, 50);  
triangle2.graphics.lineTo(30, 0);  
triangle2.graphics.endFill();  

Updated 11 February 2009



450PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

  
var format:ElementFormat = new ElementFormat();  
format.fontSize = 20;  
var graphicElement1:GraphicElement = new GraphicElement(triangle1, 

triangle1.width, triangle1.height, format);  
var textElement:TextElement = new TextElement(str, format);  
var graphicElement2:GraphicElement = new GraphicElement(triangle2, 

triangle2.width, triangle2.height, format);  
var groupVector:Vector.<ContentElement> = new Vector.<ContentElement>();  
groupVector.push(graphicElement1, textElement, graphicElement2);  
var groupElement = new GroupElement(groupVector);  
var textBlock:TextBlock = new TextBlock();  
textBlock.content = groupElement;  
var textLine:TextLine = textBlock.createTextLine(null, 800);  
addChild(textLine);  
textLine.x = 100;  
textLine.y = 200;  

}  
}  

}

Replacing text

You can replace text in a TextBlock instance by calling TextElement.replaceText() to replace text in the 

TextElement that you assigned to the TextBlock.content property. The following example uses repaceText() to 

insert text at the beginning of the line, append text to the end of the line, and replace text in the middle of the line.

Updated 11 February 2009



451PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

package  
{  

import flash.text.engine.*;  
import flash.display.Sprite;  

  
public class ReplaceTextExample extends Sprite  
{  

public function ReplaceTextExample()  
{  

  
var str:String = "Lorem ipsum dolor sit amet";  
var fontDescription:FontDescription = new FontDescription("Arial");  
var format:ElementFormat = new ElementFormat(fontDescription);  
format.fontSize = 14;  
var textElement:TextElement = new TextElement(str, format);  
var textBlock:TextBlock = new TextBlock();  
textBlock.content = textElement;  
createLine(textBlock, 10);  
textElement.replaceText(0, 0, "A text fragment: ");   
createLine(textBlock, 30);   
textElement.replaceText(43, 43, "...");    
createLine(textBlock, 50);  
textElement.replaceText(23, 28, "(ipsum)");  
createLine(textBlock, 70);  

}  
  

function createLine(textBlock:TextBlock, y:Number):void {  
var textLine:TextLine = textBlock.createTextLine(null, 300);  
textLine.x = 10;  
textLine.y = y;  
addChild(textLine);  

}  
}  

}

The replaceText() method replaces the text specified by the beginIndex and endIndex parameters with the text 

specified by the newText parameter. If the values of the beginIndex and endIndex parameters are the same, 

replaceText() inserts the specified text at that location. Otherwise it replaces the characters specified by beginIndex 

and endIndex with the new text.

Handling Events in FTE

You can add event listeners to a TextLine instance just as you can to other display objects. For example, you can detect 

when a user rolls the mouse over a text line or a user clicks the line. The following example detects both of these events. 

When you roll the mouse over the line, the cursor changes to a button cursor and when you click the line, it changes 

color.

Updated 11 February 2009



452PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

package  
{  

import flash.text.engine.*;  
import flash.ui.Mouse;  
import flash.display.Sprite  
import flash.events.MouseEvent;  
import flash.events.EventDispatcher;  
  
public class EventHandlerExample extends Sprite  
{  

var textBlock:TextBlock = new TextBlock();  
  

public function EventHandlerExample():void  
{  

var str:String = "I'll change color if you click me.";  
var fontDescription:FontDescription = new FontDescription("Arial");  
var format:ElementFormat = new ElementFormat(fontDescription, 18);  
var textElement = new TextElement(str, format);  
textBlock.content = textElement;  
createLine(textBlock);  

}  
  

private function createLine(textBlock:TextBlock):void  
{  

var textLine:TextLine = textBlock.createTextLine(null, 500);  
textLine.x = 30;  
textLine.y = 30;  
addChild(textLine);  
textLine.addEventListener("mouseOut", mouseOutHandler);  
textLine.addEventListener("mouseOver", mouseOverHandler);  
textLine.addEventListener("click", clickHandler);  

}  
  

private function mouseOverHandler(event:MouseEvent):void  
{  

Mouse.cursor = "button";  
}  

  
private function mouseOutHandler(event:MouseEvent):void  
{  

Mouse.cursor = "arrow";  
}  

  
function clickHandler(event:MouseEvent):void {  

if(textBlock.firstLine)  
removeChild(textBlock.firstLine);  

var newFormat:ElementFormat = textBlock.content.elementFormat.clone();  

Updated 11 February 2009



453PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

switch(newFormat.color)  
{  

case 0x000000:  
newFormat.color = 0xFF0000;  
break;  

case 0xFF0000:  
newFormat.color = 0x00FF00;  
break;  

case 0x00FF00:  
newFormat.color = 0x0000FF;  
break;  

case 0x0000FF:  
newFormat.color = 0x000000;  
break;  

}  
textBlock.content.elementFormat = newFormat;  
createLine(textBlock);  

}  
}  

}

Mirroring events

You can also mirror events on a text block, or on a portion of a text block, to an event dispatcher. First, create an 

EventDispatcher instance and then assign it to the eventMirror property of a TextElement instance. If the text block 

consists of a single text element, the text engine mirrors events for the entire text block. If the text block consists of 

multiple text elements, the text engine mirrors events only for the TextElement instances that have the eventMirror 

property set. The text in the following example consists of three elements: the word "Click", the word "here", and the 

string "to see me in italic". The example assigns an event dispatcher to the second text element, the word "here", and 

adds an event listener, the clickHandler() method. The clickHandler() method changes the text to italic. It also 

replaces the content of the third text element to read, "Click here to see me in normal font!".

package  
{  

import flash.text.engine.*;  
import flash.ui.Mouse;  
import flash.display.Sprite;  
import flash.events.MouseEvent;  
import flash.events.EventDispatcher;  
  
public class EventMirrorExample extends Sprite  
{   

var fontDescription:FontDescription = new FontDescription("Helvetica", "bold");  
var format:ElementFormat = new ElementFormat(fontDescription, 18);  
var textElement1 = new TextElement("Click ", format);  
var textElement2 = new TextElement("here ", format);  
var textElement3 = new TextElement("to see me in italic! ", format);  
var textBlock:TextBlock = new TextBlock();  

  
public function EventMirrorExample()  
{  

var myEvent:EventDispatcher = new EventDispatcher();  
  
myEvent.addEventListener("click", clickHandler);  
myEvent.addEventListener("mouseOut", mouseOutHandler);  
myEvent.addEventListener("mouseOver", mouseOverHandler);  

Updated 11 February 2009



454PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

  
textElement2.eventMirror=myEvent;  
  
var groupVector:Vector.<ContentElement> = new Vector.<ContentElement>;  
groupVector.push(textElement1, textElement2, textElement3);  
var groupElement:GroupElement = new GroupElement(groupVector);  
  
textBlock.content = groupElement;  
createLines(textBlock);  

}  
  

private function clickHandler(event:MouseEvent):void  
{  

var newFont:FontDescription = new FontDescription();  
newFont.fontWeight = "bold";  

  
var newFormat:ElementFormat = new ElementFormat();  
newFormat.fontSize = 18;  
if(textElement3.text == "to see me in italic! ") {  

newFont.fontPosture = FontPosture.ITALIC;  
textElement3.replaceText(0,21, "to see me in normal font! ");  

}  
else {  

newFont.fontPosture = FontPosture.NORMAL;  
textElement3.replaceText(0, 26, "to see me in italic! ");  

}  
newFormat.fontDescription = newFont;  
textElement1.elementFormat = newFormat;  
textElement2.elementFormat = newFormat;  
textElement3.elementFormat = newFormat;  
createLines(textBlock);  

}  
  

private function mouseOverHandler(event:MouseEvent):void  
{  

Mouse.cursor = "button";  
}  

  
private function mouseOutHandler(event:MouseEvent):void  
{  

Mouse.cursor = "arrow";  
}  

  
private function createLines(textBlock:TextBlock):void  
{  

if(textBlock.firstLine)  
removeChild (textBlock.firstLine);  

var textLine:TextLine = textBlock.createTextLine (null, 300);  
textLine.x = 15;  
textLine.y = 20;  
addChild (textLine);  

}  
}  

}

The mouseOverHandler() and mouseOutHandler() functions set the cursor to a button cursor when it's over the 

word "here" and back to an arrow when it's not.

Updated 11 February 2009



455PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Formatting text

A TextBlock object is a factory for creating lines of text. The content of a TextBlock is assigned via the TextElement 

object. An ElementFormat object handles the formatting for the text. The ElementFormat class defines such 

properties as baseline alignment, kerning, tracking, text rotation, and font size, color, and case. It also includes a 

FontDescription, which is covered in detail in “Working with fonts” on page 458.

Using the ElementFormat object

The constructor for the ElementFormat object takes any of a long list of optional parameters, including a 

FontDescription. You can also set these properties outside the constructor. The following example shows the 

relationship of the various objects in defining and displaying a simple text line:

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.*;  
   
 public class ElementFormatExample extends Sprite  
 {  
 private var tb:TextBlock = new TextBlock();  

private var te:TextElement;  
private var ef:ElementFormat;  

  private var fd:FontDescription = new FontDescription();  
private var str:String;  
private var tl:TextLine;  

  
 public function ElementFormatExample()  
 {  
 fd.fontName = "Garamond";  

ef = new ElementFormat(fd);  
ef.fontSize = 30;  
ef.color = 0xFF0000;  
str = "This is flash text";  
te = new TextElement(str, ef);  
tb.content = te;  
tl = tb.createTextLine(null,600);  
addChild(tl);  

 }  
 }  
 }

Font color and transparency (alpha)

The color property of the ElementFormat object sets the font color. The value is an integer representing the RGB 

components of the color; for example, 0xFF0000 for red and 0x00FF00 for green. The default is black (0x000000).

The alpha property sets the alpha transparency value for an element (both TextElement and GraphicElement). 

Values can range from 0 (fully transparent) to 1 (fully opaque, which is the default). Elements with an alpha of 0 are 

invisible, but still active. This value is multiplied by any inherited alpha values, thus making the element more 

transparent.

 var ef:ElementFormat = new ElementFormat();  
ef.alpha = 0.8;  
ef.color = 0x999999;  
 

Updated 11 February 2009



456PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

Baseline alignment and shift

The font and size of the largest text in a line determine its dominant baseline. You can override these values by setting 

TextBlock.baselineFontDescription and TextBlock.baselineFontSize. You can align the dominant baseline 

with one of several baselines within the text. These include the ascent line and the descent line or the ideographic top, 

center, or bottom.

A. Ascent  B. Baseline  C. Descent  D. x-height  

In the ElementFormat object, three properties determine baseline and alignment characteristics. The 

alignmentBaseline property sets the main baseline of a TextElement or GraphicElement. This baseline is the 

“snap-to” line for the element, and it’s to this position that the dominant baseline of all text aligns.

The dominantBaseline property specifies which of the various baselines of the element to use, which determines the 

vertical position of the element on the line. The default value is TextBaseline.ROMAN, but it can also be set to have 

the IDEOGRAPHIC_TOP or IDEOGRAPHIC_BOTTOM baselines be dominant.

The baselineShift property moves the baseline by a set number of pixels on the y axis. In normal (non-rotated) text, 

a positive value moves the baseline down and a negative value moves it up.

Typographic Case

The TypographicCase property of ElementFormat specifies text case, such as uppercase, lowercase, or small caps.

   
var ef_Upper:ElementFormat = new ElementFormat();  
ef_Upper.typographicCase = TypographicCase.UPPERCASE;  
   
var ef_SmallCaps:ElementFormat = new ElementFormat();  
ef_SmallCaps.typographicCase = TypographicCase.SMALL_CAPS; 

Rotating text

You can rotate a block of text or the glyphs within a segment of text in increments of 90 degrees. The TextRotation 

class defines the following constants for setting both text block and glyph rotation: 

To rotate the lines of text in a text block, set the TextBlock.lineRotation property before calling the 

TextBlock.createTextLine() method to create the text line. 

Constant Value Description

AUTO “auto” Specifies 90 degree counter-clockwise rotation. Typically used with vertical Asian text to 

rotate only glyphs that require rotation.

ROTATE_0 “rotate_0” Specifies no rotation.

ROTATE_180 “rotate_180” Specifies 180 degree rotation.

ROTATE_270 “rotate_270” Specifies 270 degree rotation.

ROTATE_90 “rotate_90” Specifies 90 degree clockwise rotation.

D

A

CB

Updated 11 February 2009



457PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

To rotate the glyphs within a block of text or a segment, set the ElementFormat.textRotation property to the 

number of degrees that you want the glyphs to rotate. A glyph is the shape that makes up a character, or a part of a 

character that consists of multiple glyphs. The letter a and the dot on an i, for example, are glyphs. 

Rotating glyphs is relevant in some Asian languages in which you want to rotate the lines to vertical but not rotate the 

characters within the lines. For more information on rotating Asian text, see “Justifying East Asian text” on page 461.

Here is an example of rotating both a block of text and the glyphs within, as you would with Asian text. The example 

also uses a Japanese font:

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.*;  
   
 public class RotationExample extends Sprite  
 {  
 private var tb:TextBlock = new TextBlock();  

private var te:TextElement;  
private var ef:ElementFormat;  

  private var fd:FontDescription = new FontDescription();  
private var str:String;  
private var tl:TextLine;  

  
 public function RotationExample()  
 {  
 fd.fontName = "MS Mincho";  

ef = new ElementFormat(fd);  
ef.textRotation = TextRotation.AUTO;  
str = "This is rotated Japanese text";  
te = new TextElement(str, ef);  
tb.lineRotation = TextRotation.ROTATE_90;  
tb.content = te;  
tl = tb.createTextLine(null,600);  
addChild(tl);  

 }  
 }  
 }

Locking and cloning ElementFormat

When an ElementFormat object is assigned to any type of ContentElement, its locked property is automatically set 

to true. Attempting to modify a locked ElementFormat object throws an IllegalOperationError. The best 

practice is to fully define such an object before assigning it to a TextElement instance.

If you want to modify an existing ElementFormat instance, first check its locked property. If it’s true, use the 

clone()method to create an unlocked copy of the object. The properties of this unlocked object can be changed, and 

it can then be assigned to the TextElement instance. Any new lines created from it have the new formatting. Previous 

lines created from this same object and using the old format are unchanged.

Updated 11 February 2009



458PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.*;  
   
 public class ElementFormatCloneExample extends Sprite  
 {  
 private var tb:TextBlock = new TextBlock();  

private var te:TextElement;  
private var ef1:ElementFormat;  
private var ef2:ElementFormat;  

  private var fd:FontDescription = new FontDescription();  
  
 public function ElementFormatCloneExample()  
 {  
 fd.fontName = "Garamond";  

ef1 = new ElementFormat(fd);  
ef1.fontSize = 24;  
var str:String = "This is flash text";  
te = new TextElement(str, ef);  
tb.content = te;  
var tx1:TextLine = tb.createTextLine(null,600);  
addChild(tx1);  
  
ef2 = (ef1.locked) ? ef1.clone() : ef1;  
ef2.fontSize = 32;  
tb.content.elementFormat = ef2;  
var tx2:TextLine = tb.createTextLine(null,600);  
addChild(tx2);  

 }  
 }  
 }

Working with fonts

The FontDescription object is used in conjunction with ElementFormat to identify a font face and define some of 

its characteristics. These characteristics include the font name, weight, posture, rendering, and how to find the font 

(device versus embedded).

Note:  FTE does not support Type 1 fonts or bitmap fonts such as Type 3, ATC, sfnt-wrapped CID, or Naked CID.

Defining font characteristics (FontDescription object)

The fontName property of the FontDescription object can be a single name or a comma-separated list of names. For 

example, in a list such as “Arial, Helvetica, _sans”, Flash Player or AIR looks for “Arial” first, then “Helvetica”, and 

finally “_sans”, if it can’t find either of the first two fonts. The set of font names include three generic device font names: 

“_sans”, “_serif”, and “_typewriter”. They map to specific device fonts, depending on the playback system. It is good 

practice to specify default names such as these in all font descriptions that use device fonts. If no fontName is specified, 

“_serif” is used as the default.

The fontPosture property can either be set to the default (FontPosture.NORMAL) or to italics 

(FontPosture.ITALIC). The fontWeight property can be set to the default (FontWeight.NORMAL) or to bold 

(FontWeight.BOLD).

Updated 11 February 2009



459PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

var fd1:FontDescription = new FontDescription();  
fd1.fontName = "Arial, Helvetica, _sans";  
fd1.fontPosture = FontPosture.NORMAL;  
fd1.fontWeight = FontWeight.BOLD;

Embedded versus device fonts

The fontLookup property of the FontDescription object specifies whether Flash Player and AIR look for a device 

font or embedded font to render text. If a device font (FontLookup.DEVICE) is specified, the runtime looks for the font 

on the playback system. Specifying an embedded font (FontLookup.EMBEDDED_CFF) causes the runtime to look for 

an embedded font with the specified name in the SWF file. Only embedded CFF (Compact Font Format) fonts work 

with this setting. If the specified font is not found, a fallback device font is used.

Device fonts result in a smaller SW file size. Embedded fonts give you greater fidelity across platforms. 

var fd1:FontDescription = new FontDescription();  
fd1.fontLookup = FontLookup.EMBEDDED_CFF;  
fd1.fontName = "Garamond, _serif";

Rendering mode and hinting

CFF (Compact Font Format) rendering is available starting with Flash Player 10 and Adobe AIR 1.5. This type of font 

rendering makes text more legible, and permits higher-quality display of fonts at small sizes. This setting only applies 

to embedded fonts. FontDescription defaults to this setting (RenderingMode.CFF) for the renderingMode 

property. You can set this property to RenderingMode.NORMAL to match the type of rendering used by Flash Player 

7 or earlier versions.

When CFF rendering is selected, a second property, cffHinting, controls how a font’s horizontal stems are fit to the 

subpixel grid. The default value, CFFHinting.HORIZONTAL_STEM, uses CFF hinting. Setting this property to 

CFFHinting.NONE removes hinting, which is appropriate for animation or for large font sizes.

var fd1:FontDescription = new FontDescription();  
fd1.renderingMode = RenderingMode.CFF;  
fd1.cffHinting = CFFHinting.HORIZONTAL_STEM;

Locking and cloning FontDescription

When a FontDescription object is assigned to an ElementFormat, its locked property is automatically set to true. 

Attempting to modify a locked FontDescription object throws an IllegalOperationError. The best practice is to 

fully define such an object before assigning it to a ElementFormat.

If you want to modify an existing FontDescription, first check its locked property. If it’s true, use the 

clone()method to create an unlocked copy of the object. The properties of this unlocked object can be changed, and 

it can then be assigned to the ElementFormat. Any new lines created from this TextElement have the new formatting. 

Previous lines created from this same object are unchanged.

Updated 11 February 2009



460PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

 package  
 {  
 import flash.display.Sprite;  
 import flash.text.*;  
   
 public class FontDescriptionCloneExample extends Sprite  
 {  
 private var tb:TextBlock = new TextBlock();  

private var te:TextElement;  
private var ef1:ElementFormat;  
private var ef2:ElementFormat;  

  private var fd1:FontDescription = new FontDescription();  
private var fd2:FontDescription;  

  
 public function FontDescriptionCloneExample()  
 {  
 fd1.fontName = "Garamond";  

ef1 = new ElementFormat(fd);  
var str:String = "This is flash text";  
te = new TextElement(str, ef);  
tb.content = te;  
var tx1:TextLine = tb.createTextLine(null,600);  
addChild(tx1);  
  
fd2 = (fd1.locked) ? fd1.clone() : fd1;  
fd2.fontName = "Arial";  
ef2 = (ef1.locked) ? ef1.clone() : ef1;  
ef2.fontDescription = fd2;  
tb.content.elementFormat = ef2;  
var tx2:TextLine = tb.createTextLine(null,600);  
addChild(tx2);  

 }  
 }  
 }

Controlling text

FTE gives you a new set of text formatting controls to handle justification and character spacing (kerning and 

tracking). There are also properties for controlling that way lines are broken and for setting tab stops within lines.

Justifying text

Justifying text makes all lines in a paragraph the same length by adjusting the spacing between words and sometimes 

between letters. The effect is to align the text on both sides, while the spacing between words and letters varies. 

Columns of text in newspapers and magazines are frequently justified. 

The lineJustfication property in the SpaceJustifier class allows you to control the justification of lines in a block 

of text. The LineJustification class defines constants that you can use to specify a justification option: ALL_BUT_LAST 

justifies all but the last line of text; ALL_INCLUDING_LAST justifies all text, including the last line; UNJUSTIFIED, which 

is the default, leaves the text unjustified.

To justify text, set the lineJustification property to an instance of the SpaceJustifier class and assign that instance 

to the textJustifier property of a TextBlock instance. The following example creates a paragraph in which all but 

the last line of text is justified.

Updated 11 February 2009



461PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

package  
{  

import flash.text.engine.*;  
import flash.display.Sprite;  

  
public class JustifyExample extends Sprite  
{   

public function JustifyExample()  
{  

var str:String = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " +  
"sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut " +  
"enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut " +  
"aliquip ex ea commodo consequat.";  
  
var format:ElementFormat = new ElementFormat();  
var textElement:TextElement=new TextElement(str,format);  
var spaceJustifier:SpaceJustifier=new 

SpaceJustifier("en",LineJustification.ALL_BUT_LAST);  
  
var textBlock:TextBlock = new TextBlock();  
textBlock.content=textElement;  
textBlock.textJustifier=spaceJustifier;  
createLines(textBlock);  

}  
  

private function createLines(textBlock:TextBlock):void {  
var yPos=20;  
var textLine:TextLine=textBlock.createTextLine(null,150);  

  
while (textLine) {  

addChild(textLine);  
textLine.x=15;  
yPos+=textLine.textHeight+2;  
textLine.y=yPos;  
textLine=textBlock.createTextLine(textLine,150);  

}  
}  

}  
}

To vary spacing between letters as well as between words, set the SpaceJustifier.letterspacing property to true. 

Turning on letterspacing can reduce the occurrences of unsightly gaps between words, which can sometimes occur 

with simple justification.

Justifying East Asian text

Justifying East Asian text entails additional considerations. It can be written from top to bottom and some characters, 

known as kinsoku, cannot appear at the beginning or end of a line. The JustificationStyle class defines the following 

constants, which specify the options for handling these characters. PRIORITIZE_LEAST_ADJUSTMENT bases 

justification on either expanding or compressing the line, depending on which one produces the most desirable result. 

PUSH_IN_KINSOKU bases justification on compressing kinsoku at the end of the line, or expanding it if no kinsoku 

occurs, or if that space is insufficient.

Updated 11 February 2009



462PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

PUSH_OUT_ONLY bases justification on expanding the line. To create a block of vertical Asian text, set the 

TextBlock.lineRotation property to TextRotation.ROTATE_90 and set the ElementFormat.textRotation 

property to TextRotation.AUTO, which is the default. Setting the textRotation property to AUTO causes the glyphs 

in the text to remain vertical instead of turning on their side when the line is rotated. The AUTO setting rotates 90 

degrees counter-clockwise for full width and wide glyphs only, as determined by the Unicode properties of the glyph. 

The following example displays a vertical block of Japanese text and justifies it using the PUSH_IN_KINSOKU option.i

package  
{  

import flash.text.engine.*;  
import flash.display.Stage;  
import flash.display.Sprite;  
import flash.system.Capabilities;  
  
public class EastAsianJustifyExample extends Sprite  
{  

public function EastAsianJustifyExample()  
{  

var Japanese_txt:String = String.fromCharCode(  
0x5185, 0x95A3, 0x5E9C, 0x304C, 0x300C, 0x653F, 0x5E9C, 0x30A4,  
0x30F3, 0x30BF, 0x30FC, 0x30CD, 0x30C3, 0x30C8, 0x30C6, 0x30EC,  
0x30D3, 0x300D, 0x306E, 0x52D5, 0x753B, 0x914D, 0x4FE1, 0x5411,  
0x3051, 0x306B, 0x30A2, 0x30C9, 0x30D3, 0x30B7, 0x30B9, 0x30C6,  
0x30E0, 0x30BA, 0x793E, 0x306E)  
var textBlock:TextBlock = new TextBlock();  
var font:FontDescription = new FontDescription();  
var format:ElementFormat = new ElementFormat();  
format.fontSize = 12;  
format.color = 0xCC0000;  
format.textRotation = TextRotation.AUTO;  
textBlock.baselineZero = TextBaseline.IDEOGRAPHIC_CENTER;  
var eastAsianJustifier:EastAsianJustifier = new EastAsianJustifier("ja", 

LineJustification.ALL_BUT_LAST);  
eastAsianJustifier.justificationStyle = JustificationStyle.PUSH_IN_KINSOKU;  
textBlock.textJustifier = eastAsianJustifier;  
textBlock.lineRotation = TextRotation.ROTATE_90;  
var linePosition:Number = this.stage.stageWidth - 75;  
if (Capabilities.os.search("Mac OS") > -1)  

// set fontName: Kozuka Mincho Pro R  

Updated 11 February 2009



463PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

font.fontName = String.fromCharCode(0x5C0F, 0x585A, 0x660E, 0x671D) + " Pro R";   
else  

font.fontName = "Kozuka Mincho Pro R";  
textBlock.content = new TextElement(Japanese_txt, format);  
var previousLine:TextLine = null;  
  
while (true)  
{  

var textLine:TextLine = textBlock.createTextLine(previousLine, 200);  
if (textLine == null)  

break;  
textLine.y = 20;  
textLine.x = linePosition;  
linePosition -= 25;  
addChild(textLine);  
previousLine = textLine;  

}  
}  

}  
}

Kerning and tracking

Kerning and tracking affect the distance between adjacent pairs of characters in a text block. Kerning controls how 

character pairs “fit” together, such as the pairs “WA” or “Va”. Kerning is set in the ElementFormat object. It is enabled 

by default (Kerning.ON), and can be set to OFF or AUTO, in which case kerning is only applied between characters if 

neither is Kanji, Hiragana, or Katakana.

Tracking adds or subtracts a set number of pixels between all characters in a text block, and is also set in the 

ElementFormat object. It works with both embedded and device fonts. FTE supports two tracking properties, 

trackingLeft, which adds/subtracts pixels from the left side of a character, and trackingRight, which 

adds/subtracts from the right side. If kerning is being used, the tracking value is added to or subtracted from kerning 

values for each character pair.

A. Kerning.OFF   B. TrackingRight=5, Kerning.OFF  C. TrackingRight=-5, Kerning.OFF  D. Kerning.ON   E. TrackingRight=-5, Kerning.ON  
F. TrackingRight=-5, Kerning.ON  

VAY
VAY
VAY

VAY
VAY
VAY

A

B

C

D

E

F

Updated 11 February 2009



464PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

   
var ef1:ElementFormat = new ElementFormat();  
ef1.kerning = Kerning.OFF;  
   
var ef2:ElementFormat = new ElementFormat();  
ef2.kerning = Kerning.ON;  
ef2.trackingLeft = 0.8;  
ef2.trackingRight = 0.8;  
  
var ef3:ElementFormat = new ElementFormat();  
ef3.trackingRight = -0.2;

Line breaks for wrapped text

The breakOpportunity property of the ElementFormat object determines which characters can be used for breaking 

when wrapping text is broken into multiple lines. The default, BreakOpportunity.AUTO, uses standard Unicode 

properties, such as breaking between words and on hyphens. Using BreakOpportunity.ALL allows any character to 

be treated as a line break opportunity, which is useful for creating effects like text along a path.

var ef:ElementFormat = new ElementFormat();  
ef.breakOpportunity = BreakOpportunity.ALL; 

Tab stops

To set tab stops in a text block, define the tab stops by creating instances of the TabStop class. The parameters to the 

TabStop() constructor specify how the text aligns with the tab stop. These parameters specify the position of the tab 

stop, and for decimal alignment, the value on which to align, expressed as a string. Typically, this value is a decimal 

point but it also could be a comma, a dollar sign, or the symbol for the Yen or the Euro, for example. The following 

line of code creates a tab stop called tab1.

var tab1:TabStop = new TabStop(TabAlignment.DECIMAL, 50, ".");

Once you've created the tab stops for a text block, assign them to the tabStops property of a TextBlock instance. 

Because the tabStops property requires a Vector, though, first create a Vector and add the tab stops to it. The Vector 

allows you to assign a set of tab stops to the text block. The following example creates a Vector<TabStop> instance 

and adds a set of TabStop objects to it. Then it assigns the tab stops to the tabStops property of a TextBlock instance.

var tabStops:Vector.<TabStop> = new Vector.<TabStop>();  
tabStops.push(tab1, tab2, tab3, tab4);  
textBlock.tabStops = tabStops

For more information on Vectors, see “Working with arrays” on page 153. 

The following example shows the effect of each of the TabStop alignment options.

Updated 11 February 2009



465PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

package {  
  
import flash.text.engine.*;  
import flash.display.Sprite;  
  
public class TabStopExample extends Sprite  
{  

public function TabStopExample()  
{  

var format:ElementFormat = new ElementFormat();  
format.fontDescription = new FontDescription("Arial");  
format.fontSize = 16;  

  
var tabStops:Vector.<TabStop> = new Vector.<TabStop>();  
tabStops.push(  

new TabStop(TabAlignment.START, 20),  
new TabStop(TabAlignment.CENTER, 140),  
new TabStop(TabAlignment.DECIMAL, 260, "."),  
new TabStop(TabAlignment.END, 380));  

var textBlock:TextBlock = new TextBlock();  
textBlock.content = new TextElement(  

"\tt1\tt2\tt3\tt4\n" +  
"\tThis line aligns on 1st tab\n" +  
"\t\t\t\tThis is the end\n" +  
"\tThe following fragment centers on the 2nd tab:\t\t\n" +  
"\t\tit's on me\t\t\n" +  
"\tThe following amounts align on the decimal point:\n" +  
"\t\t\t45.00\t\n" +  
"\t\t\t75,320.00\t\n" +  
"\t\t\t6,950.00\t\n" +  
"\t\t\t7.01\t\n", format);  

  
textBlock.tabStops = tabStops;  
var yPosition:Number = 60;  
var previousTextLine:TextLine = null;  
var textLine:TextLine;  
var i:int;  
for (i = 0; i < 10; i++) {  

textLine = textBlock.createTextLine(previousTextLine, 1000, 0);  
textLine.x = 20;  
textLine.y = yPosition;  
addChild(textLine);   
yPosition += 25;  
previousTextLine = textLine;  

}  
}  

}  
}

FTE Example - News Layout

This programming example shows the Flash Text Engine in use laying out a simple newspaper page. The page includes 

a large headline, a subhead, and a multi-column body section.

First, create a new FLA file, and attach the following code to frame #2 of the default layer:

Updated 11 February 2009



466PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

import com.example.programmingas3.newslayout.StoryLayout ;  
// frame sc ript - create  a 3-columned arti cle layout  
var story:StoryLayout = new StoryLayout(720, 500, 3, 10);  
story.x = 20;  
story.y = 80;  
addChild(story);  
stop();

StoryLayout.as is the controller script for this example. It sets the content, reads in style information from an external 

stylesheet and assigns those styles to ElementFormat objects. It then creates the headline, subhead and multi-column 

text elements.

package com.example.programmingas3.newslayout  
{  

import flash.display.Sprite;  
import flash.text.StyleSheet;  
import flash.text.engine.*;  

  
import flash.events.Event;  
import flash.net.URLRequest;  
import flash.net.URLLoader;  
import flash.display.Sprite;  
import flash.display.Graphics;  

  
public class StoryLayout extends Sprite  
{  

public var headlineTxt:HeadlineTextField;  
public var subtitleTxt:HeadlineTextField;  
public var storyTxt:MultiColumnText;  
public var sheet:StyleSheet;  
public var h1_ElFormat:ElementFormat;  
public var h2_ElFormat:ElementFormat;  
public var p_ElFormat:ElementFormat;  
  
private var loader:URLLoader;  
  
public var paddingLeft:Number;  
public var paddingRight:Number;  
public var paddingTop:Number;  
public var paddingBottom:Number;  
  
public var preferredWidth:Number;  
public var preferredHeight:Number;  
  
public var numColumns:int;  
  
public var bgColor:Number = 0xFFFFFF;  
  
public var headline:String = "News Layout Example";  
public var subtitle:String = "This example formats text like a newspaper page using the 

Flash Text Engine API. ";  
  

public var rawTestData:String =  
"From the part Mr. Burke took in the American Revolution, it was natural that I should 

consider him a friend to mankind; and as our acquaintance commenced on that ground, it would 
have been more agreeable to me to have had cause to continue in that opinion than to change it. " +  

"At the time Mr. Burke made his violent speech last winter in the English Parliament 

Updated 11 February 2009



467PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

against the French Revolution and the National Assembly, I was in Paris, and had written to him 
but a short time before to inform him how prosperously matters were going on. Soon after this I 
saw his advertisement of the Pamphlet he intended to publish: As the attack was to be made in a 
language but little studied, and less understood in France, and as everything suffers by 
translation, I promised some of the friends of the Revolution in that country that whenever Mr. 
Burke's Pamphlet came forth, I would answer it. This appeared to me the more necessary to be 
done, when I saw the flagrant misrepresentations which Mr. Burke's Pamphlet contains; and that 
while it is an outrageous abuse on the French Revolution, and the principles of Liberty, it is 
an imposition on the rest of the world. " +  

"I am the more astonished and disappointed at this conduct in Mr. Burke, as (from the 
circumstances I am going to mention) I had formed other expectations. " +  

"I had seen enough of the miseries of war, to wish it might never more have existence 
in the world, and that some other mode might be found out to settle the differences that should 
occasionally arise in the neighbourhood of nations. This certainly might be done if Courts were 
disposed to set honesty about it, or if countries were enlightened enough not to be made the 
dupes of Courts. The people of America had been bred up in the same prejudices against France, 
which at that time characterised the people of England; but experience and an acquaintance with 
the French Nation have most effectually shown to the Americans the falsehood of those prejudices; 
and I do not believe that a more cordial and confidential intercourse exists between any two 
countries than between America and France. ";  

  
public function StoryLayout(w:int = 400, h:int = 200, cols:int = 3, padding:int = 

10):void  
{  

this.preferredWidth = w;  
this.preferredHeight = h;  
  
this.numColumns = cols;  
  
this.paddingLeft = padding;  
this.paddingRight = padding;  
this.paddingTop = padding;  
this.paddingBottom = padding;  
  
var req:URLRequest = new URLRequest("story.css");  
loader = new URLLoader();  
loader.addEventListener(Event.COMPLETE, onCSSFileLoaded);  
loader.load(req);  

}  
  
public function onCSSFileLoaded(event:Event):void  
{  

this.sheet = new StyleSheet();  
this.sheet.parseCSS(loader.data);  
  
// convert headline styles to ElementFormat objects  
h1_ElFormat = getElFormat("h1", this.sheet);  
h1_ElFormat.typographicCase = TypographicCase.UPPERCASE;  
h2_ElFormat = getElFormat("h2", this.sheet);  
p_ElFormat = getElFormat("p", this.sheet);  
displayText();  

}  
  
public function drawBackground():void  
{  
    var h:Number = this.storyTxt.y + this.storyTxt.height +  

this.paddingTop + this.paddingBottom;  

Updated 11 February 2009



468PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

    var g:Graphics = this.graphics;  
    g.beginFill(this.bgColor);  
    g.drawRect(0, 0, this.width + this.paddingRight + this.paddingLeft, h);  
    g.endFill();  
}  
  
/**  
 * Reads a set of style properties for a named style and then creates  
 * a TextFormat object that uses the same properties.  
 */  

        public function getElFormat(styleName:String, ss:StyleSheet):ElementFormat  
        {  
        var style:Object = ss.getStyle(styleName);  
        if (style != null)  
        {  
        var colorStr:String = style.color;  
        if (colorStr != null && colorStr.indexOf("#") == 0)  
        {  
        style.color = colorStr.substr(1);  
        }  

var fd:FontDescription = new FontDescription(  
style.fontFamily,  
style.fontWeight,  
FontPosture.NORMAL,  
FontLookup.DEVICE,  
RenderingMode.NORMAL,  
CFFHinting.NONE);  

        var format:ElementFormat = new ElementFormat(fd,  
          style.fontSize,  
          style.color,  
          1,  
          TextRotation.AUTO,  
          TextBaseline.ROMAN,  
          TextBaseline.USE_DOMINANT_BASELINE,  
          0.0,  
          Kerning.ON,  
          0.0,  
          0.0,  
          "en",  

  BreakOpportunity.AUTO,  
  DigitCase.DEFAULT,  
  DigitWidth.DEFAULT,  

          LigatureLevel.NONE,  
  TypographicCase.DEFAULT);  

          
        if (style.hasOwnProperty("letterSpacing"))  
        {    
        format.trackingRight = style.letterSpacing;  
        }  
        }  
        return format;  
        }  

  
        public function displayText():void  
        {         
        headlineTxt = new HeadlineTextField(h1_ElFormat,headline,this.preferredWidth);  
        headlineTxt.x = this.paddingLeft;  

Updated 11 February 2009



469PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

        headlineTxt.y = 40 + this.paddingTop;  
headlineTxt.fitText(1);  
this.addChild(headlineTxt);  

          
        subtitleTxt = new HeadlineTextField(h2_ElFormat,subtitle,this.preferredWidth);  
        subtitleTxt.x = this.paddingLeft;  
        subtitleTxt.y = headlineTxt.y + headlineTxt.height;  

subtitleTxt.fitText(2);  
        this.addChild(subtitleTxt);  
                          
        storyTxt = new MultiColumnText(rawTestData, this.numColumns,  

20, this.preferredWidth, this.preferredHeight, p_ElFormat);  
        storyTxt.x = this.paddingLeft;  
        storyTxt.y = subtitleTxt.y + subtitleTxt.height + 10;  
        this.addChild(storyTxt);  
  
            drawBackground();  
        }  

}  
}

FormattedTextBlock.as is used as a base class for creating blocks of text. It also includes utility functions for changing 

font size and case.

package com.example.programmingas3.newslayout  
{  

import flash.text.engine.*;  
import flash.display.Sprite;  

  
public class FormattedTextBlock extends Sprite  
{  

public var tb:TextBlock;  
private var te:TextElement;  
private var ef1:ElementFormat;  
private var textWidth:int;  
public var totalTextLines:int;  
public var blockText:String;  
public var leading:Number = 1.25;  
public var preferredWidth:Number = 720;  
public var preferredHeight:Number = 100;  
  
public function FormattedTextBlock(ef:ElementFormat,txt:String, colW:int = 0)  
{  

this.textWidth = (colW==0) ? preferredWidth : colW;  
blockText = txt;  
ef1 = ef;  
tb = new TextBlock();  
tb.textJustifier = new SpaceJustifier("en",LineJustification.UNJUSTIFIED,false);  
te = new TextElement(blockText,this.ef1);  
tb.content = te;  
this.breakLines();  

}  
  
private function breakLines()  
{  

var textLine:TextLine = null;  
var y:Number = 0;  

Updated 11 February 2009



470PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

var lineNum:int = 0;  
while (textLine = tb.createTextLine(textLine,this.textWidth,0,true))  
{  

textLine.x = 0;  
textLine.y = y;  
y += this.leading*textLine.height;  
this.addChild(textLine);  

}   
for (var i:int = 0; i < this.numChildren; i++)  
{  

TextLine(this.getChildAt(i)).validity = TextLineValidity.STATIC;  
}  
this.totalTextLines = this.numChildren;  

}  
  
private function rebreakLines()  
{  

this.clearLines();  
this.breakLines();  

}  
  
private function clearLines()  
{  

while(this.numChildren)  
{      

this.removeChildAt(0);  
}  

}  
  

public function changeSize(size:uint=12):void  
{  

if (size > 5)  
{  

var ef2:ElementFormat = ef1.clone();  
ef2.fontSize = size;  
te.elementFormat = ef2;  
this.rebreakLines();  

}  
}  

  
public function changeCase(newCase:String = "default"):void  
{  

var ef2:ElementFormat = ef1.clone();  
ef2.typographicCase = newCase;  
te.elementFormat = ef2;  

}  
}  

}

HeadlineTextBlock.as extends the FormattedTextBlock class and is used for creating headlines. It includes a function 

for fitting text within a defined space on the page.

Updated 11 February 2009



471PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

package com.example.programmingas3.newslayout  
{  

import flash.text.engine.*;  
public class HeadlineTextField extends FormattedTextBlock  
{  

  
public static var MIN_POINT_SIZE:uint = 6;  
public static var MAX_POINT_SIZE:uint = 128;  
  
public function HeadlineTextField(te:ElementFormat,txt:String,colW:int = 0)  
{  

super(te,txt);  
}  

  
public function fitText(maxLines:uint = 1, targetWidth:Number = -1):uint  
{  

if (targetWidth == -1)  
{  

targetWidth = this.width;  
}  
  
var pixelsPerChar:Number = targetWidth / this.blockText.length;  
var pointSize:Number = Math.min(MAX_POINT_SIZE,  

Math.round(pixelsPerChar * 1.8 * maxLines));  
  
if (pointSize < 6)  
{  

// the point size is too small  
return pointSize;  

}  
  
this.changeSize(pointSize);  
if (this.totalTextLines > maxLines)  
{  

return shrinkText(--pointSize, maxLines);  
}  
else  
{  

return growText(pointSize, maxLines);  
}  

}  
  
public function growText(pointSize:Number, maxLines:uint = 1):Number  
{  

if (pointSize >= MAX_POINT_SIZE)  
{  

return pointSize;  
}  
  
this.changeSize(pointSize + 1);  
if (this.totalTextLines > maxLines)  
{  

// set it back to the last size  
this.changeSize(pointSize);  
return pointSize;  

}  
else  

Updated 11 February 2009



472PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

{  
return growText(pointSize + 1, maxLines);  

}  
}  
  
public function shrinkText(pointSize:Number, maxLines:uint=1):Number  
{  

if (pointSize <= MIN_POINT_SIZE)  
{  

return pointSize;  
}  
this.changeSize(pointSize);  
  
if (this.totalTextLines > maxLines)  
{  

return shrinkText(pointSize - 1, maxLines);  
}  
else  
{  

return pointSize;  
}  

}  
}  

}

MultiColumnText.as handles formatting text within a multi-column design. It demonstrates the flexible use a 

TextBlock object as a factory for creating, formatting, and placing text lines.

package com.example.programmingas3.newslayout  
{  

import flash.display.Sprite;  
import flash.text.engine.*;  

  
public class MultiColumnText extends Sprite  
{  

private var tb:TextBlock;  
private var te:TextElement;  
private var numColumns:uint = 2;  
private var gutter:uint = 10;  
private var leading:Number = 1.25;  
private var preferredWidth:Number = 400;  
private var preferredHeight:Number = 100;  
private var colWidth:int = 200;  
  
public function MultiColumnText(txt:String = "",cols:uint = 2,  

gutter:uint = 10, w:Number = 400, h:Number = 100,  
ef:ElementFormat = null):void  

{  
this.numColumns = Math.max(1, cols);  
this.gutter = Math.max(1, gutter);  
  
this.preferredWidth = w;  
this.preferredHeight = h;  
  
this.setColumnWidth();  
  
var field:FormattedTextBlock = new FormattedTextBlock(ef,txt,this.colWidth);  

Updated 11 February 2009



473PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with text

var totLines:int = field.totalTextLines;  
field = null;  
var linesPerCol:int = Math.ceil(totLines/cols);  
  
tb = new TextBlock();  
te = new TextElement(txt,ef);  
tb.content = te;  
var textLine:TextLine = null;  
var x:Number = 0;  
var y:Number = 0;  
var i:int = 0;  
var j:int = 0;  
while (textLine = tb.createTextLine(textLine,this.colWidth,0,true))  
{  

textLine.x = Math.floor(i/(linesPerCol+1))*(this.colWidth+this.gutter);  
textLine.y = y;  
y += this.leading*textLine.height;  
j++;  
if(j>linesPerCol)  
{  

y = 0;  
j = 0;  

}  
i++;  
  
this.addChild(textLine);  

}   
}  
  
private function setColumnWidth():void  
{  

    this.colWidth = Math.floor( (this.preferredWidth -  
    ((this.numColumns - 1) * this.gutter)) / this.numColumns);     

}  
  

}  
}

Updated 11 February 2009



474

Chapter 22: Working with bitmaps

In addition to its vector drawing capabilities, ActionScript 3.0 includes the ability to create bitmap images or 

manipulate the pixel data of external bitmap images that are loaded into a SWF. With the ability to access and change 

individual pixel values, you can create your own filter-like image effects and use the built-in noise functions to create 

textures and random noise. All of these techniques are described in this chapter.

Basics of working with bitmaps

Introduction to working with bitmaps

When you work with digital images, you’re likely to encounter two main types of graphics: bitmap and vector. Bitmap 

graphics, also known as raster graphics, are composed of tiny squares (pixels) that are arranged in a rectangular grid 

formation. Vector graphics are composed of mathematically generated geometric shapes such as lines, curves, and 

polygons.

Bitmap images are defined by the width and height of the image, measured in pixels, and the number of bits contained 

in each pixel, which represents the number of colors a pixel can contain. In the case of a bitmap image that utilizes the 

RGB color model, the pixels are made up of three bytes: red, green, and blue. Each of these bytes contains a value 

ranging from 0 to 255. When the bytes are combined within the pixel, they produce a color similar to an artist mixing 

paint colors. For example, a pixel containing byte values of red-255, green-102 and blue-0 would produce a vibrant 

orange color. 

The quality of a bitmap image is determined by combining the resolution of the image with its color depth bit value. 

Resolution relates to the number of pixels contained within an image. The greater the number of pixels, the higher the 

resolution and the finer the image appears. Color depth relates to the amount of information a pixel can contain. For 

example, an image that has a color depth value of 16 bits per pixel cannot represent the same number of colors as an 

image that has a color depth of 48 bits. As a result, the 48-bit image will have smoother degrees of shading than its 16-

bit counterpart.

Because bitmap graphics are resolution-dependent, they don’t scale very well. This is most noticeable when bitmap 

images are scaled up in size. Scaling up a bitmap usually results in a loss of detail and quality.

Bitmap file formats

Bitmap images are grouped into a number of common file formats. These formats use different types of compression 

algorithms to reduce file size, as well as optimize image quality based on the end purpose of the image. The bitmap 

image formats supported by Adobe Flash Player and Adobe AIR are BMP, GIF, JPG, PNG, and TIFF.

BMP 

The BMP (bit mapped) format is a default image format used by the Microsoft Windows operating system. It does not 

use any form of compression algorithm and as such usually results in large file sizes.

Updated 11 February 2009



475PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

GIF

The Graphics Interchange Format (GIF) was originally developed by CompuServe in 1987 as a means to transmit 

images with 256 colors (8-bit color). The format provides small file sizes and is ideal for web-based images. Because of 

this format’s limited color palette, GIF images are generally not suitable for photographs, which typically require high 

degrees of shading and color gradients. GIF images permit single-bit transparency, which allows colors to be mapped 

as clear (or transparent). This results in the background color of a web page showing through the image where the 

transparency has been mapped.

JPEG

Developed by the Joint Photographic Experts Group (JPEG), the JPEG (often written JPG) image format uses a lossy 

compression algorithm to allow 24-bit color depth with a small file size. Lossy compression means that each time the 

image is saved, the image loses quality and data but results in a smaller file size. The JPEG format is ideal for 

photographs because it is capable of displaying millions of colors. The ability to control the degree of compression 

applied to an image allows you to manipulate image quality and file size. 

PNG

The Portable Network Graphics (PNG) format was produced as an open-source alternative to the patented GIF file 

format. PNGs support up to 64-bit color depth, allowing for up to 16 million colors. Because PNG is a relatively new 

format, some older browsers don’t support PNG files. Unlike JPGs, PNGs use lossless compression, which means that 

none of the image data is lost when the image is saved. PNG files also support alpha transparency, which allows for up 

to 256 levels of transparency.

TIFF

The Tagged Image File Format (TIFF) was the cross-platform format of choice before the PNG was introduced. The 

drawback with the TIFF format is that because of the many different varieties of TIFF, there is no single reader that 

can handle every version. In addition, no web browsers currently support the format. TIFF can use either lossy or 

lossless compression, and is able to handle device-specific color spaces (such as CMYK).

Transparent bitmaps and opaque bitmaps

Bitmap images that use either the GIF or PNG formats can have an extra byte (alpha channel) added to each pixel. This 

extra pixel byte represents the transparency value of the pixel. 

GIF images allow single-bit transparency, which means that you can specify a single color, from a 256-color palette, to 

be transparent. PNG images, on the other hand, can have up to 256 levels of transparency. This function is especially 

beneficial when images or text are required to blend into backgrounds.

ActionScript 3.0 replicates this extra transparency pixel byte within the BitmapData class. Similar to the PNG 

transparency model, the BitmapDataChannel.ALPHA constant offers up to 256 levels of transparency.

Common tasks for working with bitmaps

The following list describes several tasks you may want to perform when working with bitmap images in ActionScript:

• Displaying bitmaps on the screen

• Retrieving and setting pixel color values

• Copying bitmap data:

• Creating an exact copy of a bitmap

• Copying data from one color channel of a bitmap into one color channel of another bitmap

• Copying a snapshot of a screen display object into a bitmap

Updated 11 February 2009



476PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

• Creating noise and textures in bitmap images

• Scrolling bitmaps

Important concepts and terms

The following list contains important terms that you will encounter in this chapter:

• Alpha: The level of transparency (or more accurately, opacity) in a color or an image. The amount of alpha is often 

described as the alpha channel value.

• ARGB color: A color scheme where each pixel’s color is a mixture of red, green, and blue color values, and its 

transparency is specified as an alpha value.

• Color channel: Commonly, colors are represented as a mixture of a few basic colors—usually (for computer 

graphics) red, green, and blue. Each basic color is considered a color channel; the amount of color in each color 

channel, mixed together, determines the final color.

• Color depth: Also known as bit depth, this refers to the amount of computer memory that is devoted to each pixel, 

which in turn determines the number of possible colors that can be represented in the image.

• Pixel: The smallest unit of information in a bitmap image—essentially a dot of color.

• Resolution: The pixel dimensions of an image, which determines the level of fine-grained detail contained in the 

image. Resolution is often expressed in terms of width and height in number of pixels.

• RGB color: A color scheme where each pixel’s color is represented as a mixture of red, green, and blue color values.

Working through in-chapter examples

While you’re working through the chapter, you may want to test the example code. Because this chapter deals with 

creating and manipulating visual content, testing the code involves running the code and viewing the results in the 

SWF that’s created. 

To test the code examples in this chapter:

1 Create an empty document using the Flash authoring tool

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code into the Script pane.

4 Run the program using Control > Test Movie.

You see the results of the code in the SWF file that’s created.

Nearly all the example code includes code that creates a bitmap image, so you can just test the code directly without 

needing to provide any bitmap content. Alternatively, if you want to test the code on your own image, you can import 

that image into Adobe Flash CS4 Professional or load the external image into the test SWF and use its bitmap data with 

the example code. For instructions on loading external images, see “Loading display content dynamically” on page 304.

The Bitmap and BitmapData classes

The main ActionScript 3.0 classes for working with bitmap images are the Bitmap class, which is used to display 

bitmap images on the screen, and the BitmapData class, which is used to access and manipulate the raw image data of 

a bitmap.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Bitmap.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/BitmapData.html


477PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

Understanding the Bitmap class

As a subclass of the DisplayObject class, the Bitmap class is the main ActionScript 3.0 class used for displaying bitmap 

images. These images may have been loaded into Flash Player or Adobe AIR via the flash.display.Loader class or 

created dynamically using the Bitmap() constructor. When loading an image from an external source, a Bitmap object 

can only use GIF, JPEG, or PNG format images. Once instantiated, the Bitmap instance can be considered a wrapper 

for a BitmapData object that needs to be rendered to the Stage. Because a Bitmap instance is a display object, all the 

characteristics and functionality of display objects can be used to manipulate a Bitmap instance as well. For more 

information about working with display objects, see “Display programming” on page 266.

Pixel snapping and smoothing

In addition to the functionality common to all display objects, the Bitmap class provides some additional features that 

are specific to bitmap images.

Similar to the snap-to-pixel feature found in the Flash authoring tool, the pixelSnapping property of the Bitmap class 

determines whether or not a Bitmap object snaps to its nearest pixel. This property accepts one of three constants 

defined in the PixelSnapping class: ALWAYS, AUTO, and NEVER.

The syntax for applying pixel snapping is as follows:

 myBitmap.pixelSnapping = PixelSnapping.ALWAYS;

Often, when bitmap images are scaled, they become blurred and distorted. To help reduce this distortion, use the 

smoothing property of the BitmapData class. This Boolean property, when set to true, smooths, or anti-aliases, the 

pixels within the image when it is scaled. This gives the image a clearer and more natural appearance.

Understanding the BitmapData class

The BitmapData class, which is in the flash.display package, can be likened to a photographic snapshot of the pixels 

contained within a loaded or dynamically created bitmap image. This snapshot is represented by an array of pixel data 

within the object. The BitmapData class also contains a series of built-in methods that are useful for creation and 

manipulation of pixel data. 

To instantiate a BitmapData object, use the following code:

 var myBitmap:BitmapData = new BitmapData(width:Number, height:Number, transparent:Boolean, 
fillColor:uinit);

The width and height parameters specify the size of the bitmap; the maximum value of both is 2880 pixels. The 

transparent parameter specifies whether the bitmap data includes an alpha channel (true) or not (false). The 

fillColor parameter is a 32-bit color value that specifies the background color, as well as the transparency value (if 

it has been set to true). The following example creates a BitmapData object with an orange background that is 50 

percent transparent: 

 var myBitmap:BitmapData = new BitmapData(150, 150, true, 0x80FF3300);

To render a newly created BitmapData object to the screen, assign it to or wrap it in a Bitmap instance. To do this, you 

can either pass the BitmapData object as a parameter of the Bitmap object’s constructor, or you can assign it to the 

bitmapData property of an existing Bitmap instance. You must also add the Bitmap instance to the display list by 

calling the addChild() or addChildAt() methods of the display object container that will contain the Bitmap 

instance. For more information on working with the display list, see “Adding display objects to the display list” on 

page 274.

The following example creates a BitmapData object with a red fill, and displays it in a Bitmap instance:

Updated 11 February 2009



478PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

 var myBitmapDataObject:BitmapData = new BitmapData(150, 150, false, 0xFF0000);  
 var myImage:Bitmap = new Bitmap(myBitmapDataObject);  
 addChild(myImage);

Manipulating pixels

The BitmapData class contains a set of methods that allow you to manipulate pixel data values. 

Manipulating individual pixels

When changing the appearance of a bitmap image at a pixel level, you first need to get the color values of the pixels 

contained within the area you wish to manipulate. You use the getPixel() method to read these pixel values.

The getPixel() method retrieves an RGB value from a set of x, y (pixel) coordinates that are passed as a parameter. 

If any of the pixels that you want to manipulate include transparency (alpha channel) information, you need to use the 

getPixel32() method. This method also retrieves an RGB value, but unlike with getPixel(), the value returned by 

getPixel32() contains additional data that represents the alpha channel (transparency) value of the selected pixel.

Alternatively, if you simply want to change the color or transparency of a pixel contained within a bitmap, you can use 

the setPixel() or setPixel32() method. To set a pixel’s color, simply pass in the x, y coordinates and the color 

value to one of these methods. 

The following example uses setPixel() to draw a cross on a green BitmapData background. It then uses getPixel() 

to retrieve the color value from the pixel at the coordinate 50, 50 and traces the returned value.

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
   
 var myBitmapData:BitmapData = new BitmapData(100, 100, false, 0x009900);  
   
 for (var i:uint = 0; i < 100; i++)  
 {  
 var red:uint = 0xFF0000;  
 myBitmapData.setPixel(50, i, red);  
 myBitmapData.setPixel(i, 50, red);  
 }  
   
 var myBitmapImage:Bitmap = new Bitmap(myBitmapData);  
 addChild(myBitmapImage);  
   
 var pixelValue:uint = myBitmapData.getPixel(50, 50);  
 trace(pixelValue.toString(16));

If you want to read the value of a group of pixels, as opposed to a single pixel, use the getPixels() method. This 

method generates a byte array from a rectangular region of pixel data that is passed as a parameter. Each of the 

elements of the byte array (in other words, the pixel values) are unsigned integers—32-bit, unmultiplied pixel values.

Conversely, to change (or set) the value of a group of pixels, use the setPixels() method. This method expects two 

parameters (rect and inputByteArray), which are combined to output a rectangular region (rect) of pixel data 

(inputByteArray).

As data is read (and written) out of the inputByteArray, the ByteArray.readUnsignedInt() method is called for 

each of the pixels in the array. If, for some reason, the inputByteArray doesn't contain a full rectangle worth of pixel 

data, the method stops processing the image data at that point.

Updated 11 February 2009



479PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

It's important to remember that, for both getting and setting pixel data, the byte array expects 32-bit alpha, red, green, 

blue (ARGB) pixel values. 

The following example uses the getPixels() and setPixels() methods to copy a group of pixels from one 

BitmapData object to another:

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
 import flash.utils.ByteArray;  
 import flash.geom.Rectangle;  
   
 var bitmapDataObject1:BitmapData = new BitmapData(100, 100, false, 0x006666FF);  
 var bitmapDataObject2:BitmapData = new BitmapData(100, 100, false, 0x00FF0000);  
   
 var rect:Rectangle = new Rectangle(0, 0, 100, 100);  
 var bytes:ByteArray = bitmapDataObject1.getPixels(rect);  
   
 bytes.position = 0;  
 bitmapDataObject2.setPixels(rect, bytes);  
   
 var bitmapImage1:Bitmap = new Bitmap(bitmapDataObject1);  
 addChild(bitmapImage1);  
 var bitmapImage2:Bitmap = new Bitmap(bitmapDataObject2);  
 addChild(bitmapImage2);  
 bitmapImage2.x = 110;

Pixel-level collision detection

The BitmapData.hitTest() method performs pixel-level collision detection between the bitmap data and another 

object or point. 

The BitmapData.hitTest() method accepts five parameters:

• firstPoint (Point): This parameter refers to the pixel position of the upper-left corner of the first BitmapData 

upon which the hit test is being performed.

• firstAlphaThreshold (uint): This parameter specifies the highest alpha channel value that is considered opaque 

for this hit test.

• secondObject (Object): This parameter represents the area of impact. The secondObject object can be a 

Rectangle, Point, Bitmap, or BitmapData object. This object represents the hit area on which the collision detection 

is being performed.

• secondBitmapDataPoint (Point): This optional parameter is used to define a pixel location in the second 

BitmapData object. This parameter is used only when the value of secondObject is a BitmapData object. The 

default is null.

• secondAlphaThreshold (uint): This optional parameter represents the highest alpha channel value that is 

considered opaque in the second BitmapData object. The default value is 1. This parameter is only used when the 

value of secondObject is a BitmapData object and both BitmapData objects are transparent.

When performing collision detection on opaque images, keep in mind that ActionScript treats the image as though it 

were a fully opaque rectangle (or bounding box). Alternatively, when performing pixel-level hit testing on images that 

are transparent, both of the images are required to be transparent. In addition to this, ActionScript uses the alpha 

threshold parameters to determine at what point the pixels change from being transparent to opaque. 

The following example creates three bitmap images and checks for pixel collision using two different collision points 

(one returns false, the other true):

Updated 11 February 2009



480PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
 import flash.geom.Point;  
   
 var bmd1:BitmapData = new BitmapData(100, 100, false, 0x000000FF);  
 var bmd2:BitmapData = new BitmapData(20, 20, false, 0x00FF3300);  
   
 var bm1:Bitmap = new Bitmap(bmd1);  
 this.addChild(bm1);  
   
 // Create a red square.  
 var redSquare1:Bitmap = new Bitmap(bmd2);  
 this.addChild(redSquare1);  
 redSquare1.x = 0;  
   
 // Create a second red square.  
 var redSquare2:Bitmap = new Bitmap(bmd2);  
 this.addChild(redSquare2);  
 redSquare2.x = 150;  
 redSquare2.y = 150;  
   
 // Define the point at the top-left corner of the bitmap.  
 var pt1:Point = new Point(0, 0);  
 // Define the point at the center of redSquare1.  
 var pt2:Point = new Point(20, 20);  
 // Define the point at the center of redSquare2.  
 var pt3:Point = new Point(160, 160);  
   
 trace(bmd1.hitTest(pt1, 0xFF, pt2)); // true  
 trace(bmd1.hitTest(pt1, 0xFF, pt3)); // false

Copying bitmap data

To copy bitmap data from one image to another, you can use several methods: clone(), copyPixels(), 

copyChannel(), and draw(). 

As its name suggests, the clone() method lets you clone, or sample, bitmap data from one BitmapData object to 

another. When called, the method returns a new BitmapData object that is an exact clone of the original instance it 

was copied from.

The following example clones a copy of an orange (parent) square and places the clone beside the original parent 

square:

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
   
 var myParentSquareBitmap:BitmapData = new BitmapData(100, 100, false, 0x00ff3300);  
 var myClonedChild:BitmapData = myParentSquareBitmap.clone();  
   
 var myParentSquareContainer:Bitmap = new Bitmap(myParentSquareBitmap);  
 this.addChild(myParentSquareContainer);  
   
 var myClonedChildContainer:Bitmap = new Bitmap(myClonedChild);  
 this.addChild(myClonedChildContainer);  
 myClonedChildContainer.x = 110;

Updated 11 February 2009



481PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

The copyPixels() method is a quick and easy way of copying pixels from one BitmapData object to another. The 

method takes a rectangular snapshot (defined by the sourceRect parameter) of the source image and copies it to 

another rectangular area (of equal size). The location of the newly “pasted” rectangle is defined within the destPoint 

parameter.

The copyChannel() method samples a predefined color channel value (alpha, red, green, or blue) from a source 

BitmapData object and copies it into a channel of a destination BitmapData object. Calling this method does not affect 

the other channels in the destination BitmapData object.

The draw() method draws, or renders, the graphical content from a source sprite, movie clip, or other display object 

on to a new bitmap. Using the matrix, colorTransform, blendMode, and destination clipRect parameters, you can 

modify the way in which the new bitmap is rendered. This method uses the vector renderer in Flash Player and AIR 

to generate the data.

When you call draw(), you pass the source object (sprite, movie clip, or other display object) as the first parameter, as 

demonstrated here:

 myBitmap.draw(movieClip);

If the source object has had any transformations (color, matrix, and so forth) applied to it after it was originally loaded, 

these transformations are not copied across to the new object. If you want to copy the transformations to the new 

bitmap, then you need to copy the value of the transform property from the original object to the transform property 

of the Bitmap object that uses the new BitmapData object.

Making textures with noise functions

To modify the appearance of a bitmap, you can apply a noise effect to it, using either the noise() method or the 

perlinNoise() methods. A noise effect can be likened to the static that appears on an untuned television screen.

To apply a noise effect to a a bitmap, use the noise() method. This method applies a random color value to pixels 

within a specified area of a bitmap image.

This method accepts five parameters:

• randomSeed (int): The random seed number that determines the pattern. Despite its name, this number actually 

creates the same results if the same number is passed. To get a true random result, use the Math.random() method 

to pass a random number for this parameter.

• low (uint): This parameter refers to the lowest value to be generated for each pixel (0 to 255). The default value is 

0. Setting this value lower results in a darker noise pattern, while setting it to a higher value results in a brighter 

pattern.

• high (uint): This parameter refers to the highest value to be generated for each pixel (0 to 255). The default value 

is 255. Setting this value lower results in a darker noise pattern, while setting it to a higher value results in a brighter 

pattern.

• channelOptions (uint): This parameter specifies to which color channel of the bitmap object the noise pattern will 

be applied. The number can be a combination of any of the four color channel ARGB values. The default value is 7.

• grayScale (Boolean): When set to true, this parameter applies the randomSeed value to the bitmap pixels, 

effectively washing all color out of the image. The alpha channel is not affected by this parameter. The default value 

is false.

The following example creates a bitmap image and applies a blue noise pattern to it:

Updated 11 February 2009



482PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
   
 var myBitmap:BitmapData = new BitmapData(250, 250,false, 0xff000000);  
 myBitmap.noise(500, 0, 255, BitmapDataChannel.BLUE,false);  
 var image:Bitmap = new Bitmap(myBitmap);  
 addChild(image);

If you want to create a more organic-looking texture, use the perlinNoise() method. The perlinNoise() method 

produces realistic, organic textures that are ideal for smoke, clouds, water, fire, or even explosions.

Because it is generated by an algorithm, the perlinNoise() method uses less memory than bitmap-based textures. 

However, it can still have an impact on processor usage, slowing down your content created by Flash and causing the 

screen to be redrawn more slowly than the frame rate, especially on older computers. This is mainly due to the floating-

point calculations that need to occur to process the perlin noise algorithms.

The method accepts nine parameters (the first six are required):

• baseX (Number): Determines the x (size) value of patterns created.

• baseY (Number): Determines the y (size) value of the patterns created.

• numOctaves (uint): Number of octaves or individual noise functions to combine to create this noise. Larger 

numbers of octaves create images with greater detail but also require more processing time.

• randomSeed (int): The random seed number works exactly the same way as it does in the noise() function. To get 

a true random result, use the Math.random() method to pass a random number for this parameter.

• stitch (Boolean): If set to true, this method attempts to stitch (or smooth) the transition edges of the image to 

create seamless textures for tiling as a bitmap fill.

• fractalNoise (Boolean): This parameter relates to the edges of the gradients being generated by the method. If 

set to true, the method generates fractal noise that smooths the edges of the effect. If set to false, it generates 

turbulence. An image with turbulence has visible discontinuities in the gradient that can make it better approximate 

sharper visual effects, like flames and ocean waves.

• channelOptions (uint): The channelOptions parameter works exactly the same way as it does in the noise() 

method. It specifies to which color channel (of the bitmap) the noise pattern is applied. The number can be a 

combination of any of the four color channel ARGB values. The default value is 7.

• grayScale (Boolean): The grayScale parameter works exactly the same way as it does in the noise() method. If 

set to true, it applies the randomSeed value to the bitmap pixels, effectively washing all color out of the image. The 

default value is false.

• offsets (Array): An array of points that correspond to x and y offsets for each octave. By manipulating the offset 

values, you can smoothly scroll the layers of the image. Each point in the offset array affects a specific octave noise 

function. The default value is null.

The following example creates a 150 x 150 pixel BitmapData object that calls the perlinNoise() method to generate 

a green and blue cloud effect:

Updated 11 February 2009



483PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
   
 var myBitmapDataObject:BitmapData = new BitmapData(150, 150, false, 0x00FF0000);  
   
 var seed:Number = Math.floor(Math.random() * 100);  
 var channels:uint = BitmapDataChannel.GREEN | BitmapDataChannel.BLUE   
 myBitmapDataObject.perlinNoise(100, 80, 6, seed, false, true, channels, false, null);  
   
 var myBitmap:Bitmap = new Bitmap(myBitmapDataObject);  
 addChild(myBitmap);

Scrolling bitmaps

Imagine you have created a street mapping application where each time the user moves the map you are required to 

update the view (even if the map has been moved by just a few pixels). 

One way to create this functionality would be to re-render a new image containing the updated map view each time 

the user moves the map. Alternatively, you could create a large single image and the scroll() method.

The scroll() method copies an on-screen bitmap and then pastes it to a new offset location—specified by (x, y) 

parameters. If a portion of the bitmap happens to reside off-stage, this gives the effect that the image has shifted. When 

combined with a timer function (or an enterFrame event), you can make the image appear to be animating or 

scrolling.

The following example takes the previous perlin noise example and generates a larger bitmap image (three-fourths of 

which is rendered off-stage). The scroll() method is then applied, along with an enterFrame event listener that 

offsets the image by one pixel in a diagonally downward direction. This method is called each time the frame is entered 

and as a result, the offscreen portions of the image are rendered to the Stage as the image scrolls down.

 import flash.display.Bitmap;  
 import flash.display.BitmapData;  
   
 var myBitmapDataObject:BitmapData = new BitmapData(1000, 1000, false, 0x00FF0000);  
 var seed:Number = Math.floor(Math.random() * 100);  
 var channels:uint = BitmapDataChannel.GREEN | BitmapDataChannel.BLUE;  
 myBitmapDataObject.perlinNoise(100, 80, 6, seed, false, true, channels, false, null);  
   
 var myBitmap:Bitmap = new Bitmap(myBitmapDataObject);  
 myBitmap.x = -750;  
 myBitmap.y = -750;  
 addChild(myBitmap);  
   
 addEventListener(Event.ENTER_FRAME, scrollBitmap);  
   
 function scrollBitmap(event:Event):void  
 {  
 myBitmapDataObject.scroll(1, 1);  
 }

Updated 11 February 2009



484PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

Taking advantage of mipmapping

MIP maps (also known as mipmaps), are bitmaps grouped together and associated with a texture to increase runtime 

rendering quality and performance. Flash Player 9.0.115.0 and later versions and AIR implement this technology (the 

process is called mipmapping), by creating optimized versions of varying scale of each bitmap (starting at 50%). 

Flash Player and AIR create MIP maps for bitmaps (JPEG, GIF, or PNG files) that you display using the ActionScript 

3.0 Loader class, a bitmap in the Flash authoring tool library, or a BitmapData object. Flash Player creates MIP maps 

for the bitmaps that you display using the the ActionScript 2.0 loadMovie() function.

MIP maps are not applied to filtered objects or bitmap-cached movie clips. However, MIP maps are applied if you have 

bitmap transformations within a filtered display object, even if the bitmap is within masked content.

Flash Player and AIR mipmapping happens automatically, but you can follow a few guidelines to make sure your 

images take advantage of this optimization: 

• For video playback, set the smoothing property to true for the Video object (see the Video class).

• For bitmaps, the smoothing property does not have to be set to true, but the quality improvements are more 

visible when bitmaps use smoothing.

• Use bitmap sizes that are divisible by 4 or 8 for two-dimensional images (such as 640 x 128, which can be reduced 

as follows: 320 x 64 > 160 x 32 > 80 x 16 > 40 x 8 > 20 x 4 > 10 x 2 > 5 x 1) and 2^n for three-dimensional textures. 

MIP maps are generated from bitmaps that have a width and height that are 2^n (such as 256 x 256, 512 x 512, 1024 

x 1024). Mipmapping stops when Flash Player or AIR encounters an odd width or height. 

Example: Animated spinning moon

The Animated spinning moon example demonstrates techniques for working with Bitmap objects and bitmap image 

data (BitmapData objects). The example creates an animation of a spinning, spherical moon using a flat image of the 

moon’s surface as the raw image data. The following techniques are demonstrated:

• Loading an external image and accessing its raw image data

• Creating animation by repeatedly copying pixels from different parts of a source image

• Creating a bitmap image by setting pixel values

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

Animated spinning moon application files can be found in the Samples/SpinningMoon folder. The application 

consists of the following files:

File Description

SpinningMoon.mxml

or

SpinningMoon.fla

The main application file in Flex (MXML) or Flash (FLA).

com/example/programmingas3/moon/MoonSphere.as Class that performs the functionality of loading, displaying, and 

animating the moon.

moonMap.png Image file containing a photograph of the moon’s surface, which is 

loaded and used to create the animated, spinning moon.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Loader.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/BitmapData.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/media/Video.html
http://www.adobe.com/go/learn_programmingAS3samples_flash


485PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

Loading an external image as bitmap data

The first main task this sample performs is loading an external image file, which is a photograph of the moon’s surface. 

The loading operation is handled by two methods in the MoonSphere class: the MoonSphere() constructor, where the 

loading process is initiated, and the imageLoadComplete() method, which is called when the external image is 

completely loaded.

Loading an external image is similar to loading an external SWF; both use an instance of the flash.display.Loader class 

to perform the loading operation. The actual code in the MoonSphere() method that starts loading the image is as 

follows:

 var imageLoader:Loader = new Loader();  
 imageLoader.contentLoaderInfo.addEventListener(Event.COMPLETE, imageLoadComplete);  
 imageLoader.load(new URLRequest("moonMap.png"));

The first line declares the Loader instance named imageLoader. The third line actually starts the loading process by 

calling the Loader object’s load() method, passing a URLRequest instance representing the URL of the image to load. 

The second line sets up the event listener that will be triggered when the image has completely loaded. Notice that the 

addEventListener() method is not called on the Loader instance itself; instead, it’s called on the Loader object’s 

contentLoaderInfo property. The Loader instance itself doesn’t dispatch events relating to the content being loaded. 

Its contentLoaderInfo property, however, contains a reference to the LoaderInfo object that’s associated with the 

content being loaded into the Loader object (the external image in this case). That LoaderInfo object does provide 

several events relating to the progress and completion of loading the external content, including the complete event 

(Event.COMPLETE) that will trigger a call to the imageLoadComplete() method when the image has completely 

loaded.

While starting the external image loading is an important part of the process, it’s equally important to know what to 

do when it finishes loading. As shown in the code above, the imageLoadComplete() function is called when the image 

is loaded. That function does several things with the loaded image data, described in subsequent sections. However, to 

use the image data, it needs to access that data. When a Loader object is used to load an external image, the loaded 

image becomes a Bitmap instance, which is attached as a child display object of the Loader object. In this case, the 

Loader instance is available to the event listener method as part of the event object that’s passed to the method as a 

parameter. The first lines of the imageLoadComplete() method are as follows:

 private function imageLoadComplete(event:Event):void  
 {  
 textureMap = event.target.content.bitmapData;  
 ...  
 }

Notice that the event object parameter is named event, and it’s an instance of the Event class. Every instance of the 

Event class has a target property, which refers to the object triggering the event (in this case, the LoaderInfo instance 

on which the addEventListener() method was called, as described previously). The LoaderInfo object, in turn, has 

a content property that (once the loading process is complete) contains the Bitmap instance with the loaded bitmap 

image. If you want to display the image directly on the screen, you can attach this Bitmap instance 

(event.target.content) to a display object container. (You could also attach the Loader object to a display object 

container). However, in this sample, the loaded content is used as a source of raw image data rather than being 

displayed on the screen. Consequently, the first line of the imageLoadComplete() method reads the bitmapData 

property of the loaded Bitmap instance (event.target.content.bitmapData) and stores it in the instance variable 

named textureMap, which, as described in the following section, is used as a source of the image data to create the 

animation of the rotating moon.

Updated 11 February 2009



486PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

Creating animation by copying pixels

A basic definition of animation is the illusion of motion, or change, created by changing an image over time. In this 

sample, the goal is to create the illusion of a spherical moon rotating around its vertical axis. However, for the purposes 

of the animation, you can ignore the spherical distortion aspect of the sample. Consider the actual image that’s loaded 

and used as the source of the moon image data:

As you can see, the image is not one or several spheres; it’s a rectangular photograph of the surface of the moon. 

Because the photo was taken exactly at the moon’s equator, the parts of the image that are closer to the top and bottom 

of the image are stretched and distorted. To remove the distortion from the image and make it appear spherical, we 

will use a displacement map filter, as described later. However, because this source image is a rectangle, to create the 

illusion that the sphere is rotating, the code simply needs to slide the moon surface photo horizontally, as described in 

the following paragraphs.

Notice that the image actually contains two copies of the moon surface photograph next to each other. This image is 

the source image from which image data is copied repeatedly to create the appearance of motion. By having two copies 

of the image next to each other, a continuous, uninterrupted scrolling effect can more easily be created. Let’s walk 

through the process of the animation step-by-step to see how this works.

The process actually involves two separate ActionScript objects. First, there is the loaded source image, which in the 

code is represented by the BitmapData instance named textureMap. As described previously, textureMap is 

populated with image data as soon as the external image loads, using this code:

 textureMap = event.target.content.bitmapData;

The content of textureMap is the image shown previously. In addition, to create the animated rotation, the sample 

uses a Bitmap instance named sphere, which is the actual display object that shows the moon image onscreen. Like 

textureMap, the sphere object is created and populated with its initial image data in the imageLoadComplete() 

method, using the following code:

 sphere = new Bitmap();  
 sphere.bitmapData = new BitmapData(textureMap.width / 2, textureMap.height);  
 sphere.bitmapData.copyPixels(textureMap,  
  new Rectangle(0, 0, sphere.width, sphere.height),  
  new Point(0, 0));

As the code shows, sphere is instantiated. Its bitmapData property (the raw image data that is displayed by sphere) 

is created with the same height and half the width of textureMap. In other words, the content of sphere will be the 

size of one moon photo (since the textureMap image contains two moon photos side-by-side). Next the bitmapData 

property is filled with image data using its copyPixels() method. The parameters in the copyPixels() method call 

indicate several things: 

• The first parameter indicates that the image data is copied from textureMap. 

Updated 11 February 2009



487PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

• The second parameter, a new Rectangle instance, specifies from which part of textureMap the image snapshot 

should be taken; in this case the snapshot is a rectangle starting from the top left corner of textureMap (indicated 

by the first two Rectangle() parameters: 0, 0) and the rectangle snapshot’s width and height match the width 

and height properties of sphere. 

• The third parameter, a new Point instance with x and y values of 0, defines the destination of the pixel data—in this 

case, the top-left corner (0, 0) of sphere.bitmapData.

Represented visually, the code copies the pixels from textureMap outlined in the following image and pastes them 

onto sphere. In other words, the BitmapData content of sphere is the portion of textureMap highlighted here:

Remember, however, that this is just the initial state of sphere—the first image content that’s copied onto sphere.

With the source image loaded and sphere created, the final task performed by the imageLoadComplete() method is 

to set up the animation. The animation is driven by a Timer instance named rotationTimer, which is created and 

started by the following code:

 var rotationTimer:Timer = new Timer(15);  
 rotationTimer.addEventListener(TimerEvent.TIMER, rotateMoon);  
 rotationTimer.start();

The code first creates the Timer instance named rotationTimer; the parameter passed to the Timer() constructor 

indicates that rotationTimer should trigger its timer event every 15 milliseconds. Next, the addEventListener() 

method is called, specifying that when the timer event (TimerEvent.TIMER) occurs, the method rotateMoon() is 

called. Finally, the timer is actually started by calling its start() method.

Because of the way rotationTimer is defined, approximately every 15 milliseconds Flash Player calls the 

rotateMoon() method in the MoonSphere class, which is where the animation of the moon happens. The source code 

of the rotateMoon() method is as follows:

 private function rotateMoon(event:TimerEvent):void  
 {  
 sourceX += 1;  
 if (sourceX > textureMap.width / 2)  
 {  
 sourceX = 0;  
 }  
   
 sphere.bitmapData.copyPixels(textureMap,  
 new Rectangle(sourceX, 0, sphere.width, sphere.height),  
 new Point(0, 0));  
   
 event.updateAfterEvent();  
 }

The code does three things:

1 The value of the variable sourceX (initially set to 0) increments by 1.

Updated 11 February 2009



488PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

 sourceX += 1;

As you’ll see, sourceX is used to determine the location in textureMap from which the pixels will be copied onto 

sphere, so this code has the effect of moving the rectangle one pixel to the right on textureMap. Going back to the 

visual representation, after several cycles of animation the source rectangle will have moved several pixels to the 

right, like this:

After several more cycles, the rectangle will have moved even farther:

This gradual, steady shift in the location from which the pixels are copied is the key to the animation. By slowly and 

continuously moving the source location to the right, the image that is displayed on the screen in sphere appears 

to continuously slide to the left. This is the reason why the source image (textureMap) needs to have two copies of 

the moon surface photo. Because the rectangle is continually moving to the right, most of the time it is not over one 

single moon photo but rather overlaps the two moon photos.

2 With the source rectangle slowly moving to the right, there is one problem. Eventually the rectangle will reach the 

right edge of textureMap and it will run out of moon photo pixels to copy onto sphere:

The next lines of code address this issue:

 if (sourceX >= textureMap.width / 2)  
 {  
 sourceX = 0;  
 }

Updated 11 February 2009



489PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

The code checks if sourceX (the left edge of the rectangle) has reached the middle of textureMap. If so, it resets 

sourceX back to 0, moving it back to the left edge of textureMap and starting the cycle over again:

3 With the appropriate sourceX value calculated, the final step in creating the animation is to actually copy the new 

source rectangle pixels onto sphere. The code that does this is very similar to the code that initially populated 

sphere (described previously); the only difference is that in this case, in the new Rectangle() constructor call, the 

left edge of the rectangle is placed at sourceX:

 sphere.bitmapData.copyPixels(textureMap,  
 new Rectangle(sourceX, 0, sphere.width, sphere.height),  
 new Point(0, 0));

Remember that this code is called repeatedly, every 15 milliseconds. As the source rectangle’s location is continuously 

shifted, and the pixels are copied onto sphere, the appearance on the screen is that the moon photo image represented 

by sphere continuously slides. In other words, the moon appears to rotate continuously.

Creating the spherical appearance

The moon, of course, is a sphere and not a rectangle. Consequently, the sample needs to take the rectangular moon 

surface photo, as it continuously animates, and convert it into a sphere. This involves two separate steps: a mask is used 

to hide all the content except for a circular region of the moon surface photo, and a displacement map filter is used to 

distort the appearance of the moon photo to make it look three-dimensional.

First, a circle-shaped mask is used to hide all the content of the MoonSphere object except for the sphere created by 

the filter. The following code creates the mask as a Shape instance and applies it as the mask of the MoonSphere 

instance:

 moonMask = new Shape();  
 moonMask.graphics.beginFill(0);  
 moonMask.graphics.drawCircle(0, 0, radius);  
 this.addChild(moonMask);  
 this.mask = moonMask;

Note that since MoonSphere is a display object (it is based on the Sprite class), the mask can be applied directly to the 

MoonSphere instance using its inherited mask property.

Updated 11 February 2009



490PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

Simply hiding parts of the photo using a circle-shaped mask isn’t enough to create a realistic-looking rotating-sphere 

effect. Because of the way the photo of the moon’s surface was taken, its dimensions aren’t proportional; the portions 

of the image that are more toward the top or bottom of the image are more distorted and stretched compared to the 

portions in the equator. To distort the appearance of the moon photo to make it look three-dimensional, we’ll use a 

displacement map filter. 

A displacement map filter is a type of filter that is used to distort an image. In this case, the moon photo will be 

“distorted” to make it look more realistic, by squeezing the top and bottom of the image horizontally, while leaving the 

middle unchanged. Assuming the filter operates on a square-shaped portion of the photo, squeezing the top and 

bottom but not the middle will turn the square into a circle. A side effect of animating this distorted image is that the 

middle of the image seems to move farther in actual pixel distance than the areas close to the top and bottom, which 

creates the illusion that the circle is actually a three-dimensional object (a sphere).

The following code is used to create the displacement map filter, named displaceFilter:

 var displaceFilter:DisplacementMapFilter;  
 displaceFilter = new DisplacementMapFilter(fisheyeLens,  
 new Point(radius, 0),   
 BitmapDataChannel.RED,  
 BitmapDataChannel.GREEN,  
 radius, 0);

The first parameter, fisheyeLens, is known as the map image; in this case it is a BitmapData object that is created 

programmatically. The creation of that image is described below in the section “Creating a bitmap image by setting 

pixel values” on page 491. The other parameters describe the position in the filtered image at which the filter should 

be applied, which color channels will be used to control the displacement effect, and to what extent they will affect the 

displacement. Once the displacement map filter is created, it is applied to sphere, still within the 

imageLoadComplete() method:

 sphere.filters = [displaceFilter];

The final image, with mask and displacement map filter applied, looks like this:

With every cycle of the rotating moon animation, the BitmapData content of sphere is overwritten by a new snapshot 

of the source image data. However, the filter does not need to be re-applied each time. This is because the filter is 

applied to the Bitmap instance (the display object) rather than to the bitmap data (the raw pixel information). 

Remember, the Bitmap instance is not the actual bitmap data; it is a display object that displays the bitmap data on the 

screen. To use an analogy, a Bitmap instance is like the slide projector that is used to display photographic slides on a 

screen, and a BitmapData object is like the actual photographic slide that can be presented through a slide projecter. 

A filter can be applied directly to a BitmapData object, which would be comparable to drawing directly onto a 

Updated 11 February 2009



491PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

photographic slide to alter the image. A filter can also be applied to any display object, including a Bitmap instance; 

this would be like placing a filter in front of the slide projector’s lens to distort the output shown on the screen (without 

altering the original slide at all). Because the raw bitmap data is accessible through a Bitmap instance’s bitmapData 

property, the filter could have been applied directly to the raw bitmap data. However, in this case, it makes sense to 

apply the filter to the Bitmap display object rather than to the bitmap data.

For detailed information about using the displacement map filter in ActionScript, see “Filtering display objects” on 

page 346.

Creating a bitmap image by setting pixel values

One important aspect of a displacement map filter is that it actually involves two images. One image, the source image, 

is the image that is actually altered by the filter. In this sample, the source image is the Bitmap instance named sphere. 

The other image used by the filter is known as the map image. The map image is not actually displayed on the screen. 

Instead, the color of each of its pixels is used as an input to the displacement function—the color of the pixel at a certain 

x, y coordinate in the map image determines how much displacement (physical shift in position) is applied to the pixel 

at that x, y coordinate in the source image.

Consequently, to use the displacement map filter to create a sphere effect, the sample needs the appropriate map 

image—one that has a gray background and a circle that’s filled with a gradient of a single color (red) going 

horizontally from dark to light, as shown here:

Because only one map image and filter are used in this sample, the map image is only created once, in the 

imageLoadComplete() method (in other words, when the external image finishes loading). The map image, named 

fisheyeLens, is created by calling the MoonSphere class’s createFisheyeMap() method:

 var fisheyeLens:BitmapData = createFisheyeMap(radius);

Inside the createFisheyeMap() method, the map image is actually drawn one pixel at a time using the BitmapData 

class’s setPixel() method. The complete code for the createFisheyeMap() method is listed here, followed by a 

step-by-step discussion of how it works:

Updated 11 February 2009



492PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

 private function createFisheyeMap(radius:int):BitmapData  
 {  
 var diameter:int = 2 * radius;  
   
 var result:BitmapData = new BitmapData(diameter,  
 diameter,  
 false,  
 0x808080);  
   
 // Loop through the pixels in the image one by one  
 for (var i:int = 0; i < diameter; i++)  
 {  
 for (var j:int = 0; j < diameter; j++)  
 {  
 // Calculate the x and y distances of this pixel from  
 // the center of the circle (as a percentage of the radius).  
 var pctX:Number = (i - radius) / radius;  
 var pctY:Number = (j - radius) / radius;  
   
 // Calculate the linear distance of this pixel from  
 // the center of the circle (as a percentage of the radius).  
 var pctDistance:Number = Math.sqrt(pctX * pctX + pctY * pctY);  
   
 // If the current pixel is inside the circle,  
 // set its color.  
 if (pctDistance < 1)  
 {  
 // Calculate the appropriate color depending on the  
 // distance of this pixel from the center of the circle.  
 var red:int;  
 var green:int;  
 var blue:int;  
 var rgb:uint;  
 red = 128 * (1 + 0.75 * pctX * pctX * pctX / (1 - pctY * pctY));  
 green = 0;  
 blue = 0;  
 rgb = (red << 16 | green << 8 | blue);  
 // Set the pixel to the calculated color.  
 result.setPixel(i, j, rgb);  
 }  
 }  
 }  
 return result;  
 }

First, when the method is called it receives a parameter, radius, indicating the radius of the circle-shaped image to 

create. Next, the code creates the BitmapData object on which the circle will be drawn. That object, named result, is 

eventually passed back as the return value of the method. As shown in the following code snippet, the result 

BitmapData instance is created with a width and height as big as the diameter of the circle, without transparency 

(false for the third parameter), and pre-filled with the color 0x808080 (middle gray):

Updated 11 February 2009



493PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

 var result:BitmapData = new BitmapData(diameter,  
 diameter,  
 false,  
 0x808080);

Next, the code uses two loops to iterate over each pixel of the image. The outer loop goes through each column of the 

image from left to right (using the variable i to represent the horizontal position of the pixel currently being 

manipulated), while the inner loop goes through each pixel of the current column from top to bottom (with the 

variable j representing the vertical position of the current pixel). The code for the loops (with the inner loop’s contents 

omitted) is shown here:

 for (var i:int = 0; i < diameter; i++)  
 {  
 for (var j:int = 0; j < diameter; j++)  
 {  
 ...  
 }  
 }

As the loops cycle through the pixels one by one, at each pixel a value (the color value of that pixel in the map image) 

is calculated. This process involves four steps:

1 The code calculates the distance of the current pixel from the center of the circle along the x axis (i - radius). 

That value is divided by the radius to make it a percentage of the radius rather than an absolute distance ((i - 

radius) / radius). That percentage value is stored in a variable named pctX, and the equivalent value for the y 

axis is calculated and stored in the variable pctY, as shown in this code:

 var pctX:Number = (i - radius) / radius;  
 var pctY:Number = (j - radius) / radius;

2 Using a standard trigonometric formula, the Pythagorean theorem, the linear distance between the center of the 

circle and the current point is calculated from pctX and pctY. That value is stored in a variable named 

pctDistance, as shown here:

 var pctDistance:Number = Math.sqrt(pctX * pctX + pctY * pctY);

3 Next, the code checks whether the distance percentage is less than 1 (meaning 100% of the radius, or in other words, 

if the pixel being considered is within the radius of the cicle). If the pixel falls inside the circle, it is assigned a 

calculated color value (omitted here, but described in step 4); if not, nothing further happens with that pixel so its 

color is left as the default middle gray:

 if (pctDistance < 1)  
 {  
 ...  
 }

4 For those pixels that fall inside the circle, a color value is calculated for the pixel. The final color will be a shade of 

red ranging from black (0% red) at the left edge of the circle to bright (100%) red at the right edge of the circle. The 

color value is initially calculated in three parts (red, green, and blue), as shown here:

 red = 128 * (1 + 0.75 * pctX * pctX * pctX / (1 - pctY * pctY));  
 green = 0;  
 blue = 0;

Notice that only the red portion of the color (the variable red) actually has a value. The green and blue values (the 

variables green and blue) are shown here for clarity, but could be omitted. Since the purpose of this method is to 

create a circle that contains a red gradient, no green or blue values are needed.

Updated 11 February 2009



494PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with bitmaps

Once the three individual color values are determined, they are combined into a single integer color value using a 

standard bit-shifting algorithm, shown in this code:

 rgb = (red << 16 | green << 8 | blue);

Finally, with the color value calculated, that value is actually assigned to the current pixel using the setPixel() 

method of the result BitmapData object, shown here:

 result.setPixel(i, j, rgb);

Updated 11 February 2009



495

Chapter 23: Working in three dimensions 
(3D)

Basics of 3D

Introduction to 3D in ActionScript

The main difference between a two-dimensional (2D) object and a three-dimensional (3D) object projected on a two-

dimensional screen is the addition of a third dimension to the object. The third dimension allows the object to move 

toward and away from viewpoint of the user.

When you explicitly set the z property of a display object to a numeric value, the object automatically creates a 3D 

transformation matrix. You can alter this matrix to modify the 3D transformation settings of that object.

In addition, 3D rotation differs from 2D rotation. In 2D the axis of rotation is always perpendicular to the x/y plane - 

in other words, on the z-axis. In 3D the axis of rotation can be around any of the x, y, or z axes. Setting the rotation 

and scaling properties of a display object enable it to move in 3D space.

Common 3D tasks

The following common 3D-related tasks are explored in this chapter: 

• Creating a 3D object

• Moving an object in 3D space

• Rotating an object in 3D space

• Representing depth using perspective projection

• Reordering the display list to correspond to relative z-axes so objects appear in front of one another correctly to the user

• Transforming 3D objects using 3D matrixes

• Using vectors to manipulate objects in 3D space

• Using the Graphics.drawTriangles() method to create perspective

• Using UV mapping to add bitmap textures to a 3D object

• Setting the culling parameter of the Graphics.drawTriangles() method to speed rendering and hide parts of a 

3D object that are facing away from the current point of view.

Important terms and concepts

The following reference list contains important terms that you will encounter in this chapter:

• perspective: in a 2D plane, representation of parallel lines as converging on a vanishing point to give the illusion of 

depth and distance

• projection: the production of a 2D image of a higher-dimensional object; 3D projection maps 3D points to a 2D plane

• rotation: changing the orientation (and often the position) of an object by moving every point included in the object 

in a circular motion

Updated 11 February 2009



496PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

• transformation: altering 3D points or sets of points by translation, rotation, scale, skew, or a combination of these 

actions

• translation: changing the position of an object by moving every point included in the object by the same amount in 

the same direction

• vanishing point: point at which receding parallel lines seem to meet when represented in linear perspective

• vector: a 3D vector represents a point or a location in the three-dimensional space using the Cartesian coordinates 

x, y, and z

• vertex: a corner point

• textured mesh: any point defining an object in 3D space

• UV mapping: a way to apply a texture or bitmap to a 3D surface. UV mapping assigns values to coordinates on an 

image as percentages of the horizontal (U) axis and vertical (V) axis. 

• T value: the scaling factor for determining the size of a 3D object as the object moves toward, or away from, the 

current point of view

• culling: rendering, or not, surfaces with specific winding. Using culling you can hide surfaces that are not visible to 

the current point of view.

Understanding the 3D features of Flash Player and the 
AIR runtime

In Flash Player versions prior to Flash Player 10 and Adobe AIR versions prior to Adobe AIR 1.5, display objects have 

two properties, x and y, for positioning them on a 2D plane. Starting with Flash Player 10 and Adobe AIR 1.5, every 

ActionScript display object has a z property that lets you position it along the z-axis, which is generally used to indicate 

depth or distance.

Flash Player 10 and Adobe AIR 1.5 introduce support for 3D effects. However, display objects are inherently flat. Each 

display object, such as a MovieClip object or a Sprite object, ultimately renders itself in two dimensions, on a single 

plane. The 3D features let you place, move, rotate, and otherwise transform these planar objects in all three 

dimensions. They also let you manage 3D points and convert them to 2D x, y coordinates, so you can project 3D 

objects onto a 2D view. You can simulate many kinds of 3D experiences using these features.

The 3D coordinate system used by ActionScript differs from other systems. When you use 2D coordinates in 

ActionScript, the value of x increases as you move to the right along the x-axis, and the value of y increases as you move 

down along the y-axis. The 3D coordinate system retains those conventions and adds a z-axis whose value increases 

as you move away from the viewpoint.

Updated 11 February 2009



497PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

The positive directions of the x, y, and z axes in the ActionScript 3D coordinate system.
A. + Z axis  B. Origin  C. +X axis  D. +Y axis  

Note: Be aware that Flash Player and AIR always represent 3D in layers. This means that if object A is in front of object 

B on the display list, Flash Player or AIR always renders A in front of B regardless of the z-axis values of the two objects. 

To resolve this conflict between the display list order and the z-axis order, use the transform.getRelativeMatrix3D() 

method to save and then re-order the layers of 3D display objects. For more information, see “Using Matrix3D objects for 

reordering display” on page 506.

The following ActionScript classes support the new 3D-related features:

1 The flash.display.DisplayObject class contains the z property and new rotation and scaling properties for 

manipulating display objects in 3D space. The DisplayObject.local3DToGlobal() method offers a simple way 

to project 3D geometry onto a 2D plane.

2 The flash.geom.Vector3D class can be used as a data structure for managing 3D points. It also supports vector 

mathematics.

3 The flash.geom.Matrix3D class supports complex transformations of 3D geometry, such as rotation, scaling, and 

translation.

4 The flash.geom.PerspectiveProjection class controls the parameters for mapping 3D geometry onto a 2D view.

There are two different approaches to simulating 3D images in ActionScript:

1 Arranging and animating planar objects in 3D space. This approach involves animating display objects using the x, 

y and z properties of display objects, or setting rotation and scaling properties using the DisplayObject class. More 

complex motion can be achieved using the DisplayObject.transform.matrix3D object. The 

DisplayObject.transform.perspectiveProjection object customizes how the display objects are drawn in 3D 

perspective. Use this approach when you want to animate 3D objects that consist primarily of planes. Examples of 

this approach include 3D image galleries or 2D animation objects arranged in 3D space.

2 Generating 2D triangles from 3D geometry, and rendering those triangles with textures. To use this approach you 

must first define and manage data about 3D objects and then convert that data into 2D triangles for rendering. 

Bitmap textures can be mapped to these triangles, and then the triangles are drawn to a graphics object using the 

Graphics.drawTriangles() method. Examples of this approach include loading 3D model data from a file and 

rendering the model on the screen, or generating and drawing 3D terrain as triangle meshes.

A

C
B

(0,0,0)

D

Updated 11 February 2009



498PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

Creating and moving 3D objects

To convert a 2D display object into a 3D display object, you can explicitly set its z property to a numeric value. When 

you assign a value to the z property, a new Transform object is created for the display object. Setting the 

DisplayObject.rotationX or DisplayObject.rotationY properties also creates a new Transform object. The 

Transform object contains a Matrix3D property that governs how the display object is represented in 3D space. 

The following code sets the coordinates for a display object called “leaf”:

leaf.x = 100; leaf.y = 50; leaf.z = -30;

You can see these values, as well as properties derived from these values, in the matrix3D property of the Transform 

object of the leaf:

var leafMatrix:Matrix3D  = leaf.transform.matrix3D;  
  
trace(leafMatrix.position.x);  
trace(leafMatrix.position.y);  
trace(leafMatrix.position.z);  
trace(leafMatrix.position.length);  
trace(leafMatrix.position.lengthSquared);

For information about the properties of the Transform object, see the Transform class. For information about the 

properties of the Matrix3D object, see the Matrix3D class.

Moving an object in 3D space

You can move an object in 3D space by changing the values of its x, y, or z properties. When you change the value 

of the z property the object appears to move closer or farther away from the viewer.

The following code moves two ellipses back and forth along their z-axes by changing the value of their z properties in 

response to an event. ellipse2 moves faster than ellipse1: its z property is increased by a multiple of 20 on each 

Frame event while the z property of ellipse1 is increased by a multiple of 10:

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/geom/Transform.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/geom/Matrix3D.html


499PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

var depth:int = 1000;  
  
function ellipse1FrameHandler(e:Event):void  
{  

ellipse1Back = setDepth(e, ellipse1Back);  
e.currentTarget.z += ellipse1Back * 10;  

}  
function ellipse2FrameHandler(e:Event):void  
{  

ellipse2Back = setDepth(e, ellipse1Back);  
e.currentTarget.z += ellipse1Back * 20;  

}  
function setDepth(e:Event, d:int):int  
{  

if(e.currentTarget.z > depth)  
{  

e.currentTarget.z = depth;  
d = -1;  

}  
else if (e.currentTarget.z <  0)  
{  

e.currentTarget.z = 0;  
d = 1;  

}  
}

Rotating an object in 3D space

You can rotate an object in three different ways, depending on how you set the object’s rotation properties: rotationX, 

rotationY, and rotationZ. 

The figure below shows two squares that are not rotated:

The next figure shows the two squares when you increment the rotationY property of the container of the squares to 

rotate them on the y- axis. Rotating the container, or parent display object, of the two squares rotates both squares:

container.rotationY += 10;

Updated 11 February 2009



500PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

The next figure shows what happens when you set the rotationX property of the container for the squares. This 

rotates the squares on the x- axis.

The next figure shows what happens when you increment the rotationZ property of the container of the squares.This 

rotates the squares on the z-axis.

A display object can simultaneously move and rotate in 3D space.

Projecting 3D objects onto a 2D view

The PerspectiveProjection class in the flash.geom package provides a simple way of applying rudimentary 

perspective when moving display objects through 3D space. 

If you do not explicitly create a perspective projection for your 3D space, the 3D engine uses a default 

PerspectiveProjection object that exists on the root and is propagated to all its children.

The three properties that define how a PerspectiveProjection object displays 3D space are:

• fieldOfView

• projectionCenter

• focalLength

Modifying the value of the fieldOfView automatically modifies the value of the focalLength and vice-versa, since 

they are interdependent. 

The formula used to calculate the focalLength given the fieldOfView value is:

focalLength = stageWidth/2 * (cos(fieldOfView/2) / sin(fieldOfView/2)

Typically you would modify the fieldOfView property explicitly.

Field of view

By manipulating the fieldOfView property of the PerspectiveProjection class, you can make a 3D display object 

approaching the viewer appear larger and an object receding from the viewer appear smaller.

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/geom/PerspectiveProjection.html


501PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

The fieldOfView property specifies an angle between 0 and 180 degrees that determines the strength of the 

perspective projection. The greater the value, the stronger the distortion applied to a display object moving along its 

z-axis. A low fieldOfView value results in very little scaling and causes objects to appear to move only slightly back 

in space. A high fieldOfView value causes more distortion and the appearance of greater movement. The maximum 

value of 179.9999... degrees results in an extreme fish-eye camera lens effect. The maximum value of fieldOfView is 

179.9999... and the minimum is 0.00001... Exactly 0 and 180 are illegal values.

Projection center

The projectionCenter property represents the vanishing point in the perspective projection. It is applied as an offset 

to the default registration point (0,0) in the upper-left corner of the stage.

As an object appears to move further from the viewer, it skews towards the vanishing point and eventually vanishes. 

Imagine an infinitely long hall. As you look down the hall, the edges of the walls converge to a vanishing point far down 

the hall. 

If the vanishing point is at the center of the stage, the hall disappears towards a point in the center. The default value 

for the projectionCenter property is the center of the stage. If, for example, you want elements to appear on the left 

of the stage and a 3D area to appear on the right, set the projectionCenter to a point on the right of the stage to make 

that the vanishing point of your 3D viewing area.

Focal length

The focalLength property represents the distance between the origin of the viewpoint (0,0,0) and the location of the 

display object on its z-axis. 

A long focal length is like a telephoto lens with a narrow view and compressed distances between objects. A short focal 

length is like a wide angle lens, with which you get a wide view with a lot of distortion. A medium focal length 

approximates what the human eye sees.

Typically the focalLength is re-calculated dynamically during perspective transformation as the display object 

moves, but you can set it explicitly.

Default perspective projection values

The default PerspectiveProjection object created on the root has the following values:

• fieldOfView: 55

• perspectiveCenter: stagewidth/2, stageHeight/2

• focalLength: stageWidth/ 2 * ( cos(fieldOfView/2) / sin(fieldOfView/2) )

These are the values that are used if you do not create your own PerspectiveProjection object.

You can instantiate your own PerspectiveProjection object with the intention of modifying the projectionCenter 

and fieldOfView yourself. In this case, the default values of the newly created object are the following, based on a 

default stage size of 500 by 500:

• fieldOfView: 55

• perspectiveCenter: 250,250

• focalLength: 480.24554443359375

Updated 11 February 2009



502PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

Example: Perspective projection

The following example demonstrates the use of perspective projection to create 3D space. It shows how you can modify 

the vanishing point and change the perspective projection of the space through the projectionCenter property. This 

modification forces the recalculation of the focalLength and fieldOfView with its concomitant distortion of the 3D 

space.

This example:

1 Creates a sprite named center, as a circle with cross hairs

2 Assigns the coordinates of the center sprite to the projectionCenter property of the perspectiveProjection 

property of the transform property of the root

3 Adds event listeners for mouse events that call handlers that modify the projectionCenter so that it follows the 

location of the center object

4 Creates four accordion-style boxes that form the walls of the perspective space

When you test this example, ProjectionDragger.swf, drag the circle around to different locations. The vanishing point 

follows the circle, landing wherever you drop it. Watch the boxes that enclose the space stretch and become distorted 

when you move the projection center far from the center of the stage.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

ProjectionDragger application files are in the Samples/ProjectionDragger folder.

package  
{  

import flash.display.Sprite;  
import flash.display.Shape;  
import flash.geom.Point;  
import flash.events.*;  
public class ProjectionDragger extends Sprite  
{  

private var center : Sprite;  
private var boxPanel:Shape;  
private var inDrag:Boolean = false;  
  

 public function ProjectionDragger():void  
{  

createBoxes();  
createCenter();  

}   
 public function createCenter():void  

 {    
  var  centerRadius:int = 20;  
  
  center = new Sprite();  
  
  // circle  
  center.graphics.lineStyle(1, 0x000099);  
  center.graphics.beginFill(0xCCCCCC, 0.5);  
  center.graphics.drawCircle(0, 0, centerRadius);  
  center.graphics.endFill();  
  // cross hairs  
  center.graphics.moveTo(0, centerRadius);  
  center.graphics.lineTo(0, -centerRadius);  
  center.graphics.moveTo(centerRadius, 0);  

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


503PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

  center.graphics.lineTo(-centerRadius, 0);  
  center.x = 175;  
  center.y = 175;  
  center.z = 0;  
  this.addChild(center);  
  
  center.addEventListener(MouseEvent.MOUSE_DOWN, startDragProjectionCenter);  
  center.addEventListener(MouseEvent.MOUSE_UP, stopDragProjectionCenter);  
  center.addEventListener( MouseEvent.MOUSE_MOVE, doDragProjectionCenter);  
  root.transform.perspectiveProjection.projectionCenter = new Point(center.x, 

center.y);  
}  
public function createBoxes():void  
{  

// createBoxPanel();  
var boxWidth:int = 50;  
var boxHeight:int = 50;  
var numLayers:int = 12;  
var depthPerLayer:int = 50;  
  
// var boxVec:Vector.<Shape> = new Vector.<Shape>(numLayers);  
for (var i:int = 0; i < numLayers; i++)  
{  

this.addChild(createBox(150, 50, (numLayers - i) * depthPerLayer, boxWidth, 
boxHeight, 0xCCCCFF));  

this.addChild(createBox(50, 150, (numLayers - i) * depthPerLayer, boxWidth, 
boxHeight, 0xFFCCCC));  

this.addChild(createBox(250, 150, (numLayers - i) * depthPerLayer, boxWidth, 
boxHeight, 0xCCFFCC));  

this.addChild(createBox(150, 250, (numLayers - i) * depthPerLayer, boxWidth, 
boxHeight, 0xDDDDDD));  

}  
}  
  
public function createBox(xPos:int = 0, yPos:int = 0, zPos:int = 100, w:int = 50, h:int 

= 50, color:int = 0xDDDDDD):Shape  
{  

var box:Shape = new Shape();  
box.graphics.lineStyle(2, 0x666666);  
box.graphics.beginFill(color, 1.0);  
box.graphics.drawRect(0, 0, w, h);  
box.graphics.endFill();  
box.x = xPos;  
box.y = yPos;  
box.z = zPos;  
return box;  

}  
public function startDragProjectionCenter(e:Event)   
{   

center.startDrag();  
inDrag = true;  

Updated 11 February 2009



504PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

}  
  
public function doDragProjectionCenter(e:Event)   
{   

if (inDrag)  
{  

root.transform.perspectiveProjection.projectionCenter = new Point(center.x, 
center.y);  

}  
}  
  
public function stopDragProjectionCenter(e:Event)  
{  

center.stopDrag();   
root.transform.perspectiveProjection.projectionCenter = new Point(center.x, 

center.y);  
inDrag = false;  

}  
}  

}

For more complex perspective projection, use the Matrix3D class.

Performing complex 3D transformations

The Matrix3D class lets you transform 3D points within a coordinate space or map 3D points from one coordinate 

space to another.

You don't need to understand matrix mathematics to use the Matrix3D class. Most of the common transformation 

operations can be handled using the methods of the class. You don't have to worry about explicitly setting or 

calculating the values of each element in the matrix.

After you set the z property of a display object to a numeric value, you can retrieve the object’s transformation matrix 

using the Matrix3D property of the display object’s Transform object:

var leafMatrix:Matrix3D = this.transform.matrix3D;

You can use the methods of the Matrix3D object to perform translation, rotation, scaling, and perspective projection 

on the display object.

Use the Vector3D class with its x, y, and z properties for managing 3D points. It can also represent a spatial vector in 

physics, which has a direction and a magnitude. The methods of the Vector3D class let you perform common 

calculations with spatial vectors, such as addition, dot product, and cross product calculations. 

Note: The Vector3D class is not related to the ActionScript Vector class. The Vector3D class contains properties and 

methods for defining and manipulating 3D points, while the Vector class supports arrays of typed objects.

Creating Matrix3D objects

There are three main ways of creating or retrieving Matrix3D objects:

1 Use the Matrix3D() constructor method to instantiate a new matrix. The Matrix3D() constructor takes a Vector 

object containing 16 numeric values and places each value into a cell of the matrix. For example:

var rotateMatrix:Matrix3D = new Matrix3D(1,0,0,1, 0,1,0,1, 0,0,1,1, 0,0,0,1);

Updated 11 February 2009



505PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

2 Set the value the z property of a display object. Then retrieve the transformation matrix from the 

transform.matrix3D property of that object.

3 Retrieve the Matrix3D object that controls the display of 3D objects on the stage by getting the value of the 

perspectiveProjection.matrix3D property of the root display object.

Applying multiple 3D transformations

You can apply many 3D transformations at once using a Matrix3D object. For example if you wanted to rotate, scale, 

and then move a cube, you could apply three separate transformations to each point of the cube. However it is much 

more efficient to precalculate multiple transformations in one Matrix3D object and then perform one matrix 

transformation on each of the points.

Note: The order in which matrix transformations are applied is important. Matrix calculations are not commutative. For 

example, applying a rotation followed by a translation gives a different result than applying the same translation followed 

by the same rotation.

The following example shows two ways of performing multiple 3D transformations.

package {  
import flash.display.Sprite;  
import flash.display.Shape;  
import flash.display.Graphics;  
import flash.geom.*;  

  
public class Matrix3DTransformsExample extends Sprite  

{  
private var rect1:Shape;  
private var rect2:Shape;  
  

public function Matrix3DTransformsExample():void  
{  

var pp:PerspectiveProjection = this.transform.perspectiveProjection;  
pp.projectionCenter = new Point(275,200);  
this.transform.perspectiveProjection = pp;  
  
rect1 = new Shape();  
rect1.x = -70;  
rect1.y = -40;  
rect1.z = 0;  
rect1.graphics.beginFill(0xFF8800);  
rect1.graphics.drawRect(0,0,50,80);  
rect1.graphics.endFill();  
addChild(rect1);  

  
rect2 = new Shape();  
rect2.x = 20;  
rect2.y = -40;  
rect2.z = 0;  
rect2.graphics.beginFill(0xFF0088);  
rect2.graphics.drawRect(0,0,50,80);  
rect2.graphics.endFill();  
addChild(rect2);  
  

Updated 11 February 2009



506PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

doTransforms();  
}  

  
private function doTransforms():void  
{  

rect1.rotationX = 15;  
rect1.scaleX = 1.2;  
rect1.x += 100;  
rect1.y += 50;  
rect1.rotationZ = 10;  

  
var matrix:Matrix3D = rect2.transform.matrix3D;  
matrix.appendRotation(15, Vector3D.X_AXIS);  
matrix.appendScale(1.2, 1, 1);  
matrix.appendTranslation(100, 50, 0);  
matrix.appendRotation(10, Vector3D.Z_AXIS);  
rect2.transform.matrix3D = matrix;  

}  
}  

}

In the doTransforms() method the first block of code uses the DisplayObject properties to change the rotation, 

scaling, and position of a rectangle shape. The second block of code uses the methods of the Matrix3D class to do the 

same transformations. 

The main advantage of using the Matrix3D methods is that all of the calculations are performed in the matrix first,. 

Then they are applied to the display object only once, when its transform.matrix3D property is set. Setting 

DisplayObject properties make the source code a bit simpler to read. However each time a rotation or scaling property 

is set, it causes multiple calculations and changes multiple display object properties.

If your code will apply the same complex transformations to display objects more than once, save the Matrix3D object 

as a variable and then reapply it over and over.

Using Matrix3D objects for reordering display

As mentioned previously, the layering order of display objects in the display list determines the display layering order, 

regardless of their relative z-axes. If your animation transforms the properties of display objects into an order that 

differs from the display list order, the viewer might see display object layering that does not correspond to the z-axis 

layering. So, an object that should appear further away from the viewer might appear in front of an object that is closer 

to the viewer.

To ensure that the layering of 3D display objects corresponds to the relative depths of the objects, use an approach like 

the following:

1 Use the getRelativeMatrix3D() method of the Transform object to get the relative z-axes of the child 3D 

display objects.

2 Use the removeChild() method to remove the objects from the display list.

3 Sort the display objects based on their relative z-axis values.

4 Use the addChild() method to add the children back to the display list in reverse order.

This reordering ensures that your objects display in accordance with their relative z-axes. 

The following code enforces the correct display of the six faces of a 3D box. It reorders the faces of the box after 

rotations have been applied to the it:

Updated 11 February 2009



507PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

public var faces:Array; . . .  
  
public function ReorderChildren()  
{   

for(var ind:uint = 0; ind < 6; ind++)  
{  

faces[ind].z = faces[ind].child.transform.getRelativeMatrix3D(root).position.z;  
this.removeChild(faces[ind].child);  

}  
faces.sortOn("z", Array.NUMERIC | Array.DESCENDING);  
for (ind = 0; ind < 6; ind++)  
{  

this.addChild(faces[ind].child);  
}  

}

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

application files are in the Samples/ReorderByZ folder.

Using triangles for 3D effects

In ActionScript, you perform bitmap transformations using the Graphics.drawTriangles() method, because 3D 

models are represented by a collection of triangles in space. (However, Flash Player and AIR do not support a depth 

buffer, so display objects are still inherently flat, or 2D. This is described in “Understanding the 3D features of Flash 

Player and the AIR runtime” on page 496.) The Graphics.drawTriangles() method is like the 

Graphics.drawPath() method, as it takes a set of coordinates to draw a triangle path.

To familiarize yourself with using Graphics.drawPath(), see “Drawing Paths” on page 327. 

The Graphics.drawTriangles() method uses a Vector.<Number> to specify the point locations for the triangle path:

drawTriangles(vertices:Vector.<Number>, indices:Vector.<int> = null, uvtData:Vector.<Number> 
= null, culling:String = "none"):void

The first parameter of drawTriangles() is the only required parameter: the vertices parameter. This parameter is 

a vector of numbers defining the coordinates through which your triangles are drawn. Every three sets of coordinates 

(six numbers) represents a triangle path. Without the indices parameter, the length of the vector should always be a 

factor of six, since each triangle requires three coordinate pairs (three sets of two x/y values). For example:

graphics.beginFill(0xFF8000);  
graphics.drawTriangles(  
    Vector.<Number>([  
        10,10,  100,10,  10,100,  
        110,10, 110,100, 20,100]));

Neither of these triangles share any points, but if they did, the second drawTriangles() parameter, indices, could 

be used to reuse values in the vertices vector for more than one triangle.

When using the indices parameter, be aware that the indices values are point indices, not indices that relate directly 

to the vertices array elements. In other words, an index in the vertices vector as defined by indices is actually the 

real index divided by 2. For the third point of a vertices vector, for example, use an indices value of 2, even though 

the first numeric value of that point starts at the vector index of 4.

For example, merge two triangles to share the diagonal edge using the indices parameter:

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/display/Graphics.html#drawTriangles()


508PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

graphics.beginFill(0xFF8000);  
graphics.drawTriangles(  

Vector.<Number>([10,10, 100,10, 10,100, 100,100]),  
Vector.<int>([0,1,2, 1,3,2]));

Notice that though a square has now been drawn using two triangles, only four points were specified in the vertices 

vector. Using indices, the two points shared by the two triangles are reused for each triangle. This reduces the overall 

vertices count from 6 (12 numbers) to 4 (8 numbers):

A square drawn with two triangles using the vertices parameter

This technique becomes useful with larger triangle meshes where most points are shared by multiple triangles.

All fills can be applied to triangles. The fills are applied to the resulting triangle mesh as they would to any other shape.

Transforming bitmaps

Bitmap transformations provide the illusion of perspective or "texture" on a three-dimensional object. Specifically, you 

can distort a bitmap toward a vanishing point so the image appears to shrink as it moves toward the vanishing point. 

Or, you can use a two-dimensional bitmap to create a surface for a three-dimensional object, providing the illusion of 

texture or “wrapping” on that three-dimensional object. 

A two-dimensional surface using a vanishing point and a three-dimensional object wrapped with a bitmap.

UV mapping

Once you start working with textures, you'll want to make use of the uvtData parameter of drawTriangles(). This 

parameter allows you to set up UV mapping for bitmap fills.

UV mapping is a method for texturing objects. It relies on two values, a U horizontal (x) value and a V vertical (y) 

value. Rather than being based on pixel values, they are based on percentages. 0 U and 0 V is the upper-left of an image 

and 1 U and 1 V is the lower-right:

0 1

2 3

Updated 11 February 2009



509PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

The UV 0 and 1 locations on a bitmap image

Vectors of a triangle can be given UV coordinates to associate themselves with the respective locations on an image:

The UV coordinates of a triangular area of a bitmap image

The UV values stay consistent with the points of the triangle:

The vertices of the triangle move and the bitmap distorts to keep the UV values for an individual point the same

As ActionScript 3D transformations are applied to the triangle associated with the bitmap, the bitmap image is applied 

to the triangle based on the UV values. So, instead of using matrix calculations, set or adjust the UV values to create a 

three-dimensional effect.

The Graphics.drawTriangles() method also accepts an optional piece of information for three-dimensional 

transformations: the T value. The T value in uvtData represents the 3D perspective, or more specifically, the scale 

factor of the associated vertex. UVT mapping adds perspective correction to UV mapping. For example, if an object is 

positioned in 3D space away from the viewpoint so that it appears to be 50% its “original” size, the T value of that object 

would be 0.5. Since triangles are drawn to represent objects in 3D space, their locations along the z-axis determine their 

T values. The equation that determines the T value is:

T = focalLength/(focalLength + z);

In this equation, focalLength represents a focal length or calculated "screen" location which dictates the amount of 

perspective provided in the view.

Updated 11 February 2009



510PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

The focal length and z value
A. viewpoint  B. screen  C. 3D object  D. focalLength value  E. z value  

The value of T is used to scale basic shapes to make them seem further in the distance. It is usually the value used to 

convert 3D points to 2D points. In the case of UVT data, it is also used to scale a bitmap between the points within a 

triangle with perspective.

When you define UVT values, the T value directly follows the UV values defined for a vertex. With the inclusion of T, 

every three values in the uvtData parameter (U, V, and T) match up with every two values in the vertices parameter 

(x, and y). With UV values alone, uvtData.length == vertices.length. With the inclusion of a T value, uvtData.length = 

1.5*vertices.length.

The following example shows a plane being rotated in 3D space using UVT data. This example uses an image called 

ocean.jpg and a “helper” class, ImageLoader, to load the ocean.jpg image so it can be assigned to the BitmapData 

object.

Here is the ImageLoader class source (save this code into a file named ImageLoader.as):

D E

BA C

Updated 11 February 2009



511PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

package {  
    import flash.display.*  
    import flash.events.*;  
    import flash.net.URLRequest;  

public class ImageLoader extends Sprite {  
        public var url:String;  

public var bitmap:Bitmap;  
public function ImageLoader(loc:String = null) {  

if (loc != null){  
url = loc;  
loadImage();  

}  
}  
public function loadImage():void{  

if (url != null){  
var loader:Loader = new Loader();  
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);  
loader.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR, onIoError);  
  

var req:URLRequest = new URLRequest(url);  
loader.load(req);  

}  
}  
  

private function onComplete(event:Event):void {  
            var loader:Loader = Loader(event.target.loader);  
            var info:LoaderInfo = LoaderInfo(loader.contentLoaderInfo);  
            this.bitmap = info.content as Bitmap;  

this.dispatchEvent(new Event(Event.COMPLETE));  
}  

  
private function onIoError(event:IOErrorEvent):void {  

            trace("onIoError: " + event);  
}  

    }  
}

And here is the ActionScript that uses triangles, UV mapping, and T values to make the image appear as if it is 

shrinking toward a vanishing point and rotating. Save this code in a file named Spinning3dOcean.as:

Updated 11 February 2009



512PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

package {  
import flash.display.*  
import flash.events.*;  
import flash.utils.getTimer;  
  
public class Spinning3dOcean extends Sprite {  

// plane vertex coordinates (and t values)  
var x1:Number = -100,y1:Number = -100,z1:Number = 0,t1:Number = 0;  
var x2:Number = 100,y2:Number = -100,z2:Number = 0,t2:Number = 0;  
var x3:Number = 100,y3:Number = 100,z3:Number = 0,t3:Number = 0;  
var x4:Number = -100,y4:Number = 100,z4:Number = 0,t4:Number = 0;  
var focalLength:Number = 200;   
// 2 triangles for 1 plane, indices will always be the same  
var indices:Vector.<int>;  
  
var container:Sprite;  
  
var bitmapData:BitmapData; // texture  
var imageLoader:ImageLoader;  
public function Spinning3dOcean():void {  

indices =  new Vector.<int>();  
indices.push(0,1,3, 1,2,3);  
  
container = new Sprite(); // container to draw triangles in  
container.x = 200;  
container.y = 200;  
addChild(container);  
  
imageLoader = new ImageLoader("ocean.jpg");  
imageLoader.addEventListener(Event.COMPLETE, onImageLoaded);  

}  
function onImageLoaded(event:Event):void {  

bitmapData = imageLoader.bitmap.bitmapData;  
// animate every frame  
addEventListener(Event.ENTER_FRAME, rotatePlane);  

}  
function rotatePlane(event:Event):void {  

// rotate vertices over time  
var ticker = getTimer()/400;  
z2 = z3 = -(z1 = z4 = 100*Math.sin(ticker));  
x2 = x3 = -(x1 = x4 = 100*Math.cos(ticker));  
  
// calculate t values  

Updated 11 February 2009



513PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

t1 = focalLength/(focalLength + z1);  
t2 = focalLength/(focalLength + z2);  
t3 = focalLength/(focalLength + z3);  
t4 = focalLength/(focalLength + z4);  
  
// determine triangle vertices based on t values  
var vertices:Vector.<Number> = new Vector.<Number>();  
vertices.push(x1*t1,y1*t1, x2*t2,y2*t2, x3*t3,y3*t3, x4*t4,y4*t4);  
// set T values allowing perspective to change  
// as each vertex moves around in z space  
var uvtData:Vector.<Number> = new Vector.<Number>();  
uvtData.push(0,0,t1, 1,0,t2, 1,1,t3, 0,1,t4);  
  
// draw  
container.graphics.clear();  
container.graphics.beginBitmapFill(bitmapData);  
container.graphics.drawTriangles(vertices, indices, uvtData);  

}  
}  

}

To test this example, save these two class files in the same directory as an image named “ocean.jpg”. You can see how 

the original bitmap is transformed to appear as if it is vanishing in the distance and rotating in 3D space.

Culling

Culling is the process that determines which surfaces of a three-dimensional object the renderer should not render 

because they are hidden from the current viewpoint. In 3D space, the surface on the “back” of a three-dimensional 

object is hidden from the viewpoint:

The back of a 3D object is hidden from the viewpoint.
A. viewpoint  B. 3D object  C. the back of a three dimensional object  

Inherently all triangles are always rendered no matter their size, shape, or position. Culling insures that Flash Player 

or AIR renders your 3D object correctly. In addition, to save on rendering cycles, sometimes you want some triangles 

to be skipped by the render. Consider a cube rotating in space. At any given time, you'll never see more than three sides 

of that cube since the sides not in view would be facing the other direction on the other side of the cube. Since those 

sides are not going to be seen, the renderer shouldn't draw them. Without culling, Flash Player or AIR renders both 

the front and back sides.

BA

C

Updated 11 February 2009



514PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working in three dimensions (3D)

A cube has sides not visible from the current viewpoint

So, the Graphics.drawTriangles() method has a fourth parameter to establish a culling value:

public function drawTriangles(vertices:Vector.<Number>, indices:Vector.<int> = null, 
uvtData:Vector.<Number> = null, culling:String = "none"):void

The culling parameter is a value from the TriangleCulling enumeration class: TriangleCulling.NONE, 

TriangleCulling.POSITIVE, and TriangleCulling.NEGATIVE. These values are dependent upon the direction of 

the triangle path defining the surface of the object. The ActionScript API for determining the culling assumes that all 

out-facing triangles of a 3D shape are drawn with the same path direction. Once a triangle face is turned around, the 

path direction also changes. At that point, the triangle can be culled (removed from rendering).

So, a TriangleCulling value of POSITIVE removes triangles with positive path direction (clockwise). A 

TriangleCulling value of NEGATIVE removes triangles with a negative (counterclockwise) path direction. In the case 

of a cube, while the front facing surfaces have a positive path direction, the back facing surfaces have a negative path 

direction:

A cube “unwrapped” to show the path direction. When “wrapped”, the back side path direction is reversed.

To see how culling works, start with the earlier example from “UV mapping” on page 508, set the culling parameter of 

the drawTriangles() method to TriangleCulling.NEGATIVE:

container.graphics.drawTriangles(vertices, indices, uvtData, TriangleCulling.NEGATIVE);

Notice the “back” side of the image is not rendered as the object rotates.

Updated 11 February 2009



515

Chapter 24: Working with video

Flash video is one of the standout technologies on the Internet. However, the traditional presentation of video—in a 

rectangular screen with a progress bar and control buttons underneath—is only one possible use of video. Through 

ActionScript, you have fine-tuned access to and control over video loading, presentation, and playback.

Basics of video

Introduction to working with video

One important capability of Adobe® Flash® Player and Adobe® AIR™ is the ability to display and manipulate video 

information with ActionScript in the same way that you can manipulate other visual content such as images, 

animation, text, and so on.

When you create a Flash Video (FLV) file in Adobe Flash CS4 Professional, you have the option to select a skin that 

includes common playback controls. However, there is no reason you need to limit yourself to the options available. 

Using ActionScript, you have fine-tuned control over loading, displaying, and playback of video—meaning you could 

create your own video player skin, or use your video in any less traditional way that you want.

Working with video in ActionScript involves working with a combination of several classes:

• Video class: The actual video content box on the Stage is an instance of the Video class. The Video class is a display 

object, so it can be manipulated using the same techniques that can be applied to other display objects, such as 

positioning, applying transformations, applying filters and blending modes, and so forth.

• NetStream class: When you’re loading a video file to be controlled by ActionScript, a NetStream instance represents 

the source of the video content—in this case, a stream of video data. Using a NetStream instance also involves using 

a NetConnection object, which is the connection to the video file—like the tunnel that the video data is fed through.

• Camera class: When you’re working with video data from a camera connected to the user’s computer, a Camera 

instance represents the source of the video content—the user’s camera and the video data it makes available.

When you’re loading external video, you can load the file from a standard web server for progressive download, or you 

can work with streaming video delivered by a specialized server such as Adobe’s Flash® Media Server.

Common video tasks

This chapter describes the following video-related tasks that you will likely want to perform:

• Displaying and controlling video on the screen

• Loading external video files

• Controlling video playback

• Using full screen

• Handling metadata and cue point information in a video file

• Capturing and displaying video input from a user’s camera

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/media/Video.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/net/NetStream.html
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/media/Camera.html


516PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Important concepts and terms

• Cue point: A marker that can be placed at a specific moment in time in a video file, for example to act like a 

bookmark for locating that point in time, or to provide additional data that is associated with that moment in time.

• Encoding: The process of taking video data in one format and converting it to another video data format; for 

example, taking a high-resolution source video and converting it to a format that’s suitable for Internet delivery.

• Frame: A single segment of video information; each frame is like a still image representing a snapshot of a moment 

in time. By playing frames in sequence at high speed, the illusion of motion is created.

• Keyframe: A video frame which contains the full information for the frame. Other frames that follow a keyframe 

only contain information about how they differ from the keyframe, rather than containing the full frame’s worth 

of information.

• Metadata: Information about a video file that is embedded within the video file and retrieved when the video has 

loaded.

• Progressive download: When a video file is delivered from a standard web server, the video data is loaded using 

progressive download, meaning the video information loads in sequence. This has the benefit that the video can 

begin playing before the entire file is downloaded; however, it prevents you from jumping ahead to a part of the 

video that hasn’t loaded.

• Streaming: As an alternative to progressive download, a special video server can be used to deliver video over the 

Internet using a technique known as streaming (sometimes called “true streaming”). With streaming, the viewer’s 

computer never downloads the entire video at one time. To speed up download times, at any moment the computer 

only needs a portion of the total video information. Because a special server controls the delivery of the video 

content, any part of the video can be accessed at any time, rather than needing to wait for it to download before 

accessing it.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. Because 

this chapter is about working with video in ActionScript, many of the code listings in this chapter involve working with 

a video object, which could be one that has been created and placed on the Stage in Flash, or one that’s created using 

ActionScript. Testing a sample will involve viewing the result in Flash Player or AIR to see the effects of the code on 

the video.

Most of the example code listings manipulate a Video object without creating the object explicitly. To test these code 

listings in this chapter:

1 Create an empty Flash document.

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 If necessary, open the Library panel.

5 From the Library panel menu, choose New Video.

6 In the Video Properties dialog box, enter a name for the new video symbol, and choose Video (ActionScript-

controlled) in the Type field. Click OK to create the Video symbol.

7 Drag an instance of your video symbol from the Library panel onto the Stage.

8 With the video instance selected, in the Property inspector, give it an instance name. The name should match the 

name used for the Video instance in the example code listing—for example, if the code listing manipulates a Video 

object named vid, you should name your Stage instance vid as well.

Updated 11 February 2009



517PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

9 Run the program using Control > Test Movie.

On the screen you will see the results of the code manipulating the video as specified in the code listing.

Some example code listings in this chapter include a class definition in addition to the example code. In those listings, 

in addition to the previous steps, and before testing the SWF, you will need to create the class that’s used in the 

example. To create a class defined in an example code listing:

1 Make sure you have saved the FLA file that will be used for testing.

2 From the main menu choose File > New.

3 In the New Document dialog, in the Type section, choose ActionScript File. Click OK to create the new 

ActionScript file.

4 Copy the class definition code from the example into the ActionScript document.

5 From the main menu, choose File > Save. Save the file in the same directory as the Flash document. The file’s name 

should match the name of the class in the code listing. For instance, if the code listing defines a class named 

“VideoTest,” save the ActionScript file as “VideoTest.as”.

6 Return to the Flash document.

7 Run the program using Control > Test Movie.

You will see the results of the example displayed on the screen.

Other techniques for testing example code listings are explained in more detail in “Testing in-chapter example code 

listings” on page 34.

Understanding video formats

In addition to the Adobe FLV video format, Flash Player and Adobe AIR support video and audio encoded in H.264 

and HE-AAC from within MPEG-4 standard file formats. These formats stream high quality video at lower bit rates. 

Developers can leverage industry standard tools, including Adobe Premiere Pro and Adobe After Effects, to create and 

deliver compelling video content.

Flash Player and AIR compatibility with encoded video files

Flash Player 7 supports FLV files that are encoded with the Sorenson™ Spark™ video codec. Flash Player 8 supports FLV 

files encoded with Sorenson Spark or On2 VP6 encoder in Flash Professional 8. The On2 VP6 video codec supports 

an alpha channel. 

Type Format Container

Video H.264 MPEG-4: MP4, M4V, F4V, 3GPP

Video FLV file Sorenson Spark

Video FLV file ON2 VP6

Audio AAC+ / HE-AAC / AAC v1 / AAC v2 MPEG-4:MP4, M4V, F4V, 3GPP

Audio Mp3 Mp3

Audio Nellymoser FLV file

Audio Speex FLV file

Updated 11 February 2009



518PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Flash Player 9.0.115.0 and later versions support files derived from the standard MPEG-4 container format. These files 

include F4V, MP4, M4A, MOV, MP4V, 3GP, and 3G2, if they contain H.264 video or HE-AAC v2 encoded audio, or 

both. H.264 delivers higher quality video at lower bit rates when compared to the same encoding profile in Sorenson 

or On2. HE-AAC v2 is an extension of AAC, a standard audio format defined in the MPEG-4 video standard. HE-

AAC v2 uses spectral band replication (SBR) and parametric stereo (PS) techniques to increase coding efficiency at 

low bit rates.

The following table lists the supported codecs. It also shows the corresponding SWF file format and the versions of 

Flash Player and AIR that are required to play them:

Understanding the Adobe F4V and FLV video file formats

Adobe provides the F4V and FLV video file formats for streaming content to Flash Player and AIR. For a complete 

description of these video file formats, see www.adobe.com/go/video_file_format.

The F4V video file format

Beginning with Flash Player Update 3 (9.0.115.0) and AIR 1.0, Flash Player and AIR support the Adobe F4V video 

format, which is based on the ISO MP4 format, Subsets of the format support different features. Flash Player expects 

a valid F4V file to begin with one of the following top-level boxes: 

• ftyp

The ftyp box identifies the features that a program must support to play a particular file format.

• moov

The moov box is effectively the header of an F4V file. It contains one or more other boxes that in turn contain other 

boxes that define the structure of the F4V data. An F4V file must contain one and only one moov box.

• mdat

An mdat box contains the data payload for the F4V file. An FV file contains only one mdat box. A moov box also 

must be present in the file because the mdat box cannot be understood on its own.

F4V files support multibyte integers in big-endian byte order, in which the most significant byte occurs first, at the 

lowest address.

Codec SWF file format version (earliest 

supported publish version)

Flash Player and AIR (earliest version required for playback)

Sorenson Spark 6 Flash Player 6, Flash Lite 3

On2 VP6 6 Flash Player 8, Flash Lite 3. 

Only Flash Player 8 and later versions support publish and 

playback of On2 VP6 video.

H.264 (MPEG-4 Part 10) 9 Flash Player 9 Update 3, AIR 1.0

ADPCM 6 Flash Player 6, Flash Lite 3

Mp3 6 Flash Player 6, Flash Lite 3

AAC (MPEG-4 Part 3) 9 Flash Player 9 Update 3, AIR 1.0

Speex (audio) 10 Flash Player 10, AIR 1.5

Nellymoser 6 Flash Player 6

Updated 11 February 2009

http://www.adobe.com/go/video_file_format


519PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

The FLV video file format

The Adobe FLV file format contains encoded audio and video data for delivery by Flash Player. You can use an 

encoder, such as Adobe Media Encoder or Sorenson™ Squeeze, to convert a QuickTime or Windows Media video file 

to an FLV file.

Note: You can create FLV files by importing video into Flash and exporting it as an FLV file. You can use the FLV Export 

plug-in to export FLV files from supported video-editing applications. To load FLV files from a web server, register the 

filename extension and MIME type with your web server. Check your web server documentation. The MIME type for FLV 

files is video/x-flv. For more information, see “About configuring FLV files for hosting on a server” on page 547.

For more information on FLV files, see “Advanced topics for FLV files” on page 547.

External vs embedded video

Using external video files provides certain capabilities that are not available when you use imported video:

• Longer video clips can be used in your application without slowing down playback. External video files use cached 

memory, which means that large files are stored in small pieces and accessed dynamically. For this reason, external 

F4V and FLV files require less memory than embedded video files.

• An external video file can have a different frame rate than the SWF file in which it plays. For example, you can set 

the SWF file frame rate to 30 frames per second (fps) and the video frame rate to 21 fps. This setting gives you better 

control of the video than embedded video, to ensure smooth video playback. It also allows you to play video files at 

different frame rates without the need to alter existing SWF file content.

• With external video files, playback of the SWF content is not interrupted while the video file is loading. Imported 

video files can sometimes interrupt document playback to perform certain functions, such as accessing a CD-ROM 

drive. Video files can perform functions independently of the SWF content, without interrupting playback.

• Captioning video content is easier with external FLV files because you can access the video metadata using event 

handlers.

Understanding the Video class

The Video class enables you to display live streaming video in an application without embedding it in your SWF file. 

You can capture and play live video using the Camera.getCamera() method. You can also use the Video class to play 

back video files over HTTP or from the local file system. There are several different ways to use Video in your projects:

• Load a video file dynamically using the NetConnection and NetStream classes and display the video in a Video 

object.

• Capture input from the user’s camera. For more information, see “Capturing camera input” on page 541.

• Use the FLVPlayback component.

Note: Instances of a Video object on the Stage are instances of the Video class.

Even though the Video class is in the flash.media package, it inherits from the flash.display.DisplayObject class. 

Therefore, all display object functionality, such as matrix transformations and filters, also applies to Video instances.

For more information see “Manipulating display objects” on page 285, “Working with geometry” on page 334, and 

“Filtering display objects” on page 346.

Updated 11 February 2009



520PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Loading video files

Loading videos using the NetStream and NetConnection classes is a multistep process:

1 Create a NetConnection object. If you are connecting to a local video file or one that is not using a server such as 

Adobe's Flash Media Server 2, pass null to the connect() method to play the video files from either an HTTP 

address or a local drive. If you are connecting to a server, set the parameter to the URI of the application that 

contains the video file on the server. 

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);

2 Create a NetStream object which takes a NetConnection object as a parameter and specify the video file that you 

want to load. The following snippet connects a NetStream object to the specified NetConnection instance and loads 

a video file named video.mp4 in the same directory as the SWF file:

 var ns:NetStream = new NetStream(nc);  
 ns.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);  
 ns.play("video.mp4");  
 function asyncErrorHandler(event:AsyncErrorEvent):void  
 {  
 // ignore error  
 }

3 Create a new Video object and attach the previously created NetStream object using the Video class’s 

attachNetStream() method. Then you can add the video object to the display list using the addChild() method, 

as seen in the following snippet:

 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);

As Flash Player executes this code it attempts to load the video.mp4 video file from the same directory as your SWF file.

Controlling video playback

The NetStream class offers four main methods for controlling video playback:

pause(): Pauses playback of a video stream. If the video is already paused, calling this method does nothing.

resume(): Resumes playback of a video stream that is paused. If the video is already playing, calling this method does 

nothing.

seek(): Seeks the keyframe closest to the specified location (an offset, in seconds, from the beginning of the stream). 

togglePause(): Pauses or resumes playback of a stream. 

Note: There is no stop() method. In order to stop a stream you must pause playback and seek to the beginning of the 

video stream.

Note: The play() method does not resume playback, it is used for loading video files.

The following example demonstrates how to control a video using several different buttons. To run the following 

example, create a new document and add four button instances to your workspace (pauseBtn, playBtn, stopBtn, and 

togglePauseBtn):

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/net/NetStream.html#pause()
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/net/NetStream.html#resume()
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/net/NetStream.html#seek()
http://www.adobe.com/go/learn_flashcs4_langref_en?flash/net/NetStream.html#togglePause()


521PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);  
   
 var ns:NetStream = new NetStream(nc);  
 ns.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);  
 ns.play("video.flv");  
 function asyncErrorHandler(event:AsyncErrorEvent):void  
 {  
 // ignore error  
 }  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);  
   
 pauseBtn.addEventListener(MouseEvent.CLICK, pauseHandler);  
 playBtn.addEventListener(MouseEvent.CLICK, playHandler);  
 stopBtn.addEventListener(MouseEvent.CLICK, stopHandler);  
 togglePauseBtn.addEventListener(MouseEvent.CLICK, togglePauseHandler);  
   
 function pauseHandler(event:MouseEvent):void  
 {  
 ns.pause();  
 }  
 function playHandler(event:MouseEvent):void  
 {  
 ns.resume();  
 }  
 function stopHandler(event:MouseEvent):void  
 {  
 // Pause the stream and move the playhead back to  
 // the beginning of the stream.  
 ns.pause();  
 ns.seek(0);  
 }  
 function togglePauseHandler(event:MouseEvent):void  
 {  
 ns.togglePause();  
 }

Clicking on the pauseBtn button instance while the video is playing causes the video file to pause. If the video is 

already paused, clicking this button has no effect. Clicking on the playBtn button instance resumes video playback if 

playback was previously paused, otherwise the button has no effect if the video was already playing.

Detecting the end of a video stream

In order to listen for the beginning and end of a video stream, you need to add an event listener to the NetStream 

instance to listen for the netStatus event. The following code demonstrates how to listen for the various codes 

throughout the video’s playback:

 ns.addEventListener(NetStatusEvent.NET_STATUS, statusHandler);  
 function statusHandler(event:NetStatusEvent):void  
 {  
 trace(event.info.code)  
 }

The previous code generates the following output:

Updated 11 February 2009



522PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 NetStream.Play.Start  
 NetStream.Buffer.Empty  
 NetStream.Buffer.Full  
 NetStream.Buffer.Empty  
 NetStream.Buffer.Full  
 NetStream.Buffer.Empty  
 NetStream.Buffer.Full  
 NetStream.Buffer.Flush  
 NetStream.Play.Stop  
 NetStream.Buffer.Empty  
 NetStream.Buffer.Flush

The two codes that you want to specifically listen for are “NetStream.Play.Start” and “NetStream.Play.Stop” which 

signal the beginning and end of the video’s playback. The following snippet uses a switch statement to filter these two 

codes and trace a message:

 function statusHandler(event:NetStatusEvent):void  
 {  
 switch (event.info.code)  
 {  
 case "NetStream.Play.Start":  
 trace("Start [" + ns.time.toFixed(3) + " seconds]");  
 break;  
 case "NetStream.Play.Stop":  
 trace("Stop [" + ns.time.toFixed(3) + " seconds]");  
 break;  
 }  
 }

By listening for the netStatus event (NetStatusEvent.NET_STATUS), you can build a video player which loads the 

next video in a playlist once the current video has finished playing.

Playing video in full-screen mode

Flash Player and AIR allow you to create a full-screen application for your video playback, and support scaling video 

to full screen.

For AIR content running in full-screen mode, the system screen saver and power-saving options are disabled during 

play until either the video input stops or the user exits full-screen mode.

For full details on using full-screen mode, see “Working with full-screen mode” on page 280.

Enabling full-screen mode for Flash Player in a browser

Before you can implement full-screen mode for Flash Player in a browser, enable it through the Publish template for 

your application. Templates that allow full screen include <object> and <embed> tags that contain an 

allowFullScreen parameter. The following example shows the allowFullScreen parameter in an <embed> tag.

Updated 11 February 2009



523PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"  
id="fullScreen" width="100%" height="100%"  
codebase="http://fpdownload.macromedia.com/get/flashplayer/current/swflash.cab">  
...  
<param name="allowFullScreen" value="true" />  
<embed src="fullScreen.swf" allowFullScreen="true" quality="high" bgcolor="#869ca7"  

width="100%" height="100%" name="fullScreen" align="middle"  
play="true"  
loop="false"  
quality="high"  
allowScriptAccess="sameDomain"  
type="application/x-shockwave-flash"  
pluginspage="http://www.adobe.com/go/getflashplayer">  

</embed>  
...  

</object>

In Flash, select File -> Publish Settings and in the Publish Settings dialog box, on the HTML tab, select the Flash Only 

- Allow Full Screen template. 

In Flex, ensure that the HTML template includes <object> and <embed> tags that support full screen.

Initiating full-screen mode

For Flash Player content running in a browser, you initiate full-screen mode for video in response to either a mouse 

click or a keypress. For example, you can initiate full-screen mode when the user clicks a button labeled Full Screen or 

selects a Full Screen command from a context menu. To respond to the user, add an event listener to the object on which 

the action occurs. The following code adds an event listener to a button that the user clicks to enter full-screen mode:

var fullScreenButton:Button = new Button();  
fullScreenButton.label = "Full Screen";  
addChild(fullScreenButton);  
fullScreenButton.addEventListener(MouseEvent.CLICK, fullScreenButtonHandler);  
  
function fullScreenButtonHandler(event:MouseEvent)  
{  

stage.displayState = StageDisplayState.FULL_SCREEN;  
  
}

The code initiates full-screen mode by setting the Stage.displayState property to 

StageDisplayState.FULL_SCREEN. This code scales the entire stage to full screen with the video scaling in 

proportion to the space it occupies on the stage. 

The fullScreenSourceRect property allows you to specify a particular area of the stage to scale to full screen. First, 

define the rectangle that you want to scale to full screen. Then assign it to the Stage.fullScreenSourceRect 

property. This version of the fullScreenButtonHandler() function adds two additional lines of code that scale just 

the video to full screen.

private function fullScreenButtonHandler(event:MouseEvent)  
{  

var screenRectangle:Rectangle = new Rectangle(video.x, video.y, video.width, video.height);  
stage.fullScreenSourceRect = screenRectangle;  
stage.displayState = StageDisplayState.FULL_SCREEN;  

}

Updated 11 February 2009



524PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Though this example invokes an event handler in response to a mouse click, the technique of going to full-screen mode 

is the same for both Flash Player and AIR. Define the rectangle that you want to scale and then set the 

Stage.displayState property. For more information, see the ActionScript 3.0 Language and Components 

Reference.

The complete example, which follows, adds code that creates the connection and the NetStream object for the video 

and begins to play it.

package  
{  

import flash.net.NetConnection;  
import flash.net.NetStream;  
import flash.media.Video;  
import flash.display.StageDisplayState;  
import fl.controls.Button;  
import flash.display.Sprite;  
import flash.events.MouseEvent;  
import flash.events.FullScreenEvent;  
import flash.geom.Rectangle;  
  
public class FullScreenVideoExample extends Sprite  
{   

var fullScreenButton:Button = new Button();  
var video:Video = new Video();  

  
public function FullScreenVideoExample()  
{  

var videoConnection:NetConnection = new NetConnection();  
videoConnection.connect(null);  
  
var videoStream:NetStream = new NetStream(videoConnection);  
videoStream.client = this;  

  
addChild(video);  
  
video.attachNetStream(videoStream);  
  
videoStream.play("http://www.helpexamples.com/flash/video/water.flv");  
  
fullScreenButton.x = 100;  

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en
http://www.adobe.com/go/learn_flashcs4_langref_en


525PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

fullScreenButton.y = 270;  
fullScreenButton.label = "Full Screen";  
addChild(fullScreenButton);  
fullScreenButton.addEventListener(MouseEvent.CLICK, fullScreenButtonHandler);  

}  
  

private function fullScreenButtonHandler(event:MouseEvent)  
{   

var screenRectangle:Rectangle = new Rectangle(video.x, video.y, video.width, 
video.height);  

stage.fullScreenSourceRect = screenRectangle;  
stage.displayState = StageDisplayState.FULL_SCREEN;   

}   
  
public function onMetaData(infoObject:Object):void  
{  

// stub for callback function  
}  

}  
}

The onMetaData() function is a callback function for handling video metadata, if any exists. A callback function is a 

function that the runtime calls in response to some type of occurrence or event. In this example, the 

onMetaData()function is a stub that satisfies the requirement to provide the function. For more information, see 

“Writing callback methods for metadata and cue points” on page 527

Leaving full-screen mode

A user can leave full-screen mode by entering one of the keyboard shortcuts, such as the Escape key. You can end full-

screen mode in ActionScript by setting the Stage.diplayState property to StageDisplayState.NORMAL. The code 

in the following example ends full-screen mode when the NetStream.Play.Stop netStatus event occurs.

videoStream.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);  
  
private function netStatusHandler(event:NetStatusEvent)  
{  

if(event.info.code == "NetStream.Play.Stop")  
stage.displayState = StageDisplayState.NORMAL;  

}

Full-screen hardware acceleration

When you set the Stage.fullScreenSourceRect property to scale a rectangular segment of the stage to full-screen 

mode, Flash Player or AIR uses hardware acceleration, if it's available and enabled. The runtime uses the video adapter 

on the computer to speed up scaling of the video, or a portion of the stage, to full-screen size.

For more information on hardware acceleration in full-screen mode, see “Working with full-screen mode” on 

page 280.

Updated 11 February 2009



526PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Streaming video files

To stream files from Flash Media Server, you can use the NetConnection and NetStream classes to connect to a remote 

server instance and play a specified stream. To specify a Real-Time Messaging Protocol (RTMP) server, you pass the 

desired RTMP URL, such as “rtmp://localhost/appName/appInstance”, to the NetConnection.connect() method 

instead of passing null. To play a specific live or recorded stream from the specified Flash Media Server, you pass an 

identifying name for live data published by NetStream.publish(), or a recorded filename for playback to the 

NetStream.play() method. For more information, see the Flash Media Server documentation.

Understanding cue points

You can embed cue points in an Adobe F4V or FLV video file during encoding. Historically, cue points were 

embedded in movies to give the projectionist a visual signal that indicated the reel of film was nearing the end. In 

Adobe F4V and FLV video formats, a cue point allows you to trigger one or more other actions in your application at 

the time that it occurs in the video stream.

You can use several different kinds of cue points with Flash video. You can use ActionScript to interact with cue points 

that you embed in a video file when you create it.

• Navigation cue points: You embed navigation cue points in the video stream and metadata packet when you encode 

the video file. You use navigation cue points to let users seek to a specified part of a file.

• Event cue points: You embed event cue points in the video stream and metadata packet when you encode the video 

file. You can write code to handle the events that are triggered at specified points during video playback.

• ActionScript cue points: ActionScript cue points are available only to the Flash FLVPlayback component. 

ActionScript cue points are external cue points that you create and access with ActionScript code. You can write 

code to trigger these cue points in relation to the video's playback. These cue points are less accurate than embedded 

cue points (up to a tenth of a second), because the video player tracks them separately. If you plan to create an 

application in which you want users to navigate to a cue point, you should create and embed cue points when you 

encode the file instead of using ActionScript cue points. You should embed the cue points in the FLV file, because 

they are more accurate.

Navigation cue points create a keyframe at the specified cue point location, so you can use code to move a video player's 

playhead to that location. You can set particular points in a video file where you might want users to seek. For example, 

your video might have multiple chapters or segments, and you can control the video by embedding navigation cue 

points in the video file.

 For more information on encoding Adobe video files with cue points, see “Embed cue points” in Using Flash.

You can access cue point parameters by writing ActionScript. Cue point parameters are a part of the event object 

received by the callback handler.

To trigger certain actions in your code when an FLV file reaches a specific cue point, use the NetStream.onCuePoint 

event handler. 

To synchronize an action for a cue point in an F4V video file, you must retrieve the cue point data from either the 

onMetaData() or the onXMPData() callback functions and trigger the cue point using the Timer class in ActionScript 

3.0. For more information on F4V cue points, see “Using onXMPData()” on page 537.

For more information on handling cue points and metadata, see “Writing callback methods for metadata and cue 

points” on page 527.

Updated 11 February 2009



527PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Writing callback methods for metadata and cue points

You can trigger actions in your application when specific metadata is received by the player or when specific cue points 

are reached. When these events occur, you must use specific callback methods as event handlers. The NetStream class 

specifies the following metadata events that can occur during playback: onCuePoint (FLV files only), onImageData, 

onMetaData, onPlayStatus, onTextData, and onXMPData.

You must write callback methods for these handlers, or Flash Player may throw errors. For example, the following code 

plays an FLV file named video.flv in the same folder where the SWF file resides:

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);  
   
 var ns:NetStream = new NetStream(nc);  
 ns.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);  
 ns.play("video.flv");  
 function asyncErrorHandler(event:AsyncErrorEvent):void  
 {  
 trace(event.text);  
 }  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);

The previous code loads a local video file named video.flv and listens for the asyncError 

(AsyncErrorEvent.ASYNC_ERROR) to be dispatched. This event is dispatched when an exception is thrown from 

native asynchronous code. In this case, it is dispatched when the video file contains metadata or cue point information, 

and the appropriate listeners have not been defined. The previous code handles the asyncError event and ignores the 

error if you are not interested in the video file’s metadata or cue point information. If you had an FLV with metadata 

and several cue points, the trace() function would display the following error messages:

 Error #2095: flash.net.NetStream was unable to invoke callback onMetaData.  
 Error #2095: flash.net.NetStream was unable to invoke callback onCuePoint.  
 Error #2095: flash.net.NetStream was unable to invoke callback onCuePoint.  
 Error #2095: flash.net.NetStream was unable to invoke callback onCuePoint.

The errors occur because the NetStream object was unable to find an onMetaData or onCuePoint callback method. 

There are several ways to define these callback methods within your applications:

Set the NetStream object’s client property to an Object

By setting the client property to either an Object or a subclass of NetStream, you can reroute the onMetaData and 

onCuePoint callback methods or ignore them completely. The following example demonstrates how you can use an 

empty Object to ignore the callback methods without listening for the asyncError event:

Updated 11 February 2009



528PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);  
   
 var customClient:Object = new Object();  
   
 var ns:NetStream = new NetStream(nc);  
 ns.client = customClient;  
 ns.play("video.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);

If you wanted to listen for either the onMetaData or onCuePoint callback methods, you would need to define methods 

to handle those callback methods, as shown in the following snippet:

 var customClient:Object = new Object();  
 customClient.onMetaData = metaDataHandler;  
 function metaDataHandler(infoObject:Object):void  
 {  
 trace("metadata");  
 }

The previous code listens for the onMetaData callback method and calls the metaDataHandler() method, which 

traces a string. If Flash Player encountered a cue point, no errors would be generated even though no onCuePoint 

callback method is defined.

Create a custom class and define methods to handle the callback methods

The following code sets the NetStream object’s client property to a custom class, CustomClient, which defines 

handlers for the callback methods:

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);  
   
 var ns:NetStream = new NetStream(nc);  
 ns.client = new CustomClient();  
 ns.play("video.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);

The CustomClient class is as follows:

 package  
 {  
 public class CustomClient  
 {  
 public function onMetaData(infoObject:Object):void  
 {  
 trace("metadata");  
 }  
 }  
 }

Updated 11 February 2009



529PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

The CustomClient class defines a handler for the onMetaData callback handler. If a cue point was encountered and 

the onCuePoint callback handler was called, an asyncError event (AsyncErrorEvent.ASYNC_ERROR) would be 

dispatched saying “flash.net.NetStream was unable to invoke callback onCuePoint.” To prevent this error, you would 

either need to define an onCuePoint callback method in your CustomClient class, or define an event handler for the 

asyncError event.

Extend the NetStream class and add methods to handle the callback methods

The following code creates an instance of the CustomNetStream class, which is defined in a later code listing:

 var ns:CustomNetStream = new CustomNetStream();  
 ns.play("video.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);

The following code listing defines the CustomNetStream class that extends the NetStream class, handles the creation 

of the necessary NetConnection object, and handles the onMetaData and onCuePoint callback handler methods:

 package  
 {  
 import flash.net.NetConnection;  
 import flash.net.NetStream;  
 public class CustomNetStream extends NetStream  
 {  
 private var nc:NetConnection;  
 public function CustomNetStream()  
 {  
 nc = new NetConnection();  
 nc.connect(null);  
 super(nc);  
 }  
 public function onMetaData(infoObject:Object):void  
 {  
 trace("metadata");  
 }  
 public function onCuePoint(infoObject:Object):void  
 {  
 trace("cue point");  
 }  
 }  
 }

If you want to rename the onMetaData() and onCuePoint() methods in the CustomNetStream class, you could use 

the following code:

Updated 11 February 2009



530PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 package  
 {  
 import flash.net.NetConnection;  
 import flash.net.NetStream;  
 public class CustomNetStream extends NetStream  
 {  
 private var nc:NetConnection;  
 public var onMetaData:Function;  
 public var onCuePoint:Function;  
 public function CustomNetStream()  
 {  
 onMetaData = metaDataHandler;  
 onCuePoint = cuePointHandler;  
 nc = new NetConnection();  
 nc.connect(null);  
 super(nc);  
 }  
 private function metaDataHandler(infoObject:Object):void  
 {  
 trace("metadata");  
 }  
 private function cuePointHandler(infoObject:Object):void  
 {  
 trace("cue point");  
 }  
 }  
 }

Extend the NetStream class and make it dynamic

You can extend the NetStream class and make the subclass dynamic so that onCuePoint and onMetaData callback 

handlers can be added dynamically. This is demonstrated in the following listing:

 var ns:DynamicCustomNetStream = new DynamicCustomNetStream();  
 ns.play("video.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);

The DynamicCustomNetStream class is as follows:

 package  
 {  
 import flash.net.NetConnection;  
 import flash.net.NetStream;  
 public dynamic class DynamicCustomNetStream extends NetStream  
 {  
 private var nc:NetConnection;  
 public function DynamicCustomNetStream()  
 {  
 nc = new NetConnection();  
 nc.connect(null);  
 super(nc);  
 }  
 }  
 }

Updated 11 February 2009



531PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Even with no handlers for the onMetaData and onCuePoint callback handlers, no errors are thrown since the 

DynamicCustomNetStream class is dynamic. If you want to define methods for the onMetaData and onCuePoint 

callback handlers, you could use the following code:

 var ns:DynamicCustomNetStream = new DynamicCustomNetStream();  
 ns.onMetaData = metaDataHandler;  
 ns.onCuePoint = cuePointHandler;  
 ns.play("http://www.helpexamples.com/flash/video/cuepoints.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);  
   
 function metaDataHandler(infoObject:Object):void  
 {  
 trace("metadata");  
 }  
 function cuePointHandler(infoObject:Object):void  
 {  
 trace("cue point");  
 }

Set the NetStream object’s client property to this

By setting the client property to this, the application looks in the current scope for onMetaData() and 

onCuePoint() methods. You can see this in the following example:

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);  
   
 var ns:NetStream = new NetStream(nc);  
 ns.client = this;  
 ns.play("video.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);

If the onMetaData or onCuePoint callback handlers are called and no methods exist to handle the callback, no errors 

are generated. To handle these callback handlers, create an onMetaData() and onCuePoint() method in your code, 

as seen in the following snippet:

 function onMetaData(infoObject:Object):void  
 {  
 trace("metadata");  
 }  
 function onCuePoint(infoObject:Object):void  
 {  
 trace("cue point");  
 }

Using cue points and metadata

Use the NetStream callback methods to capture and process cue point and metadata events as the video plays.

Updated 11 February 2009



532PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Using cue points

The following table describes the callback methods that you can use to capture F4V and FLV cue points in Flash Player 

and AIR.

The following example uses a simple for..in loop to iterate over each of the properties in the infoObject parameter 

that the onCuePoint()function receives. It calls the trace() function to display a message when it receives cue point data:

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);  
   
 var ns:NetStream = new NetStream(nc);  
 ns.client = this;  
 ns.play("video.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);  
   
 function onCuePoint(infoObject:Object):void  
 {  
 var key:String;  
 for (key in infoObject)  
 {  
 trace(key + ": " + infoObject[key]);  
 }  
 }

The following output appears:

 parameters:   
 name: point1  
 time: 0.418  
 type: navigation

This code uses one of several techniques to set the object on which the callback method runs. You can use other 

techniques; for more information, see “Writing callback methods for metadata and cue points” on page 527.

Using video metadata

You can use the OnMetaData() and OnXMPData() functions to access the metadata information in your video file, 

including cue points. 

Using OnMetaData()

Metadata includes information about your video file, such as duration, width, height, and frame rate. The metadata 

information that is added to your video file depends on the software you use to encode the video file.

Runtime F4V FLV

Flash Player 9/ AIR1.0 OnCuePoint

OnMetaData

Flash Player 10 OnCuePoint

OnMetaData OnMetaData

OnXMPData OnXMPData

Updated 11 February 2009



533PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 var nc:NetConnection = new NetConnection();  
 nc.connect(null);  
   
 var ns:NetStream = new NetStream(nc);  
 ns.client = this;  
 ns.play("video.flv");  
   
 var vid:Video = new Video();  
 vid.attachNetStream(ns);  
 addChild(vid);  
   
 function onMetaData(infoObject:Object):void  
 {  
 var key:String;  
 for (key in infoObject)  
 {  
 trace(key + ": " + infoObject[key]);  
 }  
 }

The previous code generates output like the following:

 width: 320  
 audiodelay: 0.038  
 canSeekToEnd: true  
 height: 213  
 cuePoints: ,,  
 audiodatarate: 96  
 duration: 16.334  
 videodatarate: 400  
 framerate: 15  
 videocodecid: 4  
 audiocodecid: 2

If your video does not have audio, the audio-related metadata information (such as audiodatarate) returns 

undefined because no audio information is added to the metadata during encoding.

In the previous code, the cue point information was not displaying. To display the cue point metadata, you can use the 

following function which recursively displays the items in an Object:

Updated 11 February 2009



534PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 function traceObject(obj:Object, indent:uint = 0):void  
 {  
 var indentString:String = "";  
 var i:uint;  
 var prop:String;  
 var val:*;  
 for (i = 0; i < indent; i++)  
 {  
 indentString += "\t";  
 }  
 for (prop in obj)  
 {  
 val = obj[prop];  
 if (typeof(val) == "object")  
 {  
 trace(indentString + " " + prop + ": [Object]");  
 traceObject(val, indent + 1);  
 }  
 else  
 {  
 trace(indentString + " " + prop + ": " + val);  
 }  
 }  
 }

Using the previous code snippet to trace the infoObject parameter in the onMetaData() method creates the 

following output:

 width: 320  
 audiodatarate: 96  
 audiocodecid: 2  
 videocodecid: 4  
 videodatarate: 400  
 canSeekToEnd: true  
 duration: 16.334  
 audiodelay: 0.038  
 height: 213  
 framerate: 15  
 cuePoints: [Object]  
 0: [Object]  
 parameters: [Object]  
 lights: beginning  
 name: point1  
 time: 0.418  
 type: navigation  
 1: [Object]  
 parameters: [Object]  
 lights: middle  
 name: point2  
 time: 7.748  
 type: navigation  
 2: [Object]  
 parameters: [Object]  
 lights: end  
 name: point3  
 time: 16.02  
 type: navigation

Updated 11 February 2009



535PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

The following example displays the metadata for an MP4 video. It assumes that there is a TextArea object called 

metaDataOut, to which it writes the metadata.

package  
{  

import flash.net.NetConnection;  
import flash.net.NetStream;  
import flash.events.NetStatusEvent;  
import flash.media.Video;  
import flash.display.StageDisplayState;  
import flash.display.Loader;  
import flash.display.Sprite;  
import flash.events.MouseEvent;  
  
public class onMetaDataExample extends Sprite  
{   

var video:Video = new Video();  
  
public function onMetaDataExample():void  
{  

var videoConnection:NetConnection = new NetConnection();  
videoConnection.connect(null);  
  
var videoStream:NetStream = new NetStream(videoConnection);  
videoStream.client = this;  
  
addChild(video);  
video.x = 185;  
video.y = 5;  

  
video.attachNetStream(videoStream);  
  
videoStream.play("video.mp4");  

  
videoStream.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);  

}  
  

public function onMetaData(infoObject:Object):void  
{  

for(var propName:String in infoObject)  
{  

metaDataOut.appendText(propName + "=" + infoObject[propName] + "\n");  
}  

}  
  
private function netStatusHandler(event:NetStatusEvent):void  
{  

if(event.info.code == "NetStream.Play.Stop")  
stage.displayState = StageDisplayState.NORMAL;  

}  
}  

}

The onMetaData() function produced the following output for this video:

Updated 11 February 2009



536PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

moovposition=731965  
height=352  
avclevel=21  
videocodecid=avc1  
duration=2.36  
width=704  
videoframerate=25  
avcprofile=88  
trackinfo=[object Object]

Using the information object

The following table shows the possible values for video metadata that are passed to the onMetaData() callback 

function in the Object that they receive:

Parameter Description

aacaot AAC audio object type; 0, 1, or 2 are supported.

avclevel AVC IDC level number such as 10, 11, 20, 21, and so on.

avcprofile AVC profile number such as 55, 77, 100, and so on.

audiocodecid A string that indicates the audio codec (code/decode technique) that was used - for example “.Mp3” or “mp4a”

audiodatarate A number that indicates the rate at which audio was encoded, in kilobytes per second.

audiodelay A number that indicates what time in the FLV file "time 0" of the original FLV file exists. The video content 

needs to be delayed by a small amount to properly synchronize the audio.

canSeekToEnd A Boolean value that is true if the FLV file is encoded with a keyframe on the last frame, which allows seeking 

to the end of a progressive -download video file. It is false if the FLV file is not encoded with a keyframe on 

the last frame.

cuePoints An array of objects, one for each cue point embedded in the FLV file. Value is undefined if the FLV file does not 

contain any cue points. Each object has the following properties:

• type: a string that specifies the type of cue point as either "navigation" or "event".

• name: a string that is the name of the cue point.

• time: a number that is the time of the cue point in seconds with a precision of three decimal places 

(milliseconds).

• parameters: an optional object that has name-value pairs that are designated by the user when creating 

the cue points. 

duration A number that specifies the duration of the video file, in seconds.

framerate A number that is the frame rate of the FLV file.

height A number that is the height of the FLV file, in pixels.

seekpoints An array that lists the available keyframes as timestamps in milliseconds. Optional.

tags An array of key-value pairs that represent the information in the “ilst” atom, which is the equivalent of ID3 tags 

for MP4 files. iTunes uses these tags. Can be used to display artwork, if available.

trackinfo Object that provides information on all the tracks in the MP4 file, including their sample description ID.

videocodecid A string that is the codec version that was used to encode the video. - for example, “avc1” or “VP6F”

Updated 11 February 2009



537PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

The following table shows the possible values for the videocodecid parameter:

The following table shows the possible values for the audiocodecid parameter:

Using onXMPData()

The onXMPData() callback function receives information specific to Adobe Extensible Metadata Platform (XMP) that 

is embedded in the Adobe F4V or FLV video file. The XMP metadata includes cue points as well as other video 

metadata. XMP metadata support is introduced with Flash Player 10 and Adobe AIR 1.5 and supported by subsequent 

versions of Flash Player and AIR.

The following example processes cue point data in the XMP metadata:

videodatarate A number that is the video data rate of the FLV file.

videoframerate Framerate of the MP4 video.

width A number that is the width of the FLV file, in pixels.

videocodecid Codec name

2 Sorenson H.263

3 Screen video (SWF version 7 and later only)

4 VP6 (SWF version 8 and later only)

5 VP6 video with alpha channel (SWF version 8 and later only)

audiocodecid Codec Name

0 uncompressed

1 ADPCM

2 Mp3

4 Nellymoser @ 16 kHz mono

5 Nellymoser, 8kHz mono

6 Nellymoser

10 AAC

11 Speex

Parameter Description

Updated 11 February 2009



538PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

package  
{  

import flash.display.*;  
import flash.net.*;  
import flash.events.NetStatusEvent;  
import flash.media.Video;  
  
public class onXMPDataExample extends Sprite  
{  

public function onXMPDataExample():void  
{  

var videoConnection:NetConnection = new NetConnection();  
videoConnection.connect(null);  
  
var videoStream:NetStream = new NetStream(videoConnection);  
videoStream.client = this;  
var video:Video = new Video();  
  
addChild(video);  
  
video.attachNetStream(videoStream);  
  
videoStream.play("video.f4v");  

}  
  
public function onMetaData(info:Object):void {  

trace("onMetaData fired");  
}  
  
public function onXMPData(infoObject:Object):void  
{  

trace("onXMPData Fired\n");  
 //trace("raw XMP =\n");  
 //trace(infoObject.data);  

var cuePoints:Array = new Array();  
var cuePoint:Object;  
var strFrameRate:String;  
var nTracksFrameRate:Number;  
var strTracks:String = "";  
var onXMPXML = new XML(infoObject.data);  
// Set up namespaces to make referencing easier  
var xmpDM:Namespace = new Namespace("http://ns.adobe.com/xmp/1.0/DynamicMedia/");  
var rdf:Namespace = new Namespace("http://www.w3.org/1999/02/22-rdf-syntax-ns#");  
for each (var it:XML in onXMPXML..xmpDM::Tracks)  
{  

Updated 11 February 2009



539PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 var strTrackName:String = 
it.rdf::Bag.rdf::li.rdf::Description.@xmpDM::trackName;  

 var strFrameRateXML:String = 
it.rdf::Bag.rdf::li.rdf::Description.@xmpDM::frameRate;  

 strFrameRate = strFrameRateXML.substr(1,strFrameRateXML.length);  
  
 nTracksFrameRate = Number(strFrameRate);   
  
 strTracks += it;  

}  
var onXMPTracksXML:XML = new XML(strTracks);  
var strCuepoints:String = "";  
for each (var item:XML in onXMPTracksXML..xmpDM::markers)  
{  

strCuepoints += item;  
}  
trace(strCuepoints);  

}  
}  

}

For a short video file called startrekintro.f4v, this example produces the following trace lines. The lines show the cue 

point data for navigation and event cue points in the XMP meta data:

Updated 11 February 2009



540PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

onMetaData fired  
onXMPData Fired  
  
<xmpDM:markers xmlns:xmp="http://ns.adobe.com/xap/1.0/" 
xmlns:xmpDM="http://ns.adobe.com/xmp/1.0/DynamicMedia/" 
xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#" 
xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" 
xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" 
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#" xmlns:x="adobe:ns:meta/">  
  <rdf:Seq>  
    <rdf:li>  
      <rdf:Description xmpDM:startTime="7695905817600" xmpDM:name="Title1" 
xmpDM:type="FLVCuePoint" xmpDM:cuePointType="Navigation">  
        <xmpDM:cuePointParams>  
          <rdf:Seq>  
            <rdf:li xmpDM:key="Title" xmpDM:value="Star Trek"/>  
            <rdf:li xmpDM:key="Color" xmpDM:value="Blue"/>  
          </rdf:Seq>  
        </xmpDM:cuePointParams>  
      </rdf:Description>  
    </rdf:li>  
    <rdf:li>  
      <rdf:Description xmpDM:startTime="10289459980800" xmpDM:name="Title2" 
xmpDM:type="FLVCuePoint" xmpDM:cuePointType="Event">  
        <xmpDM:cuePointParams>  
          <rdf:Seq>  
            <rdf:li xmpDM:key="William Shatner" xmpDM:value="First Star"/>  
            <rdf:li xmpDM:key="Color" xmpDM:value="Light Blue"/>  
          </rdf:Seq>  
        </xmpDM:cuePointParams>  
      </rdf:Description>  
    </rdf:li>  
  </rdf:Seq>  
</xmpDM:markers>  
onMetaData fired

Note:  In XMP data, time is stored as DVA Ticks rather than seconds. To compute the cue point time, divide the start 

time by the framerate. For example, the start time of 7695905817600 divided by a framerate of 254016000000 equals 

30:30.

To see the complete raw XMP metadata, which includes the framerate, remove the comment identifiers (//’s) 

preceding the second and third trace() statements at the beginning of the onXMPData() function.

For more information on XMP, see:

• http://partners.adobe.com/public/developer/xmp/topic.html

• http://www.adobe.com/devnet/xmp/

Using image metadata

The onImageData event sends image data as a byte array through an AMF0 data channel. The data can be in JPEG, 

PNG, or GIF formats. Define an onImageData() callback method to process this information, in the same way that 

you would define callback methods for onCuePoint and onMetaData. The following example accesses and displays 

image data using an onImageData() callback method:

Updated 11 February 2009

http://partners.adobe.com/public/developer/xmp/topic.html
http://www.adobe.com/devnet/xmp/


541PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

public function onImageData(imageData:Object):void  
{  

// display track number  
trace(imageData.trackid);  
var loader:Loader = new Loader();  
//imageData.data is a ByteArray object  
loader.loadBytes(imageData.data);  
addChild(loader);  

} 

Using text metadata

The onTextData event sends text data through an AMF0 data channel. The text data is in UTF-8 format and contains 

additional information about formatting, based on the 3GP timed-text specification. This specification defines a 

standardized subtitle format. Define an onTextData() callback method to process this information, in the same way 

that you would define callback methods for onCuePoint or onMetaData. In the following example, the onTextData() 

method displays the track ID number and corresponding track text.

public function onTextData(textData:Object):void  
{  

// display the track number  
trace(textData.trackid);  
// displays the text, which can be a null string, indicating old text  
// that should be erased  
trace(textData.text);  

}

Capturing camera input

In addition to external video files, a camera attached to a user’s computer can serve as a source of video data that you 

can display and manipulate using ActionScript. The Camera class is the mechanism built into ActionScript for 

working with a computer camera.

Understanding the Camera class

The Camera object allows you to connect to the user’s local camera and broadcast the video either locally (back to the 

user) or remotely to a server (such as Flash Media Server).

Using the Camera class, you can access the following kinds of information about the user’s camera:

• Which cameras installed on the user’s computer are available to Flash Player

• Whether a camera is installed

• Whether Flash Player is allowed or denied access to the user’s camera

• Which camera is currently active

• The width and height of the video being captured

The Camera class includes several useful methods and properties for working with camera objects. For example, the 

static Camera.names property contains an array of camera names currently installed on the user’s computer. You can 

also use the name property to display the name of the currently active camera.

Updated 11 February 2009



542PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Displaying camera content on screen

Connecting to a camera can require less code than using the NetConnection and NetStream classes to load a video. 

The camera class can also quickly become tricky because with Flash Player, you need a user’s permission to connect to 

their camera before you can access it.

The following code demonstrates how you can use the Camera class to connect to a user’s local camera:

 var cam:Camera = Camera.getCamera();  
 var vid:Video = new Video();  
 vid.attachCamera(cam);  
 addChild(vid);

Note: The Camera class does not have a constructor method. In order to create a new Camera instance you use the static 

Camera.getCamera() method.

Designing your camera application

When writing an application that connects to a user’s camera, you need to account for the following in your code:

• Check if the user has a camera currently installed.

• For Flash Player only, check if the user has explicitly allowed access to the camera. For security reasons the player 

displays the Flash Player Settings dialog which lets the user allow or deny access to their camera. This prevents Flash 

Player from connecting to a user’s camera and broadcasting a video stream without their permission. If a user clicks 

allow, your application can connect to the user’s camera. If the user clicks deny, your application will be unable to 

access the user’s camera. Your applications should always handle both cases gracefully.

Connecting to a user’s camera

The first step when connecting to a user’s camera is to create a new camera instance by creating a variable of type 

Camera and initializing it to the return value of the static Camera.getCamera() method.

The next step is to create a new video object and attach the Camera object to it.

The third step is to add the video object to the display list. You need to perform steps 2 and 3 because the Camera class 

does not extend the DisplayObject class so it cannot be added directly to the display list. To display the camera’s 

captured video, you create a new video object and call the attachCamera() method.

The following code shows these three steps:

 var cam:Camera = Camera.getCamera();  
 var vid:Video = new Video();  
 vid.attachCamera(cam);  
 addChild(vid);

Note that if a user does not have a camera installed, the application does not display anything.

In real life, you need to perform additional steps for your application. See “Verifying that cameras are installed” on 

page 543 and “Detecting permissions for camera access” on page 543 for further information.

Updated 11 February 2009



543PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Verifying that cameras are installed

Before you attempt to use any methods or properties on a camera instance, you’ll want to verify that the user has a 

camera installed. There are two ways to check whether the user has a camera installed:

• Check the static Camera.names property which contains an array of camera names which are available. Typically 

this array will have one or fewer strings, as most users will not likely have more than one camera installed at a time. 

The following code demonstrates how you could check the Camera.names property to see if the user has any 

available cameras:

 if (Camera.names.length > 0)  
 {  
 trace("User has at least one camera installed.");  
 var cam:Camera = Camera.getCamera(); // Get default camera.  
 }  
 else  
 {  
 trace("User has no cameras installed.");  
 }

• Check the return value of the static Camera.getCamera() method. If no cameras are available or installed, this 

method returns null, otherwise it returns a reference to a Camera object. The following code demonstrates how 

you could check the Camera.getCamera() method to see if the user has any available cameras:

 var cam:Camera = Camera.getCamera();  
 if (cam == null)  
 {  
 trace("User has no cameras installed.");  
 }  
 else  
 {  
 trace("User has at least 1 camera installed.");  
 }

Since the Camera class doesn’t extend the DisplayObject class, it cannot be directly added to the display list using the 

addChild() method. In order to display the camera’s captured video, you need to create a new Video object and call 

the attachCamera() method on the Video instance.

This snippet shows how you can attach the camera if one exists; if not, the application simply displays nothing:

 var cam:Camera = Camera.getCamera();  
 if (cam != null)  
 {  
 var vid:Video = new Video();  
 vid.attachCamera(cam);  
 addChild(vid);  
 }

Detecting permissions for camera access

In the AIR application sandbox, the application can access any camera without the user's permission.

Before Flash Player can display a camera’s output, the user must explicitly allow Flash Player to access the camera. 

When the attachCamera() method gets called Flash Player displays the Flash Player Settings dialog box which 

prompts the user to either allow or deny Flash Player access to the camera and microphone. If the user clicks the Allow 

button, Flash Player displays the camera’s output in the Video instance on the Stage. If the user clicks the Deny button, 

Flash Player is unable to connect to the camera and the Video object does not display anything.

Updated 11 February 2009



544PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

If you want to detect whether the user allowed Flash Player access to the camera, you can listen for the camera’s status 

event (StatusEvent.STATUS), as seen in the following code:

 var cam:Camera = Camera.getCamera();  
 if (cam != null)  
 {  
 cam.addEventListener(StatusEvent.STATUS, statusHandler);  
 var vid:Video = new Video();  
 vid.attachCamera(cam);  
 addChild(vid);  
 }  
 function statusHandler(event:StatusEvent):void  
 {  
 // This event gets dispatched when the user clicks the "Allow" or "Deny"  
 // button in the Flash Player Settings dialog box.  
 trace(event.code); // "Camera.Muted" or "Camera.Unmuted"  
 }

The statusHandler() function gets called as soon as the user clicks either Allow or Deny. You can detect which 

button the user clicked, using one of two methods:

• The event parameter of the statusHandler() function contains a code property which contains the string 

“Camera.Muted” or “Camera.Unmuted”. If the value is “Camera.Muted” the user clicked the Deny button and 

Flash Player is unable to access the camera. You can see an example of this in the following snippet:

 function statusHandler(event:StatusEvent):void  
 {  
 switch (event.code)  
 {  
 case "Camera.Muted":  
 trace("User clicked Deny.");  
 break;  
 case "Camera.Unmuted":  
 trace("User clicked Accept.");  
 break;  
 }  
 }

• The Camera class contains a read-only property named muted which specifies whether the user has denied access 

to the camera (true) or allowed access (false) in the Flash Player Privacy panel. You can see an example of this in 

the following snippet:

 function statusHandler(event:StatusEvent):void  
 {  
 if (cam.muted)  
 {  
 trace("User clicked Deny.");  
 }  
 else  
 {  
 trace("User clicked Accept.");  
 }  
 }

By checking for the status event to be dispatched, you can write code that handles the user accepting or denying access 

to the camera and clean up appropriately. For example, if the user clicks the Deny button, you could display a message 

to the user stating that they need to click Allow if they want to participate in a video chat, or you could instead make 

sure the Video object on the display list is deleted to free up system resources.

Updated 11 February 2009



545PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Maximizing video quality

By default, new instances of the Video class are 320 pixels wide by 240 pixels high. In order to maximize video quality 

you should always ensure that your video object matches the same dimensions as the video being returned by the 

camera object. You can get the camera object’s width and height by using the Camera class’s width and height 

properties, you can then set the video object’s width and height properties to match the camera objects dimensions, 

or you can pass the camera’s width and height to the Video class’s constructor method, as seen in the following snippet:

 var cam:Camera = Camera.getCamera();  
 if (cam != null)  
 {  
 var vid:Video = new Video(cam.width, cam.height);  
 vid.attachCamera(cam);  
 addChild(vid);  
 }

Since the getCamera() method returns a reference to a camera object (or null if no cameras are available) you can 

access the camera’s methods and properties even if the user denies access to their camera. This allows you to set the 

size of the video instance using the camera’s native height and width.

 var vid:Video;  
 var cam:Camera = Camera.getCamera();  
   
 if (cam == null)  
 {  
 trace("Unable to locate available cameras.");  
 }  
 else  
 {  
 trace("Found camera: " + cam.name);  
 cam.addEventListener(StatusEvent.STATUS, statusHandler);  
 vid = new Video();  
 vid.attachCamera(cam);  
 }  
 function statusHandler(event:StatusEvent):void  
 {  
 if (cam.muted)  
 {  
 trace("Unable to connect to active camera.");  
 }  
 else  
 {  
 // Resize Video object to match camera settings and   
 // add the video to the display list.  
 vid.width = cam.width;  
 vid.height = cam.height;  
 addChild(vid);  
 }  
 // Remove the status event listener.  
 cam.removeEventListener(StatusEvent.STATUS, statusHandler);  
 }

For information about full-screen mode, see the full-screen mode section under “Setting Stage properties” on 

page 279.

Updated 11 February 2009



546PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Monitoring playback conditions

The camera class contains several properties which allow you to monitor the Camera object’s current status. For 

example, the following code displays several of the camera’s properties using a Timer object and a text field instance 

on the display list:

 var vid:Video;  
 var cam:Camera = Camera.getCamera();  
 var tf:TextField = new TextField();  
 tf.x = 300;  
 tf.autoSize = TextFieldAutoSize.LEFT;  
 addChild(tf);  
   
 if (cam != null)  
 {  
 cam.addEventListener(StatusEvent.STATUS, statusHandler);  
 vid = new Video();  
 vid.attachCamera(cam);  
 }  
 function statusHandler(event:StatusEvent):void  
 {  
 if (!cam.muted)  
 {  
 vid.width = cam.width;  
 vid.height = cam.height;  
 addChild(vid);  
 t.start();  
 }  
 cam.removeEventListener(StatusEvent.STATUS, statusHandler);  
 }  
   
 var t:Timer = new Timer(100);  
 t.addEventListener(TimerEvent.TIMER, timerHandler);  
 function timerHandler(event:TimerEvent):void  
 {  
 tf.text = "";  
 tf.appendText("activityLevel: " + cam.activityLevel + "\n");  
 tf.appendText("bandwidth: " + cam.bandwidth + "\n");  
 tf.appendText("currentFPS: " + cam.currentFPS + "\n");  
 tf.appendText("fps: " + cam.fps + "\n");  
 tf.appendText("keyFrameInterval: " + cam.keyFrameInterval + "\n");  
 tf.appendText("loopback: " + cam.loopback + "\n");  
 tf.appendText("motionLevel: " + cam.motionLevel + "\n");  
 tf.appendText("motionTimeout: " + cam.motionTimeout + "\n");  
 tf.appendText("quality: " + cam.quality + "\n");  
 }

Every 1/10 of a second (100 milliseconds) the Timer object’s timer event is dispatched and the timerHandler() 

function updates the text field on the display list.

Updated 11 February 2009



547PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Sending video to a server

If you want to build more complex applications involving video or camera objects, Flash Media Server offers a 

combination of streaming media capabilities and a development environment for creating and delivering media 

applications to a wide audience. This combination enables developers to create applications such as Video on Demand, 

live web-event broadcasts, and Mp3 streaming as well as video blogging, video messaging, and multimedia chat 

environments. For more information, see the Flash Media Server documentation online at 

www.adobe.com/go/learn_fms_docs_en.

Advanced topics for FLV files

The following topics address some special issues for working with FLV files.

About configuring FLV files for hosting on a server

When you work with FLV files, you might have to configure your server to work with the FLV file format. 

Multipurpose Internet Mail Extensions (MIME) is a standardized data specification that lets you send non-ASCII files 

over Internet connections. Web browsers and e-mail clients are configured to interpret numerous MIME types so that 

they can send and receive video, audio, graphics, and formatted text. To load FLV files from a web server, you might 

need to register the file extension and MIME type with your web server, so you should check your web server 

documentation. The MIME type for FLV files is video/x-flv. The full information for the FLV file type is as follows:

• Mime Type: video/x-flv

• File extension: .flv

• Required parameters: none

• Optional parameters: none

• Encoding considerations: FLV files are binary files; some applications might require the application/octet-stream 

subtype to be set

• Security issues: none

• Published specification: www.adobe.com/go/video_file_format

Microsoft changed the way streaming media is handled in Microsoft Internet Information Services (IIS) 6.0 web server 

from earlier versions. Earlier versions of IIS do not require any modification to stream Flash Video. In IIS 6.0, the 

default web server that comes with Windows 2003, the server requires a MIME type to recognize that FLV files are 

streaming media.

When SWF files that stream external FLV files are placed on Microsoft Windows Server® 2003 and are viewed in a 

browser, the SWF file plays correctly, but the FLV video does not stream. This issue affects all FLV files placed on 

Windows Server 2003, including files you make with earlier versions of the Flash authoring tool, and the Macromedia 

Flash Video Kit for Dreamweaver MX 2004 from Adobe. These files work correctly if you test them on other operating 

systems.

For information about configuring Microsoft Windows 2003 and Microsoft IIS Server 6.0 to stream FLV video, see 

www.adobe.com/go/tn_19439.

Updated 11 February 2009

http://www.adobe.com/go/learn_fms_docs_en
http://www.adobe.com/go/video_file_format
http://www.adobe.com/go/tn_19439


548PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

About targeting local FLV files on the Macintosh

If you attempt to play a local FLV from a non-system drive on an Apple® Macintosh® computer by using a path that 

uses a relative slash (/), the video will not play. Non-system drives include, but are not limited to, CD-ROMs, 

partitioned hard disks, removable storage media, and connected storage devices.

Note: The reason for this failure is a limitation of the operating system, not a limitation in Flash Player or AIR.

For an FLV file to play from a non-system drive on a Macintosh, refer to it with an absolute path using a colon-based 

notation (:) rather than slash-based notation (/). The following list shows the difference in the two kinds of notation:

• Slash-based notation: myDrive/myFolder/myFLV.flv

• Colon-based notation: (Mac OS®) myDrive:myFolder:myFLV.flv 

You can also create a projector file for a CD-ROM you intend to use for Macintosh playback. For the latest information 

on Mac OS CD-ROMs and FLV files, see www.adobe.com/go/3121b301.

Example: Video Jukebox

The following example builds a simple video jukebox which dynamically loads a list of videos to play back in a 

sequential order. This allows you to build an application that lets a user browse through a series of video tutorials, or 

perhaps specifies which advertisements should be played back before delivering the user’s requested video. This 

example demonstrates the following features of ActionScript 3.0:

• Updating a playhead based on a video file’s playback progress

• Listening for and parsing a video file’s metadata

• Handling specific codes in a net stream

• Loading, playing, pausing, and stopping a dynamically loaded FLV

• Resizing a video object on the display list based on the net stream’s metadata

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Video 

Jukebox application files can be found in the folder Samples/VideoJukebox. The application consists of the following 

files:

Loading an external video playlist file

The external playlist.xml file specifies which videos to load, and the order to play them back in. In order to load the 

XML file, you need to use a URLLoader object and a URLRequest object, as seen in the following code:

 uldr = new URLLoader();  
 uldr.addEventListener(Event.COMPLETE, xmlCompleteHandler);  
 uldr.load(new URLRequest(PLAYLIST_XML_URL));

File Description

VideoJukebox.fla

or

VideoJukebox.mxml

The main application file for Flex (MXML) or Flash (FLA).

VideoJukebox.as The class that provides the main functionality of the application.

playlist.xml A file that lists which video files will be loaded into the video jukebox.

Updated 11 February 2009

http://www.adobe.com/go/3121b301
http://www.adobe.com/go/learn_programmingAS3samples_flash


549PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

This code is placed in the VideoJukebox class’s constructor so the file is loaded before any other code is run. As soon 

as the XML file has finished loading, the xmlCompleteHandler() method is called which parses the external file into 

an XML object, as seen in the following code:

 private function xmlCompleteHandler(event:Event):void  
 {  
 playlist = XML(event.target.data);  
 videosXML = playlist.video;  
 main();  
 }

The playlist XML object contains the raw XML from the external file, whereas the videosXML is an XMLList object 

which contains just the video nodes. A sample playlist.xml file can be seen in the following snippet:

 <videos>  
 <video url="video/caption_video.flv" />  
 <video url="video/cuepoints.flv" />  
 <video url="video/water.flv" />  
 </videos>

Finally, the xmlCompleteHandler() method calls the main() method which sets up the various component instances 

on the display list, as well as the NetConnection and NetStream objects which are used to load the external FLV files.

Creating the user interface

To build the user interface you need to drag five Button instances onto the display list and give them the following 

instance names: playButton, pauseButton, stopButton, backButton, and forwardButton.

For each of these Button instances, you’ll need to assign a handler for the click event, as seen in the following snippet:

 playButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);  
 pauseButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);  
 stopButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);  
 backButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);  
 forwardButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);

The buttonClickHandler() method uses a switch statement to determine which button instance was clicked, as seen 

in the following code:

Updated 11 February 2009



550PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 private function buttonClickHandler(event:MouseEvent):void  
 {  
 switch (event.currentTarget)  
 {  
 case playButton:  
 ns.resume();  
 break;  
 case pauseButton:  
 ns.togglePause();  
 break;  
 case stopButton:  
 ns.pause();  
 ns.seek(0);  
 break;  
 case backButton:  
 playPreviousVideo();  
 break;  
 case forwardButton:  
 playNextVideo();  
 break;  
 }  
 }

Next, add a Slider instance to the display list and give it an instance name of volumeSlider. The following code sets 

the slider instance’s liveDragging property to true and defines an event listener for the slider instance’s change 

event:

 volumeSlider.value = volumeTransform.volume;  
 volumeSlider.minimum = 0;  
 volumeSlider.maximum = 1;  
 volumeSlider.snapInterval = 0.1;  
 volumeSlider.tickInterval = volumeSlider.snapInterval;  
 volumeSlider.liveDragging = true;  
 volumeSlider.addEventListener(SliderEvent.CHANGE, volumeChangeHandler);

Add a ProgressBar instance to the display list and give it an instance name of positionBar. Set its mode property to 

manual, as seen in the following snippet:

 positionBar.mode = ProgressBarMode.MANUAL;

Finally add a Label instance to the display list and give it an instance name of positionLabel. This Label instance’s 

value will be set by the timer instance 

Listening for a video object’s metadata

When Flash Player encounters metadata for each of the loaded videos, the onMetaData() callback handler is called on 

the NetStream object’s client property. The following code initializes an Object and sets up the specified callback 

handler:

 client = new Object();  
 client.onMetaData = metadataHandler;

The metadataHandler() method copies its data to the meta property defined earlier in the code. This allows you to 

access the metadata for the current video anytime throughout the entire application. Next, the video object on the 

Stage is resized to match the dimensions returned from the metadata. Finally, the positionBar progress bar instance is 

moved and resized based on the size of the currently playing video. The following code contains the entire 

metadataHandler() method:

Updated 11 February 2009



551PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 private function metadataHandler(metadataObj:Object):void  
 {  
 meta = metadataObj;  
 vid.width = meta.width;  
 vid.height = meta.height;  
 positionBar.move(vid.x, vid.y + vid.height);  
 positionBar.width = vid.width;  
 }

Dynamically loading a Flash video

To dynamically load each of the Flash videos the application uses a NetConnection and NetStream object. The 

following code creates a NetConnection object and passes null to the connect() method. By specifying null, Flash 

Player connects to a video on the local server instead of connecting to a server, such as a Flash Media Server.

The following code creates both the NetConnection and NetStream instances, defines an event listener for the 

netStatus event, and assigns the client Object to the client property:

 nc = new NetConnection();  
 nc.connect(null);  
   
 ns = new NetStream(nc);  
 ns.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);  
 ns.client = client;

The netStatusHandler() method is called whenever the status of the video is changed. This includes when a video 

starts or stops playback, is buffering or if a video stream cannot be found. The following code lists the 

netStatusHandler() event:

 private function netStatusHandler(event:NetStatusEvent):void  
 {  
 try  
 {  
 switch (event.info.code)  
 {  
 case "NetStream.Play.Start":  
 t.start();  
 break;  
 case "NetStream.Play.StreamNotFound":  
 case "NetStream.Play.Stop":  
 t.stop();  
 playNextVideo();  
 break;  
 }  
 }   
 catch (error:TypeError)   
 {  
 // Ignore any errors.  
 }  
 }

The previous code evaluates the code property of the info object and filters whether the code is “NetStream.Play.Start”, 

“NetStream.Play.StreamNotFound”, or “NetStream.Play.Stop”. All other codes will be ignored. If the net stream is 

starting the code starts the Timer instance which updates the playhead. If the net stream cannot be found or is stopped, 

the Timer instance is stopped and the application attempts to play the next video in the playlist.

Updated 11 February 2009



552PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

Every time the Timer executes, the positionBar progress bar instance updates its current position by calling the 

setProgress() method of the ProgressBar class and the positionLabel Label instance is updated with the time 

elapsed and total time of the current video.

 private function timerHandler(event:TimerEvent):void  
 {  
 try  
 {  
 positionBar.setProgress(ns.time, meta.duration);  
 positionLabel.text = ns.time.toFixed(1) + " of " meta.duration.toFixed(1) + " seconds";  
 }   
 catch (error:Error)  
 {  
 // Ignore this error.  
 }  
 }

Controlling the volume of the video

You can control the volume for the dynamically loaded video by setting the soundTransform property on the 

NetStream object. The video jukebox application allows you to modify the volume level by changing the value of the 

volumeSlider Slider instance. The following code shows how you can change the volume level by assigning the value 

of the Slider component to a SoundTransform object which is set to the soundTransform property on the NetStream 

object:

 private function volumeChangeHandler(event:SliderEvent):void  
 {  
 volumeTransform.volume = event.value;  
 ns.soundTransform = volumeTransform;  
 }

Controlling video playback

The rest of the application controls video playback when the video reaches the end of the video stream or the user skips 

to the previous or next video.

The following method retrieves the video URL from the XMLList for the currently selected index:

 private function getVideo():String  
 {  
 return videosXML[idx].@url;  
 }

The playVideo() method calls the play() method on the NetStream object to load the currently selected video:

 private function playVideo():void  
 {  
 var url:String = getVideo();  
 ns.play(url);  
 }

The playPreviousVideo() method decrements the current video index, calls the playVideo() method to load the 

new video file and sets the progress bar to visible:

Updated 11 February 2009



553PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with video

 private function playPreviousVideo():void  
 {  
 if (idx > 0)  
 {  
 idx--;  
 playVideo();  
 positionBar.visible = true;  
 }  
 }

The final method, playNextVideo(), increments the video index and calls the playVideo() method. If the current 

video is the last video in the playlist, the clear() method is called on the Video object and the progress bar instance’s 

visible property is set to false:

 private function playNextVideo():void  
 {  
 if (idx < (videosXML.length() - 1))  
 {  
 idx++;  
 playVideo();  
 positionBar.visible = true;  
 }  
 else  
 {  
 idx++;  
 vid.clear();  
 positionBar.visible = false;  
 }  
 }

Updated 11 February 2009



554

Chapter 25: Working with sound

ActionScript is made for immersive, interactive applications—and one often overlooked element of powerfully 

immersive applications is sound. You can add sound effects to a video game, audio feedback to an application user 

interface, or even make a program that analyzes mp3 files loaded over the Internet, with sound at the core of the 

application. 

In this chapter, you’ll learn about loading external audio files and working with audio that’s embedded in a SWF. You’ll 

learn to control the audio, to create visual representations of the sound information, and to capture sound from a user’s 

microphone.

Basics of working with sound

Introduction to working with sound

Computers can capture and encode digital audio—computer representation of sound information—and can store it 

and retrieve it to play back over speakers. You can play back sound using either Adobe® Flash® Player or Adobe® AIR™ 

and ActionScript.

When sound data is converted to digital form, it has various characteristics, such as the sound’s volume and whether 

it is stereo or mono sound. When you play back a sound in ActionScript, you can adjust these characteristics as well—

make the sound louder, or make it seem to be coming from a certain direction, for instance.

Before you can control a sound in ActionScript, you need to have the sound information loaded into Flash Player or 

AIR. There are five ways you can get audio data into Flash Player or AIR so that you can work with it using 

ActionScript. You can load an external sound file such as an mp3 file into the SWF; you can embed the sound 

information into the SWF file directly when it’s being created; you can get audio input using a microphone attached 

to a user’s computer; you can access sound data that’s streamed from a server; and you can work with sound data that 

is dynamically generated.

When you load sound data from an external sound file, you can begin playing back the start of the sound file while the 

rest of the sound data is still loading. 

Although there are various sound file formats used to encode digital audio, ActionScript 3.0, Flash Player and AIR 

support sound files that are stored in the mp3 format. They cannot directly load or play sound files in other formats 

like WAV or AIFF.

While you’re working with sound in ActionScript, you’ll likely work with several classes from the flash.media package. 

The Sound class is the class you use to get access to audio information by loading a sound file or assigning a function 

to an event that samples sound data and then starting playback. Once you start playing a sound, Flash Player and AIR 

give you access to a SoundChannel object. Since an audio file that you’ve loaded may only be one of several sounds that 

you play on a user’s computer, each individual sound that’s playing uses its own SoundChannel object; the combined 

output of all the SoundChannel objects mixed together is what actually plays over the computer’s speakers. You use 

this SoundChannel instance to control properties of the sound and to stop its playback. Finally, if you want to control 

the combined audio, the SoundMixer class gives you control over the mixed output. 

You can also use several other classes to perform more specific tasks when you’re working with sound in ActionScript; 

for more information on all the sound-related classes, see “Understanding the sound architecture” on page 556.

Updated 11 February 2009



555PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

Common tasks for working with sound

This chapter describes the following sound-related tasks that you will likely want to perform:

• Loading external mp3 files and tracking their loading progress

• Playing, pausing, resuming, and stopping sounds

• Playing streaming sounds while they are being loaded

• Manipulating sound volume and panning

• Retrieving ID3 metadata from an mp3 file

• Using raw sound wave data

• Dynamically generating sound

• Capturing and replaying sound input from a user’s microphone

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• Amplitude: The distance of a point on the sound waveform from the zero or equilibrium line.

• Bit rate: The amount of data that is encoded or streamed for each second of a sound file. For mp3 files, the bit rate 

is usually stated in terms of thousands of bits per second (kbps). A higher bit rate generally means a higher quality 

sound wave.

• Buffering: The receiving and storing of sound data before it is played back.

• mp3: MPEG-1 Audio Layer 3, or mp3, is a popular sound compression format.

• Panning: The positioning of an audio signal between the left and right channels in a stereo soundfield.

• Peak: The highest point in a waveform.

• Sampling rate: Defines the number of samples per second taken from an analog audio signal to make a digital signal. 

The sampling rate of standard compact disc audio is 44.1 kHz or 44,100 samples per second.

• Streaming: The process of playing the early portions of a sound file or video file while later portions of that file are 

still being loaded from a server.

• Volume: The loudness of a sound.

• Waveform: The shape of a graph of the varying amplitudes of a sound signal over time.

Working through in-chapter examples

As you’re working through this chapter, you may want to try out some of the example code listings. Since this chapter 

covers working with sound in ActionScript, many of the examples do something that involves working with a sound 

file—making it play, stopping playback, or adjusting the sound in some way. To test the examples in this chapter:

1 Create a new Flash document and save it on your computer.

2 In the Timeline, select the first keyframe and open the Actions panel.

3 Copy the example code listing into the Script pane.

4 If the code involves loading an external sound file, it will have a line of code that looks something like this:

 var req:URLRequest = new URLRequest("click.mp3");  
 var s:Sound = new Sound(req);  
s.play();

Updated 11 February 2009



556PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

where “click.mp3” is the name of the sound file being loaded. In order to test these examples, you’ll need to have 

an mp3 file to use. You should put the mp3 file in the same folder as your Flash document. You should then alter 

the code to use the name of your mp3 file instead of the name in the code listing (for example, in the code above 

you’d change “click.mp3” to the name of your mp3 file).

5 From the main menu, choose Control > Test Movie to create the SWF file and preview (and hear) the output of the 

example.

In addition to playing audio, some of the examples display values using the trace() function; when you’re testing 

those examples, you’ll see the results of those values in the Output panel. Some examples also draw content to the 

screen, so for those examples you’ll see the content in the Flash Player or AIR window as well.

For more information about testing the example code listings in this manual, see “Testing in-chapter example code 

listings” on page 34.

Understanding the sound architecture

Your applications can load sound data from five main sources: 

• External sound files loaded at run time

• Sound resources embedded within the application’s SWF file

• Sound data from a microphone attached to the user’s system

• Sound data streamed from a remote media server, such as Flash Media Server

• Sound data being generated dynamically through the use of the sampleData event handler

Sound data can be fully loaded before it is played back, or it can be streamed, meaning that it is played back while it is 

still loading.

The ActionScript 3.0 sound classes support sound files that are stored in the mp3 format. They cannot directly load or 

play sound files in other formats, such as WAV or AIFF. However, starting with Flash Player 9.0.115.0, AAC audio 

files can be loaded and played using the NetStream class. This is the same technique as is used for loading and playing 

video content. For more information on this technique, see “Working with video” on page 515.

Using Adobe Flash CS4 Professional, you can import WAV or AIFF sound files and then embed them into your 

application’s SWF files in the mp3 format. The Flash Authoring tool also lets you compress embedded sound files to 

reduce their file size, though this size reduction comes at the expense of sound quality. For more information see 

“Importing Sounds” in Using Flash.

The ActionScript 3.0 sound architecture makes use of the following classes in the flash.media package.

Class Description

flash.media.Sound The Sound class handles the loading of sound, manages basic sound properties, and starts a sound 

playing.

flash.media.SoundChannel When an application plays a Sound object, a new SoundChannel object is created to control the 

playback. The SoundChannel object controls the volume of both the left and right playback channels 

of the sound. Each sound that plays has its own SoundChannel object.

flash.media.SoundLoaderContext The SoundLoaderContext class specifies how many seconds of buffering to use when loading a sound, 

and whether Flash Player or AIR looks for a policy file from the server when loading a file. A 

SoundLoaderContext object is used as a parameter to the Sound.load() method.

Updated 11 February 2009



557PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

Each sound that is loaded and played needs its own instance of the Sound class and the SoundChannel class. The 

output from multiple SoundChannel instances is then mixed together by the global SoundMixer class during playback,

The Sound, SoundChannel, and SoundMixer classes are not used for sound data obtained from a microphone or from 

a streaming media server like Flash Media Server. 

Loading external sound files

Each instance of the Sound class exists to load and trigger the playback of a specific sound resource. An application 

can’t reuse a Sound object to load more than one sound. If it wants to load a new sound resource, it should create a 

new Sound object.

If you are loading a small sound file, such as a click sound to be attached to a button, your application can create a new 

Sound and have it automatically load the sound file, as shown below:

 var req:URLRequest = new URLRequest("click.mp3");  
 var s:Sound = new Sound(req);

The Sound() constructor accepts a URLRequest object as its first parameter. When a value for the URLRequest 

parameter is supplied, the new Sound object starts loading the specified sound resource automatically.

In all but the simplest cases, your application should pay attention to the sound’s loading progress and watch for errors 

during loading. For example, if the click sound is fairly large, it might not be completely loaded by the time the user 

clicks the button that triggers the sound. Trying to play an unloaded sound could cause a run-time error. It’s safer to 

wait for the sound to load completely before letting users take actions that might start sounds playing.

A Sound object dispatches a number of different events during the sound loading process. Your application can listen 

for these events to track loading progress and make sure that the sound loads completely before playing. The following 

table lists the events that can be dispatched by a Sound object.

flash.media.SoundMixer The SoundMixer class controls playback and security properties that pertain to all sounds in an 

application. In effect, multiple sound channels are mixed through a common SoundMixer object, so 

property values in the SoundMixer object will affect all SoundChannel objects that are currently 

playing.

flash.media.SoundTransform The SoundTransform class contains values that control sound volume and panning. A SoundTransform 

object can be applied to an individual SoundChannel object, to the global SoundMixer object, or to a 

Microphone object, among others.

flash.media.ID3Info An ID3Info object contains properties that represent ID3 metadata information that is often stored in 

mp3 sound files. 

flash.media.Microphone The Microphone class represents a microphone or other sound input device attached to the user’s 

computer. Audio input from a microphone can be routed to local speakers or sent to a remote server. 

The Microphone object controls the gain, sampling rate, and other characteristics of its own sound 

stream.

Event Description

open (Event.OPEN) Dispatched right before the sound loading operation begins.

progress (ProgressEvent.PROGRESS) Dispatched periodically during the sound loading process when data is received from the file or 

stream.

Class Description

Updated 11 February 2009



558PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

The following code illustrates how to play a sound after it has finished loading: 

 import flash.events.Event;  
 import flash.media.Sound;  
 import flash.net.URLRequest;  
   
 var s:Sound = new Sound();  
 s.addEventListener(Event.COMPLETE, onSoundLoaded);  
 var req:URLRequest = new URLRequest("bigSound.mp3");  
 s.load(req);  
   
 function onSoundLoaded(event:Event):void  
 {  
 var localSound:Sound = event.target as Sound;  
 localSound.play();  
 }

First, the code sample creates a new Sound object without giving it an initial value for the URLRequest parameter. 

Then, it listens for the Event.COMPLETE event from the Sound object, which causes the onSoundLoaded() method to 

execute when all the sound data is loaded. Next, it calls the Sound.load() method with a new URLRequest value for 

the sound file.

The onSoundLoaded() method executes when the sound loading is complete. The target property of the Event 

object is a reference to the Sound object. Calling the play() method of the Sound object then starts the sound 

playback.

Monitoring the sound loading process

Sound files can be very large and take a long time to load. While Flash Player and AIR let your application play sounds 

even before they are fully loaded, you might want to give the user an indication of how much of the sound data has 

been loaded and how much of the sound has already been played.

The Sound class dispatches two events that make it relatively easy to display the loading progress of a sound: 

ProgressEvent.PROGRESS and Event.COMPLETE. The following example shows how to use these events to display 

progress information about the sound being loaded:

id3 (Event.ID3) Dispatched when ID3 data is available for an mp3 sound.

complete (Event.COMPLETE) Dispatched when all of the sound resource’s data has been loaded.

ioError (IOErrorEvent.IO_ERROR) Dispatched when a sound file cannot be located or when the loading process is interrupted before 

all sound data can be received.

Event Description

Updated 11 February 2009



559PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 import flash.events.Event;  
 import flash.events.ProgressEvent;  
 import flash.media.Sound;  
 import flash.net.URLRequest;  
   
 var s:Sound = new Sound();  
 s.addEventListener(ProgressEvent.PROGRESS, onLoadProgress);  
 s.addEventListener(Event.COMPLETE, onLoadComplete);  
 s.addEventListener(IOErrorEvent.IO_ERROR, onIOError);  
   
 var req:URLRequest = new URLRequest("bigSound.mp3");  
 s.load(req);  
   
 function onLoadProgress(event:ProgressEvent):void  
 {  
 var loadedPct:uint = Math.round(100 * (event.bytesLoaded / event.bytesTotal));  
 trace("The sound is " + loadedPct + "% loaded.");  
 }  
   
 function onLoadComplete(event:Event):void  
 {  
 var localSound:Sound = event.target as Sound;  
 localSound.play();  
 }  
 function onIOError(event:IOErrorEvent)  
 {  
 trace("The sound could not be loaded: " + event.text);  
 }

This code first creates a Sound object and then adds listeners to that object for the ProgressEvent.PROGRESS and 

Event.COMPLETE events. After the Sound.load() method has been called and the first data is received from the sound 

file, a ProgressEvent.PROGRESS event occurs and triggers the onSoundLoadProgress() method.

The percentage of the sound data that has been loaded is equal to the value of the bytesLoaded property of the 

ProgressEvent object divided by the value of the bytesTotal property. The same bytesLoaded and bytesTotal 

properties are available on the Sound object as well. The example above simply shows messages about the sound 

loading progress, but you can easily use the bytesLoaded and bytesTotal values to update progress bar components, 

such as the ones that come with the Adobe Flex 3 framework or the Flash authoring tool.

This example also shows how an application can recognize and respond to an error when loading sound files. For 

example, if a sound file with the given filename cannot be located, an Event.IO_ERROR event is dispatched by the 

Sound object. In the previous code, the onIOError() method executes and displays a brief error message when an 

error occurs.

Working with embedded sounds

Using embedded sounds, instead of loading sound from an external file, is most useful for small sounds that are used 

as indicators within your application’s user interface, such as sounds that play when buttons are clicked.

When you embed a sound file in your application, the size of the resulting SWF file increases by the size of the sound 

file. In other words, embedding large sound files in your application can increase the size of your SWF file to an 

undesirable size.

Updated 11 February 2009



560PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

The exact method of embedding a sound file into your application’s SWF file varies according to your development 

environment. 

Using an embedded sound file in Flash

The Flash authoring tool lets you import sounds in a number of sound formats and store them as symbols in the 

Library. You can then assign them to frames in the timeline or to the frames of a button state, use them with Behaviors, 

or use them directly in ActionScript code. This section describes how to use embedded sounds in ActionScript code 

with the Flash authoring tool. For information about the other ways to use embedded sounds in Flash, see “Importing 

Sounds” in Using Flash.

To embed a sound file using the Flash authoring tool:

1 Select File > Import > Import to Library, and then select a sound file and import it. 

2 Right-click the name of the imported file in the Library panel, and select Properties. Click the Export for 

ActionScript checkbox.

3 In the Class field, enter a name to use when referring to this embedded sound in ActionScript. By default, it will use 

the name of the sound file in this field. If the filename includes a period, as in the name “DrumSound.mp3”, you 

must change it to something like “DrumSound”; ActionScript does not allow a period character in a class name. 

The Base Class field should still show flash.media.Sound.

4 Click OK. You might see a dialog box saying that a definition for this class could not be found in the classpath. Click 

OK and continue. If you entered a class name that doesn’t match the name of any of the classes in your application’s 

classpath, a new class that inherits from the flash.media.Sound class is automatically generated for you.

5 To use the embedded sound, you reference the class name for that sound in ActionScript. For example, the 

following code starts by creating a new instance of the automatically generated DrumSound class:

 var drum:DrumSound = new DrumSound();  
 var channel:SoundChannel = drum.play();

DrumSound is a subclass of the flash.media.Sound class so it inherits the Sound class’s methods and properties, 

including the play() method as shown above.

Working with streaming sound files

When a sound file or video file is playing back while its data is still being loaded, it is said to be streaming. External 

sound files that are loaded from a remote server are often streamed so that the user doesn’t have to wait for all the 

sound data to load before listening to the sound.

The SoundMixer.bufferTime property represents the number of milliseconds of sound data that Flash Player or AIR 

should gather before letting the sound play. In other words, if the bufferTime property is set to 5000, Flash Player or 

AIR loads at least 5000 milliseconds worth of data from the sound file before the sound begins to play. The default 

SoundMixer.bufferTime value is 1000.

Your application can override the global SoundMixer.bufferTime value for an individual sound by explicitly 

specifying a new bufferTime value when loading the sound. To override the default buffer time, first create a new 

instance of the SoundLoaderContext class, set its bufferTime property, and then pass it as a parameter to the 

Sound.load() method, as shown below:

Updated 11 February 2009



561PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 import flash.media.Sound;  
 import flash.media.SoundLoaderContext;  
 import flash.net.URLRequest;  
   
 var s:Sound = new Sound();  
 var req:URLRequest = new URLRequest("bigSound.mp3");  
 var context:SoundLoaderContext = new SoundLoaderContext(8000, true);  
 s.load(req, context);  
 s.play();

As playback continues, Flash Player and AIR try to keep the sound buffer at the same size or greater. If the sound data 

loads faster than the playback speed, playback will continue without interruption. However, if the data loading rate 

slows down because of network limitations, the playhead could reach the end of the sound buffer. If this happens, 

playback is suspended, though it automatically resumes once more sound data has been loaded.

To find out if playback is suspended because Flash Player or AIR is waiting for data to load, use the 

Sound.isBuffering property.

Working with dynamically generated audio

Note: The ability to dynamically generate audio is available starting with Flash Player 10 and Adobe AIR 1.5.

Instead of loading or streaming an existing sound, you can generate audio data dynamically. You can generate audio 

data when you assign an event listener for the sampleData event of a Sound object. (The sampleData event is defined 

in the SampleDataEvent class in the flash.events package.) In this environment, the Sound object doesn’t load sound 

data from a file. Instead, it acts as a socket for sound data that is being streamed to it through the use of the function 

you assign to this event. 

When you add a sampleData event listener to a Sound object, the object periodically requests data to add to the sound 

buffer. This buffer contains data for the Sound object to play. When you call the play() method of the Sound object, 

it dispatches the sampleData event when requesting new sound data. (This is true only when the Sound object has not 

loaded mp3 data from a file.)

The SampleDataEvent object includes a data property. In your event listener, you write ByteArray objects to this data 

object. The byte arrays you write to this object add to buffered sound data that the Sound object plays. The byte array 

in the buffer is a stream of floating-point values from -1 to 1. Each floating-point value represents the amplitude of one 

channel (left or right) of a sound sample. Sound is sampled at 44,100 samples per second. Each sample contains a left 

and right channel, interleaved as floating-point data in the byte array. 

In your handler function, you use the ByteArray.writeFloat() method to write to the data property of the 

sampleData event. For example, the following code generates a sine wave:

var mySound:Sound = new Sound();  
mySound.addEventListener(SampleDataEvent.SAMPLE_DATA, sineWaveGenerator);  
mySound.play();  
function sineWaveGenerator(event:SampleDataEvent):void  
{  

for (var i:int = 0; i < 8192; i++)  
{  

var n:Number = Math.sin((i + event.position) / Math.PI / 4);  
event.data.writeFloat(n);  
event.data.writeFloat(n);  

}  
}

Updated 11 February 2009



562PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

When you call Sound.play(), the application starts calling your event handler, requesting sound sample data. The 

application continues to send events as the sound plays back until you stop providing data, or until you call 

SoundChannel.stop().

The latency of the event varies from platform to platform, and could change in future versions of Flash Player and AIR. 

Do not depend on a specific latency; calculate it instead. To calculate the latency, use the following formula:

(SampleDataEvent.position / 44.1) - SoundChannelObject.position

Provide from 2048 through 8192 samples to the data property of the SampleDataEvent object (for each call to the 

event listener). For best performance, provide as many samples as possible (up to 8192). The fewer samples you 

provide, the more likely it is that clicks and pops will occur during playback. This behavior can differ on various 

platforms and can occur in various situations—for example, when resizing the browser. Code that works on one 

platform when you provide only 2048 sample might not work as well when run on a different platform. If you require 

the lowest latency possible, consider making the amount of data user-selectable.

If you provide fewer than 2048 samples (per call to the sampleData event listener), the application stops after playing 

the remaining samples. It then dispatches a SoundComplete event.

Modifying sound from mp3 data

You use the Sound.extract() method to extract data from a Sound object. You can use (and modify) that data to 

write to the dynamic stream of another Sound object for playback. For example, the following code uses the bytes of a 

loaded MP3 file and passes them through a filter function, upOctave():

var mySound:Sound = new Sound();  
var sourceSnd:Sound = new Sound();  
var urlReq:URLRequest = new URLRequest("test.mp3");  
sourceSnd.load(urlReq);  
sourceSnd.addEventListener(Event.COMPLETE, loaded);  
function loaded(event:Event):void  
{  

mySound.addEventListener(SampleDataEvent.SAMPLE_DATA, processSound);  
mySound.play();  

}  
function processSound(event:SampleDataEvent):void  
{  

var bytes:ByteArray = new ByteArray();  
sourceSnd.extract(bytes, 8192);  

        event.data.writeBytes(upOctave(bytes));  
}  
function upOctave(bytes:ByteArray):ByteArray  
{  

var returnBytes:ByteArray = new ByteArray();  
bytes.position = 0;  
while(bytes.bytesAvailable > 0)  
{  

returnBytes.writeFloat(bytes.readFloat());  
returnBytes.writeFloat(bytes.readFloat());  
if (bytes.bytesAvailable > 0)  
{  

bytes.position += 8;  
}  

}  
return returnBytes;  

}

Updated 11 February 2009



563PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

Limitations on generated sounds

When you use a sampleData event listener with a Sound object, the only other Sound methods that are enabled are 

Sound.extract() and Sound.play(). Calling any other methods or properties results in an exception. All methods 

and properties of the SoundChannel object are still enabled.

Playing sounds

Playing a loaded sound can be as simple as calling the Sound.play() method for a Sound object, as follows:

 var snd:Sound = new Sound(new URLRequest("smallSound.mp3"));  
 snd.play();

When playing back sounds using ActionScript 3.0, you can perform the following operations:

• Play a sound from a specific starting position

• Pause a sound and resume playback from the same position later

• Know exactly when a sound finishes playing

• Track the playback progress of a sound

• Change volume or panning while a sound plays

To perform these operations during playback, use the SoundChannel, SoundMixer, and SoundTransform classes.

The SoundChannel class controls the playback of a single sound. The SoundChannel.position property can be 

thought of as a playhead, indicating the current point in the sound data that’s being played. 

When an application calls the Sound.play() method, a new instance of the SoundChannel class is created to control 

the playback. 

Your application can play a sound from a specific starting position by passing that position, in terms of milliseconds, 

as the startTime parameter of the Sound.play() method. It can also specify a fixed number of times to repeat the 

sound in rapid succession by passing a numeric value in the loops parameter of the Sound.play() method. 

When the Sound.play() method is called with both a startTime parameter and a loops parameter, the sound is 

played back repeatedly from the same starting point each time, as shown in the following code:

 var snd:Sound = new Sound(new URLRequest("repeatingSound.mp3"));  
 snd.play(1000, 3);

In this example, the sound is played from a point one second after the start of the sound, three times in succession.

Pausing and resuming a sound

If your application plays long sounds, like songs or podcasts, you probably want to let users pause and resume the 

playback of those sounds. A sound cannot literally be paused during playback in ActionScript; it can only be stopped. 

However, a sound can be played starting from any point. You can record the position of the sound at the time it was 

stopped, and then replay the sound starting at that position later.

For example, let’s say your code loads and plays a sound file like this:

 var snd:Sound = new Sound(new URLRequest("bigSound.mp3"));  
 var channel:SoundChannel = snd.play();

While the sound plays, the SoundChannel.position property indicates the point in the sound file that is currently 

being played. Your application can store the position value before stopping the sound from playing, as follows:

Updated 11 February 2009



564PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 var pausePosition:int = channel.position;  
 channel.stop();

To resume playing the sound, pass the previously stored position value to restart the sound from the same point it 

stopped at before.

 channel = snd.play(pausePosition);

Monitoring playback

Your application might want to know when a sound stops playing so it can start playing another sound, or clean up 

some resources used during the previous playback. The SoundChannel class dispatches an Event.SOUND_COMPLETE 

event when its sound finishes playing. Your application can listen for this event and take appropriate action, as shown 

below:

 import flash.events.Event;  
 import flash.media.Sound;  
 import flash.net.URLRequest;  
   
 var snd:Sound = new Sound();  
 var req:URLRequest = new URLRequest("smallSound.mp3");  
 snd.load(req);  
   
 var channel:SoundChannel = snd.play();  
 channel.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);  
   
 public function onPlaybackComplete(event:Event)  
 {  
 trace("The sound has finished playing.");  
 }

The SoundChannel class does not dispatch progress events during playback. To report on playback progress, your 

application can set up its own timing mechanism and track the position of the sound playhead.

To calculate what percentage of a sound has been played, you can divide the value of the SoundChannel.position 

property by the length of the sound data that’s being played:

 var playbackPercent:uint = 100 * (channel.position / snd.length);

However, this code only reports accurate playback percentages if the sound data was fully loaded before playback 

began. The Sound.length property shows the size of the sound data that is currently loaded, not the eventual size of 

the entire sound file. To track the playback progress of a streaming sound that is still loading, your application should 

estimate the eventual size of the full sound file and use that value in its calculations. You can estimate the eventual 

length of the sound data using the bytesLoaded and bytesTotal properties of the Sound object, as follows:

 var estimatedLength:int =   
 Math.ceil(snd.length / (snd.bytesLoaded / snd.bytesTotal));  
 var playbackPercent:uint = 100 * (channel.position / estimatedLength);

The following code loads a larger sound file and uses the Event.ENTER_FRAME event as its timing mechanism for 

showing playback progress. It periodically reports on the playback percentage, which is calculated as the current 

position value divided by the total length of the sound data:

Updated 11 February 2009



565PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 import flash.events.Event;  
 import flash.media.Sound;  
 import flash.net.URLRequest;  
   
 var snd:Sound = new Sound();  
 var req:URLRequest = new   
 URLRequest("http://av.adobe.com/podcast/csbu_dev_podcast_epi_2.mp3");  
 snd.load(req);  
   
 var channel:SoundChannel;  
 channel = snd.play();  
 addEventListener(Event.ENTER_FRAME, onEnterFrame);  
 channel.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);  
   
 function onEnterFrame(event:Event):void  
 {  
 var estimatedLength:int =   
 Math.ceil(snd.length / (snd.bytesLoaded / snd.bytesTotal));  
 var playbackPercent:uint =   
 Math.round(100 * (channel.position / estimatedLength));  
 trace("Sound playback is " + playbackPercent + "% complete.");  
 }  
   
 function onPlaybackComplete(event:Event)  
 {  
 trace("The sound has finished playing.");  
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);  
 }

After the sound data starts loading, this code calls the snd.play() method and stores the resulting SoundChannel 

object in the channel variable. Then it adds an event listener to the main application for the Event.ENTER_FRAME 

event and another event listener to the SoundChannel object for the Event.SOUND_COMPLETE event that occurs when 

playback is complete.

Each time the application reaches a new frame in its animation, the onEnterFrame() method is called. The 

onEnterFrame() method estimates the total length of the sound file based on the amount of data that has already been 

loaded, and then it calculates and displays the current playback percentage.

When the entire sound has been played, the onPlaybackComplete() method executes, removing the event listener 

for the Event.ENTER_FRAME event so that it doesn’t try to display progress updates after playback is done.

The Event.ENTER_FRAME event can be dispatched many times per second. In some cases, you won’t want to display 

playback progress that frequently. In those cases, your application can set up its own timing mechanism using the 

flash.util.Timer class; see “Working with dates and times” on page 130.

Stopping streaming sounds

There is a quirk in the playback process for sounds that are streaming—that is, for sounds that are still loading while 

they are being played. When your application calls the SoundChannel.stop() method on a SoundChannel instance 

that is playing back a streaming sound, the sound playback stops for one frame, and then on the next frame, it restarts 

from the beginning of the sound. This occurs because the sound loading process is still underway. To stop both the 

loading and the playback of a streaming sound, call the Sound.close() method.

Updated 11 February 2009



566PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

Security considerations when loading and playing 
sounds

Your application’s ability to access sound data can be limited according to the Flash Player or AIR security model. Each 

sound is subject to the restrictions of two different security sandboxes, the sandbox for the content itself (the “content 

sandbox”), and the sandbox for the application or object that loads and plays the sound (the “owner sandbox”). For 

AIR application content in the application security sandbox, all sounds, including those loaded from other domains, 

are accessible to content in the application security sandbox. However, content in other security security sandboxes 

observe the same rules as content running in Flash Player. For more information about the Flash Player security model 

in general, and the definition of sandboxes, see “Flash Player security” on page 685.

The content sandbox controls whether detailed sound data can be extracted from the sound using the id3 property or 

the SoundMixer.computeSpectrum() method. It doesn’t restrict the loading or playing of the sound file itself.

The domain of origin of the sound file defines the security limitations of the content sandbox. Generally, if a sound file 

is located in the same domain or folder as the SWF file of the application or object that loads it, the application or object 

will have full access to that sound file. If the sound comes from a different domain than the application does, it can still 

be brought within the content sandbox by using a policy file. 

Your application can pass a SoundLoaderContext object with a checkPolicyFile property as a parameter to the 

Sound.load() method. Setting the checkPolicyFile property to true tells Flash Player or AIR to look for a policy 

file on the server from which the sound is loaded. If a policy file exists, and it grants access to the domain of the loading 

SWF file, the SWF file can load the sound file, access the id3 property of the Sound object, and call the 

SoundMixer.computeSpectrum() method for loaded sounds.

The owner sandbox controls local playback of the sounds. The application or object that starts playing a sound defines 

the owner sandbox. 

The SoundMixer.stopAll() method silences the sounds in all SoundChannel objects that are currently playing, as 

long as they meet the following criteria:

• The sounds were started by objects within the same owner sandbox.

• The sounds are from a source with a policy file that grants access to the domain of the application or object that 

calls the SoundMixer.stopAll() method.

However, in an AIR application, content in the application security sandbox (content installed with the AIR 

application) are not restricted by these security limitations.

To find out if the SoundMixer.stopAll() method will indeed stop all playing sounds, your application can call the 

SoundMixer.areSoundsInaccessible() method. If that method returns a value of true, some of the sounds being 

played are outside the control of the current owner sandbox and will not be stopped by the SoundMixer.stopAll() 

method.

The SoundMixer.stopAll() method also stops the playhead from continuing for all sounds that were loaded from 

external files. However, sounds that are embedded in FLA files and attached to frames in the timeline using the Flash 

Authoring tool might start playing again if the animation moves to a new frame. 

Controlling sound volume and panning

An individual SoundChannel object controls both the left and the right stereo channels for a sound. If an mp3 sound 

is a monaural sound, the left and right stereo channels of the SoundChannel object will contain identical waveforms.

Updated 11 February 2009



567PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

You can find out the amplitude of each stereo channel of the sound being played using the leftPeak and rightPeak 

properties of the SoundChannel object. These properties show the peak amplitude of the sound waveform itself. They 

do not represent the actual playback volume. The actual playback volume is a function of the amplitude of the sound 

wave and the volume values set in the SoundChannel object and the SoundMixer class.

The pan property of a SoundChannel object can be used to specify a different volume level for each of the left and right 

channels during playback. The pan property can have a value ranging from -1 to 1, where -1 means the left channel 

plays at top volume while the right channel is silent, and 1 means the right channel plays at top volume while the left 

channel is silent. Numeric values in between -1 and 1 set proportional values for the left and right channel values, and 

a value of 0 means that both channels play at a balanced, mid-volume level.

The following code example creates a SoundTransform object with a volume value of 0.6 and a pan value of -1 (top left 

channel volume and no right channel volume). It passes the SoundTransform object as a parameter to the play() 

method, which applies that SoundTransform object to the new SoundChannel object that is created to control the 

playback.

 var snd:Sound = new Sound(new URLRequest("bigSound.mp3"));   
 var trans:SoundTransform = new SoundTransform(0.6, -1);  
 var channel:SoundChannel = snd.play(0, 1, trans);

You can alter the volume and panning while a sound is playing by setting the pan or volume properties of a 

SoundTransform object and then applying that object as the soundTransform property of a SoundChannel object.

You can also set global volume and pan values for all sounds at once using the soundTransform property of the 

SoundMixer class, as the following example shows:

 SoundMixer.soundTransform = new SoundTransform(1, -1);

You can also use a SoundTransform object to set volume and pan values for a Microphone object (see “Capturing 

sound input” on page 573) and for Sprite objects and SimpleButton objects.

The following example alternates the panning of the sound from the left channel to the right channel and back while 

the sound plays.

Updated 11 February 2009



568PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 import flash.events.Event;  
 import flash.media.Sound;  
 import flash.media.SoundChannel;  
 import flash.media.SoundMixer;  
 import flash.net.URLRequest;  
   
 var snd:Sound = new Sound();   
 var req:URLRequest = new URLRequest("bigSound.mp3");  
 snd.load(req);  
   
 var panCounter:Number = 0;  
   
 var trans:SoundTransform;  
 trans = new SoundTransform(1, 0);  
 var channel:SoundChannel = snd.play(0, 1, trans);  
 channel.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);  
   
 addEventListener(Event.ENTER_FRAME, onEnterFrame);  
   
 function onEnterFrame(event:Event):void  
 {  
 trans.pan = Math.sin(panCounter);  
 channel.soundTransform = trans; // or SoundMixer.soundTransform = trans;  
 panCounter += 0.05;  
 }  
   
 function onPlaybackComplete(event:Event):void  
 {  
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);  
 }

This code starts by loading a sound file and then creating a new SoundTransform object with volume set to 1 (full 

volume) and pan set to 0 (evenly balanced between left and right). Then it calls the snd.play() method, passing the 

SoundTransform object as a parameter. 

While the sound plays, the onEnterFrame() method executes repeatedly. The onEnterFrame() method uses the 

Math.sin() function to generate a value between -1 and 1, a range that corresponds to the acceptable values of the 

SoundTransform.pan property. The SoundTransform object’s pan property is set to the new value, and then the 

channel’s soundTransform property is set to use the altered SoundTransform object.

To run this example, replace the filename bigSound.mp3 with the name of a local mp3 file. Then run the example. You 

should hear the left channel volume getting louder while the right channel volume gets softer, and vice versa.

In this example, the same effect could be achieved by setting the soundTransform property of the SoundMixer class. 

However, that would affect the panning of all sounds currently playing, not just the single sound being played by this 

SoundChannel object.

Working with sound metadata

Sound files that use the mp3 format can contain additional data about the sound in the form of ID3 tags. 

Not every mp3 file contains ID3 metadata. When a Sound object loads an mp3 sound file, it dispatches an Event.ID3 

event if the sound file contains ID3 metadata. To prevent run-time errors, your application should wait to receive the 

Event.ID3 event before accessing the Sound.id3 property for a loaded sound.

Updated 11 February 2009



569PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

The following code shows how to recognize when the ID3 metadata for a sound file has been loaded:

 import flash.events.Event;  
 import flash.media.ID3Info;  
 import flash.media.Sound;  
   
 var s:Sound = new Sound();  
 s.addEventListener(Event.ID3, onID3InfoReceived);  
 s.load("mySound.mp3");  
   
 function onID3InfoReceived(event:Event)  
 {  
 var id3:ID3Info = event.target.id3;  
   
 trace("Received ID3 Info:");  
 for (var propName:String in id3)  
 {  
 trace(propName + " = " + id3[propName]);  
 }  
 }

This code starts by creating a Sound object and telling it to listen for the Event.ID3 event. When the sound file’s ID3 

metadata is loaded, the onID3InfoReceived() method is called. The target of the Event object that is passed to the 

onID3InfoReceived() method is the original Sound object, so the method then gets the Sound object’s id3 property 

and then iterates through all of its named properties to trace their values.

Accessing raw sound data

The SoundMixer.computeSpectrum() method lets an application read the raw sound data for the waveform that is 

currently being played. If more than one SoundChannel object is currently playing the 

SoundMixer.computeSpectrum() method shows the combined sound data of every SoundChannel object mixed 

together.

The sound data is returned as a ByteArray object containing 512 bytes of data, each of which contains a floating point 

value between -1 and 1. These values represent the amplitude of the points in the sound waveform being played. The 

values are delivered in two groups of 256, the first group for the left stereo channel and the second group for the right 

stereo channel.

The SoundMixer.computeSpectrum() method returns frequency spectrum data rather than waveform data if the 

FFTMode parameter is set to true. The frequency spectrum shows amplitude arranged by sound frequency, from 

lowest frequency to highest. A Fast Fourier Transform (FFT) is used to convert the waveform data into frequency 

spectrum data. The resulting frequency spectrum values range from 0 to roughly 1.414 (the square root of 2).

The following diagram compares the data returned from the computeSpectrum() method when the FFTMode 

parameter is set to true and when it is set to false. The sound whose data was used for this diagram contains a loud 

bass sound in the left channel and a drum hit sound in the right channel.

Updated 11 February 2009



570PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

Values returned by the SoundMixer.computeSpectrum() method
A. fftMode=true  B. fftMode=false  

The computeSpectrum() method can also return data that has been resampled at a lower bit rate. Generally, this 

results in smoother waveform data or frequency data at the expense of detail. The stretchFactor parameter controls 

the rate at which the computeSpectrum() method data is sampled. When the stretchFactor parameter is set to 0, 

the default, the sound data is sampled at a rate of 44.1 kHz. The rate is halved at each successive value of the 

stretchFactor parameter, so a value of 1 specifies a rate of 22.05 kHz, a value of 2 specifies a rate of 11.025 kHz, and so 

on. The computeSpectrum() method still returns 256 bytes per stereo channel when a higher stretchFactor value 

is used. 

The SoundMixer.computeSpectrum() method has some limitations:

• Because sound data from a microphone or from RTMP streams do not pass through the global SoundMixer object, 

the SoundMixer.computeSpectrum() method will not return data from those sources.

• If one or more of the sounds being played come from sources outside the current content sandbox, security 

restrictions will cause the SoundMixer.computeSpectrum() method to throw an error. For more detail about the 

security limitations of the SoundMixer.computeSpectrum() method please see “Security considerations when 

loading and playing sounds” on page 566 and “Accessing loaded media as data” on page 703.

However, in an AIR application, content in the application security sandbox (content installed with the AIR 

application) are not restricted by these security limitations.

Building a simple sound visualizer

The following example uses the SoundMixer.computeSpectrum() method to show a chart of the sound waveform 

that animates with each frame:

Left Channel Right Channel

Left Channel Right Channel

A

B

Updated 11 February 2009



571PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 import flash.display.Graphics;  
 import flash.events.Event;  
 import flash.media.Sound;  
 import flash.media.SoundChannel;  
 import flash.media.SoundMixer;  
 import flash.net.URLRequest;  
   
 const PLOT_HEIGHT:int = 200;  
 const CHANNEL_LENGTH:int = 256;  
   
 var snd:Sound = new Sound();  
 var req:URLRequest = new URLRequest("bigSound.mp3");  
 snd.load(req);  
   
 var channel:SoundChannel;  
 channel = snd.play();  
 addEventListener(Event.ENTER_FRAME, onEnterFrame);  
 snd.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);  
   
 var bytes:ByteArray = new ByteArray();  
   
 function onEnterFrame(event:Event):void  
 {  
 SoundMixer.computeSpectrum(bytes, false, 0);  
   
 var g:Graphics = this.graphics;  
   
 g.clear();  
 g.lineStyle(0, 0x6600CC);  
 g.beginFill(0x6600CC);  
 g.moveTo(0, PLOT_HEIGHT);  
   
 var n:Number = 0;  
   
 // left channel  
 for (var i:int = 0; i < CHANNEL_LENGTH; i++)   
 {  
 n = (bytes.readFloat() * PLOT_HEIGHT);  
 g.lineTo(i * 2, PLOT_HEIGHT - n);  
 }  
 g.lineTo(CHANNEL_LENGTH * 2, PLOT_HEIGHT);  

Updated 11 February 2009



572PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 g.endFill();  
   
 // right channel  
 g.lineStyle(0, 0xCC0066);  
 g.beginFill(0xCC0066, 0.5);  
 g.moveTo(CHANNEL_LENGTH * 2, PLOT_HEIGHT);  
   
 for (i = CHANNEL_LENGTH; i > 0; i--)   
 {  
 n = (bytes.readFloat() * PLOT_HEIGHT);  
 g.lineTo(i * 2, PLOT_HEIGHT - n);  
 }  
 g.lineTo(0, PLOT_HEIGHT);  
 g.endFill();  
 }  
   
 function onPlaybackComplete(event:Event)  
 {  
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);  
 }

This example first loads and plays a sound file and then listens for the Event.ENTER_FRAME event which will trigger 

the onEnterFrame() method while the sound plays. The onEnterFrame() method starts by calling the 

SoundMixer.computeSpectrum() method, which stores the sound wave data in the bytes ByteArray object.

The sound waveform is plotted using the vector drawing API. A for loop cycles through the first 256 data values, 

representing the left stereo channel, and draws a line from each point to the next using the Graphics.lineTo() 

method. A second for loop cycles through the next set of 256 values, plotting them in reverse order this time, from 

right to left. The resulting waveform plots can produce an interesting mirror-image effect, as shown in the following 

image.

Updated 11 February 2009



573PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

Capturing sound input

The Microphone class lets your application connect to a microphone or other sound input device on the user’s system 

and broadcast the input audio to that system’s speakers or send the audio data to a remote server, such as Flash Media 

Server. You cannot access raw audio data from the microphone; you can only send audio to the system’s speakers or 

send compressed audio data to a remote server. You can use either Speex or Nellymoser codec for data sent to a remote 

server. (The Speex codec is supported starting with Flash Player 10 and Adobe AIR 1.5.)

Accessing a microphone

The Microphone class does not have a constructor method. Instead, you use the static 

Microphone.getMicrophone() method to obtain a new Microphone instance, as shown below:

 var mic:Microphone = Microphone.getMicrophone();

Calling the Microphone.getMicrophone() method without a parameter returns the first sound input device 

discovered on the user’s system. 

A system can have more than one sound input device attached to it. Your application can use the Microphone.names 

property to get an array of the names of all available sound input devices. Then it can call the 

Microphone.getMicrophone() method with an index parameter that matches the index value of a device’s name in 

the array.

A system might not have a microphone or other sound input device attached to it. You can use the Microphone.names 

property or the Microphone.getMicrophone() method to check whether the user has a sound input device installed. 

If the user doesn’t have a sound input device installed, the names array has a length of zero, and the getMicrophone() 

method returns a value of null. 

When your application calls the Microphone.getMicrophone() method, Flash Player displays the Flash Player 

Settings dialog box, which prompts the user to either allow or deny Flash Player access to the camera and microphone 

on the system. After the user clicks on either the Allow button or the Deny button in this dialog, a StatusEvent is 

dispatched. The code property of that StatusEvent instance indicates whether microphone access was allowed or 

denied, as shown in this example:

 import flash.media.Microphone;  
   
 var mic:Microphone = Microphone.getMicrophone();  
 mic.addEventListener(StatusEvent.STATUS, this.onMicStatus);  
   
 function onMicStatus(event:StatusEvent):void  
 {  
 if (event.code == "Microphone.Unmuted")  
 {  
 trace("Microphone access was allowed.");  
 }   
 else if (event.code == "Microphone.Muted")  
 {  
  trace("Microphone access was denied.");  
 }  
 }

The StatusEvent.code property will contain “Microphone.Unmuted” if access was allowed, or 

“Microphone.Muted” if access was denied.

Updated 11 February 2009



574PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

Note: The Microphone.muted property is set to true or false when the user allows or denies microphone access, 

respectively. However the muted property is not set on the Microphone instance until the StatusEvent has been 

dispatched, so your application should also wait for the StatusEvent.STATUS event to be dispatched before checking the 

Microphone.muted property.

Routing microphone audio to local speakers

Audio input from a microphone can be routed to the local system speakers by calling the 

Microphone.setLoopback() method with a parameter value of true. 

When sound from a local microphone is routed to local speakers, there is a risk of creating an audio feedback loop, 

which can cause loud squealing sounds and can potentially damage sound hardware. Calling the 

Microphone.setUseEchoSuppression() method with a parameter value of true reduces, but does not completely 

eliminate, the risk that audio feedback will occur. Adobe recommends you always call 

Microphone.setUseEchoSuppression(true) before calling Microphone.setLoopback(true), unless you are 

certain that the user is playing back the sound using headphones or something other than speakers.

The following code shows how to route the audio from a local microphone to the local system speakers:

 var mic:Microphone = Microphone.getMicrophone();  
 mic.setUseEchoSuppression(true);  
 mic.setLoopBack(true);

Altering microphone audio

Your application can alter the audio data that comes from a microphone in two ways. First, it can change the gain of 

the input sound, which effectively multiplies the input values by a specified amount to create a louder or quieter sound. 

The Microphone.gain property accepts numeric values between 0 and 100 inclusive. A value of 50 acts like a 

multiplier of one and specifies normal volume. A value of zero acts like a multiplier of zero and effectively silences the 

input audio. Values above 50 specify higher than normal volume.

Your application can also change the sample rate of the input audio. Higher sample rates increase sound quality, but 

they also create denser data streams that use more resources for transmission and storage. The Microphone.rate 

property represents the audio sample rate measured in kilohertz (kHz). The default sample rate is 8 kHz. You can set 

the Microphone.rate property to a value higher than 8 kHz if your microphone supports the higher rate. For 

example, setting the Microphone.rate property to a value of 11 sets the sample rate to 11 kHz; setting it to 22 sets the 

sample rate to 22 kHz, and so on. The sample rates available depend on the selected codec. When you use the 

Nellymoser codec, you can specify 5, 8, 11, 16, 22 and 44 kHz as the sample rate. When you use Speex codec (available 

starting in Flash Player 10 and Adobe AIR 1.5), you can only use 16 kHz. 

Detecting microphone activity

To conserve bandwidth and processing resources, Flash Player tries to detect when no sound is being transmitted by 

a microphone. When the microphone’s activity level stays below the silence level threshold for a period of time, Flash 

Player stops transmitting the audio input and dispatches a simple ActivityEvent instead. If you use the Speex codec 

(available in Flash Player 10 or later and Adobe AIR 1.5 or later), set the silence level to 0, to ensure that the application 

continuously transmits audio data. Speex voice activity detection automatically reduces bandwidth.

Three properties of the Microphone class monitor and control the detection of activity:

• The read-only activityLevel property indicates the amount of sound the microphone is detecting, on a scale 

from 0 to 100.

Updated 11 February 2009



575PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

• The silenceLevel property specifies the amount of sound needed to activate the microphone and dispatch an 

ActivityEvent.ACTIVITY event. The silenceLevel property also uses a scale from 0 to 100, and the default 

value is 10.

• The silenceTimeout property describes the number of milliseconds that the activity level must stay below the 

silence level, until an ActivityEvent.ACTIVITY event is dispatched to indicate that the microphone is now silent. 

The default silenceTimeout value is 2000.

Both the Microphone.silenceLevel property and the Microphone.silenceTimeout property are read only, but 

their values can be changed by using the Microphone.setSilenceLevel() method.

In some cases, the process of activating the microphone when new activity is detected can cause a short delay. Keeping 

the microphone active at all times can remove such activation delays. Your application can call the 

Microphone.setSilenceLevel() method with the silenceLevel parameter set to zero to tell Flash Player to keep 

the microphone active and keep gathering audio data, even when no sound is being detected. Conversely, setting the 

silenceLevel parameter to 100 prevents the microphone from being activated at all.

The following example displays information about the microphone and reports on activity events and status events 

dispatched by a Microphone object:

 import flash.events.ActivityEvent;  
 import flash.events.StatusEvent;  
 import flash.media.Microphone;  
   
 var deviceArray:Array = Microphone.names;  
 trace("Available sound input devices:");  
 for (var i:int = 0; i < deviceArray.length; i++)  
 {  
 trace(" " + deviceArray[i]);  
 }  
   
 var mic:Microphone = Microphone.getMicrophone();  
 mic.gain = 60;  
 mic.rate = 11;  
 mic.setUseEchoSuppression(true);  
 mic.setLoopBack(true);  
 mic.setSilenceLevel(5, 1000);  
   
 mic.addEventListener(ActivityEvent.ACTIVITY, this.onMicActivity);  
 mic.addEventListener(StatusEvent.STATUS, this.onMicStatus);  

Updated 11 February 2009



576PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

   
 var micDetails:String = "Sound input device name: " + mic.name + '\n';  
 micDetails += "Gain: " + mic.gain + '\n';  
 micDetails += "Rate: " + mic.rate + " kHz" + '\n';  
 micDetails += "Muted: " + mic.muted + '\n';  
 micDetails += "Silence level: " + mic.silenceLevel + '\n';  
 micDetails += "Silence timeout: " + mic.silenceTimeout + '\n';  
 micDetails += "Echo suppression: " + mic.useEchoSuppression + '\n';  
 trace(micDetails);  
   
 function onMicActivity(event:ActivityEvent):void  
 {  
 trace("activating=" + event.activating + ", activityLevel=" +   
 mic.activityLevel);  
 }  
   
 function onMicStatus(event:StatusEvent):void  
 {  
 trace("status: level=" + event.level + ", code=" + event.code);  
 }

When you run the above example, speak or makes noises into your system microphone and watch the resulting trace 

statements appear in a console or debug window.

Sending audio to and from a media server

Additional audio capabilities are available when using ActionScript with a streaming media server such as Flash Media 

Server.

In particular, your application can attach a Microphone object to a NetStream object and transmit data directly from 

the user’s microphone to the server. Audio data can also be streamed from the server to an application created with 

Flash or Flex and played back as part of a MovieClip or by using a Video object.

The Speex codec is available starting with Flash Player 10 and Adobe AIR 1.5. To set the codec used for compressed 

audio sent to the media server, set the codec property of the Microphone object. This property can have two values, 

which are enumerated in the SoundCodec class. Setting the codec property to SoundCodec.SPEEX selects the Speex 

codec for compressing audio. Setting the property to SoundCodec.NELLYMOSER (the default) selects the Nellymoser 

codec for compressing audio. 

For more information, see the Flash Media Server documentation online at http://livedocs.adobe.com.

Example: Podcast Player

A podcast is a sound file that is distributed over the Internet, on demand or by subscription. Podcasts are usually 

published as part of a series, which is also called a podcast channel. Because podcast episodes can last anywhere from 

one minute to many hours, they are usually streamed while playing. Podcast episodes, which are also called items, are 

usually delivered in the mp3 file format. Video podcasts are also popular, but this sample application plays only audio 

podcasts that use mp3 files.

This example is not a full-featured podcast aggregator application. For example, it does not manage subscriptions to 

specific podcasts or remember which podcasts the user has listened to the next time the application is run. It could 

serve as a starting point for a more full-featured podcast aggregator.

Updated 11 February 2009

http://livedocs.adobe.com


577PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

The Podcast Player example illustrates the following ActionScript programming techniques:

• Reading an external RSS feed and parsing its XML content

• Creating a SoundFacade class to simplify loading and playback of sound files

• Displaying sound playback progress

• Pausing and resuming sound playback

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

Podcast Player application files can be found in the folder Samples/PodcastPlayer. The application consists of the 

following files:

Reading RSS data for a podcast channel

The Podcast Player application starts by reading information about a number of podcast channels and their episodes:

File Description

PodcastPlayer.mxml

or

PodcastPlayer.fla

The user interface for the application for Flex (MXML) or Flash (FLA).

comp/example/progra

mmingas3/podcastplay

er/PodcastPlayer.as

Document class containing the user interface logic for the podcast player (Flash only).

comp/example/progra

mmingas3/podcastplay

er/SoundPlayer.as

Class for the SoundPlayer movie clip symbol containing the user interface logic for the sound player (Flash only).

comp/example/progra

mmingas3/podcastplay

er/PlayButtonRenderer.

as

Custom cell renderer for displaying a play button in a data grid cell (Flash only).

com/example/program

mingas3/podcastplayer

/RSSBase.as

A base class that provides common properties and methods for the RSSChannel class and the RSSItem class.

com/example/program

mingas3/podcastplayer

/RSSChannel.as

An ActionScript class that holds data about an RSS channel.

com/example/program

mingas3/podcastplayer

/RSSItem.as

An ActionScript class that holds data about an RSS item.

com/example/program

mingas3/podcastplayer

/SoundFacade.as

The main ActionScript class for the application. It encapsulates the methods and events of the Sound class and the 

SoundChannel class and adds support for pausing and resuming playback.

com/example/program

mingas3/podcastplayer

/URLService.as

An ActionScript class that retrieves data from a remote URL.

playerconfig.xml An XML file containing a list of RSS feeds that represent podcast channels.

comp/example/progra

mmingas3/utils/DateUt

il.as

Class that is used for easy date formatting (Flash only).

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


578PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

1. First, the application reads an XML configuration file that contains a list of podcast channels and displays the list of 

channels to the user.

2. When the user selects one of the podcast channels, it reads the RSS feed for the channel and displays a list of the 

channel episodes.

This example uses the URLLoader utility class to retrieve text-based data from a remote location or a local file. The 

Podcast Player first creates a URLLoader object to get a list of RSS feeds in XML format from the playerconfig.xml file. 

Next, when the user selects a specific feed from the list, a new URLLoader object is created to read the RSS data from 

that feed’s URL.

Simplifying sound loading and playback using the SoundFacade class

The ActionScript 3.0 sound architecture is powerful but complex. Applications that only need basic sound loading and 

playback features can use a class that hides some of the complexity by providing a simpler set of method calls and 

events. In the world of software design patterns, such a class is called a facade.

The SoundFacade class presents a single interface for performing the following tasks:

• Loading sound files using a Sound object, a SoundLoaderContext object, and the SoundMixer class

• Playing sound files using the Sound object and the SoundChannel object

• Dispatching playback progress events

• Pausing and resuming playback of the sound using the Sound object and the SoundChannel object

The SoundFacade class tries to offer most of the functionality of the ActionScript sound classes with less complexity. 

The following code shows the class declaration, the class properties, and the SoundFacade() constructor method:

 public class SoundFacade extends EventDispatcher  
 {  
 public var s:Sound;  
 public var sc:SoundChannel;  
 public var url:String;  
 public var bufferTime:int = 1000;  
   
 public var isLoaded:Boolean = false;  
 public var isReadyToPlay:Boolean = false;  
 public var isPlaying:Boolean = false;  
 public var isStreaming:Boolean = true;  
 public var autoLoad:Boolean = true;  
 public var autoPlay:Boolean = true;  
   
 public var pausePosition:int = 0;  
   
 public static const PLAY_PROGRESS:String = "playProgress";  
 public var progressInterval:int = 1000;  
 public var playTimer:Timer;  
   
 public function SoundFacade(soundUrl:String, autoLoad:Boolean = true,  
 autoPlay:Boolean = true, streaming:Boolean = true,   
 bufferTime:int = -1):void  
 {  
 this.url = soundUrl;  

Updated 11 February 2009



579PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

   
 // Sets Boolean values that determine the behavior of this object  
 this.autoLoad = autoLoad;  
 this.autoPlay = autoPlay;  
 this.isStreaming = streaming;  
   
 // Defaults to the global bufferTime value  
 if (bufferTime < 0)  
 {  
 bufferTime = SoundMixer.bufferTime;  
 }  
   
 // Keeps buffer time reasonable, between 0 and 30 seconds  
 this.bufferTime = Math.min(Math.max(0, bufferTime), 30000);  
   
 if (autoLoad)  
 {  
 load();  
 }  
 }

The SoundFacade class extends the EventDispatcher class so that it can dispatch its own events. The class code first 

declares properties for a Sound object and a SoundChannel object. The class also stores the value of the URL of the 

sound file and a bufferTime property to use when streaming the sound. In addition, it accepts some Boolean 

parameter values that affect the loading and playback behavior:

• The autoLoad parameter tells the object that sound loading should start as soon as this object is created.

• The autoPlay parameter indicates that sound playing should start as soon as enough sound data has been loaded. 

If this is a streaming sound, playback will begin as soon as enough data, as specified by the bufferTime property, 

has loaded.

• The streaming parameter indicates that this sound file can start playing before loading has completed.

The bufferTime parameter defaults to a value of -1. If the constructor method detects a negative value in the 

bufferTime parameter, it sets the bufferTime property to the value of SoundMixer.bufferTime. This lets the 

application default to the global SoundMixer.bufferTime value as desired.

If the autoLoad parameter is set to true, the constructor method immediately calls the following load() method to 

start loading the sound file:

Updated 11 February 2009



580PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 public function load():void  
 {  
 if (this.isPlaying)  
 {  
 this.stop();  
 this.s.close();  
 }  
 this.isLoaded = false;  
   
 this.s = new Sound();  
   
 this.s.addEventListener(ProgressEvent.PROGRESS, onLoadProgress);  
 this.s.addEventListener(Event.OPEN, onLoadOpen);  
 this.s.addEventListener(Event.COMPLETE, onLoadComplete);  
 this.s.addEventListener(Event.ID3, onID3);  
 this.s.addEventListener(IOErrorEvent.IO_ERROR, onIOError);  
 this.s.addEventListener(SecurityErrorEvent.SECURITY_ERROR, onIOError);  
   
 var req:URLRequest = new URLRequest(this.url);  
   
 var context:SoundLoaderContext = new SoundLoaderContext(this.bufferTime, true);  
 this.s.load(req, context);  
 }

The load() method creates a new Sound object and then adds listeners for all of the important sound events. Then it 

tells the Sound object to load the sound file, using a SoundLoaderContext object to pass in the bufferTime value. 

Because the url property can be changed, a SoundFacade instance can be used to play different sound files in 

succession: simply change the url property and call the load() method, and the new sound file will be loaded.

The following three event listener methods show how the SoundFacade object tracks loading progress and decides 

when to start playing the sound:

Updated 11 February 2009



581PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 public function onLoadOpen(event:Event):void  
 {  
 if (this.isStreaming)  
 {  
 this.isReadyToPlay = true;  
 if (autoPlay)  
 {  
 this.play();  
 }  
 }  
 this.dispatchEvent(event.clone());  
 }  
   
 public function onLoadProgress(event:ProgressEvent):void  
 {   
 this.dispatchEvent(event.clone());  
 }  
   
 public function onLoadComplete(event:Event):void  
 {  
 this.isReadyToPlay = true;  
 this.isLoaded = true;  
 this.dispatchEvent(evt.clone());  
   
 if (autoPlay && !isPlaying)  
 {  
 play();  
 }  
 }

The onLoadOpen() method executes when sound loading starts. If the sound can be played in streaming mode, the 

onLoadComplete() method sets the isReadyToPlay flag to true right away. The isReadyToPlay flag determines 

whether the application can start the sound playing, perhaps in response to a user action like clicking a Play button. 

The SoundChannel class manages the buffering of sound data, so there is no need to explicitly check whether enough 

data has been loaded before calling the play() method.

The onLoadProgress() method executes periodically during the loading process. It simply dispatches a clone of its 

ProgressEvent object for use by code that uses this SoundFacade object. 

When the sound data has been fully loaded the onLoadComplete() method executes, calling the play() method for 

non-streaming sounds if needed. The play() method itself is shown below. 

Updated 11 February 2009



582PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 public function play(pos:int = 0):void  
 {  
 if (!this.isPlaying)  
 {  
 if (this.isReadyToPlay)  
 {  
 this.sc = this.s.play(pos);  
 this.sc.addEventListener(Event.SOUND_COMPLETE, onPlayComplete);  
 this.isPlaying = true;  
   
 this.playTimer = new Timer(this.progressInterval);  
 this.playTimer.addEventListener(TimerEvent.TIMER, onPlayTimer);  
 this.playTimer.start();  
 }  
 }  
 }

The play() method calls the Sound.play() method if the sound is ready to play. The resulting SoundChannel object 

is stored in the sc property. The play() method then creates a Timer object that will be used to dispatch playback 

progress events at regular intervals.

Displaying playback progress

Creating a Timer object to drive playback monitoring is complex operation that you should only have to code once. 

Encapsulating this Timer logic in a reusable class like the SoundFacade class lets applications listen to the same kinds 

of progress events when a sound is loading and when it is playing.

The Timer object that is created by the SoundFacade.play() method dispatches a TimerEvent instance every second. 

The following onPlayTimer() method executes whenever a new TimerEvent arrives:

 public function onPlayTimer(event:TimerEvent):void   
 {  
 var estimatedLength:int =   
 Math.ceil(this.s.length / (this.s.bytesLoaded / this.s.bytesTotal));  
 var progEvent:ProgressEvent =   
 new ProgressEvent(PLAY_PROGRESS, false, false, this.sc.position, estimatedLength);  
 this.dispatchEvent(progEvent);  
 }

The onPlayTimer() method implements the size estimation technique described in the section “Monitoring 

playback” on page 564. Then it creates a new ProgressEvent instance with an event type of 

SoundFacade.PLAY_PROGRESS, with the bytesLoaded property set to the current position of the SoundChannel 

object and the bytesTotal property set to the estimated length of the sound data.

Pausing and resuming playback

The SoundFacade.play() method shown previously accepts a pos parameter corresponding to a starting position in 

the sound data. If the pos value is zero, the sound starts playing from the beginning.

The SoundFacade.stop() method also accepts a pos parameter as shown here:

Updated 11 February 2009



583PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Working with sound

 public function stop(pos:int = 0):void  
 {  
 if (this.isPlaying)  
 {  
 this.pausePosition = pos;  
 this.sc.stop();  
 this.playTimer.stop();  
 this.isPlaying = false;  
 }   
 }

Whenever the SoundFacade.stop() method is called, it sets the pausePosition property so that the application 

knows where to position the playhead if the user wants to resume playback of the same sound.

The SoundFacade.pause() and SoundFacade.resume() methods shown below invoke the SoundFacade.stop() 

and SoundFacade.play() methods respectively, passing a pos parameter value each time.

 public function pause():void  
 {  
 stop(this.sc.position);  
 }  
   
 public function resume():void  
 {  
 play(this.pausePosition);  
 }

The pause() method passes the current SoundChannel.position value to the play() method, which stores that 

value in the pausePosition property. The resume() method starts playing the same sound again using the 

pausePosition value as the starting point.

Extending the Podcast Player example

This example presents a bare-bones Podcast Player that showcases the use of the reusable SoundFacade class. You 

could add other features to enhance the usefulness of this application, including the following:

• Store the list of feeds and usage information about each episode in a SharedObject instance that can be used the 

next time the user runs the application.

• Let the user add his or her own RSS feeds to the list of podcast channels.

• Remember the position of the playhead when the user stops or leaves an episode, so it can be restarted from that 

point next time the user runs the application.

• Download mp3 files of episodes for listening offline, when the user is not connected to the Internet.

• Add subscription features that periodically check for new episodes in a podcast channel and update the episode list 

automatically.

• Add podcast searching and browsing functionality using an API from a podcast hosting service like Odeo.com.

Updated 11 February 2009



584

Chapter 26: Capturing user input

This chapter describes how to create interactivity by using ActionScript 3.0 to respond to user activity. It discusses 

keyboard and mouse events, and then proceeds to more advanced topics, including customization of the context menu 

and focus management. This chapter concludes with WordSearch, an example of an application that responds to 

mouse input.

Note that this chapter assumes that you are already familiar with the ActionScript 3.0 event model. For more 

information, see “Handling events” on page 244.

Basics of user input

Introduction to capturing user input

User interaction, whether by keyboard, mouse, camera, or a combination of these devices, is the foundation of 

interactivity. In ActionScript 3.0, identifying and responding to user interaction primarily involves listening to events.

The InteractiveObject class, a subclass of the DisplayObject class, provides the common structure of events and 

functionality necessary for handling user interaction. You do not directly create an instance of the InteractiveObject 

class. Instead, display objects such as SimpleButton, Sprite, TextField, and various Flash authoring tool and Flex 

components inherit their user interaction model from this class and therefore share a common structure. This means 

that the techniques you learn and the code you write to handle user interaction in an object derived from 

InteractiveObject are applicable to all the others.

The following typical user interaction tasks are described in this chapter:

• Capturing application-wide keyboard input

• Capturing keyboard input to a specific display object

• Capturing application-wide mouse actions

• Capturing mouse input to a specific display object

• Creating drag-and-drop interactivity

• Creating a custom mouse cursor (mouse pointer)

• Adding new behaviors to the context menu

• Managing focus

Important concepts and terms

It’s important to familiarize yourself with the following key user interaction terms before proceeding:

• Character code: A numeric code representing a character in the current character set (associated with a key being 

pressed on the keyboard). For example, “D” and “d” have different character codes even though they’re created by 

the same key on a U.S. English keyboard.

• Context menu: The menu that appears when a user right-clicks or uses a particular keyboard-mouse combination. 

Context menu commands typically apply directly to what has been clicked. For example, a context menu for an 

image may contain a command to show the image in a separate window and a command to download it.

Updated 11 February 2009



585PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

• Focus: The indication that a selected element is active and that it is the target of keyboard or mouse interaction.

• Key code: A numeric code corresponding to a physical key on the keyboard.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the sample code listings for yourself. Because 

this chapter is about working with user input in ActionScript, essentially all the code listings in this chapter involve 

manipulating some type of display object—usually a text field or any InteractiveObject subclass. For the purposes of 

the examples, the display object either can be one that has been created and placed on the Stage in Adobe® Flash® CS4 

Professional, or can be one that’s created using ActionScript. Testing a sample involves viewing the result in Flash 

Player or Adobe® AIR™ and interacting with the sample to see the effects of the code.

To test the code listings in this chapter:

1 Create an empty document using the Flash authoring tool

2 Select a keyframe in the Timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Create an instance on the Stage:

• If the code refers to a text field, use the Text tool to create a dynamic text field on the Stage.

• Otherwise, create a button or movie clip symbol instance on the Stage.

5 Select the text field, button, or movie clip, and give it an instance name in the Property inspector. The name should 

match the name of the display object in the sample code—for example, if the code manipulates an object named 

myDisplayObject, name your Stage object myDisplayObject as well.

6 Run the program using Control > Test Movie.

On the screen, the display object is manipulated as specified in the code.

Capturing keyboard input

Display objects that inherit their interaction model from the InteractiveObject class can respond to keyboard events 

by using event listeners. For example, you can place an event listener on the Stage to listen for and respond to keyboard 

input. In the following code, an event listener captures a key press, and the key name and key code properties are 

displayed:

 function reportKeyDown(event:KeyboardEvent):void  
 {  
 trace("Key Pressed: " + String.fromCharCode(event.charCode) + " (character code: " + 
event.charCode + ")");  
 }  
 stage.addEventListener(KeyboardEvent.KEY_DOWN, reportKeyDown);

Some keys, such as the Ctrl key, generate events even though they have no glyph representation.

In the previous code example, the keyboard event listener captured keyboard input for the entire Stage. You can also 

write an event listener for a specific display object on the Stage; this event listener is triggered when the object has the 

focus.

In the following example, keystrokes are reflected in the Output panel only when the user types inside the TextField 

instance. Holding the Shift key down temporarily changes the border color of the TextField to red.

Updated 11 February 2009



586PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

This code assumes there is a TextField instance named tf on the Stage.

 tf.border = true;  
 tf.type = "input";  
 tf.addEventListener(KeyboardEvent.KEY_DOWN,reportKeyDown);  
 tf.addEventListener(KeyboardEvent.KEY_UP,reportKeyUp);  
   
 function reportKeyDown(event:KeyboardEvent):void  
 {  
 trace("Key Pressed: " + String.fromCharCode(event.charCode) + " (key code: " + 
event.keyCode + " character code: " + event.charCode + ")");  
 if (event.keyCode == Keyboard.SHIFT) tf.borderColor = 0xFF0000;  
 }  
   
 function reportKeyUp(event:KeyboardEvent):void  
 {  
 trace("Key Released: " + String.fromCharCode(event.charCode) + " (key code: " + 
event.keyCode + " character code: " + event.charCode + ")");  
 if (event.keyCode == Keyboard.SHIFT)  
 {  
 tf.borderColor = 0x000000;  
 }  
 }

The TextField class also reports a textInput event that you can listen for when a user enters text. For more 

information, see “Capturing text input” on page 431.

Understanding key codes and character codes

You can access the keyCode and charCode properties of a keyboard event to determine what key was pressed and then 

trigger other actions. The keyCode property is a numeric value that corresponds to the value of a key on the keyboard. 

The charCode property is the numeric value of that key in the current character set. (The default character set is UTF-

8, which supports ASCII.) 

The primary difference between the key code and character values is that a key code value represents a particular key 

on the keyboard (the 1 on a keypad is different than the 1 in the top row, but the key that generates “1” and the key 

that generates “!” are the same key) and the character value represents a particular character (the R and r characters 

are different).

Note: For the mappings between keys and their character code values in ASCII, see the flash.ui.Keyboard class in the 

ActionScript language reference.

The mappings between keys and their key codes is dependent on the device and the operating system. For this reason, 

you should not use key mappings to trigger actions. Instead, you should use the predefined constant values provided 

by the Keyboard class to reference the appropriate keyCode properties. For example, instead of using the key mapping 

for the Shift key, use the Keyboard.SHIFT constant (as shown in the preceding code sample).

Understanding KeyboardEvent precedence

As with other events, the keyboard event sequence is determined by the display object hierarchy and not the order in 

which addEventListener() methods are assigned in code.

For example, suppose you place a text field called tf inside a movie clip called container and add an event listener 

for a keyboard event to both instances, as the following example shows: 

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/ui/Keyboard.html


587PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

 container.addEventListener(KeyboardEvent.KEY_DOWN,reportKeyDown);  
 container.tf.border = true;  
 container.tf.type = "input";  
 container.tf.addEventListener(KeyboardEvent.KEY_DOWN,reportKeyDown);  
   
 function reportKeyDown(event:KeyboardEvent):void  
 {  
 trace(event.currentTarget.name + " hears key press: " + String.fromCharCode(event.charCode) 
+ " (key code: " + event.keyCode + " character code: " + event.charCode + ")");  
 }

Because there is a listener on both the text field and its parent container, the reportKeyDown() function is called twice 

for every keystroke inside the TextField. Note that for each key pressed, the text field dispatches an event before the 

container movie clip dispatches an event. 

The operating system and the web browser will process keyboard events before Adobe Flash Player or AIR. For 

example, in Microsoft Internet Explorer, pressing Ctrl+W closes the browser window before any contained SWF file 

dispatches a keyboard event.

Capturing mouse input

Mouse clicks create mouse events that can be used to trigger interactive functionality. You can add an event listener to 

the Stage to listen for mouse events that occur anywhere within the SWF file. You can also add event listeners to objects 

on the Stage that inherit from InteractiveObject (for example, Sprite or MovieClip); these listeners are triggered when 

the object is clicked.

As with keyboard events, mouse events bubble. In the following example, because square is a child of the Stage, the 

event dispatches both from the sprite square as well as from the Stage object when the square is clicked:

 var square:Sprite = new Sprite();  
 square.graphics.beginFill(0xFF0000);  
 square.graphics.drawRect(0,0,100,100);  
 square.graphics.endFill();  
 square.addEventListener(MouseEvent.CLICK, reportClick);  
 square.x =  
 square.y = 50;  
 addChild(square);  
   
 stage.addEventListener(MouseEvent.CLICK, reportClick);  
   
 function reportClick(event:MouseEvent):void  
 {  
 trace(event.currentTarget.toString() + " dispatches MouseEvent. Local coords [" + 
event.localX + "," + event.localY + "] Stage coords [" + event.stageX + "," + event.stageY + "]");  
 }

In the previous example, notice that the mouse event contains positional information about the click. The localX and 

localY properties contain the location of the click on the lowest child in the display chain. For example, clicking at 

the top-left corner of square reports local coordinates of [0,0] because that is the registration point of square. 

Alternatively, the stageX and stageY properties refer to the global coordinates of the click on the Stage. The same 

click reports [50,50] for these coordinates, because square was moved to these coordinates. Both of these coordinate 

pairs can be useful depending on how you want to respond to user interaction.

Updated 11 February 2009



588PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

The MouseEvent object also contains altKey, ctrlKey, and shiftKey Boolean properties. You can use these 

properties to check if the Alt, Ctrl, or Shift key is also being pressed at the time of the mouse click.

Creating drag-and-drop functionality

Drag-and-drop functionality allows users to select an object while pressing the left mouse button, move the object to 

a new location on the screen, and then drop it at the new location by releasing the left mouse button. The following 

code shows an example of this:

 import flash.display.Sprite;  
 import flash.events.MouseEvent;  
   
 var circle:Sprite = new Sprite();  
 circle.graphics.beginFill(0xFFCC00);  
 circle.graphics.drawCircle(0, 0, 40);  
   
 var target1:Sprite = new Sprite();  
 target1.graphics.beginFill(0xCCFF00);  
 target1.graphics.drawRect(0, 0, 100, 100);  
 target1.name = "target1";  
   
 var target2:Sprite = new Sprite();  
 target2.graphics.beginFill(0xCCFF00);  
 target2.graphics.drawRect(0, 200, 100, 100);  
 target2.name = "target2";  
   
 addChild(target1);  
 addChild(target2);  
 addChild(circle);  
   
 circle.addEventListener(MouseEvent.MOUSE_DOWN, mouseDown)   
   
 function mouseDown(event:MouseEvent):void  
 {  
 circle.startDrag();  
 }  
 circle.addEventListener(MouseEvent.MOUSE_UP, mouseReleased);  
   
 function mouseReleased(event:MouseEvent):void  
 {  
 circle.stopDrag();  
 trace(circle.dropTarget.name);  
 }

For more details, see the section on creating drag and drop interaction in “Changing position” on page 285.

Customizing the mouse cursor

The mouse cursor (mouse pointer) can be hidden or swapped for any display object on the Stage. To hide the mouse 

cursor, call the Mouse.hide() method. Customize the cursor by calling Mouse.hide(), listening to the Stage for the 

MouseEvent.MOUSE_MOVE event, and setting the coordinates of a display object (your custom cursor) to the stageX 

and stageY properties of the event. The following example illustrates a basic execution of this task:

Updated 11 February 2009



589PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

 var cursor:Sprite = new Sprite();  
 cursor.graphics.beginFill(0x000000);  
 cursor.graphics.drawCircle(0,0,20);  
 cursor.graphics.endFill();  
 addChild(cursor);  
   
 stage.addEventListener(MouseEvent.MOUSE_MOVE,redrawCursor);  
 Mouse.hide();  
   
 function redrawCursor(event:MouseEvent):void  
 {  
 cursor.x = event.stageX;  
 cursor.y = event.stageY;  
 }

Customizing the context menu

Every object that inherits from the InteractiveObject class can have a unique context menu, which is displayed when 

a user right-clicks within the SWF file. Several commands are included by default, including Forward, Back, Print, 

Quality, and Zoom. 

You can remove all the default commands from the menu, except for the Settings and About commands. Setting the 

Stage property showDefaultContextMenu to false removes these commands from the context menu.

To create a customized context menu for a specific display object, create a new instance of the ContextMenu class, call 

the hideBuiltInItems() method, and assign that instance to the contextMenu property of that DisplayObject 

instance. The following example provides a dynamically drawn square with a context menu command to change it to 

a random color:

 var square:Sprite = new Sprite();  
 square.graphics.beginFill(0x000000);  
 square.graphics.drawRect(0,0,100,100);  
 square.graphics.endFill();  
 square.x =  
 square.y = 10;  
 addChild(square);  
   
 var menuItem:ContextMenuItem = new ContextMenuItem("Change Color");  
 menuItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT,changeColor);  
 var customContextMenu:ContextMenu = new ContextMenu();  
 customContextMenu.hideBuiltInItems();  
 customContextMenu.customItems.push(menuItem);  
 square.contextMenu = customContextMenu;  
   
 function changeColor(event:ContextMenuEvent):void  
 {  
 square.transform.colorTransform = getRandomColor();  
 }  
 function getRandomColor():ColorTransform  
 {  
 return new ColorTransform(Math.random(), Math.random(), Math.random(),1,(Math.random() * 
512) - 255, (Math.random() * 512) -255, (Math.random() * 512) - 255, 0);  
 }

Updated 11 February 2009



590PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

Managing focus

An interactive object can receive focus, either programmatically or through a user action. In both cases, setting the 

focus changes the object’s focus property to true. Additionally, if the tabEnabled property is set to true, the user 

can pass focus from one object to another by pressing the Tab key. Note that the tabEnabled value is false by default, 

except in the following cases:

• For a SimpleButton object, the value is true.

• For a input text field, the value is true.

• For a Sprite or MovieClip object with buttonMode set to true, the value is true.

In each of these situations, you can add a listener for FocusEvent.FOCUS_IN or FocusEvent.FOCUS_OUT to provide 

additional behavior when focus changes. This is particularly useful for text fields and forms, but can also be used on 

sprites, movie clips, or any object that inherits from the InteractiveObject class. The following example shows how to 

enable focus cycling with the Tab key and how to respond to the subsequent focus event. In this case, each square 

changes color as it receives focus.

Note: The Flash authoring tool uses keyboard shortcuts to manage focus; therefore, to properly simulate focus 

management, SWF files should be tested in a browser or AIR rather than within Flash.

 var rows:uint = 10;  
 var cols:uint = 10;  
 var rowSpacing:uint = 25;  
 var colSpacing:uint = 25;  
 var i:uint;  
 var j:uint;  
 for (i = 0; i < rows; i++)  
 {  
 for (j = 0; j < cols; j++)  
 {  
 createSquare(j * colSpacing, i * rowSpacing, (i * cols) + j);  
 }  
 }  
   
 function createSquare(startX:Number, startY:Number, tabNumber:uint):void  
 {  
 var square:Sprite = new Sprite();  
 square.graphics.beginFill(0x000000);  
 square.graphics.drawRect(0, 0, colSpacing, rowSpacing);  
 square.graphics.endFill();  
 square.x = startX;  

Updated 11 February 2009



591PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

 square.y = startY;  
 square.tabEnabled = true;  
 square.tabIndex = tabNumber;  
 square.addEventListener(FocusEvent.FOCUS_IN, changeColor);  
 addChild(square);  
 }  
 function changeColor(event:FocusEvent):void  
 {  
 event.target.transform.colorTransform = getRandomColor();  
 }  
 function getRandomColor():ColorTransform  
 {  
 // Generate random values for the red, green, and blue color channels.  
 var red:Number = (Math.random() * 512) - 255;  
 var green:Number = (Math.random() * 512) - 255;  
 var blue:Number = (Math.random() * 512) - 255;  
   
 // Create and return a ColorTransform object with the random colors.  
 return new ColorTransform(1, 1, 1, 1, red, green, blue, 0);  
 }

Example: WordSearch 

This example demonstrates user interaction by handling mouse events. Users build as many words as possible from a 

random grid of letters, spelling by moving horizontally or vertically in the grid, but never using the same letter 

twice.This example demonstrates the following features of ActionScript 3.0:

• Building a grid of components dynamically

• Responding to mouse events

• Maintaining a score based on user interaction

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

WordSearch application files can be found in the folder Samples/WordSearch. The application consists of the 

following files:

Loading a dictionary

To create a game that involves finding words, a dictionary is needed. The example includes a text file called 

dictionary.txt that contains a list of words separated by carriage returns. After creating an array named words, the 

loadDictionary() function requests this file, and when it loads successfully, the file becomes a long string. You can 

parse this string into an array of words by using the split() method, breaking at each instance of a carriage return 

(character code 10) or new line (character code 13). This parsing occurs in the dictionaryLoaded() function:

File Description

WordSearch.as The class that provides the main functionality of the application.

WordSearch.fla

or 

WordSearch.mxml

The main application file for Flex (MXML) or Flash (FLA).

dictionary.txt A file used to determine if spelled words are scorable and spelled correctly.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


592PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

 words = dictionaryText.split(String.fromCharCode(13, 10));

Creating the user interface

After the words have been stored, you can set up the user interface. Create two Button instances: one for submitting a 

word, and another for clearing a word that is currently being spelled. In each case, you must respond to user input by 

listening to the MouseEvent.CLICK event that the button broadcasts and then calling a function. In the setupUI() 

function, this code creates the listeners on the two buttons:

 submitWordButton.addEventListener(MouseEvent.CLICK,submitWord);  
 clearWordButton.addEventListener(MouseEvent.CLICK,clearWord);

Generating a game board

The game board is a grid of random letters. In the generateBoard() function, a two-dimensional grid is created by 

nesting one loop inside another. The first loop increments rows and the second increments the total number of 

columns per row. Each of the cells created by these rows and columns contains a button that represents a letter on the 

board.

 private function generateBoard(startX:Number, startY:Number, totalRows:Number, 
totalCols:Number, buttonSize:Number):void  
 {  
 buttons = new Array();  
 var colCounter:uint;  
 var rowCounter:uint;  
 for (rowCounter = 0; rowCounter < totalRows; rowCounter++)  
 {  
 for (colCounter = 0; colCounter < totalCols; colCounter++)  
 {  
 var b:Button = new Button();  
 b.x = startX + (colCounter*buttonSize);  
 b.y = startY + (rowCounter*buttonSize);  
 b.addEventListener(MouseEvent.CLICK, letterClicked);  
 b.label = getRandomLetter().toUpperCase();  
 b.setSize(buttonSize,buttonSize);  
 b.name = "buttonRow"+rowCounter+"Col"+colCounter;  
 addChild(b);  
   
 buttons.push(b);  
 }  
 }  
 }

Although a listener is added for a MouseEvent.CLICK event on only one line, because it is in a for loop, it is assigned 

to each Button instance. Also, each button is assigned a name derived from its row and column position, which 

provides an easy way to reference the row and column of each button later in the code.

Updated 11 February 2009



593PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

Building words from user input

Words can be spelled by selecting letters that are vertically or horizontally adjacent, but never using the same letter 

twice. Each click generates a mouse event, at which point the word the user is spelling must be checked to ensure it 

properly continues from letters that have previously been clicked. If it is not, the previous word is removed and a new 

one is started. This check occurs in the isLegalContinuation() method.

 private function isLegalContinuation(prevButton:Button, currButton:Button):Boolean  
 {  
 var currButtonRow:Number = Number(currButton.name.charAt(currButton.name. indexOf("Row") + 
3));  
 var currButtonCol:Number = Number(currButton.name.charAt(currButton.name.indexOf("Col") + 
3));  
 var prevButtonRow:Number = Number(prevButton.name.charAt(prevButton.name.indexOf("Row") + 
3));  
 var prevButtonCol:Number = Number(prevButton.name.charAt(prevButton.name.indexOf("Col") + 
3));  
   
 return ((prevButtonCol == currButtonCol && Math.abs(prevButtonRow - currButtonRow) <= 1) ||  
  (prevButtonRow == currButtonRow && Math.abs(prevButtonCol - currButtonCol) <= 1));  
 }

The charAt() and indexOf() methods of the String class retrieve the appropriate rows and columns from both the 

currently clicked button and the previously clicked button. The isLegalContinuation() method returns true if the 

row or column is unchanged and if the row or column that has been changed is within a single increment from the 

previous one. If you want to change the rules of the game and allow diagonal spelling, you can remove the checks for 

an unchanged row or column and the final line would look like this:

 return (Math.abs(prevButtonRow - currButtonRow) <= 1) && Math.abs(prevButtonCol - 
currButtonCol) <= 1));

Checking word submissions

To complete the code for the game, mechanisms for checking word submissions and tallying the score are needed. The 

searchForWord() method contains both:

Updated 11 February 2009



594PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Capturing user input

 private function searchForWord(str:String):Number  
 {  
 if (words && str)  
 {  
 var i:uint = 0  
 for (i = 0; i < words.length; i++)  
 {  
 var thisWord:String = words[i];  
 if (str == words[i])  
 {  
 return i;  
 }  
 }  
 return -1;  
 }  
 else  
 {  
 trace("WARNING: cannot find words, or string supplied is null");  
 }  
 return -1;  
 }

This function loops through all of the words in the dictionary. If the user’s word matches a word in the dictionary, its 

position in the dictionary is returned. The submitWord() method then checks the response and updates the score if 

the position is valid.

Customization

At the beginning of the class are several constants. You can modify this game by modifying these variables. For 

example, you can change the amount of time available to play by increasing the TOTAL_TIME variable. You can also 

increase the PERCENT_VOWELS variable slightly to increase the likelihood of finding words.

Updated 11 February 2009



595

Chapter 27: Networking and 
communication

This chapter explains how to enable your SWF file to communicate with external files and other Adobe Flash Player 

and Adobe AIR instances. It also explains how to load data from external sources, send messages between a Java server 

and Flash Player, and perform file uploads and downloads using the FileReference and FileReferenceList classes.

Basics of networking and communication

Introduction to networking and communication

When you build more complex ActionScript applications, you often need to communicate with server-side scripts, or 

load data from external XML or text files. The flash.net package contains classes to send and receive data across the 

Internet—for example, to load content from remote URLs, to communicate with other Flash Player or AIR instances, 

and to connect to remote websites.

In ActionScript 3.0, you can load external files with the URLLoader and URLRequest classes. You then use a specific 

class to access the data, depending on the type of data that was loaded. For instance, if the remote content is formatted 

as name-value pairs, you use the URLVariables class to parse the server results. Alternatively, if the file loaded using 

the URLLoader and URLRequest classes is a remote XML document, you can parse the XML document using the XML 

class’s constructor, the XMLDocument class’s constructor, or the XMLDocument.parseXML() method. This allows 

you to simplify your ActionScript code because the code for loading external files is the same whether you use the 

URLVariables, XML, or some other class to parse and work with the remote data.

The flash.net package also contains classes for other types of remote communication. These include the FileReference 

class for uploading and downloading files from a server, the Socket and XMLSocket classes that allow you to 

communicate directly with remote computers over socket connections, and the NetConnection and NetStream 

classes, which are used for communicating with Flash-specific server resources (such as Flash Media Server and Flash 

Remoting servers) as well as for loading video files.

Finally, the flash.net package includes classes for communication on the users’ local computer. These include the 

LocalConnection class, which allows you to communicate between two or more SWF files running on a single 

computer, and the SharedObject class, which allows you to store data on a user’s computer and retrieve it later when 

they return to your application. 

Common networking and communication tasks

The following list describes the most common things you’ll want to do related to external communication from 

ActionScript; these tasks are described in this chapter:

• Loading data from an external file or server script

• Sending data to a server script

• Communicating with other local SWF files

• Working with binary socket connections

• Communicating with XML sockets

Updated 11 February 2009



596PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

• Storing persistent local data

• Uploading files to a server

• Downloading files from a server to the user’s machine

Important concepts and terms

The following reference list contains important terms that you will encounter in this chapter:

• External data: Data that is stored in some form outside of the SWF file, and loaded into the SWF file when needed. 

This data could be stored in a file that’s loaded directly, or stored in a database or other form that is retrieved by 

calling scripts or programs running on a server.

• URL-encoded variables: The URL-encoded format provides a way to represent several variables (pairs of variable 

names and values) in a single string of text. Individual variables are written in the format name=value. Each 

variable (that is, each name-value pair) is separated by ampersand characters, like this: 

variable1=value1&variable2=value2. In this way, an indefinite number of variables can be sent as a single 

message.

• MIME type: A standard code used to identify the type of a given file in Internet communication. Any given file type 

has a specific code that is used to identify it. When sending a file or message, a computer (such as a web server or a 

user’s Flash Player or AIR instance) will specify the type of file being sent.

• HTTP: Hypertext Transfer Protocol—a standard format for delivering web pages and various other types of 

content that are sent over the Internet.

• Request method: When a program such as Flash Player or a web browser sends a message (called an HTTP request) 

to a web server, any data being sent can be embedded in the request in one of two ways; these are the two request 

methods GET and POST. On the server end, the program receiving the request will need to look in the appropriate 

portion of the request to find the data, so the request method used to send data from ActionScript should match 

the request method used to read that data on the server.

• Socket connection: A persistent connection for communication between two computers.

• Upload: To send a file to another computer.

• Download: To retrieve a file from another computer.

Working with IPv6 addresses

Flash Player 9.0.115.0 and later support IPv6 (Internet Protocol version 6). IPv6 is a version of Internet Protocol that 

supports 128-bit addresses (an improvement on the earlier IPv4 protocol that supports 32-bit addresses). You might 

need to activate IPv6 on your networking interfaces. For more information, see the Help for the operating system 

hosting the data. 

If IPv6 is supported on the hosting system, you can specify numeric IPv6 literal addresses in URLs enclosed in brackets 

([]), as in the following: 

 rtmp://[2001:db8:ccc3:ffff:0:444d:555e:666f]:1935/test

Flash Player returns literal IPv6 values, according to the following rules:

• Flash Player returns the long form of the string for IPv6 addresses.

• The IP value has no double-colon abbreviations.

• Hexadecimal digits are lowercase only.

• IPv6 addresses are enclosed in square brackets ([]).

Updated 11 February 2009



597PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

• Each address quartet is output as 0 to 4 hexadecimal digits, with the leading zeros omitted.

• An address quartet of all zeros is output as a single zero (not a double colon) except as noted in the following list of 

exceptions.

The IPv6 values that Flash Player returns have the following exceptions:

• An unspecified IPv6 address (all zeros) is output as [::].

• The loopback or localhost IPv6 address is output as [::1].

• IPv4 mapped (converted to IPv6) addresses are output as [::ffff:a.b.c.d], where a.b.c.d is a typical IPv4 dotted-

decimal value.

• IPv4 compatible addresses are output as [::a.b.c.d], where a.b.c.d is a typical IPv4 dotted-decimal value.

Working through in-chapter examples

While you’re working through this chapter you might want to test the example code listings. Several of the code listings 

in the chapter load external data or perform some other type of communication; often these samples include trace() 

function calls, so the results of running the example are displayed in the Output panel. Other examples actually 

perform some function, such as uploading a file to a server. Testing those examples will involve interacting with the 

SWF and confirming that they perform the action they claim to perform.

The code examples fall into two categories. Some of the example listings are written assuming the code is in a 

standalone script, such as attached to a keyframe in a Flash document. To test those examples:

1 Create a new Flash document.

2 Select the keyframe on Frame 1 of the Timeline, and open the Actions panel.

3 Copy the code listing into the Script pane.

4 From the main menu, choose Control > Test Movie to create the SWF file and test the example.

Other example code listings are written as a class; the expectation is that the example class will serve as the document 

class for the Flash document. To test those examples:

1 Create an empty Flash document and save it to your computer

2 Create a new ActionScript file and save it in the same directory as the Flash document. The file’s name should match 

the name of the class in the code listing. For instance, if the code listing defines a class named “UploadTest,” save 

the ActionScript file as “UploadTest.as”.

3 Copy the code listing into the ActionScript file and save the file.

4 In the Flash document, click on a blank part of the Stage or pasteboard to activate the document Property inspector.

5 In the Property inspector, in the Document Class field, enter the name of the ActionScript class you copied from 

the text.

6 Run the program using Control > Test Movie and test the example.

Finally, some of the examples in the chapter involve interacting with a program running on a server. These examples 

include code that can be used to create the necessary server program to test the example; you will need to set up the 

appropriate applications on a web server computer in order to test those examples.

Updated 11 February 2009



598PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Working with external data

ActionScript 3.0 includes mechanisms for loading data from external sources. Those sources can be static content such 

as text files, or dynamic content such as a web script that retrieves data from a database. The data can be formatted in 

a variety of ways, and ActionScript provides functionality for decoding and accessing the data. You can also send data 

to the external server as part of the process of retrieving data.

Using the URLLoader and URLVariables classes

ActionScript 3.0 uses the URLLoader and URLVariables classes for loading external data. The URLLoader class 

downloads data from a URL as text, binary data, or URL-encoded variables. The URLLoader class is useful for 

downloading text files, XML, or other information to use in dynamic, data-driven ActionScript applications. The 

URLLoader class takes advantage of the ActionScript 3.0 advanced event-handling model, which allows you to listen 

for such events as complete, httpStatus, ioError, open, progress, and securityError. The new event-handling 

model is a significant improvement over the ActionScript 2.0 support for the LoadVars.onData, 

LoadVars.onHTTPStatus, and LoadVars.onLoad event handlers because it allows you to handle errors and events 

more efficiently. For more information on handling events, see “Handling events” on page 244

Much like the XML and LoadVars classes in earlier versions of ActionScript, the data of the URLLoader URL is not 

available until the download has completed. You can monitor the progress of the download (bytes loaded and bytes 

total) by listening for the flash.events.ProgressEvent.PROGRESS event to be dispatched, although if a file loads 

too quickly a ProgressEvent.PROGRESS event may not be dispatched. When a file has successfully downloaded, the 

flash.events.Event.COMPLETE event will be dispatched. The loaded data is decoded from UTF-8 or UTF-16 

encoding into a string. 

Note: If no value is set for URLRequest.contentType, values are sent as application/x-www-form-urlencoded. 

The URLLoader.load() method (and optionally the URLLoader class’s constructor) takes a single parameter, 

request, which is a URLRequest instance. A URLRequest instance contains all of the information for a single HTTP 

request, such as the target URL, request method (GET or POST), additional header information, and the MIME type 

(for example, when you upload XML content). 

For example, to upload an XML packet to a server-side script, you could use the following ActionScript 3.0 code:

Updated 11 February 2009



599PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 var secondsUTC:Number = new Date().time;  
 var dataXML:XML =   
 <login>  
 <time>{secondsUTC}</time>  
 <username>Ernie</username>  
 <password>guru</password>  
 </login>;  
 var request:URLRequest = new URLRequest("http://www.yourdomain.com/login.cfm");  
 request.contentType = "text/xml";  
 request.data = dataXML.toXMLString();  
 request.method = URLRequestMethod.POST;  
 var loader:URLLoader = new URLLoader();  
 try  
 {  
 loader.load(request);  
 }  
 catch (error:ArgumentError)  
 {  
 trace("An ArgumentError has occurred.");  
 }  
 catch (error:SecurityError)  
 {  
 trace("A SecurityError has occurred.");  
 }

The previous snippet creates an XML instance named dataXML that contains an XML packet to be sent to the server. 

Next, you set the URLRequest contentType property to "text/xml" and set the URLRequest data property to the 

contents of the XML packet, which are converted to a string by using the XML.toXMLString() method. Finally, you 

create a new URLLoader instance and send the request to the remote script by using the URLLoader.load() method. 

There are three ways in which you can specify parameters to pass in a URL request:

• Within the URLVariables constructor

• Within the URLVariables.decode() method

• As specific properties within the URLVariables object itself

When you define variables within the URLVariables constructor or within the URLVariables.decode() method, you 

need to make sure that you URL-encode the ampersand character because it has a special meaning and acts as a 

delimiter. For example, when you pass an ampersand, you need to URL-encode the ampersand by changing it from & 

to %26 because the ampersand acts as a delimiter for parameters.

Loading data from external documents

When you build dynamic applications with ActionScript 3.0, it’s a good idea to load data from external files or from 

server-side scripts. This lets you build dynamic applications without having to edit or recompile your ActionScript 

files. For example, if you build a “tip of the day” application, you can write a server-side script that retrieves a random 

tip from a database and saves it to a text file once a day. Then your ActionScript application can load the contents of a 

static text file instead of querying the database each time. 

The following snippet creates a URLRequest and URLLoader object, which loads the contents of an external text file, 

params.txt:

 var request:URLRequest = new URLRequest("params.txt");  
 var loader:URLLoader = new URLLoader();  
 loader.load(request);

Updated 11 February 2009



600PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

You can simplify the previous snippet to the following:

 var loader:URLLoader = new URLLoader(new URLRequest("params.txt"));

By default, if you do not define a request method, Flash Player and Adobe AIR load the content using the HTTP GET 

method. If you want to send the data using the POST method, you need to set the request.method property to POST 

using the static constant URLRequestMethod.POST, as the following code shows: 

 var request:URLRequest = new URLRequest("sendfeedback.cfm");  
 request.method = URLRequestMethod.POST;

The external document, params.txt, that is loaded at run time contains the following data:

 monthNames=January,February,March,April,May,June,July,August,September,October,November,Dece
mber&dayNames=Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday

The file contains two parameters, monthNames and dayNames. Each parameter contains a comma-separated list that 

is parsed as strings. You can split this list into an array using the String.split() method.

Avoid using reserved words or language constructs as variable names in external data files, because doing so makes 

reading and debugging your code more difficult.

Once the data has loaded, the Event.COMPLETE event is dispatched, and the contents of the external document are 

available to use in the URLLoader’s data property, as the following code shows:

 private function completeHandler(event:Event):void  
 {  
 var loader2:URLLoader = URLLoader(event.target);  
 trace(loader2.data);  
 }

If the remote document contains name-value pairs, you can parse the data using the URLVariables class by passing in 

the contents of the loaded file, as follows:

 private function completeHandler(event:Event):void  
 {  
 var loader2:URLLoader = URLLoader(event.target);  
 var variables:URLVariables = new URLVariables(loader2.data);  
 trace(variables.dayNames);  
 }

Each name-value pair from the external file is created as a property in the URLVariables object. Each property within 

the variables object in the previous code sample is treated as a string. If the value of the name-value pair is a list of items, 

you can convert the string into an array by calling the String.split() method, as follows: 

 var dayNameArray:Array = variables.dayNames.split(",");

If you are loading numeric data from external text files, you need to convert the values into numeric values by using 

a top-level function, such as int(), uint(), or Number(). 

Instead of loading the contents of the remote file as a string and creating a new URLVariables object, you could instead 

set the URLLoader.dataFormat property to one of the static properties found in the URLLoaderDataFormat class. 

The three possible values for the URLLoader.dataFormat property are as follows: 

• URLLoaderDataFormat.BINARY—The URLLoader.data property will contain binary data stored in a ByteArray 

object.

• URLLoaderDataFormat.TEXT—The URLLoader.data property will contain text in a String object.

• URLLoaderDataFormat.VARIABLES—The URLLoader.data property will contain URL-encoded variables stored 

in a URLVariables object. 

Updated 11 February 2009



601PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

The following code demonstrates how setting the URLLoader.dataFormat property to 

URLLoaderDataFormat.VARIABLES allows you to automatically parse loaded data into a URLVariables object: 

 package  
 {  
 import flash.display.Sprite;  
 import flash.events.*;  
 import flash.net.URLLoader;  
 import flash.net.URLLoaderDataFormat;  
 import flash.net.URLRequest;  
   
 public class URLLoaderDataFormatExample extends Sprite  
 {  
 public function URLLoaderDataFormatExample()  
 {  
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/params.txt");  
 var variables:URLLoader = new URLLoader();  
 variables.dataFormat = URLLoaderDataFormat.VARIABLES;  
 variables.addEventListener(Event.COMPLETE, completeHandler);  
 try  
 {  
 variables.load(request);  
 }   
 catch (error:Error)  
 {  
 trace("Unable to load URL: " + error);  
 }  
 }  
 private function completeHandler(event:Event):void  
 {  
 var loader:URLLoader = URLLoader(event.target);  
 trace(loader.data.dayNames);  
 }  
 }  
 }

Note: The default value for URLLoader.dataFormat is URLLoaderDataFormat.TEXT.

As the following example shows, Loading XML from an external file is the same as loading URLVariables. You can 

create a URLRequest instance and a URLLoader instance and use them to download a remote XML document. When 

the file has completely downloaded, the Event.COMPLETE event is dispatched and the contents of the external file are 

converted to an XML instance, which you can parse using XML methods and properties.

Updated 11 February 2009



602PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 package  
 {  
 import flash.display.Sprite;  
 import flash.errors.*;  
 import flash.events.*;  
 import flash.net.URLLoader;  
 import flash.net.URLRequest;  
   
 public class ExternalDocs extends Sprite  
 {  
 public function ExternalDocs()  
 {  
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/data.xml");  
 var loader:URLLoader = new URLLoader();  
 loader.addEventListener(Event.COMPLETE, completeHandler);  
 try  
 {  
 loader.load(request);  
 }  
 catch (error:ArgumentError)  
 {  
 trace("An ArgumentError has occurred.");  
 }  
 catch (error:SecurityError)  
 {  
 trace("A SecurityError has occurred.");  
 }  
 }  
 private function completeHandler(event:Event):void  
 {  
 var dataXML:XML = XML(event.target.data);  
 trace(dataXML.toXMLString());  
 }  
 }  
 }

Communicating with external scripts

In addition to loading external data files, you can also use the URLVariables class to send variables to a server-side 

script and process the server’s response. This is useful, for example, if you are programming a game and want to send 

the user’s score to a server to calculate whether it should be added to the high scores list, or even send a user’s login 

information to a server for validation. A server-side script can process the user name and password, validate it against 

a database, and return confirmation of whether the user-supplied credentials are valid. 

The following snippet creates a URLVariables object named variables, which creates a new variable called name. 

Next, a URLRequest object is created that specifies the URL of the server-side script to send the variables to. Then you 

set the method property of the URLRequest object to send the variables as an HTTP POST request. To add the 

URLVariables object to the URL request, you set the data property of the URLRequest object to the URLVariables 

object created earlier. Finally, the URLLoader instance is created and the URLLoader.load() method is invoked, 

which initiates the request. 

Updated 11 February 2009



603PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 var variables:URLVariables = new URLVariables("name=Franklin");  
 var request:URLRequest = new URLRequest();  
 request.url = "http://www.[yourdomain].com/greeting.cfm";  
 request.method = URLRequestMethod.POST;  
 request.data = variables;  
 var loader:URLLoader = new URLLoader();  
 loader.dataFormat = URLLoaderDataFormat.VARIABLES;  
 loader.addEventListener(Event.COMPLETE, completeHandler);  
 try  
 {  
 loader.load(request);  
 }  
 catch (error:Error)  
 {  
 trace("Unable to load URL");  
 }  
   
 function completeHandler(event:Event):void  
 {  
 trace(event.target.data.welcomeMessage);  
 }

The following code contains the contents of the Adobe ColdFusion® greeting.cfm document used in the previous 

example: 

 <cfif NOT IsDefined("Form.name") OR Len(Trim(Form.Name)) EQ 0>  
 <cfset Form.Name = "Stranger" />  
 </cfif>  
 <cfoutput>welcomeMessage=#UrlEncodedFormat("Welcome, " & Form.name)#  
 </cfoutput>

Connecting to other Flash Player and AIR instances

The LocalConnection class lets you communicate between different Flash Player and AIR instances, such as a SWF in 

an HTML container or in an embedded or stand-alone player. This allows you to build very versatile applications that 

can share data between Flash Player and AIR instances, such as SWF files running in a web browser or embedded in 

desktop applications. 

LocalConnection class

The LocalConnection class lets you develop SWF files that can send instructions to other SWF files without the use of 

the fscommand() method or JavaScript. LocalConnection objects can communicate only among SWF files that are 

running on the same client computer, but they can run in different applications. For example, a SWF file running in a 

browser and a SWF file running in a projector can share information, with the projector maintaining local information 

and the browser-based SWF connecting remotely. (A projector is a SWF file saved in a format that can run as a stand-

alone application—that is, the projector doesn’t require Flash Player to be installed because it is embedded inside the 

executable.) 

LocalConnection objects can be used to communicate between SWFs using different ActionScript versions:

• ActionScript 3.0 LocalConnection objects can communicate with LocalConnection objects created in ActionScript 

1.0 or 2.0.

Updated 11 February 2009



604PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

• ActionScript 1.0 or 2.0 LocalConnection objects can communicate with LocalConnection objects created in 

ActionScript 3.0.

Flash Player handles this communication between LocalConnection objects of different versions automatically.

The simplest way to use a LocalConnection object is to allow communication only between LocalConnection objects 

located in the same domain. That way, you won’t have to worry about security issues. However, if you need to allow 

communication between domains, you have several ways to implement security measures. For more information, see 

the discussion of the connectionName parameter of the send() method and the allowDomain() and domain entries 

in the LocalConnection class listing in the ActionScript 3.0 Language and Components Reference.

It is possible to use LocalConnection objects to send and receive data within a single SWF file, but Adobe does not 

recommended doing so. Instead, you should use shared objects.

There are three ways to add callback methods to your LocalConnection objects:

• Subclass the LocalConnection class and add methods.

• Set the LocalConnection.client property to an object that implements the methods. 

• Create a dynamic class that extends LocalConnection and dynamically attach methods.

The first way to add callback methods is to extend the LocalConnection class. You define the methods within the 

custom class instead of dynamically adding them to the LocalConnection instance. This approach is demonstrated in 

the following code:

 package  
 {  
 import flash.net.LocalConnection;  
 public class CustomLocalConnection extends LocalConnection  
 {  
 public function CustomLocalConnection(connectionName:String)  
 {  
 try  
 {  
 connect(connectionName);  
 }  
 catch (error:ArgumentError)  
 {  
 // server already created/connected  
 }  
 }  
 public function onMethod(timeString:String):void  
 {  
 trace("onMethod called at: " + timeString);  
 }  
 }  
 }

In order to create a new instance of the DynamicLocalConnection class, you can use the following code:

 var serverLC:CustomLocalConnection;  
 serverLC = new CustomLocalConnection("serverName");

The second way to add callback methods is to use the LocalConnection.client property. This involves creating a 

custom class and assigning a new instance to the client property, as the following code shows: 

 var lc:LocalConnection = new LocalConnection();  
 lc.client = new CustomClient();

Updated 11 February 2009



605PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

The LocalConnection.client property indicates the object callback methods that should be invoked. In the 

previous code, the client property was set to a new instance of a custom class, CustomClient. The default value for 

the client property is the current LocalConnection instance. You can use the client property if you have two data 

handlers that have the same set of methods but act differently—for example, in an application where a button in one 

window toggles the view in a second window.

To create the CustomClient class, you could use the following code:

 package  
 {  
 public class CustomClient extends Object  
 {  
 public function onMethod(timeString:String):void  
 {  
 trace("onMethod called at: " + timeString);  
 }  
 }  
 }

The third way to add callback methods, creating a dynamic class and dynamically attaching the methods, is very 

similar to using the LocalConnection class in earlier versions of ActionScript, as the following code shows:

 import flash.net.LocalConnection;  
 dynamic class DynamicLocalConnection extends LocalConnection {}

Callback methods can be dynamically added to this class by using the following code:

 var connection:DynamicLocalConnection = new DynamicLocalConnection();  
 connection.onMethod = this.onMethod;  
 // Add your code here.  
 public function onMethod(timeString:String):void  
 {  
 trace("onMethod called at: " + timeString);  
 }

The previous way of adding callback methods is not recommended because the code is not very portable. In addition, 

using this method of creating local connections could create performance issues, because accessing dynamic properties 

is dramatically slower than accessing sealed properties.

Sending messages between two Flash Player instances

You use the LocalConnection class to communicate between different instances of Flash Player and Adobe AIR. For 

example, you could have multiple Flash Player instances on a web page, or have a Flash Player instance retrieve data 

from a Flash Player instance in a pop-up window.

The following code defines a local connection object that acts as a server and accepts incoming calls from other Flash 

Player instances: 

Updated 11 February 2009



606PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 package  
 {  
 import flash.net.LocalConnection;  
 import flash.display.Sprite;  
 public class ServerLC extends Sprite  
 {  
 public function ServerLC()  
 {  
 var lc:LocalConnection = new LocalConnection();  
 lc.client = new CustomClient1();  
 try  
 {  
 lc.connect("conn1");  
 }  
 catch (error:Error)  
 {  
 trace("error:: already connected");  
 }  
 }  
 }  
 }

This code first creates a LocalConnection object named lc and sets the client property to a custom class, 

CustomClient1. When another Flash Player instance calls a method in this local connection instance, Flash Player 

looks for that method in the CustomClient1 class.

Whenever a Flash Player instance connects to this SWF file and tries to invoke any method for the specified local 

connection, the request is sent to the class specified by the client property, which is set to the CustomClient1 class:

 package  
 {  
 import flash.events.*;  
 import flash.system.fscommand;  
 import flash.utils.Timer;  
 public class CustomClient1 extends Object  
 {  
 public function doMessage(value:String = ""):void  
 {  
 trace(value);  
 }  
 public function doQuit():void  
 {  
 trace("quitting in 5 seconds");  
 this.close();  
 var quitTimer:Timer = new Timer(5000, 1);  
 quitTimer.addEventListener(TimerEvent.TIMER, closeHandler);  
 }  
 public function closeHandler(event:TimerEvent):void  
 {  
 fscommand("quit");  
 }  
 }  
 }

To create a LocalConnection server, call the LocalConnection.connect() method and provide a unique connection 

name. If you already have a connection with the specified name, an ArgumentError error is generated, indicating that 

the connection attempt failed because the object is already connected. 

Updated 11 February 2009



607PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

The following snippet demonstrates how to create a new socket connection with the name conn1:

 try  
 {  
 connection.connect("conn1");  
 }  
 catch (error:ArgumentError)  
 {  
 trace("Error! Server already exists\n");  
 }

Connecting to the primary SWF file from a secondary SWF file requires that you create a new LocalConnection object 

in the sending LocalConnection object and then call the LocalConnection.send() method with the name of the 

connection and the name of the method to execute. For example, to connect to the LocalConnection object that you 

created earlier, you use the following code:

 sendingConnection.send("conn1", "doQuit");

This code connects to an existing LocalConnection object with the connection name conn1 and invokes the doQuit() 

method in the remote SWF file. If you want to send parameters to the remote SWF file, you specify additional 

arguments after the method name in the send() method, as the following snippet shows:

 sendingConnection.send("conn1", "doMessage", "Hello world");

Connecting to SWF documents in different domains

To allow communications only from specific domains, you call the allowDomain() or allowInsecureDomain() 

method of the LocalConnection class and pass a list of one or more domains that are allowed to access this 

LocalConnection object. 

In earlier versions of ActionScript, LocalConnection.allowDomain() and 

LocalConnection.allowInsecureDomain() were callback methods that had to be implemented by developers and 

that had to return a Boolean value. In ActionScript 3.0, LocalConnection.allowDomain() and 

LocalConnection.allowInsecureDomain() are both built-in methods, which developers can call just like 

Security.allowDomain() and Security.allowInsecureDomain(), passing one or more names of domains to be 

allowed. 

There are two special values that you can pass to the LocalConnection.allowDomain() and 

LocalConnection.allowInsecureDomain() methods: * and localhost. The asterisk value (*) allows access from 

all domains. The string localhost allows calls to the SWF file from SWF files that are locally installed. 

Flash Player 8 introduced security restrictions on local SWF files. A SWF file that is allowed to access the Internet 

cannot also have access to the local file system. If you specify localhost, any local SWF file can access the SWF file. 

If the LocalConnection.send() method attempts to communicate with a SWF file from a security sandbox to which 

the calling code does not have access, a securityError event(SecurityErrorEvent.SECURITY_ERROR) is 

dispatched. To work around this error, you can specify the caller's domain in the receiver's 

LocalConnection.allowDomain() method.

If you implement communication only between SWF files in the same domain, you can specify a connectionName 

parameter that does not begin with an underscore (_) and does not specify a domain name (for example, 

myDomain:connectionName). Use the same string in the LocalConnection.connect(connectionName) 

command. 

Updated 11 February 2009



608PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

If you implement communication between SWF files in different domains, you specify a connectionName parameter 

that begins with an underscore. Specifying the underscore makes the SWF file with the receiving LocalConnection 

object more portable between domains. Here are the two possible cases:

• If the string for connectionName does not begin with an underscore, Flash Player adds a prefix with the 

superdomain name and a colon (for example, myDomain:connectionName). Although this ensures that your 

connection does not conflict with connections of the same name from other domains, any sending 

LocalConnection objects must specify this superdomain (for example, myDomain:connectionName). If you move 

the SWF file with the receiving LocalConnection object to another domain, Flash Player changes the prefix to 

reflect the new superdomain (for example, anotherDomain:connectionName). All sending LocalConnection 

objects have to be manually edited to point to the new superdomain.

• If the string for connectionName begins with an underscore (for example, _connectionName), Flash Player does 

not add a prefix to the string. This means the receiving and sending LocalConnection objects will use identical 

strings for connectionName. If the receiving object uses LocalConnection.allowDomain() to specify that 

connections from any domain will be accepted, you can move the SWF file with the receiving LocalConnection 

object to another domain without altering any sending LocalConnection objects.

Socket connections

There are two different types of socket connections possible in ActionScript 3.0: XML socket connections and binary 

socket connections. An XML socket lets you connect to a remote server and create a server connection that remains 

open until explicitly closed. This lets you exchange XML data between a server and client without having to continually 

open new server connections. Another benefit of using an XML socket server is that the user doesn’t need to explicitly 

request data. You can send data from the server without requests, and you can send data to every client connected to 

the XML socket server. 

XML socket connections require the presence of a socket policy file on the target server. For more information, see 

“Website controls (policy files)” on page 691 and “Connecting to sockets” on page 706.

A binary socket connection is similar to an XML socket except that the client and server don’t need to exchange XML 

packets specifically. Instead, the connection can transfer data as binary information. This allows you to connect to a 

wide range of services, including mail servers (POP3, SMTP, and IMAP), and news servers (NNTP).

Socket class

Introduced in ActionScript 3.0, the Socket class enables ActionScript to make socket connections and to read and write 

raw binary data. It is similar to the XMLSocket class, but does not dictate the format of the received and transmitted 

data. The Socket class is useful for interoperating with servers that use binary protocols. By using binary socket 

connections, you can write code that allows interaction with several different Internet protocols, such as POP3, SMTP, 

IMAP, and NNTP. This in turn enables Flash Player to connect to mail and news servers.

Flash Player can interface with a server by using the binary protocol of that server directly. Some servers use the big-

endian byte order, and some use the little-endian byte order. Most servers on the Internet use the big-endian byte order 

because “network byte order” is big-endian. The little-endian byte order is popular because the Intel® x86 architecture 

uses it. You should use the endian byte order that matches the byte order of the server that is sending or receiving data. 

All operations that are performed by the IDataInput and IDataOutput interfaces, and the classes that implement those 

interfaces (ByteArray, Socket, and URLStream), are encoded by default in big-endian format; that is, with the most 

significant byte first. This is done to match Java and official network byte order. To change whether big-endian or 

little-endian byte order is used, you can set the endian property to Endian.BIG_ENDIAN or Endian.LITTLE_ENDIAN. 

Updated 11 February 2009



609PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

The Socket class inherits all the methods implemented by the IDataInput and IDataOutput interfaces (located in the 

flash.utils package), and those methods should be used to write to and read from the Socket.

XMLSocket class

ActionScript provides a built-in XMLSocket class, which lets you open a continuous connection with a server. This 

open connection removes latency issues and is commonly used for real-time applications such as chat applications or 

multiplayer games. A traditional HTTP-based chat solution frequently polls the server and downloads new messages 

using an HTTP request. In contrast, an XMLSocket chat solution maintains an open connection to the server, which 

lets the server immediately send incoming messages without a request from the client. 

To create a socket connection, you must create a server-side application to wait for the socket connection request and 

send a response to the SWF file. This type of server-side application can be written in a programming language such 

as Java, Python, or Perl. To use the XMLSocket class, the server computer must run a daemon that understands the 

protocol used by the XMLSocket class. The protocol is described in the following list:

• XML messages are sent over a full-duplex TCP/IP stream socket connection.

• Each XML message is a complete XML document, terminated by a zero (0) byte.

• An unlimited number of XML messages can be sent and received over a single XMLSocket connection.

The XMLSocket class cannot tunnel through firewalls automatically because, unlike the Real-Time Messaging 

Protocol (RTMP), XMLSocket has no HTTP tunneling capability. If you need to use HTTP tunneling, consider using 

Flash Remoting or Flash Media Server (which supports RTMP) instead.

Note: Setting up a server to communicate with the XMLSocket object can be challenging. If your application does not 

require real-time interactivity, use the URLLoader class instead of the XMLSocket class.

You can use the XMLSocket.connect() and XMLSocket.send() methods of the XMLSocket class to transfer XML to 

and from a server over a socket connection. The XMLSocket.connect() method establishes a socket connection with 

a web server port. The XMLSocket.send() method passes an XML object to the server specified in the socket 

connection.

When you invoke the XMLSocket.connect() method, Flash Player opens a TCP/IP connection to the server and 

keeps that connection open until one of the following occurs:

• The XMLSocket.close() method of the XMLSocket class is called.

• No more references to the XMLSocket object exist.

• Flash Player exits.

• The connection is broken (for example, the modem disconnects).

Creating and connecting to a Java XML socket server

The following code demonstrates a simple XMLSocket server written in Java that accepts incoming connections and 

displays the received messages in the command prompt window. By default, a new server is created on port 8080 of 

your local machine, although you can specify a different port number when starting your server from the command 

line. 

Create a new text document and add the following code:

Updated 11 February 2009



610PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 import java.io.*;  
 import java.net.*;  
   
 class SimpleServer  
 {  
 private static SimpleServer server;  
 ServerSocket socket;  
 Socket incoming;  
 BufferedReader readerIn;  
 PrintStream printOut;  
   
 public static void main(String[] args)  
 {  
 int port = 8080;  
   
 try  
 {  
 port = Integer.parseInt(args[0]);  
 }  
 catch (ArrayIndexOutOfBoundsException e)  
 {  
 // Catch exception and keep going.  
 }  
   
 server = new SimpleServer(port);  
 }  
   
 private SimpleServer(int port)  
 {  
 System.out.println(">> Starting SimpleServer");  
 try  
 {  
 socket = new ServerSocket(port);  
 incoming = socket.accept();  
 readerIn = new BufferedReader(new InputStreamReader(incoming.getInputStream()));  
 printOut = new PrintStream(incoming.getOutputStream());  
 printOut.println("Enter EXIT to exit.\r");  
 out("Enter EXIT to exit.\r");  
 boolean done = false;  
 while (!done)  
 {  
 String str = readerIn.readLine();  
 if (str == null)  
 {  
 done = true;  
 }  
 else  
 {  
 out("Echo: " + str + "\r");  

Updated 11 February 2009



611PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 if(str.trim().equals("EXIT"))  
 {  
 done = true;  
 }  
 }  
 incoming.close();  
 }  
 }  
 catch (Exception e)  
 {  
 System.out.println(e);  
 }  
 }  
   
 private void out(String str)  
 {  
 printOut.println(str);  
 System.out.println(str);  
 }  
 }

Save the document to your hard disk as SimpleServer.java and compile it using a Java compiler, which creates a Java 

class file named SimpleServer.class.

You can start the XMLSocket server by opening a command prompt and typing java SimpleServer. The 

SimpleServer.class file can be located anywhere on your local computer or network; it doesn’t need to be placed in the 

root directory of your web server.

If you’re unable to start the server because the files are not located within the Java classpath, try starting the server 

with java -classpath . SimpleServer.

To connect to the XMLSocket from your ActionScript application, you need to create a new instance of the XMLSocket 

class, and call the XMLSocket.connect() method while passing a host name and port number, as follows:

 var xmlsock:XMLSocket = new XMLSocket();  
 xmlsock.connect("127.0.0.1", 8080);

Whenever you receive data from the server, the data event (flash.events.DataEvent.DATA) is dispatched:

 xmlsock.addEventListener(DataEvent.DATA, onData);  
 private function onData(event:DataEvent):void  
 {  
 trace("[" + event.type + "] " + event.data);  
 }

To send data to the XMLSocket server, you use the XMLSocket.send() method and pass an XML object or string. 

Flash Player converts the supplied parameter to a String object and sends the content to the XMLSocket server 

followed by a zero (0) byte:

 xmlsock.send(xmlFormattedData);

The XMLSocket.send() method does not return a value that indicates whether the data was successfully transmitted. 

If an error occurred while trying to send data, an IOError error is thrown.

Each message you send to the XML socket server must be terminated by a newline (\n) character. 

Updated 11 February 2009



612PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Storing local data

A shared object, sometimes referred to as a “Flash cookie,” is a data file that can be created on your computer by the 

sites that you visit. Shared objects are most often used to enhance your web-browsing experience—for example, by 

allowing you to personalize the look and feel of a website that you frequently visit. Shared objects, by themselves, can’t 

do anything to or with the data on your computer. More important, shared objects can never access or remember your 

e-mail address or other personal information—unless you willingly provide such information. 

New shared object instances can be created using the static SharedObject.getLocal() or 

SharedObject.getRemote() methods. The getLocal() method attempts to load a locally persistent shared object 

that is available only to the current client, whereas the getRemote() method attempts to load a remote shared object 

that can be shared across multiple clients by means of a server, such as Flash Media Server. If the local or remote shared 

object does not exist, the getLocal() and getRemote() methods will create a new SharedObject instance. 

The following code attempts to load a local shared object named test. If this shared object doesn’t exist, a new shared 

object with this name will be created.

 var so:SharedObject = SharedObject.getLocal("test");  
 trace("SharedObject is " + so.size + " bytes");

If a shared object named test cannot be found, a new one is created with a size of 0 bytes. If the shared object previously 

existed, its current size (in bytes) is returned.

You can store data in a shared object by assigning values to the data object, as seen in the following example:

 var so:SharedObject = SharedObject.getLocal("test");  
 so.data.now = new Date().time;  
 trace(so.data.now);  
 trace("SharedObject is " + so.size + " bytes");

If there is already a shared object with the name test and the parameter now, the existing value is overwritten. You 

can use the SharedObject.size property to determine if a shared object already exists, as the following example 

shows:

 var so:SharedObject = SharedObject.getLocal("test");  
 if (so.size == 0)  
 {  
 // Shared object doesn't exist.  
 trace("created...");  
 so.data.now = new Date().time;  
 }  
 trace(so.data.now);  
 trace("SharedObject is " + so.size + " bytes");

The previous code uses the size parameter to determine if the shared object instance with the specified name already 

exists. If you test the following code, you’ll notice that each time you run the code, the shared object is recreated. In 

order for a shared object to be saved to the user’s hard drive, you must explicitly call the SharedObject.flush() 

method, as the following example shows:

Updated 11 February 2009



613PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 var so:SharedObject = SharedObject.getLocal("test");  
 if (so.size == 0)  
 {  
 // Shared object doesn't exist.  
 trace("created...");  
 so.data.now = new Date().time;  
 }  
 trace(so.data.now);  
 trace("SharedObject is " + so.size + " bytes");  
 so.flush();

When using the flush() method to write shared objects to a user’s hard drive, you should be careful to check whether 

the user has explicitly disabled local storage using the Flash Player Settings Manager 

(www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager07.html), as shown in the 

following example:

 var so:SharedObject = SharedObject.getLocal("test");  
 trace("Current SharedObject size is " + so.size + " bytes.");  
 so.flush();

Values can be retrieved from a shared object by specifying the property’s name in the shared object’s data property. 

For example, if you run the following code, Flash Player will display how many minutes ago the SharedObject instance 

was created:

 var so:SharedObject = SharedObject.getLocal("test");  
 if (so.size == 0)  
 {  
 // Shared object doesn't exist.  
 trace("created...");  
 so.data.now = new Date().time;  
 }  
 var ageMS:Number = new Date().time - so.data.now;  
 trace("SharedObject was created " + Number(ageMS / 1000 / 60).toPrecision(2) + " minutes ago");  
 trace("SharedObject is " + so.size + " bytes");  
 so.flush();

The first time the previous code is run, a new SharedObject instance named test will be created and have an initial 

size of 0 bytes. Because the initial size is 0 bytes, the if statement evaluates to true and a new property named now is 

added to the local shared object. The shared object’s age is calculated by subtracting the value of the now property from 

the current time. Each subsequent time the previous code is run, the size of the shared object should be greater than 0, 

and the code will trace how many minutes ago the shared object was created.

Displaying contents of a shared object

Values are stored in shared objects within the data property. You can loop over each value within a shared object 

instance by using a for..in loop, as the following example shows:

 var so:SharedObject = SharedObject.getLocal("test");  
 so.data.hello = "world";  
 so.data.foo = "bar";  
 so.data.timezone = new Date().timezoneOffset;  
 for (var i:String in so.data)  
 {  
 trace(i + ":\t" + so.data[i]);  
 }

Updated 11 February 2009

http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager07.html


614PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Creating a secure SharedObject

When you create either a local or remote SharedObject using getLocal() or getRemote(), there is an optional 

parameter named secure that determines whether access to this shared object is restricted to SWF files that are 

delivered over an HTTPS connection. If this parameter is set to true and your SWF file is delivered over HTTPS, Flash 

Player creates a new secure shared object or gets a reference to an existing secure shared object. This secure shared 

object can be read from or written to only by SWF files delivered over HTTPS that call SharedObject.getLocal() 

with the secure parameter set to true. If this parameter is set to false and your SWF file is delivered over HTTPS, 

Flash Player creates a new shared object or gets a reference to an existing shared object. 

This shared object can be read from or written to by SWF files delivered over non-HTTPS connections. If your SWF 

file is delivered over a non-HTTPS connection and you try to set this parameter to true, the creation of a new shared 

object (or the access of a previously created secure shared object) fails, an error is thrown, and the shared object is set 

to null. If you attempt to run the following snippet from a non-HTTPS connection, the SharedObject.getLocal() 

method will throw an error:

 try  
 {  
 var so:SharedObject = SharedObject.getLocal("contactManager", null, true);  
 }  
 catch (error:Error)  
 {  
 trace("Unable to create SharedObject.");  
 }

Regardless of the value of this parameter, the created shared objects count toward the total amount of disk space 

allowed for a domain.

Working with data files

A FileReference object represents a data file on a client or server machine. The methods of the FileReference class let 

your application load and save data files locally, and transfer file data to and from remote servers.

The FileReference class offers two different approaches to loading, transferring, and saving data files. Since its 

introduction, the FileReference class has included the browse() method to let the user select a file, the upload() 

method to transfer the file data to a remote server, and the download() method to retrieve that data from the server 

and save it in a local file. Starting with Flash Player 10 and Adobe AIR 1.5, the FileReference class has load() and 

save() methods that allow you to access and save local files directly as well. The use of those methods is similar to the 

equivalent-named methods in the URLLoader and Loader classes. This section discusses both uses of the FileReference 

class.

Note: The AIR runtime provides additional classes (in the flash.filesystem package) for working with files and the local 

file system. The flash.filesystem classes offer more features than the FileReference class, but they are only supported in AIR 

and not in the Flash Player.

FileReference class

Each FileReference object refers to a single data file on the local machine. The properties of the FileReference class 

contain information about the file’s size, type, name, file extension, creator, creation date, and modification date.

Note: The creator property is supported on Mac OS only. All other platforms return null.

Note: The extension property is only supported in the AIR runtime.

Updated 11 February 2009



615PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

You can create an instance of the FileReference class one of two ways:

• Use the new operator, as shown in the following code:

 import flash.net.FileReference;  
 var fileRef:FileReference = new FileReference();

• Call the FileReferenceList.browse() method, which opens a dialog box and prompts the user to select one or 

more files to upload. It then creates an array of FileReference objects if the user successfully selects one or more files.

Once you have created a FileReference object you can do the following:

• Call the FileReference.browse() method, which opens a dialog box and prompts the user to select a single file 

from the local file system. This is usually done before a subsequent call to the FileReference.upload() method 

to upload the file to a remote server or a call to the FileReference.load() method to open a local file.

• Call the FileReference.download() method. This opens a dialog box to let the user select a location for saving a 

new file. Then it downloads data from the server and stores it in the new file.

• Call the FileReference.load() method. This method begins loading data from a file selected previously using 

the browse() method. The load() method can’t be called until the browse() operation completes (the user selects 

a file).

• Call the FileReference.save() method. This method opens a dialog box and prompts the user to choose a single 

file location on the local file system. It then saves data to the specified location.

Note: You can only perform one browse(), download(), or save() action at a time, because only one dialog box can 

be open at any point.

The FileReference object properties such as name, size, or modificationDate will not be populated until one of the 

following happens: 

• The FileReference.browse() method or FileReferenceList.browse() method has been called, and the user 

has selected a file using the dialog box.

• The FileReference.download() method has been called, and the user has specified a new file location using the 

dialog box.

Note: When performing a download, only the FileReference.name property is populated before the download is 

complete. After the file has been downloaded, all properties are available.

While calls to the FileReference.browse(), FileReferenceList.browse(), FileReference.download(), 

FileReference.load(), or FileReference.save() methods are executing, most players continue SWF file 

playback including dispatching events and executing code.

For uploading and downloading operations, a SWF file can access files only within its own domain, including any 

domains specified by a policy file. You need to put a policy file on the server containing the file if that server is not in 

the same domain as the SWF file initiating the upload or download.

Loading data from files

The FileReference.load() method lets you load data from a local file into memory. Your code must first call the 

FileReference.browse() method to let the user select a file to load.

The FileReference.load() method returns immediately after being called, but the data being loaded isn’t available 

immediately. The FileReference object dispatches events to invoke listener methods at each step of the loading process.

The FileReference object dispatches the following events during the loading process.

• open event (Event.OPEN): Dispatched when the load operation starts.

Updated 11 February 2009



616PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

• progress event (ProgressEvent.PROGRESS): Dispatched periodically as bytes of data are read from the file.

• complete event (Event.COMPLETE): Dispatched when the load operation completes successfully.

• ioError event (IOErrorEvent.IO_ERROR): Dispatched if the load process fails because an input/output error 

occurs while opening or reading data from the file.

Once the FileReference object dispatches the complete event, the loaded data can be accessed as a ByteArray in the 

FileReference object’s data property.

The following example shows how to prompt the user to select a file and then load the data from that file into memory:

package  
{  
 import flash.display.Sprite;  

import flash.events.*;   
import flash.net.FileFilter;  
import flash.net.FileReference;  
import flash.net.URLRequest;  
import flash.utils.ByteArray;  

  
public class FileReferenceExample1 extends Sprite  
{  

private var fileRef:FileReference;  
public function FileReferenceExample1()  
{  

fileRef = new FileReference();  
fileRef.addEventListener(Event.SELECT, onFileSelected);  
fileRef.addEventListener(Event.CANCEL, onCancel);  
fileRef.addEventListener(IOErrorEvent.IO_ERROR, onIOError);  
fileRef.addEventListener(SecurityErrorEvent.SECURITY_ERROR,  

onSecurityError);  
var textTypeFilter:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)",  

"*.txt;*.rtf");  
fileRef.browse([textTypeFilter]);  

}  
public function onFileSelected(evt:Event):void  
{  

fileRef.addEventListener(ProgressEvent.PROGRESS, onProgress);  
fileRef.addEventListener(Event.COMPLETE, onComplete);  
fileRef.load();  

}  
  

public function onProgress(evt:ProgressEvent):void  
{  

trace("Loaded " + evt.bytesLoaded + " of " + evt.bytesTotal + " bytes.");  
}  

  
public function onComplete(evt:Event):void  

Updated 11 February 2009



617PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

{  
trace("File was successfully loaded.");  
trace(fileRef.data);  

}  
  

public function onCancel(evt:Event):void  
{  

trace("The browse request was canceled by the user.");  
}  

  
public function onIOError(evt:IOErrorEvent):void  
{  

trace("There was an IO Error.");  
}  
public function onSecurityError(evt:Event):void  
{  

trace("There was a security error.");  
}  

}  
}

The example code first creates the FileReference object named fileRef and then calls its browse() method. This 

opens a dialog box that prompts the user to select a file. When a file is selected the onFileSelected() method is 

invoked. This method adds listeners for the progress and complete events and then calls the FileReference object’s 

load() method. The other handler methods in the example simply output messages to report on the progress of the 

load operation. When the loading completes the application displays the contents of the loaded file using the trace() 

method.

Saving data to local files

The FileReference.save() method lets you save data to a local file. It starts by opening a dialog box to let the user 

enter a new file name and location to which to save a file. After the user selects the file name and location the data is 

written to the new file. When the file is saved successfully the properties of the FileReference object are populated with 

the properties of the local file.

Note: Your code should only call the FileReference.save() method in response to a user event such as an event 

handler for a mouse click or a keypress event. Otherwise an error is thrown.

The FileReference.save() method returns immediately after being called. The FileReference object then 

dispatches events to invoke listener methods at each step of the file saving process.

The FileReference object dispatches the following events during the file saving process:

• select event (Event.SELECT): Dispatched when the user specifies the location and file name for the new file to be 

saved.

• cancel event (Event.CANCEL): Dispatched when the user click the Cancel button in the dialog box.

• open event (Event.OPEN): Dispatched when the save operation starts.

• progress event (ProgressEvent.PROGRESS): Dispatched periodically as bytes of data are saved to the file.

• complete event (Event.COMPLETE): Dispatched when the save operation completes successfully.

• ioError event (IOErrorEvent.IO_ERROR): Dispatched if the saving process fails because an input/output error 

occurs while attempting to save data to the file.

Updated 11 February 2009



618PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

The type of object passed in the data parameter of the FileReference.save() method determines how the data is 

written to the file:

• If it is a String value then it is saved as a text file using UTF-8 encoding.

• If it is an XML object then it is written to a file in XML format with all formatting preserved.

• If it is a ByteArray object then its contents are written directly to the file with no conversion.

• If it is some other kind of object then the FileReference.save() method calls the object’s toString() method 

and then saves the resulting String value to a UTF-8 text file. If the object’s toString() method can’t be called then 

an error is thrown.

If the value of the data parameter is null then an error is thrown.

The following code extends the previous example for the FileReference.load() method. After reading the data 

from the file, this example prompts the user for a file name and then saves the data in a new file:

package  
{  

import flash.display.Sprite;  
import flash.events.*;   
import flash.net.FileFilter;  
import flash.net.FileReference;  
import flash.net.URLRequest;  
import flash.utils.ByteArray;  

  
public class FileReferenceExample2 extends Sprite  
{  

private var fileRef:FileReference;  
public function FileReferenceExample2()  
{  

fileRef = new FileReference();  
fileRef.addEventListener(Event.SELECT, onFileSelected);  
fileRef.addEventListener(Event.CANCEL, onCancel);  
fileRef.addEventListener(IOErrorEvent.IO_ERROR, onIOError);  
fileRef.addEventListener(SecurityErrorEvent.SECURITY_ERROR,  

onSecurityError);  
var textTypeFilter:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)",  

"*.txt;*.rtf");  
fileRef.browse([textTypeFilter]);  

}  
public function onFileSelected(evt:Event):void  
{  

fileRef.addEventListener(ProgressEvent.PROGRESS, onProgress);  
fileRef.addEventListener(Event.COMPLETE, onComplete);  
fileRef.load();  

}  
  

public function onProgress(evt:ProgressEvent):void  
{  

trace("Loaded " + evt.bytesLoaded + " of " + evt.bytesTotal + " bytes.");  
}  
public function onCancel(evt:Event):void  
{  

trace("The browse request was canceled by the user.");  
}  
public function onComplete(evt:Event):void  
{  

Updated 11 February 2009



619PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

trace("File was successfully loaded.");  
fileRef.removeEventListener(Event.SELECT, onFileSelected);  
fileRef.removeEventListener(ProgressEvent.PROGRESS, onProgress);  
fileRef.removeEventListener(Event.COMPLETE, onComplete);  
fileRef.removeEventListener(Event.CANCEL, onCancel);  
saveFile();  

}  
public function saveFile():void  
{  

fileRef.addEventListener(Event.SELECT, onSaveFileSelected);  
fileRef.save(fileRef.data,"NewFileName.txt");  

}  
  

public function onSaveFileSelected(evt:Event):void  
{  

fileRef.addEventListener(ProgressEvent.PROGRESS, onSaveProgress);  
fileRef.addEventListener(Event.COMPLETE, onSaveComplete);  
fileRef.addEventListener(Event.CANCEL, onSaveCancel);  

}  
  

public function onSaveProgress(evt:ProgressEvent):void  
{  
    trace("Saved " + evt.bytesLoaded + " of " + evt.bytesTotal + " bytes.");  
}  
  
public function onSaveComplete(evt:Event):void  
{  

trace("File saved.");  
fileRef.removeEventListener(Event.SELECT, onSaveFileSelected);  

    fileRef.removeEventListener(ProgressEvent.PROGRESS, onSaveProgress);  
    fileRef.removeEventListener(Event.COMPLETE, onSaveComplete);  
    fileRef.removeEventListener(Event.CANCEL, onSaveCancel);  
}  

  
public function onSaveCancel(evt:Event):void  
{  

trace("The save request was canceled by the user.");  
}  

  
public function onIOError(evt:IOErrorEvent):void  
{  

trace("There was an IO Error.");  
}  
public function onSecurityError(evt:Event):void  
{  

trace("There was a security error.");  
}  

}  
}

When all of the data loads from the file the onComplete() method is invoked. The onComplete() method removes 

the listeners for the loading events and then calls the saveFile() method. The saveFile() method calls the 

FileReference.save() method which opens a new dialog box to let the user enter a new file name and location to 

save the file. The remaining event listener methods trace the progress of the file saving process until it is complete.

Updated 11 February 2009



620PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Uploading files to a server

To upload files to a server, first call the browse() method to allow a user to select one or more files. Next, when the 

FileReference.upload() method is called, the selected file is transferred to the server. If the user selects multiple 

files using the FileReferenceList.browse() method, Flash Player creates an array of selected files called 

FileReferenceList.fileList. You can then use the FileReference.upload() method to upload each file 

individually.

Note: Using the FileReference.browse() method allows you to upload single files only. To allow a user to upload 

multiple files, you must use the FileReferenceList.browse() method.

By default, the system file picker dialog box allows users to pick any file type from the local computer, although 

developers can specify one or more custom file type filters by using the FileFilter class and passing an array of file filter 

instances to the browse() method:

 var imageTypes:FileFilter = new FileFilter("Images (*.jpg, *.jpeg, *.gif, *.png)", "*.jpg; 
*.jpeg; *.gif; *.png");  
 var textTypes:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)", "*.txt; *.rtf");  
 var allTypes:Array = new Array(imageTypes, textTypes);  
 var fileRef:FileReference = new FileReference();  
 fileRef.browse(allTypes);

When the user has selected the files and clicked the Open button in the system file picker, the Event.SELECT event is 

dispatched. If the FileReference.browse() method is used to select a file to upload, the following code is needed to 

send the file to a web server:

 var fileRef:FileReference = new FileReference();  
 fileRef.addEventListener(Event.SELECT, selectHandler);  
 fileRef.addEventListener(Event.COMPLETE, completeHandler);  
 try  
 {  
 var success:Boolean = fileRef.browse();  
 }  
 catch (error:Error)  
 {  
 trace("Unable to browse for files.");  
 }  
 function selectHandler(event:Event):void  
 {  
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/fileUploadScript.cfm")  
 try  
 {  
 fileRef.upload(request);  
 }  
 catch (error:Error)  
 {  
 trace("Unable to upload file.");  
 }  
 }  
 function completeHandler(event:Event):void  
 {  
 trace("uploaded");  
 }

You can send data to the server with the FileReference.upload() method by using the URLRequest.method and 

URLRequest.data properties to send variables using the POST or GET methods.

Updated 11 February 2009



621PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

When you attempt to upload a file using the FileReference.upload() method, the following events may be 

dispatched:

• open event (Event.OPEN): Dispatched when the upload operation starts.

• progress event (ProgressEvent.PROGRESS): Dispatched periodically as bytes of data from the file are uploaded.

• complete event (Event.COMPLETE): Dispatched when the upload operation completes successfully.

• httpStatus event (HTTPStatusEvent.HTTP_STATUS): Dispatched when the upload process fails because of an 

HTTP error.

• httpResponseStatus event (HTTPStatusEvent.HTTP_RESPONSE_STATUS): Dispatched if a call to the upload() 

or uploadUnencoded() method attempts to access data over HTTP and Adobe AIR is able to detect and return the 

status code for the request.

• securityError event (SecurityErrorEvent.SECURITY_ERROR): Dispatched when an upload opertaion fails 

because of a security violation.

• uploadCompleteData event (DataEvent.UPLOAD_COMPLETE_DATA): Dispatched after data is received from the 

server after a successful upload.

• ioError event (IOErrorEvent.IO_ERROR): Dispatched if the upload process fails for any of the following reasons:

• An input/output error occurred while Flash Player is reading, writing, or transmitting the file.

• The SWF tried to upload a file to a server that requires authentication (such as a user name and password). 

During upload, Flash Player does not provide a means for users to enter passwords.

• The url parameter contains an invalid protocol. The FileReference.upload() method must use either 

HTTP or HTTPS.

Flash Player does not offer complete support for servers that require authentication. Only SWF files that are running 

in a browser using the browser plug-in or Microsoft ActiveX® control can provide a dialog box to prompt the user to 

enter a user name and password for authentication, and then only for downloads. For uploads using the plug-in or 

ActiveX control or upload/download using either the stand-alone or external player, the file transfer fails.

To create a server script in ColdFusion to accept a file upload from Flash Player, you can use code similar to the 

following:

 <cffile action="upload" filefield="Filedata" destination="#ExpandPath('./')#" 
nameconflict="OVERWRITE" />

This ColdFusion code uploads the file sent by Flash Player and saves it to the same directory as the ColdFusion 

template, overwriting any file with the same name. The previous code shows the bare minimum amount of code 

necessary to accept a file upload; this script should not be used in a production environment. Ideally, you should add 

data validation to ensure that users upload only accepted file types, such as an image instead of a potentially dangerous 

server-side script.

The following code demonstrates file uploads using PHP, and it includes data validation. The script limits the number 

of uploaded files in the upload directory to 10, ensures that the file is less than 200 KB, and permits only JPEG, GIF, or 

PNG files to be uploaded and saved to the file system.

Updated 11 February 2009



622PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 <?php  
 $MAXIMUM_FILESIZE = 1024 * 200; // 200KB  
 $MAXIMUM_FILE_COUNT = 10; // keep maximum 10 files on server  
 echo exif_imagetype($_FILES['Filedata']);  
 if ($_FILES['Filedata']['size'] <= $MAXIMUM_FILESIZE)  
 {  
 move_uploaded_file($_FILES['Filedata']['tmp_name'], 
"./temporary/".$_FILES['Filedata']['name']);  
 $type = exif_imagetype("./temporary/".$_FILES['Filedata']['name']);  
 if ($type == 1 || $type == 2 || $type == 3)  
 {  
 rename("./temporary/".$_FILES['Filedata']['name'], 
"./images/".$_FILES['Filedata']['name']);  
 }  
 else  
 {  
 unlink("./temporary/".$_FILES['Filedata']['name']);  
 }  
 }  
 $directory = opendir('./images/');  
 $files = array();  
 while ($file = readdir($directory))  
 {  
 array_push($files, array('./images/'.$file, filectime('./images/'.$file)));  
 }  
 usort($files, sorter);  
 if (count($files) > $MAXIMUM_FILE_COUNT)  
 {  
 $files_to_delete = array_splice($files, 0, count($files) - $MAXIMUM_FILE_COUNT);  
 for ($i = 0; $i < count($files_to_delete); $i++)  
 {  
 unlink($files_to_delete[$i][0]);  
 }  
 }  
 print_r($files);  
 closedir($directory);  
   
 function sorter($a, $b)  
 {  
 if ($a[1] == $b[1])  
 {  
 return 0;  
 }  
 else  
 {  
 return ($a[1] < $b[1]) ? -1 : 1;  
 }  
 }  
 ?>

You can pass additional variables to the upload script using either the POST or GET request method. To send additional 

POST variables to your upload script, you can use the following code:

Updated 11 February 2009



623PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 var fileRef:FileReference = new FileReference();  
 fileRef.addEventListener(Event.SELECT, selectHandler);  
 fileRef.addEventListener(Event.COMPLETE, completeHandler);  
 fileRef.browse();  
 function selectHandler(event:Event):void  
 {  
 var params:URLVariables = new URLVariables();  
 params.date = new Date();  
 params.ssid = "94103-1394-2345";  
 var request:URLRequest = new 
URLRequest("http://www.yourdomain.com/FileReferenceUpload/fileupload.cfm");  
 request.method = URLRequestMethod.POST;  
 request.data = params;  
 fileRef.upload(request, "Custom1");  
 }  
 function completeHandler(event:Event):void  
 {  
 trace("uploaded");  
 }

The previous example creates a new URLVariables object that you pass to the remote server- side script. In previous 

versions of ActionScript, you could pass variables to the server upload script by passing values in the query string. 

ActionScript 3.0 allows you to pass variables to the remote script using a URLRequest object, which allows you to pass 

data using either the POST or GET method; this, in turn, makes passing larger sets of data easier and cleaner. In order 

to specify whether the variables are passed using the GET or POST request method, you can set the URLRequest.method 

property to either URLRequestMethod.GET or URLRequestMethod.POST, respectively.

ActionScript 3.0 also lets you override the default Filedata upload file field name by providing a second parameter 

to the upload() method, as demonstrated in the previous example (which replaced the default value Filedata with 

Custom1).

By default, Flash Player will not attempt to send a test upload, although you can override this by passing a value of true 

as the third parameter to the upload() method. The purpose of the test upload is to check whether the actual file 

upload will be successful and that server authentication, if required, will succeed.

Note: A test upload occurs only on Windows-based Flash Players at this time.

The server script that handles the file upload should expect an HTTP POST request with the following elements:

• Content-Type with a value of multipart/form-data.

• Content-Disposition with a name attribute set to “ Filedata” and a filename attribute set to the name of the 

original file. You can specify a custom name attribute by passing a value for the uploadDataFieldName parameter 

in the FileReference.upload() method.

• The binary contents of the file.

Here is a sample HTTP POST request:

Updated 11 February 2009



624PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 POST /handler.asp HTTP/1.1  
 Accept: text/*  
 Content-Type: multipart/form-data;  
 boundary=----------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6  
 User-Agent: Shockwave Flash  
 Host: www.mydomain.com  
 Content-Length: 421  
 Connection: Keep-Alive  
 Cache-Control: no-cache  
   
 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6   
 Content-Disposition: form-data; name="Filename"  
   
 sushi.jpg   
 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6  
 Content-Disposition: form-data; name="Filedata"; filename="sushi.jpg"  
 Content-Type: application/octet-stream  
   
 Test File   
 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6  
 Content-Disposition: form-data; name="Upload"  
   
 Submit Query  
 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6  
 (actual file data,,,)

The following sample HTTP POST request sends three POST variables: api_sig, api_key, and auth_token, and uses 

a custom upload data field name value of "photo":

Updated 11 February 2009



625PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 POST /handler.asp HTTP/1.1  
 Accept: text/*  
 Content-Type: multipart/form-data;  
 boundary=----------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6  
 User-Agent: Shockwave Flash  
 Host: www.mydomain.com  
 Content-Length: 421  
 Connection: Keep-Alive  
 Cache-Control: no-cache  
   
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7  
 Content-Disposition: form-data; name="Filename"  
   
 sushi.jpg  
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7  
 Content-Disposition: form-data; name="api_sig"  
   
 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7  
 Content-Disposition: form-data; name="api_key"  
   
 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7  
 Content-Disposition: form-data; name="auth_token"  
   
 XXXXXXXXXXXXXXXXXXXXXXX  
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7  
 Content-Disposition: form-data; name="photo"; filename="sushi.jpg"  
 Content-Type: application/octet-stream  
   
 (actual file data,,,)  
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7  
 Content-Disposition: form-data; name="Upload"  
   
 Submit Query  
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7--

Downloading files from a server

You can let users download files from a server using the FileReference.download() method, which takes two 

parameters: request and defaultFileName. The first parameter is the URLRequest object that contains the URL of 

the file to download. The second parameter is optional—it lets you specify a default filename that appears in the 

download file dialog box. If you omit the second parameter, defaultFileName, the filename from the specified URL 

is used.

The following code downloads a file named index.xml from the same directory as the SWF document:

 var request:URLRequest = new URLRequest("index.xml");  
 var fileRef:FileReference = new FileReference();  
 fileRef.download(request);

To set the default name to currentnews.xml instead of index.xml, specify the defaultFileName parameter, as the 

following snippet shows:

 var request:URLRequest = new URLRequest("index.xml");  
 var fileToDownload:FileReference = new FileReference();  
 fileToDownload.download(request, "currentnews.xml");

Updated 11 February 2009



626PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Renaming a file can be very useful if the server filename was not intuitive or was server-generated. It’s also good to 

explicitly specify the defaultFileName parameter when you download a file using a server-side script, instead of 

downloading the file directly. For example, you need to specify the defaultFileName parameter if you have a server-

side script that downloads specific files based on URL variables passed to it. Otherwise, the default name of the 

downloaded file is the name of your server-side script. 

Data can be sent to the server using the download() method by appending parameters to the URL for the server script 

to parse. The following ActionScript 3.0 snippet downloads a document based on which parameters are passed to a 

ColdFusion script:

 package  
 {  
 import flash.display.Sprite;  
 import flash.net.FileReference;  
 import flash.net.URLRequest;  
 import flash.net.URLRequestMethod;  
 import flash.net.URLVariables;  
   
 public class DownloadFileExample extends Sprite  
 {  
 private var fileToDownload:FileReference;  
 public function DownloadFileExample()  
 {  
 var request:URLRequest = new URLRequest();  
 request.url = "http://www.[yourdomain].com/downloadfile.cfm";  
 request.method = URLRequestMethod.GET;  
 request.data = new URLVariables("id=2");  
 fileToDownload = new FileReference();  
 try  
 {  
 fileToDownload.download(request, "file2.txt");  
 }  
 catch (error:Error)  
 {  
 trace("Unable to download file.");  
 }  
 }  
 }  
 }

The following code demonstrates the ColdFusion script, download.cfm, that downloads one of two files from the 

server, depending on the value of a URL variable:

 <cfparam name="URL.id" default="1" />  
 <cfswitch expression="#URL.id#">  
 <cfcase value="2">  
 <cfcontent type="text/plain" file="#ExpandPath('two.txt')#" deletefile="No" />  
 </cfcase>  
 <cfdefaultcase>  
 <cfcontent type="text/plain" file="#ExpandPath('one.txt')#" deletefile="No" />  
 </cfdefaultcase>  
 </cfswitch>

Updated 11 February 2009



627PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

FileReferenceList class

The FileReferenceList class lets the user select one or more files to upload to a server-side script. The file upload is 

handled by the FileReference.upload() method, which must be called on each file that the user selects.

The following code creates two FileFilter objects (imageFilter and textFilter) and passes them in an array to the 

FileReferenceList.browse() method. This causes the operating system file dialog box to display two possible 

filters for file types.

 var imageFilter:FileFilter = new FileFilter("Image Files (*.jpg, *.jpeg, *.gif, *.png)", 
"*.jpg; *.jpeg; *.gif; *.png");  
 var textFilter:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)", "*.txt; *.rtf");  
 var fileRefList:FileReferenceList = new FileReferenceList();  
 try  
 {  
 var success:Boolean = fileRefList.browse(new Array(imageFilter, textFilter));  
 }  
 catch (error:Error)   
 {  
 trace("Unable to browse for files.");  
 }

Allowing the user to select and upload one or more files by using the FileReferenceList class is the same as using 

FileReference.browse() to select files, although the FileReferenceList allows you to select more than one file. 

Uploading multiple files requires you to upload each of the selected files by using FileReference.upload(), as the 

following code shows:

 var fileRefList:FileReferenceList = new FileReferenceList();  
 fileRefList.addEventListener(Event.SELECT, selectHandler);  
 fileRefList.browse();  
   
 function selectHandler(event:Event):void  
 {  
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/fileUploadScript.cfm");  
 var file:FileReference;  
 var files:FileReferenceList = FileReferenceList(event.target);  
 var selectedFileArray:Array = files.fileList;  
 for (var i:uint = 0; i < selectedFileArray.length; i++)  
 {  
 file = FileReference(selectedFileArray[i]);  
 file.addEventListener(Event.COMPLETE, completeHandler);  
 try  
 {  
 file.upload(request);  
 }  
 catch (error:Error)  
 {  
 trace("Unable to upload files.");  
 }  
 }  
 }  
 function completeHandler(event:Event):void  
 {  
 trace("uploaded");  
 }

Because the Event.COMPLETE event is added to each individual FileReference object in the array, Flash Player calls the 

completeHandler() method when each individual file finishes uploading.

Updated 11 February 2009



628PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Example: Building a Telnet client

The Telnet example demonstrates techniques for connecting with a remote server and transmitting data using the 

Socket class. The example demonstrates the following techniques:

• Creating a custom telnet client using the Socket class

• Sending text to the remote server using a ByteArray object

• Handling received data from a remote server

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Telnet 

application files can be found in the Samples/Telnet folder. The application consists of the following files:

Telnet socket application overview

The main TelnetSocket.mxml file is responsible for creating the user interface (UI) for the entire application.

In addition to the UI, this file also defines two methods, login() and sendCommand(), to connect the user to the 

specified server.

The following code lists the ActionScript in the main application file:

 import com.example.programmingas3.socket.Telnet;  
   
 private var telnetClient:Telnet;  
 private function connect():void  
 {  
 telnetClient = new Telnet(serverName.text, int(portNumber.text), output);  
 console.title = "Connecting to " + serverName.text + ":" + portNumber.text;  
 console.enabled = true;  
 }  
 private function sendCommand():void  
 {  
 var ba:ByteArray = new ByteArray();  
 ba.writeMultiByte(command.text + "\n", "UTF-8");  
 telnetClient.writeBytesToSocket(ba);  
 command.text = "";  
 }

File Description

TelnetSocket.fla

 or 

TelnetSocket.mxml

The main application file consisting of the user interface for Flex (MXML) or Flash 

(FLA).

TelnetSocket.as Document class providing the user interface logic (Flash only).

com/example/programmingas3/Telnet/Telnet.as Provides the Telnet client functionality for the application, such as connecting to a 

remote server, and sending, receiving, and displaying data.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


629PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

The first line of code imports the Telnet class from the custom com.example.programmingas.socket package. The 

second line of code declares an instance of the Telnet class, telnetClient, that will be initialized later by the 

connect() method. Next, the connect() method is declared and initializes the telnetClient variable declared 

earlier. This method passes the user-specified telnet server name, telnet server port, and a reference to a TextArea 

component on the display list, which is used to display the text responses from the socket server. The final two lines of 

the connect() method set the title property for the Panel and enable the Panel component, which allows the user 

to send data to the remote server. The final method in the main application file, sendCommand(), is used to send the 

user's commands to the remote server as a ByteArray object.

Telnet class overview

The Telnet class is responsible for connecting to the remote Telnet server and sending/receiving data.

The Telnet class declares the following private variables:

 private var serverURL:String;  
 private var portNumber:int;  
 private var socket:Socket;  
 private var ta:TextArea;  
 private var state:int = 0;

The first variable, serverURL, contains the user-specified server address to connect to.

The second variable, portNumber, is the port number that the Telnet server is currently running on. By default, the 

Telnet service runs on port 23.

The third variable, socket, is a Socket instance that will attempt to connect to the server defined by the serverURL 

and portNumber variables.

The fourth variable, ta, is a reference to a TextArea component instance on the Stage. This component is used to 

display responses from the remote Telnet server, or any possible error messages.

The final variable, state, is a numeric value that is used to determine which options your Telnet client supports.

As you saw before, the Telnet class's constructor function is called by the connect() method in the main application file.

The Telnet constructor takes three parameters: server, port, and output. The server and port parameters specify 

the server name and port number where the Telnet server is running. The final parameter, output, is a reference to a 

TextArea component instance on the Stage where server output will be displayed to users.

Updated 11 February 2009



630PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 public function Telnet(server:String, port:int, output:TextArea)  
 {  
 serverURL = server;  
 portNumber = port;  
 ta = output;  
 socket = new Socket();  
 socket.addEventListener(Event.CONNECT, connectHandler);  
 socket.addEventListener(Event.CLOSE, closeHandler);  
 socket.addEventListener(ErrorEvent.ERROR, errorHandler);  
 socket.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);  
 socket.addEventListener(ProgressEvent.SOCKET_DATA, dataHandler);  
 Security.loadPolicyFile("http://" + serverURL + "/crossdomain.xml");  
 try  
 {  
 msg("Trying to connect to " + serverURL + ":" + portNumber + "\n");  
 socket.connect(serverURL, portNumber);  
 }  
 catch (error:Error)  
 {  
 msg(error.message + "\n");  
 socket.close();  
 }  
 }

Writing data to a socket

To write data to a socket connection, you call any of the write methods in the Socket class (such as writeBoolean(), 

writeByte(), writeBytes(), or writeDouble()), and then flush the data in the output buffer using the flush() 

method. In the Telnet server, data is written to the socket connection using the writeBytes() method which takes 

the byte array as a parameter and sends it to the output buffer. The writeBytesToSocket() method is as follows:

 public function writeBytesToSocket(ba:ByteArray):void  
 {  
 socket.writeBytes(ba);  
 socket.flush();  
 }

This method gets called by the sendCommand() method of the main application file.

Displaying messages from the socket server

Whenever a message is received from the socket server, or an event occurs, the custom msg() method is called. This 

method appends a string to the TextArea on the Stage and calls a custom setScroll() method, which causes the 

TextArea component to scroll to the very bottom. The msg() method is as follows:

 private function msg(value:String):void  
 {  
 ta.text += value;  
 setScroll();  
 }

If you didn’t automatically scroll the contents of the TextArea component, users would need to manually drag the 

scroll bars on the text area to see the latest response from the server.

Updated 11 February 2009



631PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Scrolling a TextArea component

The setScroll() method contains a single line of ActionScript that scrolls the TextArea component’s contents 

vertically so the user can see the last line of the returned text. The following snippet shows the setScroll() method:

 public function setScroll():void  
 {  
 ta.verticalScrollPosition = ta.maxVerticalScrollPosition;  
 }

This method sets the verticalScrollPosition property, which is the line number of the top row of characters that 

is currently displayed, and sets it to the value of the maxVerticalScrollPosition property.

Example: Uploading and downloading files

The FileIO example demonstrates techniques for performing file downloading and uploading in Flash Player. These 

techniques are:

• Downloading files to a user’s computer

• Uploading files from a user’s computer to a server

• Cancelling a download in progress

• Cancelling an upload in progress

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The FileIO 

application files are found in the Samples/FileIO folder. The application consists of the following files:

FileIO application overview

The FileIO application contains the user interface that allows a user to upload or download files using Flash Player. 

The application first defines a couple of custom components, FileUpload and FileDownload, which can be found in 

the com.example.programmingas3.fileio package. Once each custom component dispatches its contentComplete 

event, the component’s init() method is called and passes references to a ProgressBar and Button component 

instance, which allow users to see the file’s upload or download progress or cancel the file transfer in progress. 

The relevant code from the FileIO.mxml file is as follows (Note that in the Flash version, the FLA file contains 

components placed on the stage, whose names match the names of the Flex components described in this step):

 <example:FileUpload id="fileUpload" creationComplete="fileUpload.init(uploadProgress, 
cancelUpload);" />  
 <example:FileDownload id="fileDownload" 
creationComplete="fileDownload.init(downloadProgress, cancelDownload);" />

File Description

FileIO.fla

or

FileIO.mxml

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/fileio/FileDownload.as A class that includes methods for downloading files from a server.

com/example/programmingas3/fileio/FileUpload.as A class that includes methods for uploading files to a server.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


632PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

The following code shows the Upload File panel, which contains a progress bar and two buttons. The first button, 

startUpload, calls the FileUpload.startUpload() method, which calls the FileReference.browse() method. 

The following excerpt shows the code for the Upload File panel:

 <mx:Panel title="Upload File" paddingTop="10" paddingBottom="10" paddingLeft="10" 
paddingRight="10">  
 <mx:ProgressBar id="uploadProgress" label="" mode="manual" />  
 <mx:ControlBar horizontalAlign="right">  
 <mx:Button id="startUpload" label="Upload..." click="fileUpload.startUpload();" />  
 <mx:Button id="cancelUpload" label="Cancel" click="fileUpload.cancelUpload();" 
enabled="false" />  
 </mx:ControlBar>  
 </mx:Panel>

This code places a ProgressBar component instance and two Button component button instances on the Stage. When 

the user clicks the Upload button (startUpload), an operating system dialog box is launched that allows the user to 

select a file to upload to a remote server. The other button, cancelUpload, is disabled by default, although when a user 

begins a file upload, the button becomes enabled and allows the user to abort the file transfer at any time.

The code for the Download File panel is as follows:

 <mx:Panel title="Download File" paddingTop="10" paddingBottom="10" paddingLeft="10" 
paddingRight="10">  
 <mx:ProgressBar id="downloadProgress" label="" mode="manual" />  
 <mx:ControlBar horizontalAlign="right">  
 <mx:Button id="startDownload" label="Download..." 
click="fileDownload.startDownload();" />  
 <mx:Button id="cancelDownload" label="Cancel" click="fileDownload.cancelDownload();" 
enabled="false" />  
 </mx:ControlBar>  
 </mx:Panel>

This code is very similar to the file upload code. When the user clicks the Download button, (startDownload), the 

FileDownload.startDownload() method is called, which begins downloading the file specified in the 

FileDownload.DOWNLOAD_URL variable. As the file downloads, the progress bar updates, showing what percentage of 

the file has downloaded. The user can cancel the download at any point by clicking the cancelDownload button, which 

immediately stops the file download in progress.

Downloading files from a remote server

Downloading of files from a remote server is handled by the flash.net.FileReference class and the custom 

com.example.programmingas3.fileio.FileDownload class. When the user clicks the Download button, Flash Player 

begins to download the file specified in the FileDownload class’s DOWNLOAD_URL variable.

The FileDownload class begins by defining four variables within the com.example.programmingas3.fileio package, as 

the following code shows:

Updated 11 February 2009



633PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 /**  
  * Hard-code the URL of file to download to user's computer.  
  */  
 private const DOWNLOAD_URL:String = "http://www.yourdomain.com/file_to_download.zip";  
   
 /**  
  * Create a FileReference instance to handle the file download.  
  */  
 private var fr:FileReference;  
   
 /**  
  * Define reference to the download ProgressBar component.  
  */  
 private var pb:ProgressBar;  
   
 /**  
  * Define reference to the "Cancel" button which will immediately stop  
  * the current download in progress.  
  */  
 private var btn:Button;

The first variable, DOWNLOAD_URL, contains the path to the file, which gets downloaded onto the user’s computer when 

the user clicks the Download button in the main application file.

The second variable, fr, is a FileReference object that gets initialized within the FileDownload.init() method and 

will handle the downloading of the remote file to the user’s computer.

The last two variables, pb and btn, contain references to ProgressBar and Button component instances on the Stage, 

which get initialized by the FileDownload.init() method.

Initializing the FileDownload component

The FileDownload component is initialized by calling the init() method in the FileDownload class. This method 

takes two parameters, pb and btn, which are ProgressBar and Button component instances, respectively.

The code for the init() method is as follows:

 /**  
  * Set references to the components, and add listeners for the OPEN,   
  * PROGRESS, and COMPLETE events.  
  */  
 public function init(pb:ProgressBar, btn:Button):void  
 {  
 // Set up the references to the progress bar and cancel button,  
 // which are passed from the calling script.  
 this.pb = pb;  
 this.btn = btn;  
   
 fr = new FileReference();  
 fr.addEventListener(Event.OPEN, openHandler);  
 fr.addEventListener(ProgressEvent.PROGRESS, progressHandler);  
 fr.addEventListener(Event.COMPLETE, completeHandler);  
 }

Updated 11 February 2009



634PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

Beginning the file download

When the user clicks the Download Button component instance on the Stage, the startDownload() method is to 

initiate the file download process. The following excerpt shows the startDownload() method:

 /**  
  * Begin downloading the file specified in the DOWNLOAD_URL constant.  
  */  
 public function startDownload():void  
 {  
 var request:URLRequest = new URLRequest();  
 request.url = DOWNLOAD_URL;  
 fr.download(request);  
 }

First, the startDownload() method creates a new URLRequest object, and sets the target URL to the value specified 

by the DOWNLOAD_URL variable. Next, the FileReference.download() method is called, and the newly created 

URLRequest object is passed as a parameter. This causes the operating system to display a dialog box on the user’s 

computer prompting them to select a location to save the requested document. Once the user selects a location, the 

open event (Event.OPEN) is dispatched and the openHandler() method is invoked.

The openHandler() method sets the text format for the ProgressBar component’s label property, and enables the 

Cancel button, which allows the user to immediately stop the download in progress. The openHandler() method is 

as follows:

 /**  
  * When the OPEN event has dispatched, change the progress bar's label   
  * and enable the "Cancel" button, which allows the user to abort the   
  * download operation.  
  */  
 private function openHandler(event:Event):void  
 {  
 pb.label = "DOWNLOADING %3%%";  
 btn.enabled = true;  
 }

Monitoring a file’s download progress

As a file downloads from a remote server to the user’s computer, the progress event (ProgressEvent.PROGRESS) is 

dispatched at regular intervals. Whenever the progress event is dispatched, the progressHandler() method is 

invoked and the ProgressBar component instance on the Stage is updated. The code for the progressHandler() 

method is as follows:

 /**  
  * While the file is downloading, update the progress bar's status.  
  */  
 private function progressHandler(event:ProgressEvent):void  
 {  
 pb.setProgress(event.bytesLoaded, event.bytesTotal);  
 }

The progress event contains two properties, bytesLoaded and bytesTotal, which are used to update the ProgressBar 

component on the Stage. This gives the user a sense of how much of the file has already finished downloading and how 

much remains. The user can abort the file transfer at any time by clicking the Cancel button below the progress bar.

Updated 11 February 2009



635PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

If the file is downloaded successfully, the complete event (Event.COMPLETE) invokes the completeHandler() 

method, which notifies the user that the file has completed downloading and disables the Cancel button. The code for 

the completeHandler() method is as follows:

 /**  
  * Once the download has completed, change the progress bar's label one   
  * last time and disable the "Cancel" button since the download is   
  * already completed.  
  */  
 private function completeHandler(event:Event):void  
 {  
 pb.label = "DOWNLOAD COMPLETE";  
 btn.enabled = false;  
 }

Cancelling a file download

A user can abort a file transfer and stop any further bytes from being downloaded at any time by clicking the Cancel 

button on the Stage. The following excerpt shows the code for cancelling a download:

 /**  
  * Cancel the current file download.  
  */  
 public function cancelDownload():void  
 {  
 fr.cancel();  
 pb.label = "DOWNLOAD CANCELLED";  
 btn.enabled = false;  
 }

First, the code stops the file transfer immediately, preventing any further data from downloading. Next, the progress 

bar’s label property is updated to notify the user that the download has been successfully cancelled. Finally, the Cancel 

button is disabled, which prevents the user from clicking the button again until they attempt to download the file again.

Uploading files to a remote server

The file upload process is very similar to the file download process. The FileUpload class declares the same four 

variables, as shown in the following code:

 private const UPLOAD_URL:String = "http://www.yourdomain.com/your_upload_script.cfm";  
 private var fr:FileReference;  
 private var pb:ProgressBar;  
 private var btn:Button;

Unlike the FileDownload.DOWNLOAD_URL variable, the UPLOAD_URL variable contains the URL to the server-side 

script that will upload the file from the user’s computer. The remaining three variables behave the same as their 

counterparts in the FileDownload class.

Initializing the FileUpload component

The FileUpload component contains an init() method, which gets called from the main application. This method 

takes two parameters, pb and btn, which are references to a ProgressBar and Button component instance on the Stage. 

Next, the init() method initializes the FileReference object defined earlier in the FileUpload class. Finally, the 

method assigns four event listeners to the FileReference object. The code for the init() method is as follows:

Updated 11 February 2009



636PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Networking and communication

 public function init(pb:ProgressBar, btn:Button):void  
 {  
 this.pb = pb;  
 this.btn = btn;  
   
 fr = new FileReference();  
 fr.addEventListener(Event.SELECT, selectHandler);  
 fr.addEventListener(Event.OPEN, openHandler);  
 fr.addEventListener(ProgressEvent.PROGRESS, progressHandler);  
 fr.addEventListener(Event.COMPLETE, completeHandler);  
 }

Beginning a file upload

The file upload is initiated when the user clicks on the Upload button on the Stage, which invokes the 

FileUpload.startUpload() method. This method calls the browse() method of the FileReference class which 

causes the operating system to display a system dialog box prompting the user to select a file to upload to the remote 

server. The following excerpt shows the code for the startUpload() method:

 public function startUpload():void  
 {  
 fr.browse();  
 }

Once the user selects a file to upload, the select event (Event.SELECT) is dispatched, causing the selectHandler() 

method to be invoked. The selectHandler() method creates a new URLRequest object and sets the 

URLRequest.url property to the value of the UPLOAD_URL constant defined earlier in the code. Finally, the 

FileReference object uploads the selected file to the specified server-side script. The code for the selectHandler() 

method is as follows:

 private function selectHandler(event:Event):void  
 {  
 var request:URLRequest = new URLRequest();  
 request.url = UPLOAD_URL;  
 fr.upload(request);  
 }

The remaining code in the FileUpload class is the same as the code defined in the FileDownload class. If a user wishes 

to terminate the upload at any point, they can click the Cancel button, which sets the label on the progress bar and 

stops the file transfer immediately. The progress bar gets updated whenever the progress event 

(ProgressEvent.PROGRESS) is dispatched. Similarly, once the upload has completed, the progress bar is updated to 

notify the user that the file has uploaded successfully. The Cancel button is then disabled until the user begins a new 

file transfer.

Updated 11 February 2009



637

Chapter 28: Client system environment

This chapter explains how to interact with the user’s system. It shows you how to determine what features are 

supported and how to build multilingual SWF files using the user’s installed input method editor (IME) if available. It 

also shows typical uses for application domains. 

Basics of the client system environment

Introduction to the client system environment

As you build more advanced ActionScript applications, you may find a need to know details about—and access 

functions of—your users’ operating systems. The client system environment is a collection of classes in the flash.system 

package that allow you to access system-level functionality such as the following:

• Determining which application and security domain a SWF is executing in

• Determining the capabilities of the user’s Flash® Player or Adobe® AIR™ instance, such as the screen size (resolution) 

and whether certain functionality is available, such as mp3 audio

• Building multilingual sites using the IME

• Interacting with the Flash Player’s container (which could be an HTML page or a container application) or AIR’s 

container.

• Saving information to the user’s clipboard

The flash.system package also includes the IMEConversionMode and SecurityPanel classes. These classes contain 

static constants that you use with the IME and Security classes, respectively.

Common client system environment tasks

The following common tasks for working with the client system using ActionScript are described in this chapter:

• Determining how much memory your application is using

• Copying text to the user’s clipboard

• Determining capabilities of the user’s computer, such as:

• Screen resolution, color, DPI, and pixel aspect ratio

• Operating system

• Support for streaming audio, streaming video, and mp3 playback

• Whether the installed Flash Player is a debugger version

• Working with application domains:

• Defining an application domain

• Separating SWF files’ code into application domains

• Working with an IME in your application:

• Determining whether an IME is installed

• Determining and setting the IME conversion mode

Updated 11 February 2009



638PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

• Disabling the IME for text fields

• Detecting when IME conversion happens

Important concepts and terms

The following reference list contains important terms used in this chapter:

• Operating system: The main program that runs on a computer, within which all other applications run—such as 

Microsoft Windows, Mac OS X, or Linux®.

• Clipboard: The operating system’s container for holding text or items that are copied or cut, and from which items 

are pasted into applications.

• Application domain: A mechanism for separating classes used in different SWF files, so that if the SWF files include 

different classes with the same name, the classes don’t overwrite each other.

• IME (input method editor): A program (or operating system tool) that is used to enter complex characters or 

symbols using a standard keyboard.

• Client system: In programming terms, a client is the part of an application (or whole application) that runs on an 

individual’s computer and is used by a single user. The client system is the underlying operating system on the user’s 

computer.

Working through in-chapter examples

As you’re working through the chapter, you may want to test some of the example code listings for yourself. All the 

code listings in this chapter include the appropriate trace() function call for writing out the values being tested. To 

test the code listings in this chapter:

1 Create an empty Flash document.

2 Select a keyframe in the timeline.

3 Open the Actions panel and copy the code listing into the Script pane.

4 Run the program using Control > Test Movie.

You will see the results of the code listing’s trace() functions in the Output panel.

Some of the later code listings are more complex and are written as a class. To test these examples:

1 Create an empty Flash document and save it to your computer.

2 Create a new ActionScript file and save it in the same directory as the Flash document. The file’s name should match 

the name of the class in the code listing. For instance, if the code listing defines a class named SystemTest, use the 

name SystemTest.as to save the ActionScript file.

3 Copy the code listing into the ActionScript file and save the file.

4 In the Flash document, click a blank part of the Stage or work space to activate the document Property inspector.

5 In the Property inspector, in the Document Class field, enter the name of the ActionScript class you copied from 

the text.

6 Run the program using Control > Test Movie

You will see the results of the example in the Output panel.

Techniques for testing example code listings are described in more detail in “Testing in-chapter example code listings” 

on page 34.

Updated 11 February 2009



639PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

Using the System class

The System class contains methods and properties that allow you to interact with the user’s operating system and 

retrieve the current memory usage for Flash Player or AIR. The methods and properties of the System class also allow 

you to listen for imeComposition events, instruct Flash Player or AIR to load external text files using the user’s current 

code page or to load them as Unicode, or set the contents of the user’s clipboard.

Getting data about the user’s system at run time

By checking the System.totalMemory property, you can determine the amount of memory (in bytes) that Flash 

Player or AIR is currently using. This property allows you to monitor memory usage and optimize your applications 

based on how the memory level changes. For example, if a particular visual effect causes a large increase in memory 

usage, you may want to consider modifying the effect or eliminating it altogether.

The System.ime property is a reference to the currently installed Input Method Editor (IME). This property allows 

you to listen for imeComposition events (flash.events.IMEEvent.IME_COMPOSITION) by using the 

addEventListener() method.

The third property in the System class is useCodePage. When useCodePage is set to true, Flash Player and AIR use 

the traditional code page of the operating system that is running the player to load external text files. If you set this 

property to false, you tell Flash Player or AIR to interpret the external file as Unicode.

If you set System.useCodePage to true, remember that the traditional code page of the operating system running the 

player must include the characters used in your external text file in order for the text to display. For example, if you 

load an external text file that contains Chinese characters, those characters cannot display on a system that uses the 

English Windows code page because that code page does not include Chinese characters.

To ensure that users on all platforms can view the external text files that are used in your SWF files, you should encode 

all external text files as Unicode and leave System.useCodePage set to false by default. This way, Flash Player and 

AIR interpret the text as Unicode.

Saving text to the clipboard

The System class includes a method called setClipboard() that allows Flash Player and AIR to set the contents of the 

user’s clipboard with a specified string. For security reasons, there is no Security.getClipboard() method, since 

such a method could potentially allow malicious sites to access the data last copied to the user’s clipboard.

The following code illustrates how an error message can be copied to the user’s clipboard when a security error occurs. 

The error message can be useful if the user wants to report a potential bug with an application.

 private function securityErrorHandler(event:SecurityErrorEvent):void  
 {  
 var errorString:String = "[" + event.type + "] " + event.text;  
 trace(errorString);  
 System.setClipboard(errorString);  
 }

Updated 11 February 2009



640PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

Using the Capabilities class

The Capabilities class allows developers to determine the environment in which a SWF file is being run. Using various 

properties of the Capabilities class, you can find out the resolution of the user’s system, whether the user’s system 

supports accessibility software, and the language of the user’s operating system, as well as the currently installed 

version of Flash Player or AIR. 

By checking the properties in the Capabilities class, you can customize your application to work best with the specific 

user’s environment. For example, by checking the Capabilities.screenResolutionX and 

Capabilities.screenResolutionY properties, you can determine the display resolution the user’s system is using 

and decide which video size may be most appropriate. Or you can check the Capabilities.hasMP3 property to see 

if the user’s system supports mp3 playback before attempting to load an external mp3 file.

The following code uses a regular expression to parse the Flash Player version that the client is using:

 var versionString:String = Capabilities.version;  
 var pattern:RegExp = /^(\w*) (\d*),(\d*),(\d*),(\d*)$/;  
 var result:Object = pattern.exec(versionString);  
 if (result != null)  
 {  
 trace("input: " + result.input);  
 trace("platform: " + result[1]);  
 trace("majorVersion: " + result[2]);  
 trace("minorVersion: " + result[3]);  
 trace("buildNumber: " + result[4]);  
 trace("internalBuildNumber: " + result[5]);  
 }  
 else  
 {  
 trace("Unable to match RegExp.");  
 }

If you want to send the user’s system capabilities to a server-side script so that the information can be stored in a 

database, you can use the following ActionScript code:

 var url:String = "log_visitor.cfm";  
 var request:URLRequest = new URLRequest(url);  
 request.method = URLRequestMethod.POST;  
 request.data = new URLVariables(Capabilities.serverString);  
 var loader:URLLoader = new URLLoader(request);

Using the ApplicationDomain class

The purpose of the ApplicationDomain class is to store a table of ActionScript 3.0 definitions. All code in a SWF file 

is defined to exist in an application domain. You use application domains to partition classes that are in the same 

security domain. This allows multiple definitions of the same class to exist and also lets children reuse parent 

definitions.

Updated 11 February 2009



641PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

You can use application domains when loading an external SWF file written in ActionScript 3.0 using the Loader class 

API. (Note that you cannot use application domains when loading an image or SWF file written in ActionScript 1.0 or 

ActionScript 2.0.) All ActionScript 3.0 definitions contained in the loaded class are stored in the application domain. 

When loading the SWF file, you can specify that the file be included in the same application domain as that of the 

Loader object, by setting the applicationDomain parameter of the LoaderContext object to 

ApplicationDomain.currentDomain. By putting the loaded SWF file in the same application domain, you can 

access its classes directly. This can be useful if you are loading a SWF file that contains embedded media, which you 

can access via their associated class names, or if you want to access the loaded SWF file’s methods, as shown in the 

following example:

 package  
 {  
 import flash.display.Loader;  
 import flash.display.Sprite;  
 import flash.events.*;  
 import flash.net.URLRequest;  
 import flash.system.ApplicationDomain;  
 import flash.system.LoaderContext;  
   
 public class ApplicationDomainExample extends Sprite  
 {  
 private var ldr:Loader;  
 public function ApplicationDomainExample()  
 {  
 ldr = new Loader();  
 var req:URLRequest = new URLRequest("Greeter.swf");  
 var ldrContext:LoaderContext = new LoaderContext(false, 
ApplicationDomain.currentDomain);  
 ldr.contentLoaderInfo.addEventListener(Event.COMPLETE, completeHandler);  
 ldr.load(req, ldrContext);  
 }  
 private function completeHandler(event:Event):void  
 {  
 ApplicationDomain.currentDomain.getDefinition("Greeter");  
 var myGreeter:Greeter = Greeter(event.target.content);  
 var message:String = myGreeter.welcome("Tommy");  
 trace(message); // Hello, Tommy  
 }  
 }  
 }

Other things to keep in mind when you work with application domains include the following:

• All code in a SWF file is defined to exist in an application domain. The current domain is where your main 

application runs. The system domain contains all application domains, including the current domain, which means 

that it contains all Flash Player classes.

• All application domains, except the system domain, have an associated parent domain. The parent domain for your 

main application's application domain is the system domain. Loaded classes are defined only when their parent 

doesn't already define them. You cannot override a loaded class definition with a newer definition.

The following diagram shows an application that loads content from various SWF files within a single domain, 

domain1.com. Depending on the content you load, different application domains can be used. The text that follows 

describes the logic used to set the appropriate application domain for each SWF file in the application.

Updated 11 February 2009



642PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

A. Usage A  B. Usage B  C. Usage C  

The main application file is application1.swf. It contains Loader objects that load content from other SWF files. In this 

scenario, the current domain is Application domain 1. Usage A, usage B, and usage C illustrate different techniques 

for setting the appropriate application domain for each SWF file in an application.

Usage A Partition the child SWF file by creating a child of the system domain. In the diagram, Application domain 2 

is created as a child of the system domain.The application2.swf file is loaded in Application domain 2, and its class 

definitions are thus partitioned from the classes defined in application1.swf.

One use of this technique is to have an old application dynamically loading a newer version of the same application 

without conflict. There is no conflict because although the same class names are used, they are partitioned into 

different application domains. 

The following code creates an application domain that is a child of the system domain, and starts loading a SWF using 

that application domain:

 var appDomainA:ApplicationDomain = new ApplicationDomain();  
   
 var contextA:LoaderContext = new LoaderContext(false, appDomainA);  
 var loaderA:Loader = new Loader();  
 loaderA.load(new URLRequest("application2.swf"), contextA);

Usage B: dd new class definitions to current class definitions. The application domain of module1.swf is set to the 

current domain (Application domain 1). This lets you add to the application’s current set of class definitions with new 

class definitions. This could be used for a run-time shared library of the main application. The loaded SWF is treated 

as a remote shared library (RSL). Use this technique to load RSLs by a preloader before the application starts.

The following code loads a SWF, setting its application domain to the current domain:

Loader

Loader

Loader

Application

Loader

Stage

Module

Module

Application domain 1

Security domain: domain1.com

module1.swf

module3.swf

Application domain 3

A

C

B

Module

application2.swf

application1.swf

Application domain 2
mx.core.Application

mx.core.Application

Updated 11 February 2009



643PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

 var appDomainB:ApplicationDomain = ApplicationDomain.currentDomain;  
   
 var contextB:LoaderContext = new LoaderContext(false, appDomainB);  
 var loaderB:Loader = new Loader();  
 loaderB.load(new URLRequest("module1.swf"), contextB);

Usage C: se the parent’s class definitions by creating a new child domain of the current domain. The application 

domain of module3.swf is a child of the current domain, and the child uses the parent's versions of all classes. One use 

of this technique might be a module of a multiple-screen rich Internet application (RIA), loaded as a child of the main 

application, that uses the main application's types. If you can ensure that all classes are always updated to be backward 

compatible, and that the loading application is always newer than the things it loads, the children will use the parent 

versions. Having a new application domain also allows you to unload all the class definitions for garbage collection, if 

you can ensure that you do not continue to have references to the child SWF.

This technique lets loaded modules share the loader's singleton objects and static class members.

The following code creates a new child domain of the current domain, and starts loading a SWF using that application 

domain:

 var appDomainC:ApplicationDomain = new ApplicationDomain(ApplicationDomain.currentDomain);  
   
 var contextC:LoaderContext = new LoaderContext(false, appDomainC);  
 var loaderC:Loader = new Loader();  
 loaderC.load(new URLRequest("module3.swf"), contextC);

Using the IME class

The IME class lets you manipulate the operating system’s IME within Flash Player or Adobe AIR.

Using ActionScript, you can determine the following:

• If an IME is installed on the user's computer (Capabilities.hasIME)

• If the IME is enabled or disabled on the user’s computer (IME.enabled)

• The conversion mode the current IME is using (IME.conversionMode)

You can associate an input text field with a particular IME context. When you switch between input fields, you can 

also switch the IME between Hiragana (Japanese), full-width numbers, half-width numbers, direct input, and so on.

An IME lets users type non-ASCII text characters in multibyte languages, such as Chinese, Japanese, and Korean.

For more information on working with IMEs, see the documentation for the operating system for which you are 

developing the application. For additional resources, see the following web sites:

• http://www.msdn.microsoft.com/goglobal/

• http://developer.apple.com/documentation/

• http://www.java.sun.com/

Note: If an IME is not active on the user's computer, calls to IME methods or properties, other than 

Capabilities.hasIME, will fail. Once you manually activate an IME, subsequent ActionScript calls to IME methods 

and properties will work as expected. For example, if you are using a Japanese IME, you must activate it before you can 

call any IME method or property.

Updated 11 February 2009

http://www.msdn.microsoft.com/goglobal/
http://developer.apple.com/documentation/
http://www.java.sun.com/


644PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

Checking if an IME is installed and enabled

Before you call any of the IME methods or properties, you should always check to see if the user’s computer currently 

has an IME installed and enabled. The following code illustrates how to check that the user has an IME both installed 

and active before you call any methods:

 if (Capabilities.hasIME)  
 {  
 if (IME.enabled)  
 {  
 trace("IME is installed and enabled.");  
 }  
 else  
 {  
 trace("IME is installed but not enabled. Please enable your IME and try again.");  
 }  
 }  
 else  
 {  
 trace("IME is not installed. Please install an IME and try again.");  
 }

The previous code first checks to see if the user has an IME installed using the Capabilities.hasIME property. If this 

property is set to true, the code then checks whether the user’s IME is currently enabled, using the IME.enabled 

property.

Determining which IME conversion mode is currently enabled

When building multilingual applications, you may need to determine which conversion mode the user currently has 

active. The following code demonstrates how to check whether the user has an IME installed, and if so, which IME 

conversion mode is currently active:

Updated 11 February 2009



645PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

 if (Capabilities.hasIME)  
 {  
 switch (IME.conversionMode)  
 {  
 case IMEConversionMode.ALPHANUMERIC_FULL:  
 tf.text = "Current conversion mode is alphanumeric (full-width).";  
 break;  
 case IMEConversionMode.ALPHANUMERIC_HALF:  
 tf.text = "Current conversion mode is alphanumeric (half-width).";  
 break;  
 case IMEConversionMode.CHINESE:  
 tf.text = "Current conversion mode is Chinese.";  
 break;  
 case IMEConversionMode.JAPANESE_HIRAGANA:  
 tf.text = "Current conversion mode is Japananese Hiragana.";  
 break;  
 case IMEConversionMode.JAPANESE_KATAKANA_FULL:  
 tf.text = "Current conversion mode is Japanese Katakana (full-width).";  
 break;  
 case IMEConversionMode.JAPANESE_KATAKANA_HALF:  
 tf.text = "Current conversion mode is Japanese Katakana (half-width).";  
 break;  
 case IMEConversionMode.KOREAN:  
 tf.text = "Current conversion mode is Korean.";  
 break;  
 default:  
 tf.text = "Current conversion mode is " + IME.conversionMode + ".";  
 break;  
 }  
 }  
 else  
 {  
 tf.text = "Please install an IME and try again.";  
 }

The previous code first checks to see whether the user has an IME installed. Next it checks which conversion mode the 

current IME is using by comparing the IME.conversionMode property against each of the constants in the 

IMEConversionMode class.

Setting the IME conversion mode

When you change the conversion mode of the user’s IME, you need to make sure that the code is wrapped in a 

try..catch block, because setting a conversion mode using the conversionMode property can throw an error if the 

IME is unable to set the conversion mode. The following code demonstrates how to use a try..catch block when 

setting the IME.conversionMode property:

Updated 11 February 2009



646PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

 var statusText:TextField = new TextField;  
 statusText.autoSize = TextFieldAutoSize.LEFT;  
 addChild(statusText);  
 if (Capabilities.hasIME)  
 {  
 try  
 {  
 IME.enabled = true;  
 IME.conversionMode = IMEConversionMode.KOREAN;  
 statusText.text = "Conversion mode is " + IME.conversionMode + ".";  
 }  
 catch (error:Error)  
 {  
 statusText.text = "Unable to set conversion mode.\n" + error.message;  
 }  
 }

The previous code first creates a text field, which is used to display a status message to the user. Next, if the IME is 

installed, the code enables the IME and sets the conversion mode to Korean. If the user’s computer does not have a 

Korean IME installed, an error is thrown by Flash Player or AIR and is caught by the try..catch block. The 

try..catch block displays the error message in the previously created text field.

Disabling the IME for certain text fields

In some cases, you may want to disable the user’s IME while they type characters. For example, if you had a text field 

that only accepts numeric input, you may not want the IME to come up and slow down data entry. 

The following example demonstrates how you can listen for the FocusEvent.FOCUS_IN and FocusEvent.FOCUS_OUT 

events and disable the user’s IME accordingly:

Updated 11 February 2009



647PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

 var phoneTxt:TextField = new TextField();  
 var nameTxt:TextField = new TextField();  
   
 phoneTxt.type = TextFieldType.INPUT;  
 phoneTxt.addEventListener(FocusEvent.FOCUS_IN, focusInHandler);  
 phoneTxt.addEventListener(FocusEvent.FOCUS_OUT, focusOutHandler);  
 phoneTxt.restrict = "0-9";  
 phoneTxt.width = 100;  
 phoneTxt.height = 18;  
 phoneTxt.background = true;  
 phoneTxt.border = true;  
 addChild(phoneTxt);  
   
 nameField.type = TextFieldType.INPUT;  
 nameField.x = 120;  
 nameField.width = 100;  
 nameField.height = 18;  
 nameField.background = true;  
 nameField.border = true;  
 addChild(nameField);  
   
 function focusInHandler(event:FocusEvent):void  
 {  
 if (Capabilities.hasIME)  
 {  
 IME.enabled = false;  
 }  
 }  
 function focusOutHandler(event:FocusEvent):void  
 {  
 if (Capabilities.hasIME)  
 {  
 IME.enabled = true;  
 }  
 }

This example creates two input text fields, phoneTxt and nameTxt, and then adds two event listeners to the phoneTxt 

text field. When the user sets focus to the phoneTxt text field, a FocusEvent.FOCUS_IN event is dispatched and the 

IME is disabled. When the phoneTxt text field loses focus, the FocusEvent.FOCUS_OUT event is dispatched to re-

enable the IME.

Listening for IME composition events

IME composition events are dispatched when a composition string is being set. For example, if the user has their IME 

enabled and active and types a string in Japanese, the IMEEvent.IME_COMPOSITION event would dispatch as soon as 

the user selects the composition string. In order to listen for the IMEEvent.IME_COMPOSITION event, you need to add 

an event listener to the static ime property in the System class 

(flash.system.System.ime.addEventListener(...)), as shown in the following example:

Updated 11 February 2009



648PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

 var inputTxt:TextField;  
 var outputTxt:TextField;  
   
 inputTxt = new TextField();  
 inputTxt.type = TextFieldType.INPUT;  
 inputTxt.width = 200;  
 inputTxt.height = 18;  
 inputTxt.border = true;  
 inputTxt.background = true;  
 addChild(inputTxt);  
   
 outputTxt = new TextField();  
 outputTxt.autoSize = TextFieldAutoSize.LEFT;  
 outputTxt.y = 20;  
 addChild(outputTxt);  
   
 if (Capabilities.hasIME)  
 {  
 IME.enabled = true;  
 try  
 {  
 IME.conversionMode = IMEConversionMode.JAPANESE_HIRAGANA;  
 }  
 catch (error:Error)  
 {  
 outputTxt.text = "Unable to change IME.";  
 }  
 System.ime.addEventListener(IMEEvent.IME_COMPOSITION, imeCompositionHandler);  
 }  
 else  
 {  
 outputTxt.text = "Please install IME and try again.";  
 }  
   
 function imeCompositionHandler(event:IMEEvent):void  
 {  
 outputTxt.text = "you typed: " + event.text;  
 }

The previous code creates two text fields and adds them to the display list. The first text field, inputTxt, is an input 

text field that allows the user to enter Japanese text. The second text field, outputTxt, is a dynamic text field that 

displays error messages to the user, or echoes the Japanese string that the user types into the inputTxt text field.

Example: Detecting system capabilities

The CapabilitiesExplorer example demonstrates how you can use the flash.system.Capabilities class to determine 

which features the user’s version of Flash Player or AIR supports. This example teaches the following techniques:

• Detecting which capabilities the user’s version of Flash Player or AIR supports using the Capabilities class

• Using the ExternalInterface class to detect which browser settings the user’s browser supports

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

CapabilitiesExplorer application files can be found in the folder Samples/CapabilitiesExplorer. This application 

consists of the following files:

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


649PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

CapabilitiesExplorer overview

The CapabilitiesExplorer.mxml file is responsible for setting up the user interface for the CapabilitiesExplorer 

application. The capabilities of the user’s version of Flash Player or AIR will be displayed within a DataGrid 

component instance on the Stage. Their browser capabilities will also be displayed if they are running the application 

from an HTML container and if the external API is available.

When the main application file’s creationComplete event is dispatched, the initApp() method is invoked. The 

initApp() method calls the getCapabilities() method from within the 

com.example.programmingas3.capabilities.CapabilitiesGrabber class. The code for the initApp() method is as 

follows:

 private function initApp():void  
 {  
 var dp:Array = CapabilitiesGrabber.getCapabilities();  
 capabilitiesGrid.dataProvider = dp;  
 }

The CapabilitiesGrabber.getCapabilities() method returns a sorted array of the AIR, or Flash Player and 

browser capabilities, which then gets set to the dataProvider property of the capabilitiesGrid DataGrid 

component instance on the Stage.

CapabilitiesGrabber class overview

The static getCapabilities() method of the CapabilitiesGrabber class adds each property from the 

flash.system.Capabilities class to an array (capDP). It then calls the static getBrowserObjects() method in the 

CapabilitiesGrabber class. The getBrowserObjects() method uses the external API to loop over the browser’s 

navigator object, which contains the browser’s capabilities. The getCapabilities() method is as follows:

File Description

CapabilitiesExplorer.fla

or

CapabilitiesExplorer.mxml

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/capabilities/CapabilitiesGrabber.as The class that provides the main functionality of the application, 

including adding the system Capabilities to an array, sorting the 

items, and using the ExternalInterface class to retrieve browser 

capabilities.

capabilities.html An HTML container that contains the necessary JavaScript to 

communicate with the external API.

Updated 11 February 2009



650PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

 public static function getCapabilities():Array  
 {  
 var capDP:Array = new Array();  
 capDP.push({name:"Capabilities.avHardwareDisable", value:Capabilities.avHardwareDisable});   
 capDP.push({name:"Capabilities.hasAccessibility", value:Capabilities.hasAccessibility});   
 capDP.push({name:"Capabilities.hasAudio", value:Capabilities.hasAudio});  
 ...  
 capDP.push({name:"Capabilities.version", value:Capabilities.version});  
 var navArr:Array = CapabilitiesGrabber.getBrowserObjects();  
 if (navArr.length > 0)  
 {  
 capDP = capDP.concat(navArr);  
 }  
 capDP.sortOn("name", Array.CASEINSENSITIVE);  
 return capDP;  
 }

The getBrowserObjects() method returns an array of each of the properties in the browser’s navigator object. If this 

array has a length of one or more items, the array of browser capabilities (navArr) is appended to the array of Flash 

Player capabilities (capDP), and the entire array is sorted alphabetically. Finally, the sorted array is returned to the main 

application file, which then populates the data grid. The code for the getBrowserObjects() method is as follows:

 private static function getBrowserObjects():Array  
 {  
 var itemArr:Array = new Array();  
 var itemVars:URLVariables;  
 if (ExternalInterface.available)  
 {  
 try  
 {  
 var tempStr:String = ExternalInterface.call("JS_getBrowserObjects");  
 itemVars = new URLVariables(tempStr);  
 for (var i:String in itemVars)  
 {  
 itemArr.push({name:i, value:itemVars[i]});  
 }  
 }  
 catch (error:SecurityError)  
 {  
 // ignore  
 }  
 }  
 return itemArr;  
 }

If the external API is available in the current user environment, Flash Player calls the JavaScript 

JS_getBrowserObjects() method, which loops over the browser’s navigator object and returns a string of URL-

encoded values to ActionScript. This string is then converted into a URLVariables object (itemVars) and added to the 

itemArr array, which is returned to the calling script.

Communicating with JavaScript

The final piece in building the CapabilitiesExplorer application is writing the necessary JavaScript to loop over each of 

the items in the browser’s navigator object and append a name-value pair to a temporary array. The code for the 

JavaScript JS_getBrowserObjects() method in the container.html file is as follows:

Updated 11 February 2009



651PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Client system environment

 <script language="JavaScript">  
 function JS_getBrowserObjects()  
 {  
 // Create an array to hold each of the browser's items.  
 var tempArr = new Array();  
   
 // Loop over each item in the browser's navigator object.  
 for (var name in navigator)  
 {  
 var value = navigator[name];  
   
 // If the current value is a string or Boolean object, add it to the  
 // array, otherwise ignore the item.  
 switch (typeof(value))  
 {  
 case "string":  
 case "boolean":  
   
 // Create a temporary string which will be added to the array.  
 // Make sure that we URL-encode the values using JavaScript's  
 // escape() function.  
 var tempStr = "navigator." + name + "=" + escape(value);  
 // Push the URL-encoded name/value pair onto the array.  
 tempArr.push(tempStr);  
 break;  
 }  
 }  
 // Loop over each item in the browser's screen object.  
 for (var name in screen)  
 {  
 var value = screen[name];  
   
 // If the current value is a number, add it to the array, otherwise  
 // ignore the item.  
 switch (typeof(value))  
 {  
 case "number":  
 var tempStr = "screen." + name + "=" + escape(value);  
 tempArr.push(tempStr);  
 break;  
 }  
 }  
 // Return the array as a URL-encoded string of name-value pairs.  
 return tempArr.join("&");  
 }  
 </script>

The code begins by creating a temporary array that will hold all the name-value pairs in the navigator object. Next, the 

navigator object is looped over using a for..in loop, and the data type of the current value is evaluated to filter out 

unwanted values. In this application, we are interested only in String or Boolean values, and other data types (such as 

functions or arrays) are ignored. Each String or Boolean value in the navigator object is appended to the tempArr 

array. Next, the browser’s screen object is looped over using a for..in loop, and each numeric value is added to the 

tempArr array. Finally, the temporary array is converted into a string using the Array.join() method. The array uses 

an ampersand (&) as a delimiter, which allows ActionScript to easily parse the data using the URLVariables class.

Updated 11 February 2009



652

Chapter 29: Copy and paste

Use the classes in the clipboard API to copy information to and from the system clipboard. The data formats that can 

be transferred into or out of an application running in Adobe® AIR™ and Adobe® Flash® Player include:

• Bitmaps (AIR only)

• Files (AIR only)

• Text

• HTML-formatted text

• Rich Text Format data

• URL strings (AIR only)

• Serialized objects

• Object references (only valid within the originating application)

Copy-and-paste basics

The copy-and-paste API contains the following classes.

The static Clipboard.generalClipboard property represents the operating system clipboard. The Clipboard class 

provides methods for reading and writing data to clipboard objects.

The HTMLLoader class (in AIR) and TextField class implement default behavior for the normal copy and paste 

keyboard shortcuts. To implement copy and paste shortcut behavior for custom components, you can listen for these 

keystrokes directly. You can also use native menu commands along with key equivalents to respond to the keystrokes 

indirectly.

Different representations of the same information can be made available in a single Clipboard object to increase the 

ability of other applications to understand and use the data. For example, an image might be included as image data, 

a serialized Bitmap object, and as a file. Rendering of the data in a format can be deferred so that the format is not 

actually created until the data in that format is read. 

Reading from and writing to the system clipboard

To read the operating system clipboard, call the getData() method of the Clipboard.generalClipbooard object, 

passing in the name of the format to read:

Package Classes

flash.desktop • Clipboard

• ClipboardFormats

• ClipboardTransferMode

Updated 11 February 2009



653PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Copy and paste

   import flash.desktop.Clipboard;  
 import flash.desktop.ClipboardFormats;  
   
 if(Clipboard.generalClipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)){  
 var text:String = Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT);  
 } 

Note: Content running in Flash Player or in a non-application sandbox in AIR can only call the getData() method in 

an event handler for a paste event. Only code running in the AIR application sandbox can call the getData() method 

outside of a paste event handler. 

To write to the clipboard, add the data to the Clipboard.generalClipboard object in one or more formats. Any 

existing data in the same format is overwritten automatically. However, it is a good practice to also clear the system 

clipboard before writing new data to it to make sure that unrelated data in any other formats is also deleted.

   import flash.desktop.Clipboard;  
 import flash.desktop.ClipboardFormats;  
   
 var textToCopy:String = "Copy to clipboard.";  
 Clipboard.generalClipboard.clear();  
 Clipboard.generalClipboard.setData(ClipboardFormats.TEXT_FORMAT, textToCopy, false); 

Note: Content running in Flash Player or in a non-application sandbox in AIR can only call the setData() method in 

an event handler for a user event, such as a keyboard or mouse event, or a copy or cut event. Only code running in the 

AIR application sandbox can call the setData() method outside of a user event handler. 

Clipboard data formats

Clipboard formats describe the data placed in a Clipboard object. Flash Player or AIR automatically translates the 

standard data formats between ActionScript data types and system clipboard formats. In addition, application objects 

can be transferred within and between ActionScript-based applications using application-defined formats.

A Clipboard object can contain representations of the same information in different formats. For example, a Clipboard 

object representing a Sprite could include a reference format for use within the same application, a serialized format 

for use by another application running in Flash Player or AIR, a bitmap format for use by an image editor, and a file 

list format, perhaps with deferred rendering to encode a PNG file, for copying or dragging a representation of the 

Sprite to the file system.

Standard data formats

The constants defining the standard format names are provided in the ClipboardFormats class:

Constant Description

TEXT_FORMAT Text-format data is translated to and from the ActionScript String class.

HTML_FORMAT Text with HTML markup.

RICH_TEXT_FORMAT Rich-text-format data is translated to and from the ActionScript ByteArray class. The RTF markup is not 

interpreted or translated in any way. 

BITMAP_FORMAT (AIR only) Bitmap-format data is translated to and from the ActionScript BitmapData class.

FILE_LIST_FORMAT (AIR only) File-list-format data is translated to and from an array of ActionScript File objects.

URL_FORMAT (AIR only) URL-format data is translated to and from the ActionScript String class.

Updated 11 February 2009



654PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Copy and paste

Custom data formats

You can use application-defined custom formats to transfer objects as references or as serialized copies. References are 

only valid within the same application running in AIR or Flash Player. Serialized objects can be transferred between 

applications running in AIR or Flash Player, but can only be used with objects that remain valid when serialized and 

deserialized. Objects can usually be serialized if their properties are either simple types or serializable objects.

To add a serialized object to a Clipboard object, set the serializable parameter to true when calling the 

Clipboard.setData() method. The format name can be one of the standard formats or an arbitrary string defined 

by your application.

Transfer modes

When an object is written to the clipboard using a custom data format, the object data can be read from the clipboard 

either as reference or as a serialized copy of the original object. AIR defines four transfer modes that determine whether 

objects are transferred as references or as serialized copies:

Reading and writing custom data formats

You can use any string that does not begin with the reserved prefixes air: or flash: for the format parameter when 

writing an object to the clipboard. Use the same string as the format to read the object. The following examples 

illustrate how to read and write objects to the clipboard:

     public function createClipboardObject(object:Object):Clipboard{  
 var transfer:Clipboard = Clipboard.generalClipboard;  
 transfer.setData("object", object, true);  
 } 

To extract a serialized object from the clipboard object (after a drop or paste operation), use the same format name 

and the cloneOnly or clonePreferred transfer modes. 

     var transfer:Object = clipboard.getData("object", ClipboardTransferMode.CLONE_ONLY); 

A reference is always added to the Clipboard object. To extract the reference from the clipboard object (after a drop or 

paste operation), instead of the serialized copy, use the originalOnly or originalPreferred transfer modes: 

     var transferredObject:Object =   
 clipboard.getData("object", ClipboardTransferMode.ORIGINAL_ONLY); 

References are only valid if the Clipboard object originates from the current application running in AIR or Flash 

Player. Use the originalPreferred transfer mode to access the reference when it is available, and the serialized clone 

when the reference is not available.

Deferred rendering

If creating a data format is computationally expensive, you can use deferred rendering by supplying a function that 

supplies the data on demand. The function is only called if a receiver of the drop or paste operation requests data in 

the deferred format.

Transfer mode Description

ClipboardTransferModes.ORIGINAL_ONLY Only a reference is returned. If no reference is available, a null value is returned.

ClipboardTransferModes.ORIGINAL_PREFFERED A reference is returned, if available. Otherwise a serialized copy is returned.

ClipboardTransferModes.CLONE_ONLY Only a serialized copy is returned. If no serialized copy is available, then a null value 

is returned.

ClipboardTransferModes.CLONE_PREFFERED A serialized copy is returned, if available. Otherwise a reference is returned.

Updated 11 February 2009



655PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Copy and paste

The rendering function is added to a Clipboard object using the setDataHandler() method. The function must 

return the data in the appropriate format. For example, if you called 

setDataHandler(ClipboardFormat.TEXT_FORMAT, writeText), then the writeText() function must return a 

string.

If a data format of the same type is added to a Clipboard object with the setData() method, that data will take 

precedence over the deferred version (the rendering function is never called). The rendering function may or may not 

be called again if the same clipboard data is accessed a second time.

Note: On Mac OS X, deferred rendering only works with custom data formats. With standard data formats, the rendering 

function is called immediately.

Pasting text using a deferred rendering function

The following example illustrates how to implement a deferred rendering function. 

When the user presses the Copy button, the application clears the system clipboard to ensure that no data is left over 

from previous clipboard operations. The setDataHandler() method then set the renderData() function as the 

clipboard renderer.

When the user selects Paste command from the context menu of the destination text field, the application accesses the 

clipboard and sets the destination text. Since the text data format on the clipboard has been set with a function rather 

than a string, the clipboard calls the renderData() function. The renderData() function returns the text in the 

source text, which is then assigned to the destination text. 

Notice that if you edit the source text before pressing the Paste button, the edit will be reflected in the pasted text, even 

when the edit occurs after the copy button was pressed. This is because the rendering function doesn’t copy the source 

text until the paste button is pressed. (When using deferred rendering in a real application, you might want to store or 

protect the source data in some way to prevent this problem.)

 package {   
import flash.desktop.Clipboard;  
import flash.desktop.ClipboardFormats;  
import flash.desktop.ClipboardTransferMode;  
import flash.display.Sprite;  
import flash.text.TextField;  
import flash.text.TextFormat;  
import flash.text.TextFieldType;  
import flash.events.MouseEvent;  
import flash.events.Event;  
public class DeferredRenderingExample extends Sprite   
{   
 private var sourceTextField:TextField;  

private var destination:TextField;  
private var copyText:TextField;  
public function DeferredRenderingExample():void  
{  

sourceTextField = createTextField(10, 10, 380, 90);  
sourceTextField.text = "Neque porro quisquam est qui dolorem "  

+ "ipsum quia dolor sit amet, consectetur, adipisci velit.";  
  

copyText = createTextField(10, 110, 35, 20);  
copyText.htmlText = "<a href='#'>Copy</a>";  
copyText.addEventListener(MouseEvent.CLICK, onCopy);  

  
destination = createTextField(10, 145, 380, 90);  
destination.addEventListener(Event.PASTE, onPaste);  

Updated 11 February 2009



656PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Copy and paste

}  
private function createTextField(x:Number, y:Number, width:Number,  

height:Number):TextField  
{  

var newTxt:TextField = new TextField();  
newTxt.x = x;  
newTxt.y = y;  
newTxt.height = height;  
newTxt.width = width;  
newTxt.border = true;  
newTxt.multiline = true;  
newTxt.wordWrap = true;  
newTxt.type = TextFieldType.INPUT;  
addChild(newTxt);  
return newTxt;  

}  
public function onCopy(event:MouseEvent):void  
{  

Clipboard.generalClipboard.clear();  
Clipboard.generalClipboard.setDataHandler(ClipboardFormats.TEXT_FORMAT,  

renderData);  
}  
public function onPaste(event:Event):void  
{  

sourceTextField.text =  
Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT).toString;  

}  
public function renderData():String  
{  

trace("Rendering data");  
var sourceStr:String = sourceTextField.text;  
if (sourceTextField.selectionEndIndex >  

 sourceTextField.selectionBeginIndex)  
{  

return sourceStr.substring(sourceTextField.selectionBeginIndex,  
sourceTextField.selectionEndIndex);  

}  
else  
{  

return sourceStr;  
}  

}  
}  

}

Updated 11 February 2009



657

Chapter 30: Printing 

Adobe® Flash® Player and Adobe® AIR™ can communicate with an operating system’s printing interface so that you can 

pass pages to the print spooler. Each page Flash Player or AIR sends to the spooler can contain content that is visible, 

dynamic, or offscreen to the user, including database values and dynamic text. Additionally, Flash Player and AIR set 

the properties of the flash.printing.PrintJob class based on a user’s printer settings, so that you can format pages 

appropriately.

This chapter details strategies for using the flash.printing.PrintJob class methods and properties to create a print job, 

read a user’s print settings, and make adjustments to a print job based on feedback from Flash Player or AIR and the 

user’s operating system.

Basics of printing

Introduction to printing

In ActionScript 3.0, you use the PrintJob class to create snapshots of display content to convert to the ink-and-paper 

representation in a printout. In some ways, setting up content for printing is the same as setting it up for on-screen 

display—you position and size elements to create the desired layout. However, printing has some idiosyncrasies that 

make it different from screen layout. For instance, printers use different resolution than computer monitors; the 

contents of a computer screen are dynamic and can change, while printed content is inherently static; and in planning 

printing, the constraints of fixed page size and possibility of multipage printing need to be considered. 

Even though these differences may seem obvious, it’s important to keep them in mind when setting up printing with 

ActionScript. Since accurate printing depends on a combination of the values specified by you and the characteristics 

of the user’s printer, the PrintJob class includes properties that allow you to determine the important characteristics of 

the user’s printer that you’ll need to take into account.

Common printing tasks

The following common printing tasks are described in this chapter:

• Starting a print job

• Adding pages to a print job

• Determining whether the user cancels a print job

• Specifying whether to use bitmap or vector rendering

• Setting page size, scale, and orientation

• Specifying the printable area of content

• Converting screen size to page size

• Printing multipage print jobs

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/printing/PrintJob.html


658PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

Important concepts and terms

The following reference list contains important terms used in this chapter:

• Spooler: A portion of the operating system or printer driver software that keeps track of pages as they are waiting 

to be printed and sends them to the printer when it is available.

• Page orientation: The rotation of the printed content in relation to the paper—either horizontal (landscape) or 

vertical (portrait).

• Print job: The page or set of pages that make up a single printout.

Working through in-chapter examples

While you’re working through this chapter, you might want to test the example code listings. Many of the code listings 

in the chapter are small portions of code rather than full working examples of printing or code that checks values. 

Testing the examples involves creating elements to be printed and using the code listings with those elements. The final 

two chapter examples are full examples of printing; those examples include the code that defines the content to be 

printed as well as performing printing tasks.

To test the example code listings:

1 Create a new Flash document.

2 Select the keyframe on Frame 1 of the Timeline, and open the Actions panel.

3 Copy the code listing into the Script pane.

4 From the main menu, choose Control > Test Movie to create the SWF file and test the example.

Printing a page

You use an instance of the PrintJob class to handle printing. To print a basic page through Flash Player or AIR, you 

use these four statements in sequence: 

• new PrintJob(): Creates a new print job instance of the name you specify.

• PrintJob.start(): Initiates the printing process for the operating system, invoking the print dialog box for the 

user, and populates the read-only properties of the print job.

• PrintJob.addPage(): Contains the details about the print job contents, including the Sprite object (and any 

children it contains), the size of the print area, and whether the printer should print the image as a vector or bitmap. 

You can use successive calls to addPage() to print multiple sprites over several pages.

• PrintJob.send(): Sends the pages to the operating system’s printer.

So, for example, a very simple print job script may look like the following (including package, import and class 

statements for compiling):

Updated 11 February 2009



659PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

 package  
 {  
 import flash.printing.PrintJob;  
 import flash.display.Sprite;  
   
 public class BasicPrintExample extends Sprite  
 {  
 var myPrintJob:PrintJob = new PrintJob();  
 var mySprite:Sprite = new Sprite();  
   
 public function BasicPrintExample()  
 {  
 myPrintJob.start();  
 myPrintJob.addPage(mySprite);  
 myPrintJob.send();  
 }  
 }  
 }

Note: This example is intended to show the basic elements of a print job script, and does not contain any error handling. 

To build a script that responds properly to a user canceling a print job, see “Working with exceptions and returns” on 

page 659.

If you need to clear a PrintJob object’s properties for any reason, set the PrintJob variable to null (as in myPrintJob 

= null).

Flash Player and AIR tasks and system printing

Because Flash Player and AIR dispatch pages to the operating system’s printing interface, you should understand the 

scope of the tasks managed by Flash Player, and AIR and the tasks managed by an operating system’s own printing 

interface. Flash Player and AIR can initiate a print job, read some of a printer’s page settings, pass the content for a 

print job to the operating system, and verify if the user or system has cancelled a print job. Other processes, such as 

displaying printer specific dialog boxes, cancelling a spooled print job, or reporting on the printer’s status, are all 

handled by the operating system. Flash Player and AIR are able to respond if there is a problem initiating or formatting 

a print job, but can report back only on certain properties or conditions from the operating system’s printing interface. 

As a developer, your code should have the ability to respond to these properties or conditions. 

Working with exceptions and returns

You should check to see if the PrintJob.start() method returns true before executing addPage() and send() 

calls, in case the user has cancelled the print job. A simple way to check whether these methods have been cancelled 

before continuing is to wrap them in an if statement, as follows:

 if (myPrintJob.start())  
 {  
 // addPage() and send() statements here  
 }

If PrintJob.start() is true, meaning the user has selected Print (or Flash Player or AIR has initiated a Print 

command), the addPage() and send() methods can be called.

Updated 11 February 2009



660PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

Also, to help manage the printing process, Flash Player and AIR throw exceptions for the PrintJob.addPage() 

method, so that you can catch errors and provide information and options to the user. If a PrintJob.addPage() 

method fails, you can also call another function or stop the current print job. You catch these exceptions by embedding 

addPage() calls within a try..catch statement, as in the following example. In the example, [params] is a 

placeholder for the parameters specifying the actual content you want to print:

 if (myPrintJob.start())  
 {  
 try  
 {  
 myPrintJob.addPage([params]);  
 }  
 catch (error:Error)  
 {  
 // Handle error,   
 }  
 myPrintJob.send();  
 }

After the print job starts, you can add the content using PrintJob.addPage() and see if that generates an exception 

(for example, if the user has cancelled the print job). If it does, you can add logic to the catch statement to provide the 

user (or Flash Player or AIR) with information and options, or you can stop the current print job. If you add the page 

successfully, you can proceed to send the pages to the printer using PrintJob.send(). 

If Flash Player or AIR encounters a problem sending the print job to the printer (for example, if the printer is offline), 

you can catch that exception, too, and provide the user (or Flash Player or AIR) with information or more options 

(such as displaying message text or providing an alert within an animation). For example, you can assign new text to 

a text field in an if..else statement, as the following code shows:

 if (myPrintJob.start())  
 {  
 try  
 {  
 myPrintJob.addPage([params]);  
 }  
 catch (error:Error)  
 {  
 // Handle error.   
 }  
 myPrintJob.send();  
 }  
 else  
 {  
 myAlert.text = "Print job canceled";  
 }

For a working example, see “Example: Scaling, cropping, and responding” on page 665.

Working with page properties 

Once the user clicks OK in the Print dialog box and PrintJob.start() returns true, you can access the properties 

defined by the printer’s settings. These include the paper width, paper height (pageHeight and pageWidth), and 

content orientation on the paper. Because these are printer settings, not controlled by Flash Player or AIR, you cannot 

alter these settings; however, you can use them to align the content you send to the printer to match the current 

settings. For more information, see “Setting size, scale, and orientation” on page 661.

Updated 11 February 2009



661PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

Setting vector or bitmap rendering

You can manually set the print job to spool each page as vector graphics or a bitmap image. In some cases, vector 

printing will produce a smaller spool file, and a better image than bitmap printing. However, if your content includes 

a bitmap image, and you want to preserve any alpha transparency or color effects, you should print the page as a bitmap 

image. Also, a non-PostScript printer automatically converts any vector graphics to bitmap images. 

Note: Adobe AIR does not support vector printing on Mac OS.

You specify bitmap printing in the third parameter of PrintJob.addPage(), by passing a PrintJobOptions object 

with the printAsBitmap parameter set to true, as follows:

 var options:PrintJobOptions = new PrintJobOptions();  
 options.printAsBitmap = true;  
 myPrintJob.addPage(mySprite, null, options);

If you don’t specify a value for the third parameter, the print job will use the default, which is vector printing. 

Note: If you don't want to specify a value for printArea (the second parameter) but want to specify a value for bitmap 

printing, use null for printArea.

Timing print job statements

ActionScript 3.0 does not restrict a PrintJob object to a single frame (as did previous versions of ActionScript). 

However, because the operating system displays print status information to the user once the user has clicked the OK 

button in the Print dialog box, you should call PrintJob.addPage() and PrintJob.send() as soon as possible to 

send pages to the spooler. A delay reaching the frame containing the PrintJob.send() call will delay the printing 

process.

In ActionScript 3.0, there is a script time-out limit of 15 seconds. Therefore, the time between each major statement 

in a print job sequence cannot exceed 15 seconds. In other words, the 15-second script time-out limit applies to the 

following intervals: 

• Between PrintJob.start() and the first PrintJob.addPage()

• Between PrintJob.addPage() and the next PrintJob.addPage()

• Between the last PrintJob.addPage() and PrintJob.send()

If any of these intervals spans more than 15 seconds, the next call to PrintJob.start() on the PrintJob instance 

returns false, and the next PrintJob.addPage() on the PrintJob instance causes Flash Player or AIR to throw a run-

time exception.

Setting size, scale, and orientation

The section “Printing a page” on page 658 details the steps for a basic print job, where the output directly reflects the 

printed equivalent of the screen size and position of the specified sprite. However, printers use different resolutions 

for printing, and can have settings that adversely affect the appearance of the printed sprite. 

Flash Player and AIR can read an operating system’s printing settings, but note that these properties are read-only: 

although you can respond to their values, you can’t set them. So, for example, you can find out the printer’s page size 

setting and adjust your content to fit the size. You can also determine a printer’s margin settings and page orientation. 

To respond to the printer settings, you may need to specify a print area, adjust for the difference between a screen’s 

resolution and a printer’s point measurements, or transform your content to meet the size or orientation settings of 

the user’s printer.

Updated 11 February 2009



662PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

Using rectangles for the print area

The PrintJob.addPage() method allows you to specify the region of a sprite that you want printed. The second 

parameter, printArea, is in the form of a Rectangle object. You have three options for providing a value for this 

parameter:

• Create a Rectangle object with specific properties and then use that rectangle in the addPage() call, as in the 

following example:

 private var rect1:Rectangle = new Rectangle(0, 0, 400, 200);  
 myPrintJob.addPage(sheet, rect1);

• If you haven’t already specified a Rectangle object, you can do it within the call itself, as in the following example:

 myPrintJob.addPage(sheet, new Rectangle(0, 0, 100, 100));

• If you plan to provide values for the third parameter in the addPage() call, but don’t want to specify a rectangle, 

you can use null for the second parameter, as in the following;

 myPrintJob.addPage(sheet, null, options);

Note: If you plan to specify a rectangle for the printing dimensions, remember to import the flash.display.Rectangle 

class. 

Comparing points and pixels

A rectangle's width and height are pixel values. A printer uses points as print units of measurement. Points are a fixed 

physical size (1/72 inch), but the size of a pixel on the screen depends on the resolution of the particular screen. The 

conversion rate between pixels and points depends on the printer settings and whether the sprite is scaled. An unscaled 

sprite that is 72 pixels wide will print out one inch wide, with one point equal to one pixel, independent of screen 

resolution.

You can use the following equivalencies to convert inches or centimeters to twips or points (a twip is 1/20 of a point): 

• 1 point = 1/72 inch = 20 twips 

• 1 inch = 72 points = 1440 twips 

• 1 centimeter = 567 twips 

If you omit the printArea parameter, or if it is passed incorrectly, the full area of the sprite is printed.

Scaling

If you want to scale a Sprite object before you print it, set the scale properties (see “Manipulating size and scaling 

objects” on page 291) before calling the PrintJob.addPage() method, and set them back to their original values after 

printing. The scale of a Sprite object has no relation to the printArea property. In other words, if you specify a print 

area that is 50 pixels by 50 pixels, 2500 pixels are printed. If you scale the Sprite object, the same 2500 pixels are printed, 

but the Sprite object is printed at the scaled size.

For an example, see “Example: Scaling, cropping, and responding” on page 665.

Printing for landscape or portrait orientation 

Because Flash Player and AIR can detect the settings for orientation, you can build logic into your ActionScript to 

adjust the content size or rotation in response to the printer settings, as the following example illustrates: 

Updated 11 February 2009



663PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

 if (myPrintJob.orientation == PrintJobOrientation.LANDSCAPE)  
 {  
 mySprite.rotation = 90;  
 }

Note: If you plan to read the system setting for content orientation on the paper, remember to import the 

PrintJobOrientation class. The PrintJobOrientation class provides constant values that define the content orientation on 

the page. You import the class using the following statement:

import flash.printing.PrintJobOrientation;

Responding to page height and width

Using a strategy that is similar to handling printer orientation settings, you can read the page height and width settings 

and respond to them by embedding some logic into an if statement. The following code shows an example:

 if (mySprite.height > myPrintJob.pageHeight)  
 {  
 mySprite.scaleY = .75;  
 }

In addition, a page’s margin settings can be determined by comparing the page and paper dimensions, as the following 

example illustrates:

 margin_height = (myPrintJob.paperHeight - myPrintJob.pageHeight) / 2;  
 margin_width = (myPrintJob.paperWidth - myPrintJob.pageWidth) / 2;

Example: Multiple-page printing

When printing more than one page of content, you can associate each page of content with a different sprite (in this 

case, sheet1 and sheet2), and then use PrintJob.addPage() for each sprite. The following code illustrates this 

technique:

 package  
 {  
 import flash.display.MovieClip;  
 import flash.printing.PrintJob;  
 import flash.printing.PrintJobOrientation;  
 import flash.display.Stage;  
 import flash.display.Sprite;  
 import flash.text.TextField;  
 import flash.geom.Rectangle;  
   
 public class PrintMultiplePages extends MovieClip  
 {  
 private var sheet1:Sprite;  
 private var sheet2:Sprite;  
   
 public function PrintMultiplePages():void  
 {  
 init();  
 printPages();  
 }  
   
 private function init():void  

Updated 11 February 2009

http://www.adobe.com/go/learn_flashcs4_langref_en?flash/printing/PrintJobOrientation.html


664PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

 {  
 sheet1 = new Sprite();  
 createSheet(sheet1, "Once upon a time...", {x:10, y:50, width:80, height:130});  
 sheet2 = new Sprite();  
 createSheet(sheet2, "There was a great story to tell, and it ended quickly.\n\nThe 
end.", null);  
 }  
   
 private function createSheet(sheet:Sprite, str:String, imgValue:Object):void  
 {  
 sheet.graphics.beginFill(0xEEEEEE);  
 sheet.graphics.lineStyle(1, 0x000000);  
 sheet.graphics.drawRect(0, 0, 100, 200);  
 sheet.graphics.endFill();  
   
 var txt:TextField = new TextField();  
 txt.height = 200;  
 txt.width = 100;  
 txt.wordWrap = true;  
 txt.text = str;  
   
 if (imgValue != null)  
 {  
 var img:Sprite = new Sprite();  
 img.graphics.beginFill(0xFFFFFF);  
 img.graphics.drawRect(imgValue.x, imgValue.y, imgValue.width, imgValue.height);  
 img.graphics.endFill();  
 sheet.addChild(img);  
 }  
 sheet.addChild(txt);  
 }  
   
 private function printPages():void  
 {  
 var pj:PrintJob = new PrintJob();  
 var pagesToPrint:uint = 0;  
 if (pj.start())  
 {  
 if (pj.orientation == PrintJobOrientation.LANDSCAPE)  
 {  
 throw new Error("Page is not set to an orientation of portrait.");  
 }  
   
 sheet1.height = pj.pageHeight;  
 sheet1.width = pj.pageWidth;  
 sheet2.height = pj.pageHeight;  
 sheet2.width = pj.pageWidth;  
   
 try  
 {  
 pj.addPage(sheet1);  
 pagesToPrint++;  
 }  
 catch (error:Error)  
 {  
 // Respond to error.  

Updated 11 February 2009



665PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

 }  
   
 try  
 {  
 pj.addPage(sheet2);  
 pagesToPrint++;  
 }  
 catch (error:Error)  
 {  
 // Respond to error.  
 }  
   
 if (pagesToPrint > 0)  
 {  
 pj.send();  
 }  
 }  
 }  
 }  
 }

Example: Scaling, cropping, and responding

In some cases, you may want adjust the size (or other properties) of a display object when printing it to accommodate 

differences between the way it appears on screen and the way it appears printed on paper. When you adjust the 

properties of a display object before printing (for example, by using the scaleX and scaleY properties), be aware that 

if the object scales larger than the defined rectangle for the print area, the object will be cropped. You will also probably 

want to reset the properties after the pages have been printed.

The following code scales the dimensions of the txt display object (but not the green box background), and the text 

field ends up being cropped by the dimensions of the specified rectangle. After printing, the text field is returned to its 

original size for display on screen. If the user cancels the print job from the operating system’s Print dialog box, the 

content in the Flash Player or AIR changes to alert the user that the job has been canceled.

 package  
 {  
 import flash.printing.PrintJob;  
 import flash.display.Sprite;  
 import flash.text.TextField;  
 import flash.display.Stage;  
 import flash.geom.Rectangle;  
   
 public class PrintScaleExample extends Sprite  
 {  
 private var bg:Sprite;  
 private var txt:TextField;  
   
 public function PrintScaleExample():void  
 {  
 init();  
 draw();  
 printPage();  
 }  
   

Updated 11 February 2009



666PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Printing

 private function printPage():void  
 {  
 var pj:PrintJob = new PrintJob();  
 txt.scaleX = 3;  
 txt.scaleY = 2;  
 if (pj.start())  
 {  
 trace(">> pj.orientation: " + pj.orientation);  
 trace(">> pj.pageWidth: " + pj.pageWidth);  
 trace(">> pj.pageHeight: " + pj.pageHeight);  
 trace(">> pj.paperWidth: " + pj.paperWidth);  
 trace(">> pj.paperHeight: " + pj.paperHeight);  
   
 try  
 {  
 pj.addPage(this, new Rectangle(0, 0, 100, 100));  
 }  
 catch (error:Error)  
 {  
 // Do nothing.  
 }  
 pj.send();  
 }  
 else  
 {  
 txt.text = "Print job canceled";  
 }  
 // Reset the txt scale properties.  
 txt.scaleX = 1;  
 txt.scaleY = 1;  
 }  
   
 private function init():void  
 {  
 bg = new Sprite();  
 bg.graphics.beginFill(0x00FF00);  
 bg.graphics.drawRect(0, 0, 100, 200);  
 bg.graphics.endFill();  
   
 txt = new TextField();  
 txt.border = true;  
 txt.text = "Hello World";  
 }  
   
 private function draw():void  
 {  
 addChild(bg);  
 addChild(txt);  
 txt.x = 50;  
 txt.y = 50;  
 }  
 }  
 }

Updated 11 February 2009



667

Chapter 31: Using the external API

The ActionScript 3.0 external API enables straightforward communication between ActionScript and the container 

application within which Adobe Flash Player is running. There are several situations in which you may want to use the 

external API—for example, when you create interaction between a SWF document and JavaScript in an HTML page, 

or when you build a desktop application that uses Flash Player to display a SWF file.

This chapter describes how to use the external API to interact with a container application, how to pass data between 

ActionScript and JavaScript in an HTML page, and how to establish communication and exchange data between 

ActionScript and a desktop application.

Note: This chapter only covers communication between ActionScript in a SWF and the container application that 

includes a reference to the Flash Player or instance in which the SWF is loaded. Any other use of Flash Player within an 

application is outside the scope of this documentation. Flash Player is designed to be used as a browser plug-in or as a 

projector (standalone application). Other usage scenarios may have limited support.

Basics of using the external API

Introduction to using the external API

Although in some cases a SWF file can run on its own (for example, if you create a SWF projector), in the majority of 

cases a SWF application runs as an element inside of another application. Commonly, the container that includes the 

SWF is an HTML file; somewhat less frequently, a SWF file is used for all or part of the user interface of a desktop 

application.

As you work on more advanced applications, you may find a need to set up communication between the SWF file and 

the container application. For instance, it’s common for a web page to display text or other information in HTML, and 

include a SWF file to display dynamic visual content such as a chart or video. In such a case, you might want to make 

it so that when users click a button on the web page, it changes something in the SWF file. ActionScript contains a 

mechanism, known as the external API, that facilitates this type of communication between ActionScript in a SWF file 

and other code in the container application.

Common external API tasks

The following common external API tasks are explained in this chapter:

• Getting information about the container application

• Using ActionScript to call code in a container application, including a web page or desktop application

• Calling ActionScript code from code in a container application

• Creating a proxy to simplify calling ActionScript code from a container application

Important concepts and terms

The following reference list contains important terms used in this chapter:

• ActiveX container: A container application (not a web browser) that includes an instance of the Flash Player 

ActiveX control to display SWF content within the application.

Updated 11 February 2009



668PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

• Container application: The application within which Flash Player is running a SWF file, such as a web browser and 

HTML page that includes Flash Player content.

• Projector: A SWF file that has been converted into a standalone executable file including Flash Player as well as the 

SWF file’s content. A projector can be created in Adobe Flash CS4 Professional or using the standalone Flash 

Player. Projectors are commonly used to distribute SWF files by CD-ROM or in similar situations where download 

size is not an issue and the SWF author wants to be certain the user will be able to run the SWF file, regardless of 

whether Flash Player is installed on the user’s computer.

• Proxy: A go-between application or code that calls code in one application (the “external application”) on behalf of 

another application (the “calling application”), and returns values to the calling application. A proxy can be used 

for various reasons, including:

• To simplify the process of making external function calls by converting native function calls in the calling 

application into the format understood by the external application

• To work around security or other restrictions that prevent the caller from communicating directly with the 

external application

• Serialize: To convert objects or data values into a format that can be used to pass the values in messages between 

two programming systems, such as over the Internet or between two different applications running on a single 

computer.

Working through in-chapter examples

While you’re working through this chapter, you might want to test the example code listings. Many of the code listings 

in the chapter are small listings of code for demonstration purposes rather than full working examples or code that 

checks values. Because using the external API requires (by definition) writing ActionScript code as well as code in a 

container application, testing the examples involves creating a container (for example, a web page containing the SWF) 

and using the code listings to interact with the container. 

To test an example of ActionScript-to-JavaScript communication:

1 Create a new document using the Flash authoring tool and save it to your computer.

2 From the main menu, choose File > Publish Settings.

3 In the Publish Settings dialog box, on the Formats tab, confirm that the Flash and HTML check boxes are selected.

4 Click the Publish button. This generates a SWF file and HTML file in the same folder and with the same name that 

you used to save the document. Click OK to close the Publish Settings dialog box.

5 Deselect the HTML check box. Now that the HTML page is generated, you are going to modify it to add the 

appropriate JavaScript code. Deselecting the HTML check box ensures that after you modify the HTML page, Flash 

will not overwrite your changes with a new HTML page when it’s publishing the SWF file.

6 Click OK to close the Publish Settings dialog box.

7 With an HTML or text editor application, open the HTML file that was created by Flash when you published the 

SWF. In the HTML source code, add opening and closing script tags, and copy into them the JavaScript code from 

the example code listing:

 <script>  
 // add the sample JavaScript code here  
 </script>

8 Save the HTML file and return to Flash.

9 Select the keyframe on Frame 1 of the Timeline, and open the Actions panel.

Updated 11 February 2009



669PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

10 Copy the ActionScript code listing into the Script pane.

11 From the main menu, choose File > Publish to update the SWF file with the changes that you’ve made.

12 Using a web browser, open the HTML page you edited to view the page and test communication between 

ActionScript and the HTML page.

To test an example of ActionScript-to-ActiveX container communication:

1 Create a new document using the Flash authoring tool and save it to your computer. You may want to save it in the 

folder where your container application will expect to find the SWF file.

2 From the main menu, choose File > Publish Settings.

3 In the Publish Settings dialog box, on the Formats tab, confirm that only the Flash check box is selected.

4 In the File field next to the Flash check box, click the folder icon to select the folder into which your SWF file will 

be published. By setting the location for your SWF file, you can (for example) keep the authoring document in one 

folder, but put the published SWF file in another folder such as the folder containing the source code for the 

container application.

5 Select the keyframe on Frame 1 of the Timeline, and open the Actions panel.

6 Copy the ActionScript code for the example into the Script pane.

7 From the main menu, choose File > Publish to re-publish the SWF file.

8 Create and run your container application to test communication between ActionScript and the container 

application.

The two examples at the end of this chapter are full examples of using the external API to communicate with an HTML 

page and a C# desktop application, respectively. Those examples include the full code, including ActionScript and 

container error-checking code, which you should use when writing code using the external API. For another full 

example using the external API, see the class example for the ExternalInterface class in the ActionScript 3.0 Language 

and Components Reference.

External API requirements and advantages

The external API is the portion of ActionScript that provides a mechanism for communication between ActionScript 

and code running in an “external application” that is acting as a container for Flash Player (commonly a web browser 

or stand-alone projector application). In ActionScript 3.0, the functionality of the external API is provided by the 

ExternalInterface class. In Flash Player versions prior to Flash Player 8, the fscommand() action was used to carry out 

communication with the container application. The ExternalInterface class is a replacement for fscommand(), and its 

use is recommended for all communication between JavaScript and ActionScript.

Note: If you need to use the old fscommand() function—for example, to maintain compatibility with older applications 

or to interact with a third-party SWF container application or the stand-alone Flash Player—it is still available as a 

package-level function in the flash.system package.

The ExternalInterface class is a subsystem that lets you easily communicate from ActionScript and Flash Player to 

JavaScript in an HTML page, or to any desktop application that includes an instance of Flash Player.

The ExternalInterface class is available only under the following conditions:

• In all supported versions of Internet Explorer for Windows (5.0 and later)

• In a container application such as a desktop application using an instance of the Flash Player ActiveX control

Updated 11 February 2009



670PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

• In any browser that supports the NPRuntime interface, which currently includes Firefox 1.0 and later, Mozilla 1.7.5 

and later, Netscape 8.0 and later, and Safari 1.3 and later.

In all other situations (such as running in a stand-alone player), the ExternalInterface.available property 

returns false.

From ActionScript, you can call a JavaScript function on the HTML page. The external API offers the following 

improved functionality compared with fscommand():

• You can use any JavaScript function, not only the functions that you can use with the fscommand() function.

• You can pass any number of arguments, with any names; you aren't limited to passing a command and a single 

string argument. This gives the external API much more flexibility than fscommand().

• You can pass various data types (such as Boolean, Number, and String); you are no longer limited to String 

parameters.

• You can receive the value of a call, and that value returns immediately to ActionScript (as the return value of the 

call you make).

Important: If the name given to the Flash Player instance in an HTML page (the object tag’s id attribute) includes a 

hyphen (-) or other characters that are defined as operators in JavaScript (such as +, *, /, \, ., and so on), 

ExternalInterface calls from ActionScript will not work when the container web page is viewed in Internet Explorer.In 

addition, if the HTML tags that define the Flash Player instance (the object and embed tags) are nested in an HTML 

form tag, ExternalInterface calls from ActionScript will not work.

Using the ExternalInterface class

Communication between ActionScript and the container application can take one of two forms: either ActionScript 

can call code (such as a JavaScript function) defined in the container, or code in the container can call an ActionScript 

function that has been designated as being callable. In either case, information can be sent to the code being called, and 

results can be returned to the code making the call.

To facilitate this communication, the ExternalInterface class includes two static properties and two static methods. 

These properties and methods are used to obtain information about the external interface connection, to execute code 

in the container from ActionScript, and to make ActionScript functions available to be called by the container.

Getting information about the external container

The ExternalInterface.available property indicates whether the current Flash Player is in a container that offers 

an external interface. If the external interface is available, this property is true; otherwise, it is false. Before using any 

of the other functionality in the ExternalInterface class, you should always check to make sure that the current 

container supports external interface communication, as follows:

 if (ExternalInterface.available)  
 {  
 // Perform ExternalInterface method calls here.  
 }

Note: The ExternalInterface.available property reports whether the current container is a type that supports 

ExternalInterface connectivity. It will not tell you if JavaScript is enabled in the current browser.

Updated 11 February 2009



671PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

The ExternalInterface.objectID property allows you to determine the unique identifier of the Flash Player 

instance (specifically, the id attribute of the object tag in Internet Explorer or the name attribute of the embed tag in 

browsers using the NPRuntime interface). This unique ID represents the current SWF document in the browser, and 

can be used to make reference to the SWF document—for example, when calling a JavaScript function in a container 

HTML page. When the Flash Player container is not a web browser, this property is null.

Calling external code from ActionScript

The ExternalInterface.call() method executes code in the container application. It requires at least one 

parameter, a string containing the name of the function to be called in the container application. Any additional 

parameters passed to the ExternalInterface.call() method are passed along to the container as parameters of the 

function call.

 // calls the external function "addNumbers"  
 // passing two parameters, and assigning that function's result  
 // to the variable "result"  
 var param1:uint = 3;  
 var param2:uint = 7;  
 var result:uint = ExternalInterface.call("addNumbers", param1, param2);

If the container is an HTML page, this method invokes the JavaScript function with the specified name, which must 

be defined in a script element in the containing HTML page. The return value of the JavaScript function is passed 

back to ActionScript.

 <script language="JavaScript">  
 // adds two numbers, and sends the result back to ActionScript  
 function addNumbers(num1, num2)  
 {  
 return (num1 + num2);  
 }  
 </script>

If the container is some other ActiveX container, this method causes the Flash Player ActiveX control to dispatch its 

FlashCall event. The specified function name and any parameters are serialized into an XML string by Flash Player. 

The container can access that information in the request property of the event object and use it to determine how to 

execute its own code. To return a value to ActionScript, the container code calls the ActiveX object’s 

SetReturnValue() method, passing the result (serialized into an XML string) as a parameter of that method. For 

more information about the XML format used for this communication, see “The external API’s XML format” on 

page 672.

Whether the container is a web browser or another ActiveX container, if the call fails or the container method does 

not specify a return value, null is returned. The ExternalInterface.call() method throws a SecurityError 

exception if the containing environment belongs to a security sandbox to which the calling code does not have access. 

You can work around this by setting an appropriate value for allowScriptAccess in the containing environment. 

For example, to change the value of allowScriptAccess in an HTML page, you would edit the appropriate attribute 

in the object and embed tags.

Calling ActionScript code from the container

A container can only call ActionScript code that’s in a function—no other ActionScript code can be called by a 

container. To call an ActionScript function from the container application, you must do two things: register the 

function with the ExternalInterface class, and then call it from the container’s code.

First, you must register your ActionScript function to indicate that it should be made available to the container. Use 

the ExternalInterface.addCallback() method, as follows:

Updated 11 February 2009



672PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

 function callMe(name:String):String  
 {  
 return "busy signal";  
 }  
 ExternalInterface.addCallback("myFunction", callMe);

The addCallback() method takes two parameters. The first, a function name as a String, is the name by which the 

function will be known to the container. The second parameter is the actual ActionScript function that will be executed 

when the container calls the defined function name. Because these names are distinct, you can specify a function name 

that will be used by the container, even if the actual ActionScript function has a different name. This is especially useful 

if the function name is not known—for example, if an anonymous function is specified, or if the function to be called 

is determined at run time. 

Once an ActionScript function has been registered with the ExternalInterface class, the container can actually call the 

function. How this is done varies according to the type of container. For example, in JavaScript code in a web browser, 

the ActionScript function is called using the registered function name as though it’s a method of the Flash Player 

browser object (that is, a method of the JavaScript object representing the object or embed tag). In other words, 

parameters are passed and a result is returned as though a local function is being called.

 <script language="JavaScript">  
 // callResult gets the value "busy signal"  
 var callResult = flashObject.myFunction("my name");  
 </script>  
 ...  
 <object id="flashObject"...>  
 ...  
 <embed name="flashObject".../>  
 </object>

Alternatively, when calling an ActionScript function in a SWF file running in a desktop application, the registered 

function name and any parameters must be serialized into an XML-formatted string. Then the call is actually 

performed by calling the CallFunction() method of the ActiveX control with the XML string as a parameter. For 

more information about the XML format used for this communication, see “The external API’s XML format” on 

page 672.

In either case, the return value of the ActionScript function is passed back to the container code, either directly as a 

value when the caller is JavaScript code in a browser, or serialized as an XML-formatted string when the caller is an 

ActiveX container.

The external API’s XML format

Communication between ActionScript and an application hosting the Shockwave Flash ActiveX control uses a specific 

XML format to encode function calls and values. There are two parts to the XML format used by the external API. One 

format is used to represent function calls. Another format is used to represent individual values; this format is used for 

parameters in functions as well as function return values. The XML format for function calls is used for calls to and 

from ActionScript. For a function call from ActionScript, Flash Player passes the XML to the container; for a call from 

the container, Flash Player expects the container application to pass it an XML string in this format. The following 

XML fragment shows an example XML-formatted function call:

 <invoke name="functionName" returntype="xml">  
 <arguments>  
 ... (individual argument values)  
 </arguments>  
 </invoke>

Updated 11 February 2009



673PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

The root node is the invoke node. It has two attributes: name indicates the name of the function to call, and 

returntype is always xml. If the function call includes parameters, the invoke node has a child arguments node, 

whose child nodes will be the parameter values formatted using the individual value format explained next.

Individual values, including function parameters and function return values, use a formatting scheme that includes 

data type information in addition to the actual values. The following table lists ActionScript classes and the XML 

format used to encode values of that data type:

Note: By way of example, this table shows equivalent C# classes in addition to ActionScript classes; however, the external 

API can be used to communicate with any programming language or run time that supports ActiveX controls, and is not 

limited to C# applications.

When you are building your own applications using the external API with an ActiveX container application, you’ll 

probably find it convenient to write a proxy that will perform the task of converting native function calls to the 

serialized XML format. For an example of a proxy class written in C#, see “Inside the ExternalInterfaceProxy class” on 

page 683.

ActionScript 

class/value

C# class/value Format Comments

null null <null/>

Boolean true bool true <true/>

Boolean false bool false <false/>

String string <string>string value</string>

Number, int, uint single, double, int, uint <number>27.5</number>  
<number>-12</number>

Array (elements can be 

mixed types)

A collection that allows 

mixed-type elements, 

such as ArrayList or 

object[]

<array>  
<property id="0">  
<number>27.5</number>  
</property>  
<property id="1">  
<string>Hello there!</string>  
</property>  
...  
</array>

The property node 

defines individual 

elements, and the id 

attribute is the 

numeric, zero-based 

index.

Object A dictionary with string 

keys and object values, 

such as a HashTable with 

string keys

<object>  
<property id="name">  
<string>John Doe</string>  
</property>  
<property id="age">  
<string>33</string>  
</property>  
...  
</object>

The property node 

defines individual 

properties, and the 

id attribute is the 

property name (a 

string).

Other built-in or custom 

classes

<null/> or   
<object></object>

ActionScript encodes 

other objects as null 

or as an empty object. 

In either case any 

property values are 

lost.

Updated 11 February 2009



674PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

Example: Using the external API with a web page 
container

This sample application demonstrates appropriate techniques for communicating between ActionScript and 

JavaScript in a web browser, in the context of an Instant Messaging application that allows a person to chat with him 

or herself (hence the name of the application: Introvert IM). Messages are sent between an HTML form in the web 

page and a SWF interface using the external API. The techniques demonstrated by this example include the following:

• Properly initiating communication by verifying that the browser is ready to communicate before setting up 

communication

• Checking whether the container supports the external API

• Calling JavaScript functions from ActionScript, passing parameters, and receiving values in response

• Making ActionScript methods available to be called by JavaScript, and performing those calls

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

Introvert IM application files can be found in the Samples/IntrovertIM_HTML folder. The application consists of the 

following files:

Preparing for ActionScript-browser communication

One of the most common uses for the external API is to allow ActionScript applications to communicate with a web 

browser. Using the external API, ActionScript methods can call code written in JavaScript and vice versa. Because of 

the complexity of browsers and how they render pages internally, there is no way to guarantee that a SWF document 

will register its callbacks before the first JavaScript on the HTML page runs. For that reason, before calling functions 

in the SWF document from JavaScript, your SWF document should always call the HTML page to notify it that the 

SWF document is ready to accept connections.

For example, through a series of steps performed by the IMManager class, the Introvert IM determines whether the 

browser is ready for communication and prepares the SWF file for communication. The first step, determining when 

the browser is ready for communication, happens in the IMManager constructor, as follows:

File Description

IntrovertIMApp.fla

or

IntrovertIMApp.mxml

The main application file for Flash (FLA) or Flex (MXML).

com/example/programmingas3/introvertIM/IMManager.as The class that establishes and manages communication between 

ActionScript and the container.

com/example/programmingas3/introvertIM/IMMessageEvent.as Custom event type, dispatched by the IMManager class when a message 

is received from the container.

com/example/programmingas3/introvertIM/IMStatus.as Enumeration whose values represent the different “availability” status 

values that can be selected in the application.

html-flash/IntrovertIMApp.html

or

html-template/index.template.html

The HTML page for the application for Flash (html-

flash/IntrovertIMApp.html) or the template that is used to create the 

container HTML page for the application for Adobe Flex (html-

template/index.template.html). This file contains all the JavaScript 

functions that make up the container part of the application.

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


675PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

 public function IMManager(initialStatus:IMStatus)  
 {  
 _status = initialStatus;  
   
 // Check if the container is able to use the external API.  
 if (ExternalInterface.available)  
 {  
 try  
 {  
 // This calls the isContainerReady() method, which in turn calls  
 // the container to see if Flash Player has loaded and the container  
 // is ready to receive calls from the SWF.  
 var containerReady:Boolean = isContainerReady();  
 if (containerReady)  
 {  
 // If the container is ready, register the SWF's functions.  
 setupCallbacks();  
 }  
 else  
 {  
 // If the container is not ready, set up a Timer to call the  
 // container at 100ms intervals. Once the container responds that  
 // it's ready, the timer will be stopped.  
 var readyTimer:Timer = new Timer(100);  
 readyTimer.addEventListener(TimerEvent.TIMER, timerHandler);  
 readyTimer.start();  
 }  
 }  
 ...  
 }  
 else  
 {  
 trace("External interface is not available for this container.");  
 }  
 }

First of all, the code checks whether the external API is even available in the current container using the 

ExternalInterface.available property. If so, it begins the process of setting up communication. Because security 

exceptions and other errors can occur when you attempt communication with an external application, the code is 

wrapped in a try block (the corresponding catch blocks were omitted from the listing for brevity). 

The code next calls the isContainerReady() method, listed here:

 private function isContainerReady():Boolean  
 {  
 var result:Boolean = ExternalInterface.call("isReady");  
 return result;  
 }

The isContainerReady() method in turn uses ExternalInterface.call() method to call the JavaScript function 

isReady(), as follows:

Updated 11 February 2009



676PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

 <script language="JavaScript">  
 <!--  
 // ------- Private vars -------  
 var jsReady = false;  
 ...  
 // ------- functions called by ActionScript -------  
 // called to check if the page has initialized and JavaScript is available  
 function isReady()  
 {  
 return jsReady;  
 }  
 ...  
 // called by the onload event of the <body> tag  
 function pageInit()  
 {  
 // Record that JavaScript is ready to go.  
 jsReady = true;  
 }  
 ...  
 //-->  
 </script>

The isReady() function simply returns the value of the jsReady variable. That variable is initially false; once the 

onload event of the web page has been triggered, the variable’s value is changed to true. In other words, if 

ActionScript calls the isReady() function before the page is loaded, JavaScript returns false to 

ExternalInterface.call("isReady"), and consequently the ActionScript isContainerReady() method returns 

false. Once the page has loaded, the JavaScript isReady() function returns true, so the ActionScript 

isContainerReady() method also returns true.

Back in the IMManager constructor, one of two things happens depending on the readiness of the container. If 

isContainerReady() returns true, the code simply calls the setupCallbacks() method, which completes the 

process of setting up communication with JavaScript. On the other hand, if isContainerReady() returns false, the 

process is essentially put on hold. A Timer object is created and is told to call the timerHandler() method every 100 

milliseconds, as follows:

 private function timerHandler(event:TimerEvent):void  
 {  
 // Check if the container is now ready.  
 var isReady:Boolean = isContainerReady();  
 if (isReady)  
 {  
 // If the container has become ready, we don't need to check anymore,  
 // so stop the timer.  
 Timer(event.target).stop();  
 // Set up the ActionScript methods that will be available to be  
 // called by the container.  
 setupCallbacks();  
 }  
 }

Each time the timerHandler() method gets called, it once again checks the result of the isContainerReady() 

method. Once the container is initialized, that method returns true. The code then stops the Timer and calls the 

setupCallbacks() method to finish the process of setting up communication with the browser.

Updated 11 February 2009



677PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

Exposing ActionScript methods to JavaScript

As the previous example showed, once the code determines that the browser is ready, the setupCallbacks() method 

is called. This method prepares ActionScript to receive calls from JavaScript, as shown here:

 private function setupCallbacks():void  
 {  
 // Register the SWF client functions with the container  
 ExternalInterface.addCallback("newMessage", newMessage);  
 ExternalInterface.addCallback("getStatus", getStatus);  
 // Notify the container that the SWF is ready to be called.  
 ExternalInterface.call("setSWFIsReady");  
 }

The setCallBacks() method finishes the task of preparing for communication with the container by calling 

ExternalInterface.addCallback() to register the two methods that will be available to be called from JavaScript. 

In this code, the first parameter—the name by which the method is known to JavaScript ("newMessage" and 

"getStatus")—is the same as the method’s name in ActionScript. (In this case, there was no benefit to using different 

names, so the same name was reused for simplicity.) Finally, the ExternalInterface.call() method is used to call 

the JavaScript function setSWFIsReady(), which notifies the container that the ActionScript functions have been 

registered.

Communication from ActionScript to the browser

The Introvert IM application demonstrates a range of examples of calling JavaScript functions in the container page. 

In the simplest case (an example from the setupCallbacks() method), the JavaScript function setSWFIsReady() is 

called without passing any parameters or receiving a value in return:

 ExternalInterface.call("setSWFIsReady");

In another example from the isContainerReady() method, ActionScript calls the isReady() function and receives 

a Boolean value in response:

 var result:Boolean = ExternalInterface.call("isReady");

You can also pass parameters to JavaScript functions using the external API. For instance, consider the IMManager 

class’s sendMessage() method, which is called when the user is sending a new message to his or her “conversation 

partner”:

 public function sendMessage(message:String):void  
 {  
 ExternalInterface.call("newMessage", message);  
 }

Once again, ExternalInterface.call() is used to call the designated JavaScript function, notifying the browser of 

the new message. In addition, the message itself is passed as an additional parameter to ExternalInterface.call(), 

and consequently it is passed as a parameter to the JavaScript function newMessage().

Calling ActionScript code from JavaScript

Communication is supposed to be a two-way street, and the Introvert IM application is no exception. Not only does 

the Flash Player IM client call JavaScript to send messages, but the HTML form calls JavaScript code to send messages 

to and ask for information from the SWF file as well. For example, when the SWF file notifies the container that it has 

finished establishing contact and it’s ready to communicate, the first thing the browser does is call the IMManager 

class’s getStatus() method to retrieve the initial user availability status from the SWF IM client. This is done in the 

web page, in the updateStatus() function, as follows:

Updated 11 February 2009



678PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

 <script language="JavaScript">  
 ...  
 function updateStatus()  
 {  
 if (swfReady)  
 {  
 var currentStatus = getSWF("IntrovertIMApp").getStatus();  
 document.forms["imForm"].status.value = currentStatus;  
 }  
 }  
 ...  
 </script>

The code checks the value of the swfReady variable, which tracks whether the SWF file has notified the browser that 

it has registered its methods with the ExternalInterface class. If the SWF file is ready to receive communication, the 

next line (var currentStatus = ...) actually calls the getStatus() method in the IMManager class. Three things 

happen in this line of code:

• The getSWF() JavaScript function is called, returning a reference to the JavaScript object representing the SWF file. 

The parameter passed to getSWF() determines which browser object is returned in case there is more than one 

SWF file in an HTML page. The value passed to that parameter must match the id attribute of the object tag and 

name attribute of the embed tag used to include the SWF file.

• Using the reference to the SWF file, the getStatus() method is called as though it’s a method of the SWF object. 

In this case the function name “ getStatus” is used because that’s the name under which the ActionScript function 

is registered using ExternalInterface.addCallback().

• The getStatus() ActionScript method returns a value, and that value is assigned to the currentStatus variable, 

which is then assigned as the content (the value property) of the status text field.

Note: If you’re following along in the code, you’ve probably noticed that in the source code for the updateStatus() 

function, the line of code that calls the getSWF() function, is actually written as follows:  var currentStatus = 

getSWF("${application}").getStatus(); The ${application} text is a placeholder in the HTML page template; when 

Adobe Flex Builder 3 generates the actual HTML page for the application, this placeholder text is replaced by the same 

text that is used as the object tag’s id attribute and the embed tag’s name attribute (IntrovertIMApp in the example). 

That is the value that is expected by the getSWF() function.

The sendMessage() JavaScript function demonstrates passing a parameter to an ActionScript function. 

(sendMessage() is thefunction that is called when the user presses the Send button on the HTML page.)

 <script language="JavaScript">  
 ...  
 function sendMessage(message)  
 {  
 if (swfReady)  
 {  
 ...  
 getSWF("IntrovertIMApp").newMessage(message);  
 }  
 }  
 ...  
 </script>

The newMessage() ActionScript method expects one parameter, so the JavaScript message variable gets passed to 

ActionScript by using it as a parameter in the newMessage() method call in the JavaScript code.

Updated 11 February 2009



679PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

Detecting the browser type

Because of differences in how browsers access content, it’s important to always use JavaScript to detect which browser 

the user is running and to access the movie according to the browser-specific syntax, using the window or document 

object, as shown in the getSWF() JavaScript function in this example:

 <script language="JavaScript">  
 ...  
 function getSWF(movieName)  
 {  
 if (navigator.appName.indexOf("Microsoft") != -1)  
 {  
 return window[movieName];  
 }  
 else  
 {  
 return document[movieName];  
 }  
 }  
 ...  
 </script>

If your script does not detect the user’s browser type, the user might see unexpected behavior when playing SWF files 

in an HTML container.

Example: Using the external API with an ActiveX 
container

This example demonstrates using the external API to communicate between ActionScript and a desktop application 

that uses the ActiveX control. The example reuses the Introvert IM application, including the ActionScript code and 

even the same SWF file, and therefore does not describe the use of the external API in ActionScript. Familiarity with 

the preceding example will be helpful in understanding this one.

The desktop application in this example is written in C# using Microsoft Visual Studio .NET. The focus of the 

discussion is the specific techniques for working with the external API using the ActiveX control. This example 

demonstrates the following:

• Calling ActionScript functions from a desktop application hosting the Flash Player ActiveX control

• Receiving function calls from ActionScript and processing them in an ActiveX container

• Using a proxy class to hide the details of the serialized XML format that Flash Player uses for messages sent to an 

ActiveX container

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The 

Introvert IM C# files can be found in the Samples/IntrovertIM_CSharp folder. The application consists of the 

following files:

Updated 11 February 2009

http://www.adobe.com/go/learn_programmingAS3samples_flash


680PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

Overview of the Introvert IM C# Application

This sample application represents two instant-messaging client programs (one within a SWF file and another built 

with Windows Forms) that communicate with each other. The user interface includes an instance of the Shockwave 

Flash ActiveX control, within which the SWF file containing the ActionScript IM client is loaded. The interface also 

includes several text fields that make up the Windows Forms IM client: a field for entering messages (MessageText), 

another that displays the transcript of the messages sent between the clients (Transcript), and a third (Status) that 

displays the availability status as set in the SWF IM client.

Including the Shockwave Flash ActiveX control

To include the Shockwave Flash ActiveX control in your own Windows Forms application, you must first add it to the 

Microsoft Visual Studio Toolbox.

To add the control to the toolbox:

1 Open the Visual Studio Toolbox.

2 Right-click the Windows Forms section in Visual Studio 2003 or any section in Visual Studio 2005. From the 

context menu select Add/Remove Items in Visual Studio 2003 (Choose Items... in Visual Studio 2005). 

This opens the Customize Toolbox (2003)/Choose Toolbox Items (2005) dialog box.

3 Select the COM Components tab, which lists all of the available COM components on your computer, including 

the Flash Player ActiveX control.

4 Scroll to Shockwave Flash Object and select it. 

If this item is not listed, make sure that the Flash Player ActiveX control is installed on your system.

File Description

AppForm.cs The main application file with the C# Windows Forms interface.

bin/Debug/IntrovertIMApp.swf The SWF file loaded by the application.

ExternalInterfaceProxy/ExternalInterfaceProxy.cs The class that serves as a wrapper around the ActiveX control for External Interface 

communication. It provides mechanisms for calling and receiving calls from 

ActionScript.

ExternalInterfaceProxy/ExternalInterfaceSerializer.cs The class that performs the task of converting Flash Player’s XML format messages 

to .NET objects.

ExternalInterfaceProxy/ExternalInterfaceEventArgs.cs This file defines two C# types (classes): a custom delegate, and an event arguments 

class, which are used by the ExternalInterfaceProxy class to notify a listener of a 

function call from ActionScript.

ExternalInterfaceProxy/ExternalInterfaceCall.cs This class is a value object representing a function call from ActionScript to the 

ActiveX container, with properties for the function name and parameters.

bin/Debug/IntrovertIMApp.swf The SWF file loaded by the application.

obj/AxInterop.ShockwaveFlashObjects.dll,

obj/Interop.ShockwaveFlashObjects.dll

Wrapper assemblies created by Visual Studio .NET that are required to access the 

Flash Player (Adobe Shockwave®  Flash) ActiveX control from managed code.

Updated 11 February 2009



681PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

Understanding ActionScript to ActiveX container communication

Communication using the external API with an ActiveX container application works like communication with a web 

browser, with one important difference. As described earlier, when ActionScript communicates with a web browser, 

as far as the developer is concerned, the functions are called directly; the details of how the function calls and responses 

are formatted to pass them between the player and browser are hidden. However, when the external API is used to 

communicate with an ActiveX container application, Flash Player sends messages (function calls and return values) to 

the application in a specific XML format, and it expects function calls and return values from the container application 

to use the same XML format. The developer of the ActiveX container application must write code that understands 

and can create function calls and responses in the appropriate format.

The Introvert IM C# example includes a set of classes that allow you to avoid formatting messages; instead, you can 

work with standard data types when calling ActionScript functions and receiving function calls from ActionScript. The 

ExternalInterfaceProxy class, together with other helper classes, provides this functionality, and can be reused in any 

.NET project to facilitate external API communication.

The following sections of code, excerpted from the main application form (AppForm.cs), demonstrate the simplified 

interaction that is achieved by using the ExternalInterfaceProxy class:

 public class AppForm : System.Windows.Forms.Form  
 {  
 ...  
 private ExternalInterfaceProxy proxy;  
 ...  
 public AppForm()  
 {  
 ...  
 // Register this app to receive notification when the proxy receives  
 // a call from ActionScript.  
 proxy = new ExternalInterfaceProxy(IntrovertIMApp);  
 proxy.ExternalInterfaceCall += new 
ExternalInterfaceCallEventHandler(proxy_ExternalInterfaceCall);  
 ...  
 }  
 ...

The application declares and creates an ExternalInterfaceProxy instance named proxy, passing in a reference to the 

Shockwave Flash ActiveX control that is in the user interface (IntrovertIMApp). Next, the code registers the 

proxy_ExternalInterfaceCall() method to receive the proxy’s ExternalInterfaceCall event. This event is 

dispatched by the ExternalInterfaceProxy class when a function call comes from Flash Player. Subscribing to this event 

is the way the C# code receives and responds to function calls from ActionScript.

When a function call comes from ActionScript, the ExternalInterfaceProxy instance (proxy) receives the call, converts 

it from XML format, and notifies the objects that are listeners for the proxy’s ExternalInterfaceCall event. In the 

case of the AppForm class, the proxy_ExternalInterfaceCall() method handles that event, as follows:

Updated 11 February 2009



682PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

 /// <summary>  
 /// Called by the proxy when an ActionScript ExternalInterface call  
 /// is made by the SWF  
 /// </summary>  
 private object proxy_ExternalInterfaceCall(object sender, ExternalInterfaceCallEventArgs e)  
 {  
 switch (e.FunctionCall.FunctionName)  
 {  
 case "isReady":  
 return isReady();  
 case "setSWFIsReady":  
 setSWFIsReady();  
 return null;  
 case "newMessage":  
 newMessage((string)e.FunctionCall.Arguments[0]);  
 return null;  
 case "statusChange":  
 statusChange();  
 return null;  
 default:  
 return null;  
 }  
 }  
 ...

The method gets passed an ExternalInterfaceCallEventArgs instance, named e in this example. That object, in turn, 

has a FunctionCall property that is an instance of the ExternalInterfaceCall class. 

An ExternalInterfaceCall instance is a simple value object with two properties. The FunctionName property contains 

the function name specified in the ActionScript ExternalInterface.Call() statement. If any parameters are added 

in ActionScript, those parameters are included in the ExternalInterfaceCall object’s Arguments property. In this case, 

the method that handles the event is simply a switch statement that acts like a traffic manager. The value of the 

FunctionName property (e.FunctionCall.FunctionName) determines which method of the AppForm class is 

called.

The branches of the switch statement in the previous code listing demonstrate common method call scenarios. For 

instance, any method must return a value to ActionScript (for example, the isReady() method call) or else should 

return null (as seen in the other method calls). Accessing parameters passed from ActionScript is demonstrated in 

the newMessage() method call (which passes along a parameter e.FunctionCall.Arguments[0], the first element 

of the Arguments array).

Calling an ActionScript function from C# using the ExternalInterfaceProxy class is even more straightforward than 

receiving a function call from ActionScript. To call an ActionScript function, you use the ExternalInterfaceProxy 

instance’s Call() method, as follows:

Updated 11 February 2009



683PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

 /// <summary>  
 /// Called when the "Send" button is pressed; the value in the  
 /// MessageText text field is passed in as a parameter.  
 /// </summary>  
 /// <param name="message">The message to send.</param>  
 private void sendMessage(string message)  
 {  
 if (swfReady)  
 {  
 ...  
 // Call the newMessage function in ActionScript.  
 proxy.Call("newMessage", message);  
 }  
 }  
 ...  
 /// <summary>  
 /// Call the ActionScript function to get the current "availability"  
 /// status and write it into the text field.  
 /// </summary>  
 private void updateStatus()  
 {  
 Status.Text = (string)proxy.Call("getStatus");  
 }  
 ...  
 }

As this example shows, the ExternalInterfaceProxy class’s Call() method is very similar to its ActionScript 

counterpart, ExternalInterface.Call(). The first parameter is a string, the name of the function to call. Any 

additional parameters (not shown here) are passed along to the ActionScript function. If the ActionScript function 

returns a value, that value is returned by the Call() method (as seen in the previous example).

Inside the ExternalInterfaceProxy class

Using a proxy wrapper around the ActiveX control may not always be practical, or you may wish to write your own 

proxy class (for instance, in a different programming language or targeting a different platform). Although not all the 

details of creating a proxy will be explained here, it is instructive to understand the inner workings of the proxy class 

in this example.

You use the Shockwave Flash ActiveX control’s CallFunction() method to call an ActionScript function from the 

ActiveX container using the external API. This is shown in this extract from the ExternalInterfaceProxy class’s Call() 

method: 

 // Call an ActionScript function on the SWF in "_flashControl",  
 // which is a Shockwave Flash ActiveX control.  
 string response = _flashControl.CallFunction(request);

In this code excerpt, _flashControl is the Shockwave Flash ActiveX control. ActionScript function calls are made 

using the CallFunction() method. That method takes one parameter (request in the example), which is a string 

containing XML-formatted instructions including the name of the ActionScript function to call and any parameters. 

Any value returned from ActionScript is encoded as an XML-formatted string and sent back as the return value of the 

CallFunction() call. In this example, that XML string is stored in the response variable.

Updated 11 February 2009



684PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Using the external API

Receiving a function call from ActionScript is a multistep process. Function calls from ActionScript cause the 

Shockwave Flash ActiveX control to dispatch its FlashCall event, so a class (such as the ExternalInterfaceProxy class) 

that intends to receive calls from a SWF file needs to define a handler for that event. In the ExternalInterfaceProxy 

class, the event handler function is named _flashControl_FlashCall(), and it is registered to listen for the event in 

the class constructor, as follows:

 private AxShockwaveFlash _flashControl;  
   
 public ExternalInterfaceProxy(AxShockwaveFlash flashControl)  
 {  
 _flashControl = flashControl;  
 _flashControl.FlashCall += new 
_IShockwaveFlashEvents_FlashCallEventHandler(_flashControl_FlashCall);  
 }  
 ...  
 private void _flashControl_FlashCall(object sender, _IShockwaveFlashEvents_FlashCallEvent e)  
 {  
 // Use the event object's request property ("e.request")  
 // to execute some action.  
 ...  
 // Return a value to ActionScript;  
 // the returned value must first be encoded as an XML-formatted string.  
 _flashControl.SetReturnValue(encodedResponse);  
 }

The event object (e) has a request property (e.request) that is a string containing information about the function 

call, such as the function name and parameters, in XML format. This information can be used by the container to 

determine what code to execute. In the ExternalInterfaceProxy class, the request is converted from XML format to an 

ExternalInterfaceCall object, which provides the same information in a more accessible form. The ActiveX control’s 

SetReturnValue() method is used to return a function result to the ActionScript caller; once again, the result 

parameter must be encoded in the XML format used by the external API.

Communication between ActionScript and an application hosting the Shockwave Flash ActiveX control uses a specific 

XML format to encode function calls and values. In the Introvert IM C# example, the ExternalInterfaceProxy class 

makes it possible for the code in the application form to operate directly on values sent to or received from 

ActionScript, and ignore the details of the XML format used by Flash Player. In order to accomplish this, the 

ExternalInterfaceProxy class uses the methods of the ExternalInterfaceSerializer class to actually translate the XML 

messages into .NET objects. The ExternalInterfaceSerializer class has four public methods: 

• EncodeInvoke(): Encodes a function name and a C# ArrayList of arguments into the appropriate XML format.

• EncodeResult(): Encodes a result value into the appropriate XML format.

• DecodeInvoke(): Decodes a function call from ActionScript. The FlashCall event object’s request property is 

passed to the DecodeInvoke() method, and it translates the call into an ExternalInterfaceCall object.

• DecodeResult(): Decodes the XML received as the result of calling an ActionScript function.

These methods encode C# values into the external API’s XML format and decode the XML into C# objects. For details 

on the XML format used by Flash Player, see “The external API’s XML format” on page 672.

Updated 11 February 2009



685

Chapter 32: Flash Player security

Security is a key concern of Adobe, users, website owners, and content developers. For this reason, Adobe® Flash® 

Player includes a set of security rules and controls to safeguard the user, website owner, and content developer. This 

chapter discusses how to work with the Flash Player security model when you are developing applications. In this 

chapter, all SWF files discussed are assumed to be published with ActionScript 3.0 and running in Flash Player 

9.0.124.0 or later, unless otherwise noted.

This chapter is intended as an overview of security; it does not try to comprehensively explain all implementation 

details, usage scenarios, or ramifications for using certain APIs. For a more detailed discussion of Flash Player security 

concepts, see the Flash Player Developer Center topic “Security” at www.adobe.com/go/devnet_security_en.

For information about Adobe®  AIR™ security issues, see the “AIR Security” chapter at 

www.adobe.com/go/learn_air_flash.

Flash Player security overview

Much of Flash Player security is based on the domain of origin for loaded SWF files, media, and other assets. A SWF 

file from a specific Internet domain, such as www.example.com, can always access all data from that domain. These 

assets are put in the same security grouping, known as a security sandbox. (For more information, see “Security 

sandboxes” on page 686.)

For example, a SWF file can load SWF files, bitmaps, audio, text files, and any other asset from its own domain. Also, 

cross-scripting between two SWF files from the same domain is always permitted, as long as both files are written using 

ActionScript 3.0. Cross-scripting is the ability of one SWF file to use ActionScript to access the properties, methods, 

and objects in another SWF file.

 Cross-scripting is not supported between SWF files written using ActionScript 3.0 and those using previous versions 

of ActionScript; however, these files can communicate by using the LocalConnection class. Also, the ability of a SWF 

file to cross-script ActionScript 3.0 SWF files from other domains and to load data from other domains is prohibited 

by default; however, such access can be granted with a call to the Security.allowDomain() method in the loaded 

SWF file. For more information, see “Cross-scripting” on page 701.

The following basic security rules always apply by default:

• Resources in the same security sandbox can always access each other.

• SWF files in a remote sandbox can never access local files and data.

Flash Player considers the following to be individual domains, and sets up individual security sandboxes for each:

• http://example.com

• http://www.example.com

• http://store.example.com

• https://www.example.com

• http://192.0.34.166

Even if a named domain, such as http://example.com, maps to a specific IP address, such as http://192.0.34.166, Flash 

Player sets up separate security sandboxes for each. 

Updated 11 February 2009

http://www.adobe.com/go/devnet_security_en
http://www.adobe.com/go/learn_air_flash


686PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

There are two basic methods that a developer can use to grant a SWF file access to assets from sandboxes other than 

that of the SWF file: 

• The Security.allowDomain() method (see “Author (developer) controls” on page 694)

• The URL policy file (see “Website controls (policy files)” on page 691)

In the Flash Player security model, there is a distinction between loading content and extracting or accessing data. 

Content is defined as media, including visual media Flash Player can display, audio, video, or a SWF file that includes 

displayed media. Data is defined as something that is accessible only to ActionScript code. Content and data are loaded 

in different ways.

• Loading content—You can load content using classes such as the Loader, Sound, and NetStream classes. 

• Extracting data—You can extract data from loaded media content by using Bitmap objects, the 

BitmapData.draw() method, the Sound.id3 property, or the SoundMixer.computeSpectrum() method.

• Accessing data—You can access data directly by loading it from an external file (such as an XML file) using classes 

such as the URLStream, URLLoader, Socket, and XMLSocket classes. 

The Flash Player security model defines different rules for loading content and accessing data. In general, there are 

fewer restrictions on loading content than on accessing data. 

In general, content (SWF files, bitmaps, mp3 files, and videos) can be loaded from anywhere, but if the content is from 

a domain other than that of the loading SWF file, it will be partitioned in a separate security sandbox. 

There are a few barriers to loading content:

• By default, local SWF files (those loaded from a non-network address, such as a user’s hard drive) are classified in 

the local-with-filesystem sandbox. These files cannot load content from the network. For more information, see 

“Local sandboxes” on page 687.

• Real-Time Messaging Protocol (RTMP) servers can limit access to content. For more information, see “Content 

delivered using RTMP servers” on page 700.

If the loaded media is an image, audio, or video, its data, such as pixel data and sound data, can be accessed by a SWF 

file outside its security sandbox only if the domain of that SWF file has been included in a URL policy file at the origin 

domain of the media. For details, see “Accessing loaded media as data” on page 703.

Other forms of loaded data include text or XML files, which are loaded with a URLLoader object. Again in this case, 

to access any data from another security sandbox, permission must be granted by means of a URL policy file at the 

origin domain. For details, see “Using URLLoader and URLStream” on page 705.

Security sandboxes

Client computers can obtain individual SWF files from a number of sources, such as from external web sites or from 

a local file system. Flash Player individually assigns SWF files and other resources, such as shared objects, bitmaps, 

sounds, videos, and data files, to security sandboxes based on their origin when they are loaded into Flash Player. The 

following sections describe the rules, enforced by Flash Player, that govern what a SWF file within a given sandbox can 

access. 

For more information on Flash Player security, see the Flash Player Developer Center topic “Security” at 

www.adobe.com/go/devnet_security_en.

Updated 11 February 2009

http://www.adobe.com/go/devnet_security_en


687PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Remote sandboxes

Flash Player classifies assets (including SWF files) from the Internet in separate sandboxes that correspond to their 

website origin domains. By default, these files are authorized to access any resources from their own server. Remote 

SWF files can be allowed to access additional data from other domains by explicit website and author permissions, 

such as URL policy files and the Security.allowDomain() method. For details, see “Website controls (policy files)” 

on page 691 and “Author (developer) controls” on page 694. 

Remote SWF files cannot load any local files or resources. 

For more information on Flash Player security, see the Flash Player Developer Center topic “Security” at 

www.adobe.com/go/devnet_security_en.

Local sandboxes

Local file describes any file that is referenced by using the file: protocol or a Universal Naming Convention (UNC) 

path. Local SWF files are placed into one of four local sandboxes:

• The local-with-filesystem sandbox—For security purposes, Flash Player places all local SWF files and assets in the 

local-with-file-system sandbox, by default. From this sandbox, SWF files can read local files (by using the 

URLLoader class, for example), but they cannot communicate with the network in any way. This assures the user 

that local data cannot be leaked out to the network or otherwise inappropriately shared. 

• The local-with-networking sandbox—When compiling a SWF file, you can specify that it has network access when 

run as a local file (see “Setting the sandbox type of local SWF files” on page 688).These files are placed in the local-

with-networking sandbox. SWF files that are assigned to the local-with-networking sandbox forfeit their local file 

access. In return, the SWF files are allowed to access data from the network. However, a local-with-networking 

SWF file is still not allowed to read any network-derived data unless permissions are present for that action, 

through a URL policy file or a call to the Security.allowDomain() method. In order to grant such permission, a 

URL policy file must grant permission to all domains by using <allow-access-from domain="*"/> or by using 

Security.allowDomain("*"). For more information, see “Website controls (policy files)” on page 691 and 

“Author (developer) controls” on page 694.

• The local-trusted sandbox—Local SWF files that are registered as trusted (by users or by installer programs) are 

placed in the local-trusted sandbox. System administrators and users also have the ability to reassign (move) a local 

SWF file to or from the local-trusted sandbox based on security considerations (see “Administrator controls” on 

page 689 and “User controls” on page 690). SWF files that are assigned to the local-trusted sandbox can interact 

with any other SWF files and can load data from anywhere (remote or local).

• The AIR application sandbox—This sandbox contains content that was installed with the running AIR application. 

By default, files in the AIR application sandbox can cross-script any file from any domain. However, files outside 

the AIR application sandbox are not permitted to cross-script the AIR file. By default, files in the AIR application 

sandbox can load content and data from any domain.

Communication between the local-with-networking and local-with-filesystem sandboxes, as well as communication 

between the local-with-filesystem and remote sandboxes, is strictly forbidden. Permission to allow such 

communication cannot be granted by an application running in Flash Player or by a user or administrator.

Scripting in either direction between local HTML files and local SWF files—for example, using the ExternalInterface 

class—requires that both the HTML file and SWF file involved be in the local-trusted sandbox. This is because the local 

security models for browsers differ from the Flash Player local security model.

SWF files in the local-with-networking sandbox cannot load SWF files in the local-with-filesystem sandbox. SWF files 

in the local-with-filesystem sandbox cannot load SWF files in the local-with-networking sandbox.

Updated 11 February 2009

http://www.adobe.com/go/devnet_security_en


688PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Setting the sandbox type of local SWF files

You can configure a SWF file for the local-with-filesystem sandbox or the local-with-networking sandbox by setting 

the document’s publish settings in the authoring tool. 

An end user or the administrator of a computer can specify that a local SWF file is trusted, allowing it to load data from 

all domains, both local and network. This is specified in the Global Flash Player Trust and User Flash Player Trust 

directories. For more information, see “Administrator controls” on page 689 and “User controls” on page 690.

For more information on local sandboxes, see “Local sandboxes” on page 687.

The Security.sandboxType property

An author of a SWF file can use the read-only static Security.sandboxType property to determine the type of 

sandbox to which Flash Player has assigned the SWF file. The Security class includes constants that represent possible 

values of the Security.sandboxType property, as follows:

• Security.REMOTE—The SWF file is from an Internet URL, and operates under domain-based sandbox rules.

• Security.LOCAL_WITH_FILE—The SWF file is a local file, but it has not been trusted by the user and was not 

published with a networking designation. The SWF file can read from local data sources but cannot communicate 

with the Internet.

• Security.LOCAL_WITH_NETWORK—The SWF file is a local file and has not been trusted by the user, but it was 

published with a networking designation. The SWF file can communicate with the Internet but cannot read from 

local data sources.

• Security.LOCAL_TRUSTED—The SWF file is a local file and has been trusted by the user, using either the Settings 

Manager or a Flash Player trust configuration file. The SWF file can both read from local data sources and 

communicate with the Internet.

• Security.APPLICATION—The SWF file is running in an AIR application, and it was installed with the package 

(AIR file) for that application. By default, files in the AIR application sandbox can cross-script any file from any 

domain. However, files outside the AIR application sandbox are not permitted to cross-script the AIR file. By 

default, files in the AIR application sandbox can load content and data from any domain. 

Permission controls

The Flash Player client run-time security model has been designed around resources, which are objects such as SWF 

files, local data, and Internet URLs. Stakeholders are the parties who own or use those resources. Stakeholders can 

exercise controls (security settings) over their own resources, and each resource has four stakeholders. Flash Player 

strictly enforces a hierarchy of authority for these controls, as the following illustration shows:

Updated 11 February 2009



689PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Hierarchy of security controls

This means, for instance, that if an administrator restricts access to a resource, no other stakeholders can override that 

restriction. 

Administrator controls 

An administrative user of a computer (a user who has logged in with administrative rights) can apply Flash Player 

security settings that affect all users of the computer. In a non-enterprise environment, such as on a home computer, 

there is usually one user who also has administrative access. Even in an enterprise environment, individual users may 

have administrative rights to the computer.

There are two types of administrative user controls: 

• The mms.cfg file

• The Global Flash Player Trust directory

The mms.cfg file

The mms.cfg file is a text file that lets administrators enable or restrict access to a variety of capabilities. When Flash 

Player starts, it reads its security settings from this file, and uses them to limit functionality. The mms.cfg file includes 

settings that the administrator uses to manage capabilities such as privacy controls, local file security, socket 

connections, and so on.

A SWF file can access some information on capabilities that have been disabled by calling the 

Capabilities.avHardwareDisable and Capabilities.localFileReadDisable properties. However, most of 

the settings in the mms.cfg file cannot be queried from ActionScript.

To enforce application-independent security and privacy policies for a computer, the mms.cfg file should be modified 

only by system administrators. The mms.cfg file is not for use by application installers. While an installer running with 

administrative privileges could modify the contents of the mms.cfg file, Adobe considers such usage a violation of the 

user’s trust and urges creators of installers never to modify the mms.cfg file.

The mms.cfg file is stored in the following location:

• Windows: system\Macromed\Flash\mms.cfg

(for example, C:\WINDOWS\system32\Macromed\Flash\mms.cfg) 

• Mac: app support/Macromedia/mms.cfg

(for example, /Library/Application Support/Macromedia/mms.cfg) 

Administrator
(User Institution)

settings

User settings

Website settings

Author settings

Updated 11 February 2009



690PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

For more information about the mms.cfg file, see the Flash Player Administration Guide at 

www.adobe.com/go/flash_player_admin. 

The Global Flash Player Trust directory

Administrative users and installer applications can register specified local SWF files as trusted for all users. These SWF 

files are assigned to the local-trusted sandbox. They can interact with any other SWF files, and they can load data from 

anywhere, remote or local. Files are designated as trusted in the Global Flash Player Trust directory, in the following 

location:

• Windows: system\Macromed\Flash\FlashPlayerTrust

(for example, C:\WINDOWS\system32\Macromed\Flash\FlashPlayerTrust) 

• Mac: app support/Macromedia/FlashPlayerTrust

(for example, /Library/Application Support/Macromedia/FlashPlayerTrust) 

The Flash Player Trust directory can contain any number of text files, each of which lists trusted paths, with one path 

per line. Each path can be an individual SWF file, HTML file, or directory. Comment lines begin with the # symbol. 

For example, a Flash Player trust configuration file containing the following text grants trusted status to all files in the 

specified directory and all subdirectories:

 # Trust files in the following directories:  
 C:\Documents and Settings\All Users\Documents\SampleApp

The paths listed in a trust configuration file should always be local paths or SMB network paths. Any HTTP path in a 

trust configuration file is ignored; only local files can be trusted.

To avoid conflicts, give each trust configuration file a filename corresponding to the installing application, and use a 

.cfg file extension.

As a developer distributing a locally run SWF file through an installer application, you can have the installer 

application add a configuration file to the Global Flash Player Trust directory, granting full privileges to the file that 

you are distributing. The installer application must be run by a user with administrative rights. Unlike the mms.cfg 

file, the Global Flash Player Trust directory is included for the purpose of installer applications granting trust 

permissions. Both administrative users and installer applications can designate trusted local applications using the 

Global Flash Player Trust directory.

There are also Flash Player Trust directories for individual users (see “User controls” on page 690).

User controls

Flash Player provides three different user-level mechanisms for setting permissions: the Settings UI and Settings 

Manager, and the User Flash Player Trust directory.

The Settings UI and Settings Manager

The Settings UI is a quick, interactive mechanism for configuring the settings for a specific domain. The Settings 

Manager presents a more detailed interface and provides the ability to make global changes that affect permissions for 

many or all domains. Additionally, when a new permission is requested by a SWF file, requiring run-time decisions 

concerning security or privacy, dialog boxes are displayed in which users can adjust some Flash Player settings. 

The Settings Manager and Settings UI provide security-related options such as camera and microphone settings, 

shared object storage settings, settings related to legacy content, and so on.

Note: Any settings made in the mms.cfg file (see “Administrator controls” on page 689) are not reflected in the Settings 

Manager.

Updated 11 February 2009

http://www.adobe.com/go/flash_player_admin


691PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

For details on the Settings Manager, see www.adobe.com/go/settingsmanager.

The User Flash Player Trust directory

Users and installer applications can register specified local SWF files as trusted. These SWF files are assigned to the 

local-trusted sandbox. They can interact with any other SWF files, and they can load data from anywhere, remote or 

local. A user designates a file as trusted in the User Flash Player Trust directory, which is in same directory as the shared 

object storage area, in the following locations (locations are specific to the current user):

• Windows: app data\Macromedia\Flash Player\#Security\FlashPlayerTrust

(for example, C:\Documents and Settings\JohnD\Application Data\Macromedia\Flash 

Player\#Security\FlashPlayerTrust on Windows XP or C:\Users\JohnD\AppData\Roaming\Macromedia\Flash 

Player\#Security\FlashPlayerTrust on Windows Vista) 

In Windows, the Application Data folder is hidden by default. To show hidden folders and files, select My 

Computer to open Windows Explorer, select Tools > Folder Options and then select the View tab. Under the View 

tab, select the Show hidden files and folders radio button.

• Mac: app data/Macromedia/Flash Player/#Security/FlashPlayerTrust

(for example, /Users/JohnD/Library/Preferences/Macromedia/Flash Player/#Security/FlashPlayerTrust) 

These settings affect only the current user, not other users who log in to the computer. If a user without 

administrative rights installs an application in their own portion of the system, the User Flash Player Trust 

directory lets the installer register the application as trusted for that user.

As a developer distributing a locally run SWF file by way of an installer application, you can have the installer 

application add a configuration file to the User Flash Player Trust directory, granting full privileges to the file that 

you are distributing. Even in this situation, the User Flash Player Trust directory file is considered a user control, 

because a user action (installation) initiates it.

There is also a Global Flash Player Trust directory, used by the administrative user or installers to register an 

application for all users of a computer (see “Administrator controls” on page 689).

Website controls (policy files)

To make data from your web server available to SWF files from other domains, you can create a policy file on your 

server. A policy file is an XML file placed in a specific location on your server.

Policy files affect access to a number of assets, including the following:

• Data in bitmaps, sounds, and videos

• Loading XML and text files

• Importing SWF files from other security domains into the security domain of the loading SWF file

• Access to socket and XML socket connections

ActionScript objects instantiate two different kinds of server connections: document-based server connections and 

socket connections. ActionScript objects like Loader, Sound, URLLoader, and URLStream instantiate document-

based server connections, and these objects load a file from a URL. ActionScript Socket and XMLSocket objects make 

socket connections, which operate with streaming data, not loaded documents. 

Because Flash Player supports two kinds of server connections, there are two types of policy files—URL policy files and 

socket policy files.

• Document-based connections require URL policy files. These files let the server indicate that its data and documents 

are available to SWF files served from certain domains or from all domains. 

Updated 11 February 2009

http://www.adobe.com/go/settingsmanager


692PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

• Socket connections require socket policy files, which enable networking directly at the lower TCP socket level, using 

the Socket and XMLSocket classes.

Flash Player requires policy files to be transmitted using the same protocol that the attempted connection wants to use. 

For example, when you place a policy file on your HTTP server, SWF files from other domains are allowed to load data 

from it as an HTTP server. However, if you don’t providing a socket policy file at the same server, you are forbidding 

SWF files from other domains to connect to the server at the socket level. In other words, the means by which a policy 

file is retrieved must match the means of connecting.

Policy file usage and syntax are discussed briefly in the rest of this section, as they apply to SWF files published for 

Flash Player 10. (Policy file implementation is slightly different in earlier versions of Flash Player, as successive releases 

have strengthened Flash Player security.) For more detailed information on policy files, see the Flash Player Developer 

Center topic “Policy File Changes in Flash Player 9” at www.adobe.com/go/devnet_security_en.

Master policy files

By default, Flash Player (and AIR content that is not in the AIR application sandbox) first looks for a URL policy file 

named crossdomain.xml in the root directory of the server, and looks for a socket policy file on port 843. A file in 

either of these locations is called the master policy file. (In the case of socket connections, Flash Player also looks for a 

socket policy file on the same port as the main connection. However, a policy file found on that port is not considered 

a master policy file.) 

In addition to specifying access permissions, the master policy file can also contain a meta-policy statement. A meta-

policy specifies which locations can contain policy files. The default meta-policy for URL policy files is “master-only,” 

which means that /crossdomain.xml is the only policy file allowed on the server. The default meta-policy for socket 

policy files is “all,” which means that any socket on the host can serve a socket policy file.

Note: In Flash Player 9 and earlier, the default meta-policy for URL policy files was “all,” which means that any directory 

can contain a policy file. If you have deployed applications that load policy files from locations other than the default 

/crossdomain.xml file, and those applications might now be running in Flash Player 10, make sure you (or the server 

administrator) modify the master policy file to allow additional policy files. For information on how to specify different 

a different meta-policy, see the Flash Player Developer Center topic “Policy File Changes in Flash Player 9” at 

www.adobe.com/go/devnet_security_en.

A SWF file can check for a different policy filename or a different directory location by calling the 

Security.loadPolicyFile() method. However, if the master policy file doesn’t specify that the target location can 

serve policy files, the call to loadPolicyFile() has no effect, even if there is a policy file at that location. Call 

loadPolicyFile() before attempting any network operations that require the policy file. Flash Player automatically 

queues networking requests behind their corresponding policy file attempts. So, for example, it is acceptable to call 

Security.loadPolicyFile() immediately before initiating a networking operation.

When checking for a master policy file, Flash Player waits three seconds for a server response. If a response isn’t 

received, Flash Player assumes that no master policy file exists. However, there is no default timeout value for calls to 

loadPolicyFile(); Flash Player assumes that the file being called exists, and waits as long as necessary to load it. 

Therefore, if you want to make sure that a master policy file is loaded, use loadPolicyFile() to call it explicitly.

Even though the method is named Security.loadPolicyFile(), a policy file isn’t loaded until a network call that 

requires a policy file is issued. Calls to loadPolicyFile() simply tell Flash Player where to look for policy files when 

they are needed.

You can’t receive notification of when a policy file request is initiated or completed, and there is no reason to do so. 

Flash Player performs policy checks asynchronously, and automatically waits to initiate connections until after the 

policy file checks have succeeded. 

Updated 11 February 2009

http://www.adobe.com/go/devnet_security_en
http://www.adobe.com/go/devnet_security_en


693PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

The following sections contain information that applies only to URL policy files. For more information on socket 

policy files, see “Connecting to sockets” on page 706.

URL policy file scope

A URL policy file applies only to the directory from which it is loaded and to its child directories. A policy file in the 

root directory applies to the whole server; a policy file loaded from an arbitrary subdirectory applies only to that 

directory and its subdirectories.

A policy file affects access only to the particular server on which it resides. For example, a policy file located at 

https://www.adobe.com:8080/crossdomain.xml applies only to data- loading calls made to www.adobe.com over 

HTTPS at port 8080.

Specifying access permissions in a URL policy file

A policy file contains a single <cross-domain-policy> tag, which in turn contains zero or more <allow-access-

from> tags. Each <allow-access-from> tag contains an attribute, domain, which specifies either an exact IP address, 

an exact domain, or a wildcard domain (any domain). Wildcard domains are indicated in one of two ways: 

• By a single asterisk (*), which matches all domains and all IP addresses

• By an asterisk followed by a suffix, which matches only those domains that end with the specified suffix

Suffixes must begin with a dot. However, wildcard domains with suffixes can match domains that consist of only the 

suffix without the leading dot. For example, xyz.com is considered to be part of *.xyz.com. Wildcards are not allowed 

in IP domain specifications.

The following example shows a URL policy file that permits access to SWF files that originate from *.example.com, 

www.friendOfExample.com and 192.0.34.166:

 <?xml version="1.0"?>  
 <cross-domain-policy>  
 <allow-access-from domain="*.example.com" />  
 <allow-access-from domain="www.friendOfExample.com" />  
 <allow-access-from domain="192.0.34.166" />  
 </cross-domain-policy>

If you specify an IP address, access is granted only to SWF files loaded from that IP address using IP syntax (for 

example, http://65.57.83.12/flashmovie.swf). Access isn’t granted to SWF files using domain-name syntax. Flash 

Player does not perform DNS resolution.

You can permit access to documents originating from any domain, as shown in the following example:

 <?xml version="1.0"?>  
 <!-- http://www.foo.com/crossdomain.xml -->  
 <cross-domain-policy>  
 <allow-access-from domain="*" />  
 </cross-domain-policy>

Each <allow-access-from> tag also has the optional secure attribute, which defaults to true. If your policy file is 

on an HTTPS server and you want to allow SWF files on a non-HTTPS server to load data from the HTTPS server, 

you can set the attribute to false.

Setting the secure attribute to false could compromise the security offered by HTTPS. In particular, setting this 

attribute to false opens secure content to snooping and spoofing attacks. Adobe strongly recommends that you not 

set the secure attribute to false.

Updated 11 February 2009



694PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

If data to be loaded is on an HTTPS server, but the SWF file loading it is on an HTTP server, Adobe recommends that 

you move the loading SWF file to an HTTPS server. Doing so lets you keep all copies of your secure data under the 

protection of HTTPS. However, if you decide that you must keep the loading SWF file on an HTTP server, add the 

secure="false" attribute to the <allow-access-from> tag, as shown in the following code:

 <allow-access-from domain="www.example.com" secure="false" /> 

Another element you can use to permit access is the allow-http-request-headers-from tag. This element grants 

a client hosting content from another permission domain to send user-defined headers to your domain. While the 

<allow-access-from> tag grants other domains permission to pull data from your domain, the allow-http-

request-headers-from tag grants other domains permission to push data to your domain, in the form of headers. 

In the following example, any domain is permitted to send the SOAPAction header to the current domain:

<cross-domain-policy>  
<allow-http-request-headers-from domain="*" headers="SOAPAction"/>  

</cross-domain-policy>

If the allow-http-request-headers-from statement is in the master policy file, it applies to all directories on the 

host. Otherwise, it applies only to the directory and subdirectories of the policy file that contains the statement.

Preloading policy files

Loading data from a server or connecting to a socket is an asynchronous operation. Flash Player simply waits for the 

policy file to finish downloading before it begins the main operation. However, extracting pixel data from images or 

extracting sample data from sounds is a synchronous operation. The policy file must load before you can extract data. 

When you load the media, specify that it check for a policy file: 

• When using the Loader.load() method, set the checkPolicyFile property of the context parameter, which is 

a LoaderContext object.

• When embedding an image in a text field using the <img> tag, set the checkPolicyFile attribute of the <img> tag 

to "true", as in the following: 

<img checkPolicyFile = "true" src = "example.jpg">

• When using the Sound.load() method, set the checkPolicyFile property of the context parameter, which is a 

SoundLoaderContext object.

• When using the NetStream class, set the checkPolicyFile property of the NetStream object.

When you set one of these parameters, Flash Player first checks for any policy files that it already has downloaded for 

that domain. Then it looks for the policy file in the default location on the server, checking both for <allow-access-

from> statements and for the presence of a meta-policy. Finally, it considers any pending calls to the 

Security.loadPolicyFile() method to see if they are in scope. 

Author (developer) controls 

The main ActionScript API used to grant security privileges is the Security.allowDomain() method, which grant 

privileges to SWF files in the domains that you specify. In the following example, a SWF file grants access to SWF files 

served from the www.example.com domain:

 Security.allowDomain("www.example.com")

This method grants permissions for the following:

• Cross-scripting between SWF files (see “Cross-scripting” on page 701)

• Display list access (see “Traversing the display list” on page 703)

• Event detection (see “Event security” on page 703)

Updated 11 February 2009



695PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

• Full access to properties and methods of the Stage object (see “Stage security” on page 702) 

The primary purpose of calling the Security.allowDomain() method is to grant permission for SWF files in an 

outside domain to script the SWF file calling the Security.allowDomain() method. For more information, see 

“Cross-scripting” on page 701.

Specifying an IP address as a parameter to the Security.allowDomain() method does not permit access by all parties 

that originate at the specified IP address. Instead, it permits access only by a party that contains the specified IP address 

as its URL, rather than a domain name that maps to that IP address. For example, if the domain name 

www.example.com maps to the IP address 192.0.34.166, a call to Security.allowDomain("192.0.34.166") does 

not grant access to www.example.com.

You can pass the "*" wildcard to the Security.allowDomain() method to allow access from all domains. Because it 

grants permission for SWF files from all domains to script the calling SWF file, use the "*" wildcard with care.

ActionScript includes a second permission API, called Security.allowInsecureDomain(). This method does the 

same thing as the Security.allowDomain() method, except that, when called from a SWF file served by a secure 

HTTPS connection, it additionally permits access to the calling SWF file by other SWF files that are served from an 

insecure protocol, such as HTTP. However, it is not a good security practice to allow scripting between files from a 

secure protocol (HTTPS) and those from insecure protocols (such as HTTP); doing so can open secure content to 

snooping and spoofing attacks. Here is how such attacks can work: since the Security.allowInsecureDomain() 

method allows access to your secure HTTPS data by SWF files served over HTTP connections, an attacker interposed 

between your HTTP server and your users could replace your HTTP SWF file with one of their own, which can then 

access your HTTPS data.

Another important security-related method is the Security.loadPolicyFile() method, which causes Flash Player 

to check for a policy file at a nonstandard location. For more information, see “Website controls (policy files)” on 

page 691.

Restricting networking APIs

Networking APIs can be restricted in two ways. To prevent malicious activity, access to commonly reserved ports is 

blocked; you can’t override these blocks in your code. To control a SWF file’s access to network functionality with 

regard to other ports, you can use the allowNetworking setting.

Blocked ports

Flash Player and Adobe AIR have restrictions on HTTP access to certain ports, as do browsers. HTTP requests are not 

permitted to certain standard ports that are conventionally used for non-HTTP types of servers.

Any API that accesses a network URL is subject to these port blocking restrictions. The only exception is APIs that call 

sockets directly, such as Socket.connect() and XMLSocket.connect(), or calls to Security.loadPolicyFile() 

in which a socket policy file is being loaded. Socket connections are permitted or denied through the use of socket 

policy files on the target server.

The following list shows the ActionScript 3.0 APIs to which port blocking applies:

FileReference.download(),FileReference.upload(), Loader.load(), Loader.loadBytes(), 

navigateToURL(), NetConnection.call(), NetConnection.connect(), NetStream.play(), 

Security.loadPolicyFile(), sendToURL(), Sound.load(), URLLoader.load(), URLStream.load()

Port blocking also applies to Shared Library importing, the use of the <img> tag in text fields, and the loading of SWF 

files in an HTML page using the <object> and <embed> tags.

Updated 11 February 2009



696PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

The following lists show which ports are blocked:

HTTP: 20  (ftp data), 21 (ftp control)

HTTP and FTP: 1 (tcpmux), 7 (echo), 9 (discard), 11 (systat), 13 (daytime), 15 (netstat), 17 (qotd), 19 (chargen), 

22 (ssh), 23 (telnet), 25 (smtp), 37 (time), 42 (name), 43 (nicname), 53 (domain), 77 (priv-rjs), 79 (finger), 

87 (ttylink), 95 (supdup), 101 (hostriame), 102 (iso-tsap), 103 (gppitnp), 104 (acr-nema), 109 (pop2), 110 (pop3), 

111 (sunrpc), 113 (auth), 115 (sftp), 117 (uucp-path), 119 (nntp), 123 (ntp), 135 (loc-srv / epmap), 139 (netbios), 

143 (imap2), 179 (bgp), 389 (ldap), 465 (smtp+ssl), 512 (print / exec), 513 (login), 514 (shell), 515 (printer), 

526 (tempo), 530 (courier), 531 (chat), 532 (netnews), 540 (uucp), 556 (remotefs), 563 (nntp+ssl), 587 (smtp), 

601 (syslog), 636 (ldap+ssl), 993 (ldap+ssl), 995 (pop3+ssl), 2049 (nfs), 4045 (lockd), 6000 (x11)

Using the allowNetworking parameter

You can control a SWF file’s access to network functionality by setting the allowNetworking parameter in the 

<object> and <embed> tags in the HTML page that contains the SWF content.

Possible values of allowNetworking are:

• "all" (the default)—All networking APIs are permitted in the SWF file.

• "internal"—The SWF file may not call browser navigation or browser interaction APIs, listed later in this section, 

but it may call any other networking APIs.

• "none"—The SWF file may not call browser navigation or browser interaction APIs, listed later in this section, and 

it cannot use any SWF-to-SWF communication APIs, also listed later.

The allowNetworking parameter is designed to be used primarily when the SWF file and the enclosing HTML page 

are from different domains. Using the value of "internal" or "none" is not recommended when the SWF file being 

loaded is from the same domain as its enclosing HTML pages, because you can’t ensure that a SWF file is always loaded 

with the HTML page you intend. Untrusted parties could load a SWF file from your domain with no enclosing HTML, 

in which case the allowNetworking restriction will not work as you intended.

Calling a prevented API throws a SecurityError exception.

Add the allowNetworking parameter and set its value in the <object> and <embed> tags in the HTML page that 

contains a reference to the SWF file, as shown in the following example:

 <object classic="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"  
 Code 
base="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,124,
0"   
 width="600" height="400" ID="test" align="middle">  
 <param name="allowNetworking" value="none" />  
 <param name="movie" value="test.swf" />  
 <param name="bgcolor" value="#333333" />   
 <embed src="test.swf" allowNetworking="none" bgcolor="#333333"   
 width="600" height="400"  
 name="test" align="middle" type="application/x-shockwave-flash"   
 pluginspage="http://www.macromedia.com/go/getflashplayer" />  
 </object>

An HTML page may also use a script to generate SWF-embedding tags. You need to alter the script so that it inserts 

the proper allowNetworking settings. HTML pages generated by Flash and Adobe Flex Builder use the 

AC_FL_RunContent() function to embed references to SWF files. Add the allowNetworking parameter settings to 

the script, as in the following:

 AC_FL_RunContent( ... "allowNetworking", "none", ...)

Updated 11 February 2009



697PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

The following APIs are prevented when allowNetworking is set to "internal":

navigateToURL(), fscommand(), ExternalInterface.call()

In addition to the APIs on the previous list, the following APIs are also prevented when allowNetworking is set to 

"none":

sendToURL(), FileReference.download(), FileReference.upload(), Loader.load(), 

LocalConnection.connect(), LocalConnection.send(), NetConnection.connect(), NetStream.play(), 

Security.loadPolicyFile(), SharedObject.getLocal(), SharedObject.getRemote(), Socket.connect(), 

Sound.load(), URLLoader.load(), URLStream.load(), XMLSocket.connect()

Even if the selected allowNetworking setting permits a SWF file to use a networking API, there may be other 

restrictions based on security sandbox limitations (see “Security sandboxes” on page 686).

When allowNetworking is set to "none", you cannot reference external media in an <img> tag in the htmlText 

property of a TextField object (a SecurityError exception is thrown). 

When allowNetworking is set to "none", a symbol from an imported shared library added in the Flash authoring tool 

(not ActionScript) is blocked at run time.

Full-screen mode security

Flash Player 9.0.27.0 and later support full-screen mode, in which content running in Flash Player can fill the entire 

screen. To enter full-screen mode, the displayState property of the Stage is set to the 

StageDisplayState.FULL_SCREEN constant. For more information, see “Working with full-screen mode” on 

page 280.

For SWF files running in a browser, there are some security considerations.

To enable full-screen mode, in the <object> and <embed> tags in the HTML page that contains a reference to the SWF 

file, add the allowFullScreen parameter, with its value set to "true" (the default value is "false"), as shown in the 

following example: 

 <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"  
 
codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,
18,0"   
 width="600" height="400" id="test" align="middle">  
 <param name="allowFullScreen" value="true" />  
 <param name="movie" value="test.swf" />  
 <param name="bgcolor" value="#333333" />  
 <embed src="test.swf" allowFullScreen="true" bgcolor="#333333"   
 width="600" height="400"  
 name="test" align="middle" type="application/x-shockwave-flash"   
 pluginspage="http://www.macromedia.com/go/getflashplayer" />  
 </object>

An HTML page may also use a script to generate SWF-embedding tags. You must alter the script so that it inserts the 

proper allowFullScreen settings. HTML pages generated by Flash and Flex Builder use the AC_FL_RunContent() 

function to embed references to SWF files, and you need to add the allowFullScreen parameter settings, as in the 

following:

 AC_FL_RunContent( ... "allowFullScreen", "true", ...)

Updated 11 February 2009



698PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

The ActionScript that initiates full-screen mode can be called only in response to a mouse event or keyboard event. If 

it is called in other situations, Flash Player throws an exception.

A message appears when the content enters full-screen mode, instructing the user how to exit and return to normal 

mode. The message appears for a few seconds and then fades out.

For content that is running in a browser, keyboard usage is restricted in full-screen mode. In Flash Player 9, only 

keyboard shortcuts that return the application to normal mode, such as pressing the Escape key, are supported. Users 

can’t enter text in text fields or navigate around the screen. In Flash Player 10 and later, certain non-printing keys 

(specifically the arrow keys, space, and Tab key) are supported. However, text input is still prohibited.

Full-screen mode is always permitted in the stand-alone player or in a projector file. Also, keyboard usage (including 

text input) is fully supported in those environments.

Calling the displayState property of a Stage object throws an exception for any caller that is not in the same security 

sandbox as the Stage owner (the main SWF file). For more information, see “Stage security” on page 702.

Administrators can disable full-screen mode for SWF files running in browsers by setting FullScreenDisable = 1 

in the mms.cfg file. For details, see “Administrator controls” on page 689.

In a browser, a SWF file must be contained in an HTML page to allow full-screen mode.

Loading content

A SWF file can load the following types of content: 

• SWF files

• Images

• Sound

• Video

Loading SWF files and images 

You use the Loader class to load SWF files and images (JPG, GIF, or PNG files). Any SWF file, other than one in the 

local-with-filesystem sandbox, can load SWF files and images from any network domain. Only SWF files in local 

sandboxes can load SWF files and images from the local file system. However, files in the local-with-networking 

sandbox can only load local SWF files that are in the local-trusted or local-with-networking sandbox. SWF files in the 

local-with-networking sandbox load local content other than SWF files (such as images), however they cannot access 

data in the loaded content. 

When loading a SWF file from a non-trusted source (such as a domain other than that of the Loader object’s root SWF 

file), you may want to define a mask for the Loader object, to prevent the loaded content (which is a child of the Loader 

object) from drawing to portions of the Stage outside of that mask, as in the following code:

Updated 11 February 2009



699PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

 import flash.display.*;  
 import flash.net.URLRequest;  
 var rect:Shape = new Shape();  
 rect.graphics.beginFill(0xFFFFFF);  
 rect.graphics.drawRect(0, 0, 100, 100);  
 addChild(rect);  
 var ldr:Loader = new Loader();  
 ldr.mask = rect;  
 var url:String = "http://www.unknown.example.com/content.swf";  
 var urlReq:URLRequest = new URLRequest(url);  
 ldr.load(urlReq);  
 addChild(ldr);

When you call the load() method of the Loader object, you can specify a context parameter, which is a 

LoaderContext object. The LoaderContext class includes three properties that let you define the context of how the 

loaded content can be used: 

• checkPolicyFile: Use this property only when loading an image file (not a SWF file). Specify this for an image 

file from a domain other than that of the file containing the Loader object. If you set this property to true, the 

Loader checks the origin server for a URL policy file (see “Website controls (policy files)” on page 691). If the server 

grants permission to the Loader domain, ActionScript from SWF files in the Loader domain can access data in the 

loaded image. In other words, you can use the Loader.content property to obtain a reference to the Bitmap object 

that represents the loaded image, or the BitmapData.draw() method to access pixels from the loaded image. 

• securityDomain: Use this property only when loading a SWF file (not an image). Specify this for a SWF file from 

a domain other than that of the file containing the Loader object. Only two values are currently supported for the 

securityDomain property: null (the default) and SecurityDomain.currentDomain. If you specify 

SecurityDomain.currentDomain, this requests that the loaded SWF file be imported to the sandbox of the 

loading SWF file, meaning that it operates as though it had been loaded from the loading SWF file’s own server. 

This is only permitted if a URL policy file is found on the loaded SWF file’s server, allowing access by the loading 

SWF file’s domain. If the required policy file is found, the loader and loadee can freely script each other once the 

load begins, since they are in the same sandbox. Note that sandbox importing can mostly be replaced by performing 

an ordinary load and then having the loaded SWF file call the Security.allowDomain() method. This latter 

method may be easier to use, since the loaded SWF file will then be in its own natural sandbox, and thus able to 

access resources on its own actual server. 

• applicationDomain: Use this property only when loading a SWF file written in ActionScript 3.0 (not an image or 

a SWF file written in ActionScript 1.0 or 2.0). When loading the file, you can specify that the file be placed into a 

particular application domain, rather than the default of being placed in a new application domain that is a child of 

the loading SWF file’s application domain. Note that application domains are subunits of security domains, and 

thus you can specify a target application domain only if the SWF file that you are loading is from your own security 

domain, either because it is from your own server, or because you have successfully imported it into your security 

domain using the securityDomain property. If you specify an application domain but the loaded SWF file is part 

of a different security domain, the domain you specify in applicationDomain is ignored. For more information, 

see “Using the ApplicationDomain class” on page 640.

For details, see “Specifying loading context” on page 306.

An important property of a Loader object is the contentLoaderInfo property, which is a LoaderInfo object. Unlike 

most other objects, a LoaderInfo object is shared between the loading SWF file and the loaded content, and it is always 

accessible to both parties. When the loaded content is a SWF file, it can access the LoaderInfo object through the 

DisplayObject.loaderInfo property. LoaderInfo objects include information such as load progress, the URLs of 

loader and loadee, the trust relationship between loader and loadee, and other information. For more information, see 

“Monitoring loading progress” on page 305.

Updated 11 February 2009



700PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Loading sound and videos 

All SWF files, other than those in the local-with-filesystem sandbox, are allowed to load sound and video from network 

origins, using the Sound.load(), NetConnection.connect(), and NetStream.play() methods. 

Only local SWF files can load media from the local file system. Only SWF files in the local-with-filesystem sandbox or 

the local-trusted sandbox can access data in these loaded files. 

There are other restrictions on accessing data from loaded media. For details, see “Accessing loaded media as data” on 

page 703.

Loading SWF files and images using the <img> tag in a text field

You can load SWF files and bitmaps into a text field by using the <img> tag, as in the following code:

 <img src = 'filename.jpg' id = 'instanceName' >

You can access content loaded this way by using the getImageReference() method of the TextField instance, as in 

the following code:

 var loadedObject:DisplayObject = myTextField.getImageReference('instanceName');

Note, however, that SWF files and images loaded in this way are put in the sandbox that corresponds to their origin. 

When you load an image file using an <img> tag in a text field, access to the data in the image may be permitted by a 

URL policy file. You can check for a policy file by adding a checkPolicyFile attribute to the <img> tag, as in the 

following code:

 <img src = 'filename.jpg' checkPolicyFile = 'true' id = 'instanceName' >

When you load a SWF using an <img> tag in a text field, you can permit access to that SWF file’s data through a call 

to the Security.allowDomain() method.

When you use an <img> tag in a text field to load an external file (as opposed to using a Bitmap class embedded within 

your SWF), a Loader object is automatically created as a child of the TextField object, and the external file is loaded 

into that Loader just as if you had used a Loader object in ActionScript to load the file. In this case, the 

getImageReference() method returns the Loader that was automatically created. No security check is needed to 

access this Loader object because it is in the same security sandbox as the calling code.

However, when you refer to the content property of the Loader object to access the loaded media, security rules apply. 

If the content is an image, you need to implement a URL policy file, and if the content is a SWF file, you need to have 

the code in the SWF file call the allowDomain() method.

Content delivered using RTMP servers

Flash Media Server uses the Real-Time Media Protocol (RTMP) to serve data, audio, and video. A SWF file loads this 

media by using the connect() method of the NetConnection class, passing an RTMP URL as the parameter. Flash 

Media Server can restrict connections and prevent content from downloading, based on the domain of the requesting 

file. For details, see the Flash Media Server documentation.

For media loaded from RTMP sources, you cannot use the BitmapData.draw() and 

SoundMixer.computeSpectrum() methods to extract run-time graphics and sound data. 

Updated 11 February 2009



701PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Cross-scripting

If two SWF files written with ActionScript 3.0 are served from the same domain—for example, the URL for one SWF 

file is http://www.example.com/swfA.swf and the URL for the other is http://www.example.com/swfB.swf—then one 

SWF file can examine and modify variables, objects, properties, methods, and so on in the other, and vice versa. This 

is called cross-scripting.

Cross-scripting is not supported between AVM1 SWF files and AVM2 SWF files. An AVM1 SWF file is one created 

by using ActionScript 1.0 or ActionScript 2.0. (AVM1 and AVM2 refer to the ActionScript Virtual Machine.) You can, 

however, use the LocalConnection class to send data between AVM1 and AVM2.

If two SWF files written with ActionScript 3.0 are served from different domains—for example, 

http://siteA.com/swfA.swf and http://siteB.com/swfB.swf—then, by default, Flash Player does not allow swfA.swf to 

script swfB.swf, nor swfB.swf to script swfA.swf. A SWF file gives permission to SWF files from other domains by 

calling Security.allowDomain(). By calling Security.allowDomain("siteA.com"), swfB.swf gives SWF files 

from siteA.com permission to script it.

In any cross-domain situation, it is important to be clear about the two parties involved. For the purposes of this 

discussion, the side that is performing the cross-scripting is called the accessing party (usually the accessing SWF), and 

the other side is called the party being accessed (usually the SWF being accessed). When siteA.swf scripts siteB.swf, 

siteA.swf is the accessing party, and siteB.swf is the party being accessed, as the following illustration shows:

Cross-domain permissions that are established with the Security.allowDomain() method are asymmetrical. In the 

previous example, siteA.swf can script siteB.swf, but siteB.swf cannot script siteA.swf, because siteA.swf has not called 

the Security.allowDomain() method to give SWF files at siteB.com permission to script it. You can set up 

symmetrical permissions by having both SWF files call the Security.allowDomain() method.

Security.allowDomain("siteA.com");

var eggCount:Number;
function DisplayEggs() { ... };

siteA.com / swfA.swf

siteB.com / swfB.swf

load1

SWF

SWF

cross-script
3 2 permission

var url:String = "http://siteB.com/swfB.swf";
var req:URLRequest = new URLRequest(url);
myLoader.load(req);

myLoader.content.eggCount = 3;
myLoader.content.DisplayEggs();

Updated 11 February 2009



702PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

In addition to protecting SWF files from cross-domain scripting originated by other SWF files, Flash Player protects 

SWF files from cross-domain scripting originated by HTML files. HTML-to-SWF scripting can occur with callbacks 

established through the ExternalInterface.addCallback() method. When HTML-to-SWF scripting crosses 

domains, the SWF file being accessed must call the Security.allowDomain() method, just as when the accessing 

party is a SWF file, or the operation will fail. For more information, see “Author (developer) controls” on page 694.

Also, Flash Player provides security controls for SWF-to-HTML scripting. For more information, see “Controlling 

outbound URL access” on page 709. 

Stage security

Some properties and methods of the Stage object are available to any sprite or movie clip on the display list.

However, the Stage object is said to have an owner: the first SWF file loaded. By default, the following properties and 

methods of the Stage object are available only to SWF files in the same security sandbox as the Stage owner: 

In order for a SWF file in a sandbox other than that of the Stage owner to access these properties and methods, the 

Stage owner SWF file must call the Security.allowDomain() method to permit the domain of the external sandbox. 

For more information, see “Author (developer) controls” on page 694.

The frameRate property is a special case—any SWF file can read the frameRate property. However, only those in the 

Stage owner’s security sandbox (or those granted permission by a call to the Security.allowDomain() method) can 

change the property.

There are also restrictions on the removeChildAt() and swapChildrenAt() methods of the Stage object, but these 

are different from the other restrictions. Rather than needing to be in the same domain as the Stage owner, to call these 

methods code must be in the same domain as the owner of the affected child object(s), or the child object(s) can call 

the Security.allowDomain() method. 

Properties Methods

align addChild()

displayState addChildAt()

frameRate addEventListener()

height dispatchEvent()

mouseChildren hasEventListener()

numChildren setChildIndex()

quality willTrigger()

scaleMode

showDefaultContextMenu

stageFocusRect

stageHeight

stageWidth

tabChildren

textSnapshot

width

Updated 11 February 2009



703PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Traversing the display list 

The ability of one SWF file to access display objects loaded from other sandboxes is restricted. In order for a SWF file 

to access a display object created by another SWF file in a different sandbox, the SWF file being accessed must call the 

Security.allowDomain() method to permit access by the domain of the accessing SWF file. For more information, 

see “Author (developer) controls” on page 694.

To access a Bitmap object that was loaded by a Loader object, a URL policy file must exist on the origin server of the 

image file, and that policy file must grant permission to the domain of the SWF file trying to access the Bitmap object 

(see “Website controls (policy files)” on page 691).

The LoaderInfo object that corresponds to a loaded file (and to the Loader object) includes the following three 

properties, which define the relationship between the loaded object and the Loader object: childAllowsParent, 

parentAllowsChild, and sameDomain.

Event security

Events related to the display list have security access limitations, based on the sandbox of the display object that is 

dispatching the event. An event in the display list has bubbling and capture phases (described in “Handling events” on 

page 244). During the bubbling and capture phases, an event migrates from the source display object through parent 

display objects in the display list. If a parent object is in a different security sandbox than the source display object, the 

capture and bubble phase stops below that parent object, unless there is mutual trust between the owner of the parent 

object and the owner of the source object. This mutual trust can be achieved by the following:

1 The SWF file that owns the parent object must call the Security.allowDomain() method to trust the domain of 

the SWF file that owns the source object.

2 The SWF file that owns the source object must call the Security.allowDomain() method to trust the domain of 

the SWF file that owns the parent object.

The LoaderInfo object that corresponds to a loaded file (and to the Loader object) includes the following two 

properties, which define the relationship between the loaded object and the Loader object: childAllowsParent and 

parentAllowsChild.

For events that are dispatched from objects other than display objects, there are no security checks or security-related 

implications.

Accessing loaded media as data

You access loaded data using methods such as BitmapData.draw() and SoundMixer.computeSpectrum(). By 

default, a SWF file from one security sandbox cannot obtain pixel data or audio data from graphic or audio objects 

rendered or played by loaded media in another sandbox. However, you can use the following methods to grant this 

permission:

• In a loaded SWF file, call the Security.allowDomain() method to grant data access to SWF files in other 

domains. 

• For a loaded image, sound, or video, add a URL policy file on the server of the loaded file. This policy file must grant 

access to the domain of the SWF file that is attempting to call the BitmapData.draw() or 

SoundMixer.computeSpectrum() methods to extract data from the file. 

The following sections provide details on accessing bitmap, sound, and video data.

Updated 11 February 2009



704PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Accessing bitmap data

The draw() method of a BitmapData object lets you draw the currently displayed pixels of any display object to the 

BitmapData object. This could include the pixels of a MovieClip object, a Bitmap object, or any display object. The 

following conditions must be met for the draw() method to draw pixels to the BitmapData object:

• In the case of a source object other than a loaded bitmap, the source object and (in the case of a Sprite or MovieClip 

object) all of its child objects must come from the same domain as the object calling the draw() method, or they 

must be in a SWF file that is accessible to the caller by having called the Security.allowDomain() method. 

• In the case of a Loaded bitmap source object, the source object must come from the same domain as the object 

calling the draw() method, or its source server must include a URL policy file that grants permission to the calling 

domain. 

If these conditions are not met, a SecurityError exception is thrown.

When you load the image using the load() method of the Loader class, you can specify a context parameter, which 

is a LoaderContext object. If you set the checkPolicyFile property of the LoaderContext object to true, Flash Player 

checks for a URL policy file on the server from which the image is loaded. If there is a policy file, and the file permits 

the domain of the loading SWF file, the file is allowed to access data in the Bitmap object; otherwise, access is denied. 

You can also specify a checkPolicyFile property in an image loaded via an <img> tag in a text field. For details, see 

“Loading SWF files and images using the <img> tag in a text field” on page 700.

Accessing sound data

The following sound-related ActionScript 3.0 APIs have security restrictions:

• The SoundMixer.computeSpectrum() method—Always permitted for SWF files that are in the same security 

sandbox as the sound file. For files in other sandboxes, there are security checks.

• The SoundMixer.stopAll() method—Always permitted for SWF files that are in the same security sandbox as 

the sound file. For files in other sandboxes, there are security checks.

• The id3 property of the Sound class—Always permitted for SWF files that are in the same security sandbox as the 

sound file. For files in other sandboxes, there are security checks.

Every sound has two kinds of sandboxes associated with it—a content sandbox and an owner sandbox:

• The origin domain for the sound determines the content sandbox, and this determines whether data can be 

extracted from the sound via the id3 property of the sound and the SoundMixer.computeSpectrum() method.

• The object that started the sound playing determines the owner sandbox, and this determines whether the sound 

can be stopped using the SoundMixer.stopAll() method. 

When you load the sound using the load() method of the Sound class, you can specify a context parameter, which 

is a SoundLoaderContext object. If you set the checkPolicyFile property of the SoundLoaderContext object to true, 

Flash Player checks for a URL policy file on the server from which the sound is loaded. If there is a policy file, and the 

file permits the domain of the loading SWF file, the file is allowed to access the id property of the Sound object; 

otherwise, it will not. Also, setting the checkPolicyFile property can enable the SoundMixer.computeSpectrum() 

method for loaded sounds.

You can use the SoundMixer.areSoundsInaccessible() method to find out whether a call to the 

SoundMixer.stopAll() method would not stop all sounds because the sandbox of one or more sound owners is 

inaccessible to the caller. 

Updated 11 February 2009



705PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Calling the SoundMixer.stopAll() method stops those sounds whose owner sandbox is the same as that of the caller 

of stopAll(). It also stops those sounds whose playback was started by SWF files that have called the 

Security.allowDomain() method to permit access by the domain of the SWF file calling the stopAll() method. 

Any other sounds are not stopped, and the presence of such sounds can be revealed by calling the 

SoundMixer.areSoundsInaccessible() method. 

Calling the computeSpectrum() method requires that every sound that is playing be either from the same sandbox as 

the object calling the method or from a source that has granted permission to the caller's sandbox; otherwise, a 

SecurityError exception is thrown. For sounds that were loaded from embedded sounds in a library in a SWF file, 

permission is granted with a call to the Security.allowDomain() method in the loaded SWF file. For sounds loaded 

from sources other than SWF files (originating from loaded mp3 files or from video files), a URL policy file on the 

source server grants access to data in loaded media. You cannot use the computeSpectrum() method if a sound is 

loaded from RTMP streams. 

For more information, see “Author (developer) controls” on page 694 and “Website controls (policy files)” on 

page 691

Accessing video data

You can use the BitmapData.draw() method to capture the pixel data of the current frame of a video. 

There are two different kinds of video: 

• RTMP video

• Progressive video, which is loaded from an FLV file without an RTMP server

You cannot use the BitmapData.draw() method to access RTMP video.

When you call the BitmapData.draw() method with progressive video as the source parameter, the caller of 

BitmapData.draw() must either be from the same sandbox as the FLV file, or the server of the FLV file must have a 

policy file that grants permission to the domain of the calling SWF file. You can request that the policy file be 

downloaded by setting the checkPolicyFile property of the NetStream object to true.

Loading data

SWF files can load data from servers into ActionScript, and send data from ActionScript to servers. Loading data is a 

different kind of operation from loading media, because the loaded information appears directly in ActionScript, 

rather than being displayed as media. Generally, SWF files may load data from their own domains. However, they 

usually require policy files in order to load data from other domains (see “Website controls (policy files)” on page 691).

Using URLLoader and URLStream

You can load data, such as an XML file or a text file. The load() methods of the URLLoader and URLStream classes 

are governed by URL policy file permissions.

If you use the load() method to load content from a domain other than that of the SWF file that is calling the method, 

Flash Player checks for a URL policy file on the server of the loaded assets. If there is a policy file, and it grants access 

to the domain of the loading SWF file, you can load the data. 

Updated 11 February 2009



706PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Connecting to sockets

By default, Flash Player looks for a socket policy file served from port 843. As with URL policy files, this file is called 

the master policy file.

When policy files were first introduced in Flash Player 6, there was no support for socket policy files. Connections to 

socket servers were authorized by a policy file in the default location on an HTTP server on port 80 of the same host 

as the socket server. Flash Player 9 still supports this capability, but Flash Player 10 does not. In Flash Player 10, only 

socket policy files can authorize socket connections. 

Like URL policy files, socket policy files support a meta-policy statement that specify which ports can serve policy files. 

However, instead of “master-only,” the default meta-policy for socket policy files is “all.” That is, unless the master 

policy file specifies a more restrictive setting, Flash Player assumes that any socket on the host can serve a socket policy 

file. 

Access to socket and XML socket connections is disabled by default, even if the socket you are connecting to is in the 

same domain as the SWF file. You can permit socket-level access by serving a socket policy file from any of the 

following locations:

• Port 843 (the location of the master policy file)

• The same port as the main socket connection

• A different port than the main socket connection

By default, Flash Player looks for a socket policy file on port 843 and on the same port as the main socket connection. 

If you want to serve a socket policy file from a different port, the SWF file must call Security.loadPolicyFile().

A socket policy file has the same syntax as a URL policy file, except that it must also specify the ports to which it grants 

access. When a socket policy file is served from a port number below 1024, it may grant access to any ports; when a 

policy file comes from port 1024 or higher, it may grant access only to ports 1024 and higher. The allowed ports are 

specified in a to-ports attribute in the <allow-access-from> tag. Single port numbers, port ranges, and wildcards 

are accepted values. 

Here is an example socket policy file:

 <?xml version="1.0"?>  
 <!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">  
 <!-- Policy file for xmlsocket://socks.mysite.com -->  
 <cross-domain-policy>   
 <allow-access-from domain="*" to-ports="507" />   
 <allow-access-from domain="*.example.com" to-ports="507,516" />   
 <allow-access-from domain="*.example.org" to-ports="516-523" />   
 <allow-access-from domain="adobe.com" to-ports="507,516-523" />   
 <allow-access-from domain="192.0.34.166" to-ports="*" />   
 </cross-domain-policy> 

 To retrieve a socket policy file from port 843 or from the same port as a main socket connection, call the 

Socket.connect() or XMLSocket.connect() method. Flash Player first checks for a master policy file on port 843. 

If it finds one, it checks to see if the file contains a meta-policy statement that prohibits socket policy files on the target 

port. If access isn’t prohibited, Flash Player first looks for the appropriate allow-access-from statement in the 

master policy file. If it doesn’t find one, it then looks for a socket policy file on the same port as the main socket 

connection.

To retrieve a socket policy file a different location, first call the Security.loadPolicyFile() method with the special 

"xmlsocket" syntax, as in the following: 

 Security.loadPolicyFile("xmlsocket://server.com:2525"); 

Updated 11 February 2009



707PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Call the Security.loadPolicyFile() method before calling the Socket.connect() or XMLSocket.connect() 

method. Flash Player then waits until it has fulfilled your policy file request before deciding whether to allow your main 

connection. However, if the master policy file specifies that the target location can’t serve policy files, the call to 

loadPolicyFile() has no effect, even if there is a policy file at that location. 

If you are implementing a socket server and you need to provide a socket policy file, decide whether to provide the 

policy file using the same port that accepts main connections, or using a different port. In either case, your server must 

wait for the first transmission from your client before sending a response. 

When Flash Player requests a policy file, it always transmits the following string as soon as a connection is established:

 <policy-file-request/>

Once the server receives this string, it can transmit the policy file. The request from Flash Player is always terminated 

by a null byte, and the response from the server must also be terminated by a null byte. 

Do not expect to reuse the same connection for both a policy file request and a main connection; close the connection 

after transmitting the policy file. If you do not, Flash Player closes the policy file connection before reconnecting to set 

up the main connection.

Sending data

Data sending occurs when ActionScript code from a SWF file sends data to a server or resource. Sending data is always 

permitted for network domain SWF files. A local SWF file can send data to network addresses only if it is in the local-

trusted or local-with-networking sandbox. For more information, see “Local sandboxes” on page 687.

You can use the flash.net.sendToURL() function to send data to a URL. Other methods also send requests to URLs. 

These include loading methods, such as Loader.load() and Sound.load(), and data-loading methods, such as 

URLLoader.load() and URLStream.load(). 

Uploading and downloading files

The FileReference.upload() method starts the upload of a file selected by a user to a remote server. You must call 

the FileReference.browse() or FileReferenceList.browse() method before calling the 

FileReference.upload() method. 

The ActionScript that initiates the FileReference.browse() or FileReferenceList.browse() method can be 

called only in response to a mouse event or keyboard event. If it is called in other situations, Flash Player 10 and later 

throws an exception.

Calling the FileReference.download() method opens a dialog box in which the user can download a file from a 

remote server. 

Note: If your server requires user authentication, only SWF files running in a browser—that is, using the browser plug-

in or ActiveX control—can provide a dialog box to prompt the user for a user name and password for authentication, and 

only for downloads. Flash Player does not allow uploads to a server that requires user authentication.

Uploads and downloads are not allowed if the calling SWF file is in the local-with-filesystem sandbox.

By default, a SWF file may not initiate an upload to, or a download from, a server other than its own. A SWF file may 

upload to, or download from, a different server if that server provides a policy file that grants permission to the domain 

of the invoking SWF file.

Updated 11 February 2009



708PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Loading embedded content from SWF files imported 
into a security domain

When you load a SWF file, you can set the context parameter of the load() method of the Loader object that is used 

to load the file. This parameter takes a LoaderContext object. When you set the securityDomain property of this 

LoaderContext object to Security.currentDomain, Flash Player checks for a URL policy file on the server of the 

loaded SWF file. If there is a policy file, and it grants access to the domain of the loading SWF file, you can load the 

SWF file as imported media. In this way, the loading file can get access to objects in the library of the SWF file. 

An alternative way for a SWF file to access classes in loaded SWF files from a different security sandbox is to have the 

loaded SWF file call the Security.allowDomain() method to grant access to the domain of the calling SWF file. You 

can add the call to the Security.allowDomain() method to the constructor method of the main class of the loaded 

SWF file, and then have the loading SWF file add an event listener to respond to the init event dispatched by the 

contentLoaderInfo property of the Loader object. When this event is dispatched, the loaded SWF file has called the 

Security.allowDomain() method in the constructor method, and classes in the loaded SWF file are available to the 

loading SWF file. The loading SWF file can retrieve classes from the loaded SWF file by calling 

Loader.contentLoaderInfo.applicationDomain.getDefinition(). 

Working with legacy content

In Flash Player 6, the domain that is used for certain Flash Player settings is based on the trailing portion of the domain 

of the SWF file. These settings include settings for camera and microphone permissions, storage quotas, and storage 

of persistent shared objects.

If the domain of a SWF file includes more than two segments, such as www.example.com, the first segment of the 

domain (www) is removed, and the remaining portion of the domain is used. So, in Flash Player 6, www.example.com 

and store.example.com both use example.com as the domain for these settings. Similarly, www.example.co.uk and 

store.example.co.uk both use example.co.uk as the domain for these settings. This can lead to problems in which SWF 

files from unrelated domains, such as example1.co.uk and example2.co.uk, have access to the same shared objects. 

In Flash Player 7 and later, player settings are chosen by default according to a SWF file’s exact domain. For example, 

a SWF file from www.example.com would use the player settings for www.example.com. A SWF file from 

store.example.com would use the separate player settings for store.example.com.

In a SWF file written using ActionScript 3.0, when Security.exactSettings is set to true (the default), Flash Player 

uses exact domains for player settings. When it is set to false, Flash Player uses the domain settings used in Flash 

Player 6. If you change exactSettings from its default value, you must do so before any events occur that require 

Flash Player to choose player settings—for example, using a camera or microphone, or retrieving a persistent shared 

object.

If you published a version 6 SWF file and created persistent shared objects from it, to retrieve those persistent shared 

objects from a SWF that uses ActionScript 3.0, you must set Security.exactSettings to false before calling 

SharedObject.getLocal(). 

Updated 11 February 2009



709PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Setting LocalConnection permissions

The LocalConnection class lets you develop SWF files that can send instructions to each other. LocalConnection 

objects can communicate only among SWF files that are running on the same client computer, but they can be running 

in different applications—for example, a SWF file running in a browser and a SWF file running in a projector. 

For every LocalConnection communication, there is a sender SWF file and a listener SWF file. By default, Flash Player 

allows LocalConnection communication between SWF files in the same domain. For SWF files in different sandboxes, 

the listener must allow the sender permission by using the LocalConnection.allowDomain() method. The string 

you pass as an argument to the LocalConnection.allowDomain() method can contain any of the following: exact 

domain names, IP addresses, and the * wildcard. 

The allowDomain() method has changed from the form it had in ActionScript 1.0 and 2.0. In those earlier versions, 

allowDomain() was a callback method that you implemented. In ActionScript 3.0, allowDomain() is a built-in 

method of the LocalConnection class that you call. With this change, allowDomain() works in much the same way as 

Security.allowDomain().

A SWF file can use the domain property of the LocalConnection class to determine its domain.

Controlling outbound URL access

Outbound scripting and URL access (through the use of HTTP URLs, mailto: and so on) are achieved through use of 

the following ActionScript 3.0 APIs:

• The flash.system.fscommand() function

• The ExternalInterface.call() method

• The flash.net.navigateToURL() function

For SWF files running locally, calls to these methods are successful only if the SWF file and the containing web page 

(if there is one) are in the local-trusted security sandbox. Calls to these methods fail if the content is in the local-with-

networking or local-with-filesystem sandbox.

For SWF files that are not running locally, all of these APIs can communicate with the web page in which they are 

embedded, depending on the value of the AllowScriptAccess parameter described below. The 

flash.net.navigateToURL() function has the additional ability to communicate with any open browser window or 

frame, not just the page in which the SWF file is embedded. For more information on this functionality, see “Using the 

navigateToURL() function” on page 710. 

The AllowScriptAccess parameter in the HTML code that loads a SWF file controls the ability to perform outbound 

URL access from within the SWF file. Set this parameter inside the PARAM or EMBED tag. If no value is set for 

AllowScriptAccess, the SWF file and the HTML page can communicate only if both are from the same domain.

The AllowScriptAccess parameter can have one of three possible values: "always", "sameDomain", or "never". 

• When AllowScriptAccess is "always", the SWF file can communicate with the HTML page in which it is 

embedded even when the SWF file is from a different domain than the HTML page. 

• When AllowScriptAccess is "sameDomain", the SWF file can communicate with the HTML page in which it is 

embedded only when the SWF file is from the same domain as the HTML page. This value is the default value for 

AllowScriptAccess. Use this setting, or do not set a value for AllowScriptAccess, to prevent a SWF file hosted 

from one domain from accessing a script in an HTML page that comes from another domain. 

Updated 11 February 2009



710PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

• When AllowScriptAccess is "never", the SWF file cannot communicate with any HTML page. Using this value 

is deprecated in Adobe Flash CS4 Professional. It is not recommended and shouldn’t be necessary if you don’t serve 

untrusted SWF files from your own domain. If you do need to serve untrusted SWF files, Adobe recommends that 

you create a distinct subdomain and place all untrusted content there. 

Here is an example of setting the AllowScriptAccess tag in an HTML page to allow outbound URL access to a 

different domain: 

 <object id='MyMovie.swf' classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000' 
codebase='http://download.adobe.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,0,0' 
height='100%' width='100%'>  
 <param name='AllowScriptAccess' value='always'/>  
 <param name='src' value=''MyMovie.swf'/>  
 <embed name='MyMovie.swf' pluginspage='http://www.adobe.com/go/getflashplayer' 
src='MyMovie.swf' height='100%' width='100%' AllowScriptAccess='never'/>  
 </object> 

Using the navigateToURL() function

In addition to the security setting specified by the allowScriptAccess parameter discussed above, the 

navigateToURL() function has an optional second parameter - target. The target parameter can be used to specify 

the name of an HTML window or frame to send the URL request to. Additional security restrictions apply to such 

requests, and the restrictions vary depending on whether navigateToURL() is being used as a scripting or non-

scripting statement. 

For scripting statements, such as navigateToURL("javascript: alert('Hello from Flash Player.')"), the 

following rules apply.

• If the SWF file is a locally trusted file, the request succeeds.

• If the target is the HTML page in which the SWF file is embedded, the allowScriptAccess rules described above 

apply. 

• If the target holds content loaded from the same domain as the SWF file, the request succeeds. 

• If the target holds content loaded from a different domain than the SWF file, and neither of the previous two 

conditions is met, the request fails. 

For non-scripting statements (such as HTTP, HTTPS, and mailto:, the request fails if all of the following conditions 

apply: 

• The target is one of the special keywords "_top" or "_parent", and 

• the SWF file is in a web page hosted from a different domain, and 

• the SWF file is embedded with a value for allowScriptAccess that is not "always". 

For more information

For more information on outbound URL access, see the following entries in the ActionScript 3.0 Language and 

Components Reference: 

• The flash.system.fscommand() function

• The call() method of the ExternalInterface class

• The flash.net.navigateToURL() function

Updated 11 February 2009



711PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Shared objects

Flash Player provides the ability to use shared objects, which are ActionScript objects that persist outside of a SWF file, 

either locally on a user’s file system or remotely on an RTMP server. Shared objects, like other media in Flash Player, 

are partitioned into security sandboxes. However, the sandbox model for shared objects is somewhat different, because 

shared objects are not resources that can ever be accessed across domain boundaries. Instead, shared objects are always 

retrieved from a shared object store that is particular to the domain of each SWF file that calls methods of the 

SharedObject class. Usually a shared object store is even more particular than a SWF file’s domain: by default, each 

SWF file uses a shared object store particular to its entire origin URL. 

A SWF file can use the localPath parameter of the SharedObject.getLocal() and SharedObject.getRemote() 

methods to use a shared object store associated with only a part of its URL. In this way, the SWF file can permit sharing 

with other SWF files from other URLs. Even if you pass '/' as the localPath parameter, this still specifies a shared 

object store particular to its own domain. 

Users can restrict shared object access by using the Flash Player Settings dialog box or the Settings Manager. By default, 

shared objects can be created up to a maximum of 100 KB of data per domain. Administrative users and users can also 

place restrictions on the ability to write to the file system. For more information, see “Administrator controls” on 

page 689 and “User controls” on page 690.

You can specify that a shared object is secure, by specifying true for the secure parameter of the 

SharedObject.getLocal() method or the SharedObject.getRemote() method. Note the following about the 

secure parameter:

• If this parameter is set to true, Flash Player creates a new secure shared object or gets a reference to an existing 

secure shared object. This secure shared object can be read from or written to only by SWF files delivered over 

HTTPS that call SharedObject.getLocal() with the secure parameter set to true.

• If this parameter is set to false, Flash Player creates a new shared object or gets a reference to an existing shared 

object that can be read from or written to by SWF files delivered over non-HTTPS connections.

If the calling SWF file is not from an HTTPS URL, specifying true for the secure parameter of the 

SharedObject.getLocal() method or the SharedObject.getRemote() method results in a SecurityError 

exception.

The choice of a shared object store is based on a SWF file’s origin URL. This is true even in the two situations where a 

SWF file does not originate from a simple URL: import loading and dynamic loading. Import loading refers to the 

situation where you load a SWF file with the LoaderContext.securityDomain property set to 

SecurityDomain.currentDomain. In this situation, the loaded SWF file will have a pseudo-URL that begins with its 

loading SWF file’s domain and then specifies its actual origin URL. Dynamic loading refers to the loading of a SWF 

file using the Loader.loadBytes() method. In this situation, the loaded SWF file will have a pseudo-URL that begins 

with its loading SWF file’s full URL followed by an integer ID. In both the import loading and dynamic loading cases, 

a SWF file’s pseudo-URL can be examined using the LoaderInfo.url property. The pseudo-URL is treated exactly 

like a real URL for the purposes of choosing a shared object store. You can specify a shared object localPath 

parameter that uses part or all of the pseudo-URL. 

Updated 11 February 2009



712PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Flash Player security

Users and administrators can elect to disable the use of third-party shared objects. This is the usage of shared objects 

by any SWF file that is executing in a web browser, when that SWF file’s origin URL is from a different domain than 

the URL shown in the browser’s address bar. Users and administrators may choose to disable third-party shared object 

usage for reasons of privacy, wishing to avoid cross-domain tracking. In order to avoid this restriction, you may wish 

to ensure that any SWF file using shared objects is loaded only within HTML page structures that ensure that the SWF 

file comes from the same domain as is shown in the browser's address bar. When you attempt to use shared objects 

from a third-party SWF file, and third-party shared object use is disabled, theSharedObject.getLocal() and 

SharedObject.getRemote() methods return null. For more information, see 

www.adobe.com/products/flashplayer/articles/thirdpartylso.

Camera, microphone, clipboard, mouse, and keyboard 
access

When a SWF file attempts to access a user's camera or microphone using the Camera.get() or Microphone.get() 

methods, Flash Player displays a Privacy dialog box, in which the user can allow or deny access to their camera and 

microphone. The user and the administrative user can also disable camera access on a per-site or global basis, through 

controls in the mms.cfg file, the Settings UI, and the Settings Manager (see “Administrator controls” on page 689 and 

“User controls” on page 690). With user restrictions, the Camera.get() and Microphone.get() methods each return 

a null value. You can use the Capabilities.avHardwareDisable property to determine whether the camera and 

microphone have been administratively prohibited (true) or allowed (false). 

The System.setClipboard() method allows a SWF file to replace the contents of the clipboard with a plain-text 

string of characters. This poses no security risk. To protect against the risk posed by passwords and other sensitive data 

being cut or copied to clipboards, there is no corresponding getClipboard() method. 

An application running in Flash Player can monitor only keyboard and mouse events that occur within its focus. 

Content running in Flash Player cannot detect keyboard or mouse events in another application.

Updated 11 February 2009

http://www.adobe.com/products/flashplayer/articles/thirdpartylso


713

Index

Symbols

^ (caret) 207

__proto__ 37

__resolve 37

, (comma) operator 49

!= (inequality) operator 142

!== (strict inequality) operator 142

? (conditional) operator 73

? (question mark) 207

. (dot) metacharacter 207

. (dot) operator 63, 80

. (dot) operator, XML 227, 234

.. (descendent accessor) operator, XML 234

... (rest) parameter 86

( ) (parentheses) metacharacters 207

( ) (parentheses) operators 65

( ) (XML filtering) operators 236

] (right bracket) 207

@ (attribute identifier) operator, XML 227, 
235

* (asterisk) metacharacter 207

* (asterisk) type annotation 51, 53, 58

* (wildcard) operator, XML 235

/ (forward slash) 205, 207

\ (backslash)

in regular expressions 207

\\ (backslash)

in strings 141

& (ampersand) 599

+ (addition) operator 143

+ (concatenation) operator, XMLList 233

+ (plus) metacharacter 207

+= (addition assignment) operator 143, 233

== operator 142

=== operator 142

> operator 142

>= operator 142

| (pipe) 211

$ metacharacter 207

$ replacement codes 146

Numerics

128-bit addresses 596

3D coordinate system 496

3D rendering 513

3D rotation 510

3D vector 496

A

abstract classes 93

accessor functions, get and set 100

ActionScript

about 37

advantages of 4

building applications with 23

compatibility with previous versions 7

description of 4

development process 26

documentation 2

history of OOP support 115

new features in 5

storing in ActionScript files 24

tools for writing 25

ways to include in applications 23

writing with text editors 25

ActionScript 1.0 115

ActionScript 2.0, prototype chain 117

ActionScript Virtual Machine (AVM1) 115

ActionScript Virtual Machine 2 
(AVM2) 115, 119

activation object 88

addCallback() method 702

addEventListener() method 102, 248, 258

addFilterProperty() method 415

addition (+) operator 143

addition assignment (+=) operator 143

additive operators 71

addListener() method 248

addPropertyArray() method 412

addTarget() method 417

allowDomain() method

about cross-scripting 701

constructor and 708

img tag and 700

loading context 307

LocalConnection class 607

sound and 705

allowFullScreen attribute 697

allowInsecureDomain() method 607

allowNetworking tag 696

alpha channel masking 301

alternation in regular expressions 211

ampersand (&) 599

animation 303

AnimatorFactory class 417

anonymous functions 79, 85

anti-aliasing text 437

application/x-www-form-urlencoded 598

ApplicationDomain class 307, 640, 699

applications, development decisions 23

apply() method 171

arguments object 83, 84, 86

arguments, passing by reference or value 83

arguments.callee property 84

arguments.caller property 86

arguments.length property 84

armature 419

array access operator 155

Array class

about 156

concat() method 164

constructor 156

constructor algorithm 171

creating instances 156

extending 170

join() method 164

length property 160, 166

pop() method 159

push() method 159, 172

reverse() method 161

shift() method 159

slice() method 164

sort() method 161

sortOn() method 160, 163

splice() method 159

toString() method 164

unshift() method 159

arrays

about 153

array literals 64, 157

associative 165

cloning 169

common tasks 154

creating 145, 156

deep copy of 169

delete operator 160

Updated 11 February 2009



714PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

examples 175

indexed 155

inserting elements 158

iterating through 167

key and value pairs 165

length of 160

maximum size 155

multidimensional 168

nested arrays and join() method 164

object keys 166

querying 164

removing elements 159

retrieving values 159

shallow copy 169

sorting 160

superconstructor 171

terms 154

using associative and indexed arrays 169

as operator 55, 105

-as3 compiler option 171

AS3 namespace 121, 171

ASCII characters 139

assignment operators 73

associativity, rules of 68

asterisk (*) metacharacter 207

asterisk (*) type annotation 51, 53, 58

asterisk (wildcard) operator, XML 235

asynchronous errors 182

asynchronous operation 260

attribute identifier (@) operator, XML 227, 
235

audio playback, monitoring 582

audio security 704

avHardwareDisable property 689

AVM1 (ActionScript Virtual Machine) 115

AVM1Movie class 271

AVM2 (ActionScript Virtual Machine 
2) 115, 119

B

background color, making opaque 296

backslash (\) character

in regular expressions 207

backslash (\\) character

in strings 141

bar (|) character 211

base classes 107

basic concepts

comments 19

creating object instances 18

events 13

example 21

flow control 20

methods 12

objects 11

operators 19

properties 12

variables 9

beginGradientFill() method 320

big-endian byte order 608

binary operators 68

bitmap caching

advantages and disadvantages 295

filters and 349

when to avoid 296

when to use 295

Bitmap class 270, 477

bitmap data, copying 480

bitmap printing 661

bitmap transformation 508

BitmapData class 477

BitmapData objects, applying filters 349

bitmaps

about 474

copy-and-paste support 652

defining in Bitmap class 270

file formats 474

optimizing 484

security 704

smoothing 477

transparent versus opaque 475

bitwise logical operators 72

bitwise shift operators 71

block-level scope 50

bone 419

Boolean class

casting 61

implicit coercion in strict mode 60

Boolean data type 56

bound methods 89, 101

brace operators ({ and }) in XML 232

bracket ([ and ]) characters 207

browse() method 707

bubbles property 251

bubbling phase 249

build path 40

built-in classes 38

byte order 608

ByteArray class 170

bytes loaded 306

C

caching filters and bitmaps 349

call() method (ExternalInterface class) 697, 
709

callback methods

handling 528

video cue points and metadata 527

callee property 84

caller property 86

Camera class 541

cameras

capturing input 541

displaying content on-screen 542

permissions 543

playback conditions 546

security 708, 712

verifying installation 543

cancelable property 250

Capabilities class 640

Capabilities.avHardwareDisable 
property 689

Capabilities.localFileReadDisable 
property 689

capture phase 249

capturing camera input 541

capturing user-selected text 430

caret (^) character 207

cascading style sheets. See CSS

case replacement in strings 147

case sensitivity 63

casting 59, 60, 61

catch blocks 185

character classes (in regular 
expressions) 209

character codes 586

character ranges, specifying 210

character-delimited string, combining 
arrays into 177

characters

in regular expressions 206

in strings 141, 144

charAt() method 141

charCodeAt() method 141

checkPolicyFile property 694

childAllowsParent property 703

class definitions, multiple 640

class inheritance 119

class keyword 92

class object 37, 118

Updated 11 February 2009



715PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

classes

about 91

about writing code for 27

abstract not supported 93

attributes 92

base 107

body 93

built-in 38

characteristics 12

creating custom 26

declaring static and instance properties 93

default access control 96

defining namespaces inside 93

definitions of 92

dynamic 55, 80, 95

dynamic attribute 93

inheriting instance properties 108

internal attribute 96

private attribute 94

private classes 39

property attributes 94

protected attribute 95

public attribute 94

public classes 41

sealed 55

static properties 113

subclasses 107

top-level statements 93

classpath 40

clearInterval() function 135

clearTimeout() function 135

client system environment

about 637

common tasks 637

Clipboard

copy and paste 652

data formats 653, 654

saving text 639

security 712

System 652

Clipboard class

generalClipboard property 652

setData() method 654

setDataHandler() method 654

clipboardData property (HTML copy-and-
paste events) 653

ClipboardFormats class 653

ClipboardTransferModes class 654

clock example 135

clone() method (BitmapData class) 480

clone() method (Event class) 252

close bracket 207

close parenthesis 207

code, ways to include in applications 23

ColdFusion 603

collision detection at pixel level 479

colon (:) operator 52

colors

adjusting in display objects 298

altering specific 299

background 296

combining from different images 297

setting for display objects 298

ColorTransform class 341

colorTransform property 341

comma operator 49

comments

about 19, 65

in XML 228

communication

between Flash Player instances 603

between SWF files 605

between SWF files in different 
domains 607

compatibility, Flash Player and FLV files 517

compiler options 121, 171

compile-time type checking 52

complex values 52

compound literals 64

computeSpectrum() method (SoundMixer 
class) 700, 703, 704

concat() method

String class 143

concatenation

of strings 143

of XML objects 233

concatenation (+) operator, XMLList 233

conditional (?:) operator 73

conditionals 73

connect() method

LocalConnection class 697

NetConnection class 697, 700

Socket class 697

XMLSocket class 697

constants 66, 96, 250

constructors

about 98

in ActionScript 1.0 116

content property (Loader class) 700

content, loading dynamically 304

contentLoaderInfo property 306, 708

contentType property 598

context menu, customizing 589

cookies 612

coordinate spaces

defined 334

translating 336

coordinate system, 3D 496

Coordinated Universal Time (UTC) 131

copy and paste

deferred rendering 654

transfer modes 654

core Error classes in ActionScript 195

core Error classes in ECMAScript 193

createBox() method 341

createGradientBox() method 320

cross-domain policy files

See policy files

cross-scripting 701

CSS

defined 425

loading 434

styles 433

cue points

using 531

in video 526

culling 496, 513

currentDomain property 708

currentTarget property 252

cursors, customizing 588

custom classes 26

custom data types, enumerations 102

custom error classes 189

custom LocalConnection client 604

D

data

loading external 598

security of 703, 707

sending to servers 602

data formats, Clipboard 653

data property (URLRequest class) 599

data structures 153

data types

about 10

Boolean 56

custom 102

default (untyped) 38

defined 51

int 57

Updated 11 February 2009



716PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

Number 57

simple and complex 10

String 58

uint 58

void 58

dataFormat property 602

date arithmetic 132

Date class

about 130

constructor 131

date property 131

day property 132

fullYear property 131

getMonth() method 99, 132

getMonthUTC() method 132

getTime() method 132

getTimezoneOffset() method 133

hours property 132

milliseconds property 132

minutes property 132

month property 131

monthUTC property 132

parse() method 99

seconds property 132

setTime() method 132

Date objects

example of creating 131

getting time values from 131

date property 131

Date() constructor 131

dates and times

about 130

examples 130

day property 132

debugger version, Flash Player 260

debugging 184

decode() method 599

decrementing values 70

default behavior

canceling 251

defined 247

default data type 38

default parameter values 84

default xml namespace directive 238

deferred rendering (copy and paste) 654

Delegate class 256

delete operator 81, 160

delimiter character, splitting strings into 
array 145

depth management, improved 272

descendent accessor (..) operator, XML 234

development

planning 23

process 26

device fonts 425

Dictionary class

about 166

useWeakReference parameter 168

dispatchEvent() method 259

dispatching events 244

display architecture 266, 314

display content, loading dynamically 304

display list

about 266

advantages 271

event flow 248

security 703

traversing 278

display list object 247

display object containers 267, 274

display objects

about 267

adding to display list 274

adjusting colors 298

animating 303

assembling complicated objects 273

bitmaps 474

caching 294

choosing a subclass 284

clicking and dragging example 311

common tasks 268

creating 274

depth management 272

drawing API and 314

events 284

example 307, 324

example of rearranging 312

fading 300

filtering 346, 347, 353

grouping 274

inheritance of core classes 270

masking 300

matrix transformation 341

movie clips 398

off-list 272

positioning 285, 286

removing filters 349

rotating 300, 340

scaling 291, 293, 340

security 703

setting colors of 298

size 291

skewing 340

subclassing 273

terms 269

translation 340

user input and 584

display programming, about 266

displaying camera content on-screen 542

DisplayObject class

about 267, 273

blendShader property 390

stage property 248

DisplayObjectContainer class 267, 271, 274

displayState property 280, 697

distance() method 336

division by zero 58

do..while loop 77

Document Object Model (DOM) Level 3 
Events specification 244, 247

documentation

ActionScript 2

Adobe Developer Center and Adobe 
Design Center 3

Flash 2

Programming ActionScript 3.0 contents 1

dollar sign ($) metacharacter 207

dollar sign ($) replacement codes 146

DOM Events specification 244, 247

domain property (LocalConnection 
class) 709

domains, communicating between 607

dot (.) metacharacter 207

dot (.) operator 63, 80

dot (.) operator, XML 227, 234

dot syntax 63

dotall flag in regular expressions 216

dotall property of regular expressions 214

double quotation mark in strings 140, 141

download() method 697, 707

downloading files 625, 707

drag-and-drop

capturing interactions 588

creating interaction 286

draw() method 307, 699, 700, 703, 704, 705

drawPath() 327

drawTriangles() 507

dynamic attribute 93

dynamic classes 55, 80, 95

dynamic text fields 425

Updated 11 February 2009



717PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

E

E4X. See XML

ECMAScript for XML. See XML

embedded asset classes 104

embedded fonts

defined 425

using 436

encoding ampersand (&) 599

Endian.BIG_ENDIAN 608

Endian.LITTLE_ENDIAN 608

enterFrame event 250

enumerations 102

equality operators 72, 142

Error classes

about 193

ActionScript 195

ECMAScript 193

error events 190, 260

error handling

common tasks 180

default behaviors 247

examples 260

strategies 184

terms 180

tools 183

ErrorEvent class 191, 260

errors

about handling 179

asynchronous 182

custom classes 189

debugging tools 184

displaying 188

ErrorEvent class 190, 260

print 659

rethrowing 188

status-based events 190

throw statement 187

types of 179, 181

-es compiler option 171

escape sequences in character classes 209

even-odd rule 330

Event class

about 250

bubbles property 251

cancelable property 250

clone() method 252

constants 250

currentTarget property 252

eventPhase property 251

isDefaultPrevented() method 253

method categories 252

preventDefault() method 247, 253

stopImmediatePropogation() 
method 253

stopPropogation() method 253

subclasses 253

target property 252

toString() method 252

type property 250

event flow 244, 248, 251

event handlers 247

event listeners

about 244

changes in ActionScript 3.0 248

as class methods 255

creating 254

managing 258

outside a class 254

removing 259

technique to avoid 257

event objects 244

event target 244, 248, 249

Event.COMPLETE 598

EventDispatcher class

addEventListener() method 102, 248

dispatchEvent() method 259

IEventDispatch interface and 105

references to 63

willTrigger() method 259

eventPhase property 251

events

See also event listeners

basic concepts 13

default behaviors 247

dispatching 244, 259

for display objects 284

enterFrame event 250

error 190, 260

event flow 244, 248, 251

event objects 250

init event 250

parent node 249

security 703

status change 192

target node 249

this keyword 256

exactSettings property (Security class) 708

examples

arrays 175

building a Telnet client 628

detecting system capabilities 648

error handling 260

filtering images 369

GeometricShapes 122

loading RSS data 241

Matrix class 342

multi-page printing 663

rearranging display object layers 312

regular expressions 218

RunTimeAssetsExplorer 406

SimpleClock 135

sound application 576

SpriteArranger class 308

strings 147

text formatting 439

using external API with a web page 
container 674

video jukebox 548

Wiki parser 218

WordSearch 591

exceptions 181

exec() method 217

explicit type conversion 59

exporting library symbols 402

extended flag in regular expressions 216

extended property of regular 
expressions 214

extends keyword 107

external API

about 667

advantages 669

common tasks 667

concepts and terms 667

example 674

XML format 672

external code, calling from ActionScript 671

external containers, getting information 
about 670

external data, loading 598

external documents, loading data 599

external SWF files, loading 405

ExternalInterface class 669, 697, 709

ExternalInterface.addCallback() 
method 702

F

facade class 578

fading display objects 300

fast-forwarding movie clips 401

fieldOfView property 500

file size, smaller for shapes 272

Updated 11 February 2009



718PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

FileReference class 614, 615, 617, 697, 707

FileReference.download() 695

FileReference.upload() 695

FileReferenceList class 627, 707

files

copy-and-paste support 652

downloading 707

loading 615

saving 617

uploading 627, 707

Fill object 327

fill rule 330

filtering XML data 236

filters

applying for display objects 347

applying to BitmapData objects 349

bitmap caching and 349

changing at run time 350

common tasks 346

creating 347

for display and bitmap objects 353

explanation of 349

for images, example 369

removing for display objects 349

final attribute 54, 100, 103, 111

first sprite loaded 267, 306

fixed property inheritance 119

flags in regular expressions 214

Flash authoring, when to use for 
ActionScript 25

Flash cookie 612

Flash documentation 2

Flash Media Server 700

flash package 40

Flash Player

communicating between instances 603

compatibility with encoded FLV 517

debugger version 260

fullscreen in a browser 281, 522

IME and 643

version 6 115

Flash timeline, adding ActionScript 23

Flash Video. See FLV

flash_proxy namespace 44

flash.display package

about display programming 266

bitmaps and 474

drawing API and 314

filtering and 346

movie clips and 398

sound and 554

user input and 584

flash.geom package 334

Flex, when to use for ActionScript 25

flow control, basic concepts 20

FLV

configuring for hosting on server 547

file format 519

on Macintosh 548

focal length 509

focalLength property 501

focus, managing in interactions 590

fonts

device 425

embedded 425, 436

for each..in statement 76, 167, 237

for loops 75

for loops, XML 227, 237

for..in statement 76, 167, 237

form feed character 141

formatting text 432, 435

forward slash 205, 207

frameRate property 279

frames, jumping to 401

fromCharCode() method 142

fscommand() function 603, 697, 709

full screen

terminating 525

fullScreen event 282

full-screen mode 280, 697

fullscreen video 522

fullScreenSourceRect property 282

fullYear property 131

function closures 78, 82, 88

function expressions 79

function keyword 79, 97

function objects 92

function parameters 83

function statements 79

Function.apply() method 171

functions

about 78

accessor 100

adding properties to 87

anonymous 79, 85

arguments object 83

calling 78

nested 82, 88

objects 86

parameters 83

parentheses 78

recursive 85

returning values 82

scope 81, 88

timing 135

G

g flag (in regular expressions) 214

garbage collection 81, 167

generalClipboard property (Clipboard 
class) 652

generic objects 64, 165

GeometricShapes example 122

geometry

about 334

common tasks using 334

concepts and terms 315, 335

getArmatureByName() method 421

getBoneByName() method 421

getDefinition() method 708

getImageReference() method 700

getLocal() method 612, 697, 708, 711

getMonth() method 99, 132

getMonthUTC() method 132

getRect() method 340

getRemote() method 612, 697, 711

getters and setters

about 100

overriding 112

getTime() method 132

getTimer() function 135

getTimezoneOffset() method 133

GIF graphics 304

global flag in regular expressions 215

global object 88

global property of regular expressions 214

global scope 88

global variables 49

gradients 320

Graphics class

beginShaderFill() method 386

graphics data classes 331

graphics, loading 305

GraphicsPathCommand class 328

GraphicsStroke 327

greater-than operator 68, 142

greater-than-or-equal-to operator 142

grouping display objects 274

groups, in regular expressions 212

Updated 11 February 2009



719PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

H

Hardware acceleration, for full screen 525

Hardware scaling 282

hashes 165, 166

hoisting 50

hours property 132

HTML text

and CSS 433

displaying 428

HTMLLoader class

copy and paste 652

htmlText property 428

HTTP tunneling 609

I

i flag (in regular expressions) 214

id3 property 704

IDataInput and IDataOutput interfaces 608

identifiers 42

IEventDispatcher interface 105, 258

if statement 73

if..else statement 73

ignore flag in regular expressions 215

ignoreCase property of regular 
expressions 214

IGraphicsData interface 331

IK 418

IKEvent class 422

IKMover class 421

images

defining in Bitmap class 270

filtering example 369

loading 304

security 704

in text fields 428

IME

checking availability 644

composition events 647

manipulating in Flash Player 643

IME conversion mode

determining 644

setting 645

img tag in text fields, security 700

implicit type conversion 59

import statement 40

importing SWF files 708

incrementing values 70

index positions in strings 141

indexed arrays 155

indexOf() method 144

indices 507

inequality (!=) operator 142

infinity 58

inheritance

defined 107

fixed property 119

instance properties 108

static properties 113

init event 250

initFilters() method 415

input text fields 425

instance methods 99

instance properties

declaring 93

inheriting 108

instance variables 97

instanceof operator 55

instances, creating 18

int class, casting 60

int data type 57

InteractiveObject class 271

interfaces

about 105

defining 105

extending 106

implementing in a class 106

internal attribute 41, 42, 96

intersection() method 339

intersects() method 340

inverse kinematics 418

IPv6 596

is operator 54, 105

isDefaultPrevented() method 253

isNaN() global function 51

iterating though arrays 167

J

Java socket server 609

join() method 164

joint 419

JPG graphics 304

K

key codes 586

keyboard input, capturing 585

keyboard security 712

keys, string 165

keywords 65

L

landscape printing 662

lastIndexOf() method 144

layering, rearranging 312

left bracket 207

left parenthesis 207

left-associative operators 68

length property

arguments object 84

Array class 160

strings 141

less-than operator 68, 142

less-than-or-equal operator 142

level property 260

lexical environment 88

library symbols, exporting 402

lineGradientStyle() method 320

listeners. See event listeners

literal values

about 64

array literals 64, 157

object 165

little-endian byte order 608

load progress 306

load() method (Loader class) 306, 694, 697

load() method (Sound class) 694, 697, 700, 
707

load() method (URLLoader class) 598, 697

load() method (URLStream class) 697, 707

loadBytes() method 306, 694

loaded media, accessing as data 703

Loader class 304, 305, 697, 704, 708

Loader.load() 695

Loader.loadBytes() 695

LoaderContext class 306, 699, 704

LoaderContext object 694

LoaderInfo class

display object access 703

monitoring loading progress 305

loaderInfo property 306

loading context 306

loading file data 615

loading graphics 305

loadPolicyFile() method 697

local storage 612

local variables 49

LocalConnection class

about 603

connectionName parameter 607

Updated 11 February 2009



720PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

permissions 709

restricted 697

LocalConnection.allowDomain() 
method 607, 709

LocalConnection.allowInsecureDomain() 
method 607

LocalConnection.client property 604

LocalConnection.connect() method 697

localFileReadDisable property 689

localToGlobal() method 336

logical operators 72

looping

do..while 77

for 75

for (XML) 227, 237

for each..in 76, 167, 237

for..in 76, 167, 237

while 77

M

m flag (in regular expressions) 214

Macintosh, FLV files 548

mantissa 57

maps 165, 166

masking display objects 300

masking for alpha channel 301

master policy files 692

match() method 145

Matrix class

defined 340

defining gradients with 320

example 342

objects, defining 341

rotating 341

scaling 341

skewing 341

translating 341

Matrix3D class 504

matrix3D property 498

MAX_VALUE (Number class) 57

memory management 167

metacharacters, in regular expressions 206

metadata, video 532, 536

using 531

meta-policies 692

metasequences, in regular expressions 206, 
208

method property (URLRequest class) 599

methods

basic concepts 12

bound 89, 101

constructors 98

defined 97

getters and setters 100, 112

instance 99

overriding 111

static 99

microphone

accessing 573

detecting activity 574

routing to local speakers 574

security 708, 712

Microphone class 252

milliseconds property 132

MIN_VALUE (Number class) 57

minutes property 132

MIP maps 484

mms.cfg file 689

monitor, full-screen mode 280

month property 131

monthUTC property 132

MorphShape class 271

Motion class 415

motion tween 410

MotionBase class 412

mouse cursors, customizing 588

mouse security 712

MouseEvent class 248, 253

movie clips

about 398

common tasks 398

concepts and terms 399

fast-forwarding 401

frame rate 279

playing and stopping 400

rewinding 401

MovieClip class 271

frame rates 279

MovieClip objects, creating 402

multiline flag in regular expressions 216

multiline property of regular 
expressions 214

multiple class definitions 640

multiplicative operators 71

mx.util.Delegate class 256

N

name conflicts, avoiding 39, 41

named groups (in regular expressions) 214

namespaces

about 42

access control specifiers 43

applying 43

AS3 121, 171

default namespace 42

defining 43, 93

flash_proxy 44

importing 46

namespace keyword 42

opening 44

referencing 44

use namespace directive 44, 46, 121

user-defined attributes 96

XML 238

NaN value 58

navigateToURL() 695

navigateToURL() function 697, 709

negated character classes (in regular 
expressions) 210

negative infinity 58

nested functions 82, 88

nested packages 39

NetConnection class 697

NetConnection.call() 695

NetConnection.connect() 695

NetConnection.connect() method 697, 700

NetStream class 694, 697, 700

NetStream.play() 695

network byte order 608

networking

about 595

concepts and terms 596

restricting 695

new operator 38

newline character 141

nodes in XML, accessing 234

noncapturing groups in regular 
expressions 213

non-zero rule 330

null value 51, 57, 58, 167

Number class

casting 60

default value 51

integer range 57

isNaN() global function 51

precision 57

Number data type 57

Updated 11 February 2009



721PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

O

Object class

associative arrays 165

data type and 58

prototype property 117, 119

valueOf() method 120

object keys in arrays 166

object literals 165

object references

copy-and-paste support 652

object-oriented programming

common tasks for 90

concepts 91

objects

basic concepts 11

instantiating 18

octal numbers 60

off-list display objects 272

on() event handlers 247

onClipEvent() function 247

opaque background 296

open bracket ([) 207

open parenthesis 207

operators

about 67

additive 71

assignment 73

basic concepts 19

bitwise logical 72

bitwise shift 71

conditional 73

equality 72, 142

logical 72

multiplicative 71

postfix 70

precedence 68

prefix 70

primary 69

relational 72

unary 68, 70

optional parameters 84

overloaded operators 68

override keyword 100, 101

overriding getters and setters 112

P

package statement 92

packages

about 38

creating 40

dot operator 39, 63

dot syntax 63

importing 40

nested packages 39

top level 39, 40

page properties 660

parameters

optional or required 84

passing by value or by reference 83

parentAllowsChild property 703

parentheses

empty 78

metacharacters 207

operators 65

XML filtering operators 236

parse() method 99

path 327

performance, improving for display 
objects 294

period (.). See dot

permissions

camera 543

LocalConnection class 709

perspective 495, 508

PerspectiveProjection class 500

pipe (|) character 211

Pixel Bender

about 376

kernel 376

shader 376

terms 377

using in ActionScript 376

Pixel Bender metadata 379

Pixel Bender parameter

default value 382

Pixel Bender shader

accessing metadata 379

background processing 396

bytecode 378

embedding in a SWF file 378

identifying inputs and parameters 381

input 380

loading at run time 378

non-image data 396

parameter 380

specifying input value 382

using as a blend mode 390

using as a drawing fill 386

using as a filter 393

using in ActionScript 386

using in stand-alone mode 396

Pixel Bender shader parameter

order 385

Pixel Bender shaders 376

pixel snapping 477

pixels, manipulating individual 478

play() method (NetStream class) 697

playback

camera and 546

controlling frame rate 279

monitoring audio 582

of movie clips 400

pausing and resuming audio 582

video 520

player. See Flash Player

plus sign (+) 207

PNG graphics 304

podcast applications

creating 576

extending 583

Point objects

about 336

additional uses for 337

distance between points 336

translating coordinate spaces 336

pointers (cursors), customizing 588

points versus pixels 662

polar() method 337

policy files 691, 706

checkPolicyFile property and 307, 704

extracting data 703

img tag and 700

securityDomain property and 699

URLLoader and URLStream classes 705

polymorphism 107

pop() method 159

portrait printing 662

ports, connecting at socket level 706

positions

of characters in strings 144

of display objects 285

positive infinity 58

postfix operators 70

prefix operators 70

preventDefault() method 247, 253

primary operators 69

primitive types, implicit conversions 59

primitive values 38, 51

printArea parameter 661

Updated 11 February 2009



722PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

printing

about 657

common tasks 657

concepts and terms 658

exceptions and returns 659

multiple pages, example 663

orientation 662

page height and width 663

page properties 660

pages 658

points 662

Rectangle objects 662

scaling 662

specifying area 662

timeout 661

vector or bitmap 661

PrintJob statements, timing 661

PrintJob() constructor 658

priority parameter, addEventListener() 
method 258

private attribute 94

private classes 39

private constructors not supported 98

program flow 73

programs, basic definition 9

progress of audio playback 582

ProgressEvent.PROGRESS 598

projection 495

projectionCenter property 501

properties

ActionScript versus other languages 37

adding to functions 87

basic concepts 12

defined, for ActionScript 3.0 94

of regular expressions 214

static and instance 93, 113

XML 228

property access operator 166

protected attribute 95

__proto__ 37

prototype chain 37, 116

prototype object 80, 117, 119

prototype property 117, 119

Proxy class 44

public attribute 94

public classes 41

push() method 159, 172

Q

quantifiers (in regular expressions) 210

question mark (?) metacharacter 207

quotation marks 140, 141

R

Real-Tiime Messaging Protocol content 
security 700

Rectangle objects

additional uses for 340

defined 337

intersections 339

printing 662

repositioning 338

resizing 338

unions 339

recursive functions 85

reference, passing by 83

RegExp class

about 203

methods 217

properties 214

regular expressions

about 203

alternation using pipe (|) 
metacharacter 211

alternators and character groups 213

capturing substring matches 213

character classes 209

characters in 206

creating 205

example 218

flags 214

forward slash delimiter 205

groups 212

metacharacters 206, 207

metasequences 206, 208

methods for working with 217

named groups 214

parameters in String methods 218

properties 214

quantifiers 210

searching 217

relational operators 72

replace() method 135, 146

replacement codes 146

replacing text in strings 145

required parameters 84

reserved words 66

__resolve 37

rest parameter 86

return statement 82, 99

reverse() method 161

rewinding movie clips 401

right bracket (]) 207

right parenthesis 207

right-associative operators 68

right-click menu (context menu) 589

rotate() method 341

rotating display objects 300, 340

rotating matrixes 340

rotation 495

rotationX property 500

rotationY property 499

rotationZ property 500

RSS data

loading, example 241

reading for a podcast channel 577

RTMP content security 700

run time, determining user’s system 639

S

s flag (in regular expressions) 214

sameDomain property 703

sandboxes 686

saving data to files 617

scale value, perspective 508

scale() method 341

scaling

controlling distortion 293

display objects 340

matrixes 340

printing 662

Stage 279

scenes, to demarcate timelines 402

scope

block-level 50

functions and 81, 88

global 88

variables 49

scope chain 88, 114

script timeout limit 661

scrolling text 429, 430

sealed classes 55

search, in regular expressions 217

search() method 145

searching strings 145

seconds property 132

Updated 11 February 2009



723PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

security

See also policy files

overview 685

accessing loaded media as data 703

allowNetworking tag 696

bitmaps 704

camera 708, 712

Clipboard 712

connecting to ports 706

display list 703

event-related 703

files, uploading and downloading 707

full-screen mode 697

images 704

img tag 700

imported SWF files 708

keyboard 712

LocalConnection class 709

microphone 708, 712

mouse 712

policy files 691

port blocking 695

RTMP 700

sandboxes 686

sending data 707

Settings UI and Settings Manager 690

shared objects 708, 711

sockets 706

sound 700, 704

Stage 702

URLLoader 705

URLStream 705

video 700, 705

Security class 697

Security.allowDomain() method 694

about cross-scripting 701

constructor and 708

img tag and 700

loading context 307

sound and 705

Security.currentDomain property 708

Security.exactSettings property 708

Security.loadPolicyFile() 692, 695

security.sandboxType property 688

SecurityDomain class 307, 699

semicolons 65

send() method (LocalConnection class) 604, 
697

sendToURL() 695

sendToURL() function 697, 707

serialized objects

copy-and-paste support 652

Server, Flash Media 700

server-side scripts 602

setClipboard() method 712

setData() method

Clipboard method 654

setDataHandler() method (Clipboard 
class) 654

setInterval() function 135

setters. See getters and setters

setTime() method 132

setTimeout() method 135

Shader blend mode 390

Shader class 378

data property 379

Shader filter 393

ShaderData class 379

ShaderFilter class 393

ShaderInput class 382

input property 382

ShaderJob class 396

start() method 396

synchronous execution mode 397

target property 396

ShaderParameter class 382

index property 385

type property 385

value property 382

shadow 114

Shape class 270

shapes, drawing 327

shared objects

about 612

displaying contents of 613

Flash Player settings and 708

security and 614, 711

SharedObject class 612, 697

SharedObject.getLocal() method 708, 711

SharedObject.getRemote() method 711

shift() method 159

shortcut menu (context menu) 589

significand 57

SimpleButton class 270

SimpleClock example 135

single quotation mark in strings 140, 141

skewing display objects 340

skewing matrixes 340, 341

slash syntax 64

slashes

backslash (\) 207

backslash (\\) 141

forward slash (/) 205, 207

slice() method

String class 144

smoothing bitmaps 477

Socket class 608, 697, 706

socket connections 608, 706

socket policy files 691, 706

socket server 609

sorting arrays 160, 162

sound

sample application 576

security of 700, 704

sending to and from a server 576

Sound class 694, 697, 700

Sound.load() 695

SoundFacade class 578

SoundLoaderContext class 694

SoundMixer.computeSpectrum() 
method 700, 703, 704

SoundMixer.stopAll() method 704

source path 40

speakers and microphones 574

speed, improving for rendering 295

splice() method 159

split() method 145

Sprite class 271

sprite, first loaded 267, 306

SpriteArranger class example 308

square brackets

using 155

Stage

about 248, 267

as display object container 268

properties, setting 279

scaling 279

security 702

Stage class 248

Stage owner 702

StageDisplayState class 697

standard mode 53, 80

star (*). See asterisk

static attribute 96

static methods 99

static properties

declaring 93

inheritance 113

Updated 11 February 2009



724PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

within scope chain 114

XML 228

static text

accessing 438

creating 271

static text fields 425

static variables 96

StaticText class 271

status change events 192

status-based error events 190

stopAll() method (SoundMixer class) 704

stopImmediatePropogation() method 253

stopping movie clips 400

stopPropogation() method 253

storing data 612

streaming video 526

strict inequality (!==) operator 142

strict mode

about 52

casting 59

dot syntax and 80

explicit conversion 59

returning values 82

run-time errors 53

String class

charAt() method 141

charCodeAt() method 141

concat() method 143

fromCharCode() method 142

indexOf() method 144

lastIndexOf() method 144

match() method 145

replace() method 146

search() method 145

slice() method 144

split() method 145

substr() and substring() methods 144

toLowerCase() and toUpperCase() 
methods 147

String data type 58

string keys 165

string representations of objects 143

strings

character position 144

checking matches in regular 
expressions 218

combining arrays into character-
delimited string 177

common tasks 139

comparing 142

concatenating 143

converting case 147

converting data type for XML 
attributes 240

converting XML objects to 239

declaring 140

example 147, 148

finding substrings 144

index positions 141

length 141

matching substrings 213

patterns, finding 143, 145

replacing text 145

substrings 143, 145

terms 139

stroke 327

style sheets. See CSS

StyleSheet class 433

subclasses 107

substr() and substring() methods 144

substrings

about 143

creating based on a delimiter 145

finding and replacing 144, 145

matching in regular expressions 213

super statement 98, 99, 111

superclasses 107

superconstructor for arrays 171

SWF files

communication between domains 607

communication between instances 605

determining run-time environment 640

importing loaded 708

loading 304

loading external 405

loading older versions 406

switch statement 74

symbols in regular expressions 206

synchronous errors 181

syntactic keywords 66

syntax 63

system, determining user’s 639

System.setClipboard() method 712

T

T scale value 508

T value 496

tab character 141

tailjoint property 421

target node or phase 249

target property 252

Telnet client example 628

terminating statements 65

ternary operators 68

test() method 217

text

about 426

anti-aliasing 437

assigning formats 432

available types 427

capturing input 431

common tasks 424

concepts and terms 425

copy-and-paste support 652

displaying 427

formatting 432, 439

formatting ranges of 435

manipulating 430

replacing 145

restricting input 432

saving to Clipboard 639

scrolling 429, 430

selecting 430

sharpness 437

static 271, 438

thickness 437

text editors 25

text engine

adding graphics 448

Asian language support 457

Asian text support 461

baseline alignment 456

baseline shift 456

controlling text 460

creating and displaying text 447

creating lines 447

ElementFormat 447

ElementFormat locking/cloning 457

ElementFormat object 455

embedded vs, device fonts 459

font color 455

font hinting 459

font rendering 459

font transparency (alpha) 455

FontDescription 458

FontDescription locking/cloning 459

fontLookup property 459

fontName property 458

fontPosture property 458

formatting text 455

GraphicElement 447, 448

Updated 11 February 2009



725PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

GroupElement 447, 449

handling events 451

justifying East Asian text 461

justifying text 460

kerning 463

letter spacing 461

line breaks 464

mirroring events 453

news layout example 465

replaceText method 450

replacing text 450

rotating text 456

tab stops 464

text case 456

TextBlock 447

TextElement 447

TextLine 447

tracking 463

working with fonts 458

wrapped text 464

text fields

disabling IME for 646

dynamic 425

HTML in 433

images in 428

img tag and security 700

input 425

modifying 427

scrolling text 429

static 425

text line metrics 425, 445

TextEvent class 247

TextField class 247, 271

copy and paste 652

TextFormat class 432

TextLineMetrics class 445

TextSnapshot class 438

textured mesh 496

this keyword 99, 100, 102, 256

three-dimensional rendering 513

three-dimensional rotation 510

throw statement 187

time formats 131

time intervals 133

time unit values 131

time zones 131, 133

timeline, Flash 23

timeout limit 661

Timer class

about 133

monitoring playback 582

timer events 133

timers 133

timing functions 135

toLowerCase() method 147

toString() method

about 143

Event class 252

toUppercase() method 147

traits object 119

Transform class

transform property 341

transformation 496

transformation matrixes. See Matrix class

translate() method 341

translating matrixes 340

translation 496

TriangleCullling 514

triangles, drawing 507

try..catch..finally statements 185

twips 662

type annotations 48, 52

type checking

compile-time 52

run-time 53

type conversion 59, 60, 239

type mismatches 52

type parameter 157

type property (Event class) 250

typed array 156

types. See data types

U

UIEventDispatcher class 247

uint class, casting 60

uint data type 58

unary operators 68, 70

undefined 38, 58

Unicode characters 139

Uniform Resource Identifier (URI) 43

union() method 339

Universal Time (UTC) 131

unordered arrays 165

unshift() method 159

untyped variables 38, 51

upcasting 54

upload() method 697, 707

uploading files 620, 627, 707

URIs 43

URL encoding 599

URL policy files 691

URLLoader class

about 598

loading XML data 232, 240

security and 705

when restricted 697

URLLoader constructor 598

URLLoader.dataFormat property 602

URLLoader.load() 695

URLLoader.load() method 598, 599

URLLoaderDataFormat.VARIABLES 602

URLRequest instance 598, 599

URLRequest.contentType property 598

URLRequest.data property 599

URLRequest.method property 599

URLRequestMethod.GET 600

URLRequestMethod.POST 600

URLs

copy-and-paste support 652

URLs of loaded objects 306

URLStream class 697, 705

URLStream.load() 695

URLVariables class 598

URLVariables.decode() method 599

use namespace directive 44, 46, 121

useCapture parameter, addEventListener() 
method 258

user input

about 584

common tasks 584

concepts and terms 584

user interactions, managing focus 590

user’s system, determining at run time 639

user-selected text, capturing 430

useWeakReference parameter 168

UTC (Coordinated Universal Time) 131

UV mapping 496, 508

V

valueOf() method (Object class) 120

values

assigning to variables 48

passing arguments by 83

vanishing point 496

var keyword 48, 96

variables

basic concepts 9

declaring 96

Updated 11 February 2009



726PROGRAMMING ACTIONSCRIPT 3.0 FOR FLASH

Index

default value 51

initializing 51, 231

instance 97

overriding not permitted 97

scope of 49

static 96

type annotations 48, 52

types of 96

uninitialized 51

untyped 38, 51

var statement 48

Vector advantages 156

Vector base type 156

Vector class

about 156

concat() method 164

constructor 157

creating fixed-length Vector 158

creating instances 157

join() method 164

reverse() method 161

slice() method 164

sort() method 162

toString() method 164

Vector global function 158

vector printing 661

Vector restrictions 156

vector, 3D 496

Vector3D class 504

vertex 496

vertices 507

video

about 515

common tasks 515

end of stream 521

Flash Player and AIR compatibility 
with 517

FLV format 519

fullScreenSourceRect property 523

H.264 support 517

hardware acceleration for full screen 525

loading 520

on Macintosh 548

metadata 532, 536

mipmapping 484

playback 520

quality 545

security 700, 705

sending to server 547

streaming 526

terminating full screen 525

understanding formats 517

using cue points and metadata 531

using full screen 522

Video class 519

video jukebox example 548

visual objects. See display objects

void 58

W

weak references 168

while loop 77

white space 228

Wiki parser example 218

wildcard (*) operator, XML 235

willTrigger() method 259

winding 327, 329

words, reserved 65

WordSearch example 591

wrapper objects 52

X

x flag (in regular expressions) 214

XML

accessing attributes 235

ActionScript for 225

basic concepts 223

brace operators ({ and }) 232

child nodes 234

comments 228

common tasks 225

concepts and terms 226

documents 224

E4X (ECMAScript for XML) 39, 223, 226

filtering 236

for each..in loops 76

for loops 227, 237

format for external API 672

initializing variables 231

loading data 232, 240

methods 229

namespaces 238

parent nodes 234

processing instructions 228

properties 228

socket server 609

transforming 232

traversing structures 234

type conversion 239

white space 228

XML class 39

XMLDocument class 39, 227

XMLList objects

about 230

concatenating 233

XMLNode class 227

XMLParser class 227

XMLSocket class 232, 240, 609, 697, 706

XMLSocket.connect() method 697

XMLTag class 227

Z

z property 498

Updated 11 February 2009


	Contents
	Chapter 1: About this manual
	Using this manual
	Accessing ActionScript documentation
	ActionScript 3.0 documentation
	Flash documentation

	ActionScript learning resources
	Adobe Developer Center
	Adobe Design Center


	Chapter 2: Introduction to ActionScript 3.0
	About ActionScript
	Advantages of ActionScript 3.0
	What’s new in ActionScript 3.0
	Core language features
	Flash Player API features

	Compatibility with previous versions

	Chapter 3: Getting started with ActionScript
	Programming fundamentals
	What computer programs do
	Variables and constants
	Data types

	Working with objects
	Properties
	Methods
	Events
	Basic event handling
	Examining the event-handling process
	Event-handling examples

	Creating object instances

	Common program elements
	Operators
	Comments
	Flow control

	Example: Animation portfolio piece
	Preparing to add interactivity
	Creating and adding buttons
	Writing the code
	Testing the application

	Building applications with ActionScript
	Options for organizing your code
	Choosing the right tool
	The ActionScript development process

	Creating your own classes
	Strategies for designing a class
	Writing the code for a class

	Example: Creating a basic application
	Designing your ActionScript application
	Creating the HelloWorld project and the Greeter class
	Adding code to the Greeter class
	Creating an application that uses your ActionScript code
	Publishing and testing your ActionScript application
	Enhancing the HelloWorld application

	Running subsequent examples
	Testing in-chapter example code listings
	Working with end-of-chapter examples


	Chapter 4: ActionScript language and syntax
	Language overview
	Objects and classes
	Packages and namespaces
	Packages
	Creating packages
	Importing packages
	Namespaces

	Variables
	Understanding variable scope
	Default values

	Data types
	Type checking
	Dynamic classes
	Data type descriptions
	Boolean data type
	int data type
	Null data type
	Number data type
	String data type
	uint data type
	void data type
	Object data type

	Type conversions

	Syntax
	Case sensitivity
	Dot syntax
	Slash syntax
	Literals
	Semicolons
	Parentheses
	Comments
	Keywords and reserved words
	Constants

	Operators
	Operator precedence and associativity
	Primary operators
	Postfix operators
	Unary operators
	Multiplicative operators
	Additive operators
	Bitwise shift operators
	Relational operators
	Equality operators
	Bitwise logical operators
	Logical operators
	Conditional operator
	Assignment operators

	Conditionals
	if..else
	if..else if
	switch

	Looping
	for
	for..in
	for each..in
	while
	do..while

	Functions
	Basic function concepts
	Function parameters
	Functions as objects
	Function scope


	Chapter 5: Object-oriented programming in ActionScript
	Basics of object-oriented programming
	Introduction to object-oriented programming
	Common object-oriented programming tasks
	Important concepts and terms
	Working through in-chapter examples

	Classes
	Class definitions
	Class property attributes
	Access control namespace attributes
	static attribute
	User-defined namespace attributes

	Variables
	Methods
	Constructor methods
	Static methods
	Instance methods
	Get and set accessor methods
	Bound methods

	Enumerations with classes
	Embedded asset classes

	Interfaces
	Defining an interface
	Implementing an interface in a class

	Inheritance
	Instance properties and inheritance
	Overriding methods
	Static properties not inherited
	Static properties and the scope chain

	Advanced topics
	History of ActionScript OOP support
	The ActionScript 3.0 class object
	The traits object
	The prototype object
	The AS3 namespace

	Example: GeometricShapes
	Defining the GeometricShapes classes
	Defining common behavior with interfaces
	Defining the shape classes
	Polymorphism and the factory method
	Enhancing the sample application


	Chapter 6: Working with dates and times
	Basics of dates and times
	Introduction to working with dates and times
	Common date and time tasks
	Important concepts and terms
	Working through in-chapter examples

	Managing calendar dates and times
	Creating Date objects
	Getting time unit values
	Performing date and time arithmetic
	Converting between time zones

	Controlling time intervals
	Loops versus timers
	The Timer class
	Timing functions in the flash.utils package

	Example: Simple analog clock
	Defining the SimpleClock class
	Creating the clock face
	Starting the timer
	Displaying the current time


	Chapter 7: Working with strings
	Basics of strings
	Introduction to working with strings
	Common tasks for working with strings
	Important concepts and terms
	Working through in-chapter examples

	Creating strings
	The length property
	Working with characters in strings
	Comparing strings
	Obtaining string representations of other objects
	Concatenating strings
	Finding substrings and patterns in strings
	Finding a substring by character position
	Finding the character position of a matching substring
	Creating an array of substrings segmented by a delimiter
	Finding patterns in strings and replacing substrings

	Converting strings between uppercase and lowercase
	Example: ASCII art
	Extracting tab-delimited values
	Using String methods to normalize image titles
	Generating the ASCII art text


	Chapter 8: Working with arrays
	Basics of arrays
	Introduction to working with arrays
	Common array tasks
	Important concepts and terms
	Working through in-chapter examples

	Indexed arrays
	Creating arrays
	Creating an Array instance
	Creating a Vector instance

	Inserting array elements
	Retrieving values and removing array elements
	Sorting an array
	Querying an array

	Associative arrays
	Associative arrays with string keys
	Associative arrays with object keys (Dictionaries)

	Multidimensional arrays
	Two indexed arrays
	Associative array with an indexed array

	Cloning arrays
	Advanced topics
	Extending the Array class

	Example: PlayList
	PlayList class overview
	Adding a song to the list
	Sorting the list of songs
	Combining array elements into a character-delimited string


	Chapter 9: Handling errors
	Basics of error handling
	Introduction to error handling
	Common error-handling tasks
	Important concepts and terms
	Working through in-chapter examples

	Types of errors
	Error handling in ActionScript 3.0
	ActionScript 3.0 error-handling elements
	Error-handling strategies

	Working with the debugger versions of Flash Player and AIR
	Handling synchronous errors in an application
	Using try..catch..finally statements
	The throw statement
	Displaying a simple error message
	Rethrowing errors

	Creating custom error classes
	Responding to error events and status
	Working with error events
	Working with status change events

	Comparing the Error classes
	ECMAScript core Error classes
	ActionScript core Error classes
	flash.error package Error classes

	Example: CustomErrors application
	CustomErrors application overview
	Building a custom validator
	Defining the ApplicationError class
	Defining the FatalError class
	Defining the WarningError class


	Chapter 10: Using regular expressions
	Basics of regular expressions
	Introduction to using regular expressions
	Common regular expression tasks
	Important concepts and terms
	Working through in-chapter examples

	Regular expression syntax
	Creating an instance of a regular expression
	Characters, metacharacters, and metasequences
	Character classes
	Quantifiers
	Alternation
	Groups
	Flags and properties

	Methods for using regular expressions with strings
	The test() method
	The exec() method
	String methods that use RegExp parameters

	Example: A Wiki parser
	Defining the WikiParser class
	Converting URLs to HTML <a> tags
	Converting U.S. dollar strings to euro strings


	Chapter 11: Working with XML
	Basics of XML
	Introduction to working with XML
	Common XML tasks
	Important concepts and terms
	Working through in-chapter examples

	The E4X approach to XML processing
	XML objects
	XML properties
	XML methods

	XMLList objects
	Initializing XML variables
	Assembling and transforming XML objects
	Traversing XML structures
	Accessing parent and child nodes
	Accessing attributes
	Filtering by attribute or element value
	Using the for..in and the for each..in statements

	Using XML namespaces
	XML type conversion
	Converting XML and XMLList objects to strings
	Converting strings to XML objects
	Converting attribute values, names, and text values from strings

	Reading external XML documents
	Example: Loading RSS data from the Internet
	Reading and parsing XML data
	Assembling XMLList data
	Extracting the title of the RSS feed and sending a custom event


	Chapter 12: Handling events
	Basics of handling events
	Introduction to handling events
	Common event-handling tasks
	Important concepts and terms
	Working through in-chapter examples

	How ActionScript 3.0 event handling differs from earlier versions
	Event handling in previous versions of ActionScript
	Event handling in ActionScript 3.0

	The event flow
	Event objects
	Understanding Event class properties
	Understanding Event class methods
	Subclasses of the Event class

	Event listeners
	Creating a listener function
	Managing event listeners
	Error events without listeners

	Example: Alarm Clock
	Alarm Clock overview
	Triggering the alarm
	Notifying others of the alarm
	Providing a custom alarm event


	Chapter 13: Display programming
	Basics of display programming
	Introduction to display programming
	Common display programming tasks
	Important concepts and terms
	Working through in-chapter examples

	Core display classes
	Advantages of the display list approach
	More efficient rendering and smaller file sizes
	Improved depth management
	Full traversal of the display list
	Off-list display objects
	Easier subclassing of display objects

	Working with display objects
	Properties and methods of the DisplayObject class
	Adding display objects to the display list
	Working with display object containers
	Traversing the display list
	Setting Stage properties
	Controlling the playback frame rate
	Controlling Stage scaling
	Working with full-screen mode

	Handling events for display objects
	Choosing a DisplayObject subclass

	Manipulating display objects
	Changing position
	Panning and scrolling display objects
	Manipulating size and scaling objects
	Controlling distortion when scaling

	Caching display objects
	When to enable caching
	Enabling bitmap caching
	Setting an opaque background color

	Applying blending modes
	Adjusting DisplayObject colors
	Setting color values with code
	Altering color and brightness effects with code

	Rotating objects
	Fading objects
	Masking display objects

	Animating objects
	Loading display content dynamically
	Loading display objects
	Monitoring loading progress
	Specifying loading context

	Example: SpriteArranger
	Defining the SpriteArranger classes
	Adding display objects to the canvas
	Clicking and dragging display objects
	Rearranging display object layering


	Chapter 14: Using the drawing API
	Basics of using the drawing API
	Introduction to using the drawing API
	Common drawing API tasks
	Important concepts and terms
	Working through in-chapter examples

	Understanding the Graphics class
	Drawing lines and curves
	Defining line and fill styles
	Drawing straight lines
	Drawing curves

	Drawing shapes using built-in methods
	Creating gradient lines and fills
	Defining a Matrix object for use with a gradient

	Using the Math class with drawing methods
	Animating with the drawing API
	Example: Algorithmic Visual Generator
	Setting the listeners
	Creating the satellites
	Updating the satellite position
	Responding to user interaction
	Customizing further

	Advanced use of the drawing API
	Introduction to using the advanced drawing API
	Common advanced drawing API tasks
	Important concepts and terms

	Drawing Paths
	Defining winding rules
	Winding rule names
	Using winding rules

	Using graphics data classes
	About using drawTriangles()

	Chapter 15: Working with geometry
	Basics of geometry
	Introduction to working with geometry
	Common geometry tasks
	Important concepts and terms
	Working through in-chapter examples

	Using Point objects
	Finding the distance between two points
	Translating coordinate spaces
	Moving a display object by a specified angle and distance
	Other uses of the Point class

	Using Rectangle objects
	Resizing and repositioning Rectangle objects
	Finding unions and intersections of Rectangle objects
	Other uses of Rectangle objects

	Using Matrix objects
	Defining Matrix objects

	Example: Applying a matrix transformation to a display object
	Defining the MatrixTransformer class
	Calling the MatrixTransformer.transform() method from the application


	Chapter 16: Filtering display objects
	Basics of filtering display objects
	Introduction to filtering display objects
	Common filtering tasks
	Important concepts and terms
	Working through in-chapter examples

	Creating and applying filters
	Creating a new filter
	Applying a filter
	How filters work
	Potential issues for working with filters

	Available display filters
	Bevel filter
	Blur filter
	Drop shadow filter
	Glow filter
	Gradient bevel filter
	Gradient glow filter
	Example: Combining basic filters
	Color matrix filter
	Convolution filter
	Displacement map filter
	Shader filter

	Example: Filter Workbench
	Experimenting with ActionScript filters
	Creating filter instances
	Applying filters to display objects


	Chapter 17: Working with Pixel Bender shaders
	Basics of Pixel Bender shaders
	Introduction to working with Pixel Bender shaders
	Common Pixel Bender shader tasks
	Important concepts and terms
	Working through in-chapter examples

	Loading or embedding a shader
	Accessing shader metadata
	Specifying shader input and parameter values
	Identifying shader inputs and parameters
	Specifying shader input values
	Specifying shader parameter values

	Using a shader
	Using a shader as a drawing fill
	Using a shader as a blend mode
	Using a shader as a filter
	Using a shader in stand-alone mode


	Chapter 18: Working with movie clips
	Basics of movie clips
	Introduction to working with movie clips
	Common movie clip tasks
	Important concepts and terms
	Working through in-chapter examples

	Working with MovieClip objects
	Controlling movie clip playback
	Playing movie clips and stopping playback
	Fast-forwarding and rewinding
	Jumping to a different frame and using frame labels
	Working with scenes

	Creating MovieClip objects with ActionScript
	Exporting library symbols for ActionScript

	Loading an external SWF file
	Considerations for loading an older SWF file

	Example: RuntimeAssetsExplorer
	Establishing a run-time library interface
	Creating the asset library SWF file
	Loading the library into another SWF file


	Chapter 19: Working with motion tweens
	Basics of Motion Tweens
	Introduction to motion tweens in ActionScript
	Common motion tween tasks
	Important terms and concepts

	Copying motion tween scripts
	Incorporating motion tween scripts
	Motion tween classes
	Motion object names

	Describing the animation
	Adding filters
	Initializing the filters array
	Adding filters
	Adjusting color with the ColorMatrixFilter

	Associating a motion tween with its display objects

	Chapter 20: Working with inverse kinematics
	Basics of Inverse Kinematics
	Introduction to IK
	Common IK Tasks
	Important Terms and Concepts

	Animating IK Armatures Overview
	Getting information about an IK armature
	Instantiating an IK Mover and Limiting Its Movement
	Moving an IK Armature
	Using IK Events

	Chapter 21: Working with text
	Basics of working with text
	Introduction to working with text
	Common tasks for working with text
	Important concepts and terms
	Working through in-chapter examples

	Using the TextField class
	Displaying text
	Types of text
	Modifying the text field contents
	Displaying HTML text
	Using images in text fields
	Scrolling text in a text field

	Selecting and manipulating text
	Selecting text
	Capturing user-selected text

	Capturing text input
	Restricting text input
	Formatting text
	Assigning text formats
	Applying cascading style sheets
	Loading an external CSS file
	Formatting ranges of text within a text field

	Advanced text rendering
	Using embedded fonts
	Controlling sharpness, thickness, and anti-aliasing

	Working with static text
	Accessing static text fields with the StaticText class
	Using the TextSnapshot class

	TextField Example: Newspaper-style text formatting
	Reading the external CSS file
	Arranging story elements on the page
	Altering font size to fit the field size
	Splitting text across multiple columns


	Using the Flash Text Engine
	Creating and displaying text
	Adding GraphicElement and GroupElement objects
	Replacing text

	Handling Events in FTE
	Mirroring events

	Formatting text
	Using the ElementFormat object
	Font color and transparency (alpha)
	Baseline alignment and shift
	Typographic Case
	Rotating text
	Locking and cloning ElementFormat

	Working with fonts
	Defining font characteristics (FontDescription object)
	Embedded versus device fonts
	Rendering mode and hinting
	Locking and cloning FontDescription

	Controlling text
	Justifying text
	Justifying East Asian text
	Kerning and tracking
	Line breaks for wrapped text
	Tab stops

	FTE Example - News Layout


	Chapter 22: Working with bitmaps
	Basics of working with bitmaps
	Introduction to working with bitmaps
	Common tasks for working with bitmaps
	Important concepts and terms
	Working through in-chapter examples

	The Bitmap and BitmapData classes
	Understanding the Bitmap class
	Pixel snapping and smoothing
	Understanding the BitmapData class

	Manipulating pixels
	Manipulating individual pixels
	Pixel-level collision detection

	Copying bitmap data
	Making textures with noise functions
	Scrolling bitmaps
	Taking advantage of mipmapping
	Example: Animated spinning moon
	Loading an external image as bitmap data
	Creating animation by copying pixels
	Creating the spherical appearance
	Creating a bitmap image by setting pixel values


	Chapter 23: Working in three dimensions (3D)
	Basics of 3D
	Introduction to 3D in ActionScript
	Common 3D tasks
	Important terms and concepts

	Understanding the 3D features of Flash Player and the AIR runtime
	Creating and moving 3D objects
	Moving an object in 3D space
	Rotating an object in 3D space

	Projecting 3D objects onto a 2D view
	Field of view
	Projection center
	Focal length
	Default perspective projection values

	Example: Perspective projection
	Performing complex 3D transformations
	Creating Matrix3D objects
	Applying multiple 3D transformations
	Using Matrix3D objects for reordering display

	Using triangles for 3D effects
	Transforming bitmaps
	UV mapping
	Culling


	Chapter 24: Working with video
	Basics of video
	Introduction to working with video
	Common video tasks
	Important concepts and terms
	Working through in-chapter examples

	Understanding video formats
	Flash Player and AIR compatibility with encoded video files
	Understanding the Adobe F4V and FLV video file formats
	The F4V video file format
	The FLV video file format
	External vs embedded video


	Understanding the Video class
	Loading video files
	Controlling video playback
	Detecting the end of a video stream

	Playing video in full-screen mode
	Streaming video files
	Understanding cue points
	Writing callback methods for metadata and cue points
	Set the NetStream object’s client property to an Object
	Create a custom class and define methods to handle the callback methods
	Extend the NetStream class and add methods to handle the callback methods
	Extend the NetStream class and make it dynamic
	Set the NetStream object’s client property to this

	Using cue points and metadata
	Using cue points
	Using video metadata
	Using OnMetaData()
	Using onXMPData()

	Using image metadata
	Using text metadata

	Capturing camera input
	Understanding the Camera class
	Displaying camera content on screen
	Designing your camera application
	Connecting to a user’s camera
	Verifying that cameras are installed
	Detecting permissions for camera access
	Maximizing video quality
	Monitoring playback conditions

	Sending video to a server
	Advanced topics for FLV files
	About configuring FLV files for hosting on a server
	About targeting local FLV files on the Macintosh

	Example: Video Jukebox
	Loading an external video playlist file
	Creating the user interface
	Listening for a video object’s metadata
	Dynamically loading a Flash video
	Controlling the volume of the video
	Controlling video playback


	Chapter 25: Working with sound
	Basics of working with sound
	Introduction to working with sound
	Common tasks for working with sound
	Important concepts and terms
	Working through in-chapter examples

	Understanding the sound architecture
	Loading external sound files
	Monitoring the sound loading process

	Working with embedded sounds
	Using an embedded sound file in Flash

	Working with streaming sound files
	Working with dynamically generated audio
	Modifying sound from mp3 data
	Limitations on generated sounds

	Playing sounds
	Pausing and resuming a sound
	Monitoring playback
	Stopping streaming sounds

	Security considerations when loading and playing sounds
	Controlling sound volume and panning
	Working with sound metadata
	Accessing raw sound data
	Building a simple sound visualizer

	Capturing sound input
	Accessing a microphone
	Routing microphone audio to local speakers
	Altering microphone audio
	Detecting microphone activity
	Sending audio to and from a media server

	Example: Podcast Player
	Reading RSS data for a podcast channel
	Simplifying sound loading and playback using the SoundFacade class
	Displaying playback progress
	Pausing and resuming playback
	Extending the Podcast Player example


	Chapter 26: Capturing user input
	Basics of user input
	Introduction to capturing user input
	Important concepts and terms
	Working through in-chapter examples

	Capturing keyboard input
	Understanding key codes and character codes
	Understanding KeyboardEvent precedence

	Capturing mouse input
	Creating drag-and-drop functionality
	Customizing the mouse cursor
	Customizing the context menu
	Managing focus

	Example: WordSearch
	Loading a dictionary
	Creating the user interface
	Generating a game board
	Building words from user input
	Checking word submissions
	Customization


	Chapter 27: Networking and communication
	Basics of networking and communication
	Introduction to networking and communication
	Common networking and communication tasks
	Important concepts and terms
	Working with IPv6 addresses
	Working through in-chapter examples

	Working with external data
	Using the URLLoader and URLVariables classes
	Loading data from external documents
	Communicating with external scripts

	Connecting to other Flash Player and AIR instances
	LocalConnection class
	Sending messages between two Flash Player instances
	Connecting to SWF documents in different domains

	Socket connections
	Socket class
	XMLSocket class
	Creating and connecting to a Java XML socket server

	Storing local data
	Displaying contents of a shared object
	Creating a secure SharedObject

	Working with data files
	FileReference class
	Loading data from files
	Saving data to local files
	Uploading files to a server
	Downloading files from a server
	FileReferenceList class

	Example: Building a Telnet client
	Telnet socket application overview
	Telnet class overview
	Writing data to a socket
	Displaying messages from the socket server
	Scrolling a TextArea component

	Example: Uploading and downloading files
	FileIO application overview
	Downloading files from a remote server
	Initializing the FileDownload component
	Beginning the file download
	Monitoring a file’s download progress
	Cancelling a file download
	Uploading files to a remote server
	Initializing the FileUpload component
	Beginning a file upload


	Chapter 28: Client system environment
	Basics of the client system environment
	Introduction to the client system environment
	Common client system environment tasks
	Important concepts and terms
	Working through in-chapter examples

	Using the System class
	Getting data about the user’s system at run time
	Saving text to the clipboard

	Using the Capabilities class
	Using the ApplicationDomain class
	Using the IME class
	Checking if an IME is installed and enabled
	Determining which IME conversion mode is currently enabled
	Setting the IME conversion mode
	Disabling the IME for certain text fields
	Listening for IME composition events

	Example: Detecting system capabilities
	CapabilitiesExplorer overview
	CapabilitiesGrabber class overview
	Communicating with JavaScript


	Chapter 29: Copy and paste
	Copy-and-paste basics
	Reading from and writing to the system clipboard
	Clipboard data formats
	Standard data formats
	Custom data formats
	Transfer modes
	Reading and writing custom data formats

	Deferred rendering
	Pasting text using a deferred rendering function



	Chapter 30: Printing
	Basics of printing
	Introduction to printing
	Common printing tasks
	Important concepts and terms
	Working through in-chapter examples

	Printing a page
	Flash Player and AIR tasks and system printing
	Working with exceptions and returns
	Working with page properties
	Setting vector or bitmap rendering
	Timing print job statements

	Setting size, scale, and orientation
	Using rectangles for the print area
	Comparing points and pixels
	Scaling
	Printing for landscape or portrait orientation
	Responding to page height and width

	Example: Multiple-page printing
	Example: Scaling, cropping, and responding

	Chapter 31: Using the external API
	Basics of using the external API
	Introduction to using the external API
	Common external API tasks
	Important concepts and terms
	Working through in-chapter examples

	External API requirements and advantages
	Using the ExternalInterface class
	Getting information about the external container
	Calling external code from ActionScript
	Calling ActionScript code from the container
	The external API’s XML format

	Example: Using the external API with a web page container
	Preparing for ActionScript-browser communication
	Exposing ActionScript methods to JavaScript
	Communication from ActionScript to the browser
	Calling ActionScript code from JavaScript
	Detecting the browser type

	Example: Using the external API with an ActiveX container
	Overview of the Introvert IM C# Application
	Including the Shockwave Flash ActiveX control
	Understanding ActionScript to ActiveX container communication
	Inside the ExternalInterfaceProxy class


	Chapter 32: Flash Player security
	Flash Player security overview
	Security sandboxes
	Remote sandboxes
	Local sandboxes
	Setting the sandbox type of local SWF files
	The Security.sandboxType property

	Permission controls
	Administrator controls
	The mms.cfg file
	The Global Flash Player Trust directory

	User controls
	The Settings UI and Settings Manager
	The User Flash Player Trust directory

	Website controls (policy files)
	Master policy files
	URL policy file scope
	Specifying access permissions in a URL policy file
	Preloading policy files

	Author (developer) controls

	Restricting networking APIs
	Blocked ports
	Using the allowNetworking parameter

	Full-screen mode security
	Loading content
	Loading SWF files and images
	Loading sound and videos
	Loading SWF files and images using the <img> tag in a text field
	Content delivered using RTMP servers

	Cross-scripting
	Stage security
	Traversing the display list
	Event security

	Accessing loaded media as data
	Accessing bitmap data
	Accessing sound data
	Accessing video data

	Loading data
	Using URLLoader and URLStream
	Connecting to sockets
	Sending data
	Uploading and downloading files

	Loading embedded content from SWF files imported into a security domain
	Working with legacy content
	Setting LocalConnection permissions
	Controlling outbound URL access
	Using the navigateToURL() function
	For more information

	Shared objects
	Camera, microphone, clipboard, mouse, and keyboard access

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Gray Gamma 1.8)
  /CalRGBProfile (ColorMatch RGB)
  /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




