/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtc_packing /// @file glm/gtc/packing.inl /// @date 2013-08-08 / 2013-08-08 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include "../common.hpp" #include "../vec2.hpp" #include "../vec3.hpp" #include "../vec4.hpp" #include "../detail/type_half.hpp" #include namespace glm{ namespace detail { GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f) { // 10 bits => EE EEEFFFFF // 11 bits => EEE EEFFFFFF // Half bits => SEEEEEFF FFFFFFFF // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF // 0x00007c00 => 00000000 00000000 01111100 00000000 // 0x000003ff => 00000000 00000000 00000011 11111111 // 0x38000000 => 00111000 00000000 00000000 00000000 // 0x7f800000 => 01111111 10000000 00000000 00000000 // 0x00008000 => 00000000 00000000 10000000 00000000 return ((f >> 16) & 0x8000) | // sign ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential ((f >> 13) & 0x03ff); // Mantissa } GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f) { // 10 bits => EE EEEFFFFF // 11 bits => EEE EEFFFFFF // Half bits => SEEEEEFF FFFFFFFF // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF // 0x000007c0 => 00000000 00000000 00000111 11000000 // 0x00007c00 => 00000000 00000000 01111100 00000000 // 0x000003ff => 00000000 00000000 00000011 11111111 // 0x38000000 => 00111000 00000000 00000000 00000000 // 0x7f800000 => 01111111 10000000 00000000 00000000 // 0x00008000 => 00000000 00000000 10000000 00000000 return ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential ((f >> 17) & 0x003f); // Mantissa } GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p) { // 10 bits => EE EEEFFFFF // 11 bits => EEE EEFFFFFF // Half bits => SEEEEEFF FFFFFFFF // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF // 0x000007c0 => 00000000 00000000 00000111 11000000 // 0x00007c00 => 00000000 00000000 01111100 00000000 // 0x000003ff => 00000000 00000000 00000011 11111111 // 0x38000000 => 00111000 00000000 00000000 00000000 // 0x7f800000 => 01111111 10000000 00000000 00000000 // 0x00008000 => 00000000 00000000 10000000 00000000 return ((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential ((p & 0x003f) << 17); // Mantissa } GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f) { // 10 bits => EE EEEFFFFF // 11 bits => EEE EEFFFFFF // Half bits => SEEEEEFF FFFFFFFF // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF // 0x0000001F => 00000000 00000000 00000000 00011111 // 0x0000003F => 00000000 00000000 00000000 00111111 // 0x000003E0 => 00000000 00000000 00000011 11100000 // 0x000007C0 => 00000000 00000000 00000111 11000000 // 0x00007C00 => 00000000 00000000 01111100 00000000 // 0x000003FF => 00000000 00000000 00000011 11111111 // 0x38000000 => 00111000 00000000 00000000 00000000 // 0x7f800000 => 01111111 10000000 00000000 00000000 // 0x00008000 => 00000000 00000000 10000000 00000000 return ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential ((f >> 18) & 0x001f); // Mantissa } GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p) { // 10 bits => EE EEEFFFFF // 11 bits => EEE EEFFFFFF // Half bits => SEEEEEFF FFFFFFFF // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF // 0x0000001F => 00000000 00000000 00000000 00011111 // 0x0000003F => 00000000 00000000 00000000 00111111 // 0x000003E0 => 00000000 00000000 00000011 11100000 // 0x000007C0 => 00000000 00000000 00000111 11000000 // 0x00007C00 => 00000000 00000000 01111100 00000000 // 0x000003FF => 00000000 00000000 00000011 11111111 // 0x38000000 => 00111000 00000000 00000000 00000000 // 0x7f800000 => 01111111 10000000 00000000 00000000 // 0x00008000 => 00000000 00000000 10000000 00000000 return ((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential ((p & 0x001f) << 18); // Mantissa } GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h) { return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13); } GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x) { if(x == 0.0f) return 0; else if(glm::isnan(x)) return ~0; else if(glm::isinf(x)) return 0x1f << 6; # if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & GLM_COMPILER_CLANG) uint Pack = 0; memcpy(&Pack, &x, sizeof(Pack)); # else uint Pack = reinterpret_cast(x); # endif return float2packed11(Pack); } GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x) { if(x == 0) return 0.0f; else if(x == ((1 << 11) - 1)) return ~0;//NaN else if(x == (0x1f << 6)) return ~0;//Inf uint Result = packed11ToFloat(x); # if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & GLM_COMPILER_CLANG) float Temp = 0; memcpy(&Temp, &Result, sizeof(Temp)); return Temp; # else return reinterpret_cast(Result); # endif } GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x) { if(x == 0.0f) return 0; else if(glm::isnan(x)) return ~0; else if(glm::isinf(x)) return 0x1f << 5; # if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & GLM_COMPILER_CLANG) uint Pack = 0; memcpy(&Pack, &x, sizeof(Pack)); # else uint Pack = reinterpret_cast(x); # endif return float2packed10(Pack); } GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x) { if(x == 0) return 0.0f; else if(x == ((1 << 10) - 1)) return ~0;//NaN else if(x == (0x1f << 5)) return ~0;//Inf uint Result = packed10ToFloat(x); # if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & GLM_COMPILER_CLANG) float Temp = 0; memcpy(&Temp, &Result, sizeof(Temp)); return Temp; # else return reinterpret_cast(Result); # endif } // GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z) // { // return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22); // } union u10u10u10u2 { struct { uint x : 10; uint y : 10; uint z : 10; uint w : 2; } data; uint32 pack; }; union i10i10i10i2 { struct { int x : 10; int y : 10; int z : 10; int w : 2; } data; uint32 pack; }; }//namespace detail GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v) { return static_cast(round(clamp(v, 0.0f, 1.0f) * 255.0f)); } GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p) { float Unpack(static_cast(p)); return Unpack * static_cast(0.0039215686274509803921568627451); // 1 / 255 } GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v) { u8vec2 Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f)); uint16* Packed = reinterpret_cast(&Topack); return *Packed; } GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p) { u8vec2* Unpacked = reinterpret_cast(const_cast(&p)); return vec2(*Unpacked) * float(0.0039215686274509803921568627451); // 1 / 255 } GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v) { int8 Topack(static_cast(round(clamp(v ,-1.0f, 1.0f) * 127.0f))); uint8* Packed = reinterpret_cast(&Topack); return *Packed; } GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p) { float Unpack(static_cast(*const_cast(&p))); return clamp( Unpack * 0.00787401574803149606299212598425f, // 1.0f / 127.0f -1.0f, 1.0f); } GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v) { i8vec2 Topack(round(clamp(v ,-1.0f, 1.0f) * 127.0f)); uint16* Packed = reinterpret_cast(&Topack); return *Packed; } GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p) { i8vec2* Unpack = reinterpret_cast(const_cast(&p)); return clamp( vec2(*Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f -1.0f, 1.0f); } GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s) { return static_cast(round(clamp(s, 0.0f, 1.0f) * 65535.0f)); } GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p) { float Unpack = static_cast(*const_cast(&p)); return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 } GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v) { u16vec4 Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f)); uint64* Packed = reinterpret_cast(&Topack); return *Packed; } GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p) { u16vec4* Unpack = reinterpret_cast(const_cast(&p)); return vec4(*Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 } GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v) { int16 Topack = static_cast(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); uint16* Packed = reinterpret_cast(&Topack); return *Packed; } GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p) { float Unpack = static_cast(*const_cast(&p)); return clamp( Unpack * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, -1.0f, 1.0f); } GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v) { i16vec4 Topack = static_cast(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); uint64* Packed = reinterpret_cast(&Topack); return *Packed; } GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p) { i16vec4* Unpack(reinterpret_cast(const_cast(&p))); return clamp( vec4(*Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, -1.0f, 1.0f); } GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v) { int16 Topack = detail::toFloat16(v); uint16* Packed = reinterpret_cast(&Topack); return *Packed; } GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v) { int16* Unpack = reinterpret_cast(const_cast(&v)); return detail::toFloat32(*Unpack); } GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v) { i16vec4 Unpack( detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); uint64* Packed = reinterpret_cast(&Unpack); return *Packed; } GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v) { i16vec4* p = reinterpret_cast(const_cast(&v)); i16vec4 Unpack(*p); return vec4( detail::toFloat32(Unpack.x), detail::toFloat32(Unpack.y), detail::toFloat32(Unpack.z), detail::toFloat32(Unpack.w)); } GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v) { detail::i10i10i10i2 Result; Result.data.x = v.x; Result.data.y = v.y; Result.data.z = v.z; Result.data.w = v.w; return Result.pack; } GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v) { detail::i10i10i10i2 Unpack; Unpack.pack = v; return ivec4( Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w); } GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v) { detail::u10u10u10u2 Result; Result.data.x = v.x; Result.data.y = v.y; Result.data.z = v.z; Result.data.w = v.w; return Result.pack; } GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v) { detail::u10u10u10u2 Unpack; Unpack.pack = v; return uvec4( Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w); } GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v) { detail::i10i10i10i2 Result; Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f)); Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f)); Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f)); Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f)); return Result.pack; } GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v) { detail::i10i10i10i2 Unpack; Unpack.pack = v; vec4 Result; Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f); Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f); Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f); Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f); return Result; } GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v) { detail::i10i10i10i2 Result; Result.data.x = int(round(clamp(v.x, 0.0f, 1.0f) * 1023.f)); Result.data.y = int(round(clamp(v.y, 0.0f, 1.0f) * 1023.f)); Result.data.z = int(round(clamp(v.z, 0.0f, 1.0f) * 1023.f)); Result.data.w = int(round(clamp(v.w, 0.0f, 1.0f) * 3.f)); return Result.pack; } GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v) { detail::i10i10i10i2 Unpack; Unpack.pack = v; vec4 Result; Result.x = float(Unpack.data.x) / 1023.f; Result.y = float(Unpack.data.y) / 1023.f; Result.z = float(Unpack.data.z) / 1023.f; Result.w = float(Unpack.data.w) / 3.f; return Result; } GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v) { return ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) | ((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) | ((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22); } GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v) { return vec3( detail::packed11bitToFloat(v >> 0), detail::packed11bitToFloat(v >> 11), detail::packed10bitToFloat(v >> 22)); } }//namespace glm