/////////////////////////////////////////////////////////////////////////////////////////////////// // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /////////////////////////////////////////////////////////////////////////////////////////////////// // Created : 2007-03-14 // Updated : 2013-12-25 // Licence : This source is under MIT License // File : glm/gtx/bit.inl /////////////////////////////////////////////////////////////////////////////////////////////////// #include "../detail/_vectorize.hpp" #include namespace glm { template GLM_FUNC_QUALIFIER genIType mask ( genIType const & count ) { return ((genIType(1) << (count)) - genIType(1)); } VECTORIZE_VEC(mask) // highestBitValue template GLM_FUNC_QUALIFIER genType highestBitValue ( genType const & value ) { genType tmp = value; genType result = genType(0); while(tmp) { result = (tmp & (~tmp + 1)); // grab lowest bit tmp &= ~result; // clear lowest bit } return result; } template GLM_FUNC_QUALIFIER detail::tvec2 highestBitValue ( detail::tvec2 const & value ) { return detail::tvec2( highestBitValue(value[0]), highestBitValue(value[1])); } template GLM_FUNC_QUALIFIER detail::tvec3 highestBitValue ( detail::tvec3 const & value ) { return detail::tvec3( highestBitValue(value[0]), highestBitValue(value[1]), highestBitValue(value[2])); } template GLM_FUNC_QUALIFIER detail::tvec4 highestBitValue ( detail::tvec4 const & value ) { return detail::tvec4( highestBitValue(value[0]), highestBitValue(value[1]), highestBitValue(value[2]), highestBitValue(value[3])); } // isPowerOfTwo template GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType const & Value) { //detail::If::is_signed>::apply(abs, Value); //return !(Value & (Value - 1)); // For old complier? genType Result = Value; if(std::numeric_limits::is_signed) Result = abs(Result); return !(Result & (Result - 1)); } template GLM_FUNC_QUALIFIER detail::tvec2 isPowerOfTwo ( detail::tvec2 const & value ) { return detail::tvec2( isPowerOfTwo(value[0]), isPowerOfTwo(value[1])); } template GLM_FUNC_QUALIFIER detail::tvec3 isPowerOfTwo ( detail::tvec3 const & value ) { return detail::tvec3( isPowerOfTwo(value[0]), isPowerOfTwo(value[1]), isPowerOfTwo(value[2])); } template GLM_FUNC_QUALIFIER detail::tvec4 isPowerOfTwo ( detail::tvec4 const & value ) { return detail::tvec4( isPowerOfTwo(value[0]), isPowerOfTwo(value[1]), isPowerOfTwo(value[2]), isPowerOfTwo(value[3])); } // powerOfTwoAbove template GLM_FUNC_QUALIFIER genType powerOfTwoAbove(genType const & value) { return isPowerOfTwo(value) ? value : highestBitValue(value) << 1; } VECTORIZE_VEC(powerOfTwoAbove) // powerOfTwoBelow template GLM_FUNC_QUALIFIER genType powerOfTwoBelow ( genType const & value ) { return isPowerOfTwo(value) ? value : highestBitValue(value); } VECTORIZE_VEC(powerOfTwoBelow) // powerOfTwoNearest template GLM_FUNC_QUALIFIER genType powerOfTwoNearest ( genType const & value ) { if(isPowerOfTwo(value)) return value; genType prev = highestBitValue(value); genType next = prev << 1; return (next - value) < (value - prev) ? next : prev; } VECTORIZE_VEC(powerOfTwoNearest) template GLM_FUNC_QUALIFIER genType bitRevert(genType const & In) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitRevert' only accept integer values"); genType Out = 0; std::size_t BitSize = sizeof(genType) * 8; for(std::size_t i = 0; i < BitSize; ++i) if(In & (genType(1) << i)) Out |= genType(1) << (BitSize - 1 - i); return Out; } VECTORIZE_VEC(bitRevert) template GLM_FUNC_QUALIFIER genType bitRotateRight(genType const & In, std::size_t Shift) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitRotateRight' only accept integer values"); std::size_t BitSize = sizeof(genType) * 8; return (In << Shift) | (In >> (BitSize - Shift)); } template GLM_FUNC_QUALIFIER detail::tvec2 bitRotateRight ( detail::tvec2 const & Value, std::size_t Shift ) { return detail::tvec2( bitRotateRight(Value[0], Shift), bitRotateRight(Value[1], Shift)); } template GLM_FUNC_QUALIFIER detail::tvec3 bitRotateRight ( detail::tvec3 const & Value, std::size_t Shift ) { return detail::tvec3( bitRotateRight(Value[0], Shift), bitRotateRight(Value[1], Shift), bitRotateRight(Value[2], Shift)); } template GLM_FUNC_QUALIFIER detail::tvec4 bitRotateRight ( detail::tvec4 const & Value, std::size_t Shift ) { return detail::tvec4( bitRotateRight(Value[0], Shift), bitRotateRight(Value[1], Shift), bitRotateRight(Value[2], Shift), bitRotateRight(Value[3], Shift)); } template GLM_FUNC_QUALIFIER genType bitRotateLeft(genType const & In, std::size_t Shift) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitRotateLeft' only accept integer values"); std::size_t BitSize = sizeof(genType) * 8; return (In >> Shift) | (In << (BitSize - Shift)); } template GLM_FUNC_QUALIFIER detail::tvec2 bitRotateLeft ( detail::tvec2 const & Value, std::size_t Shift ) { return detail::tvec2( bitRotateLeft(Value[0], Shift), bitRotateLeft(Value[1], Shift)); } template GLM_FUNC_QUALIFIER detail::tvec3 bitRotateLeft ( detail::tvec3 const & Value, std::size_t Shift ) { return detail::tvec3( bitRotateLeft(Value[0], Shift), bitRotateLeft(Value[1], Shift), bitRotateLeft(Value[2], Shift)); } template GLM_FUNC_QUALIFIER detail::tvec4 bitRotateLeft ( detail::tvec4 const & Value, std::size_t Shift ) { return detail::tvec4( bitRotateLeft(Value[0], Shift), bitRotateLeft(Value[1], Shift), bitRotateLeft(Value[2], Shift), bitRotateLeft(Value[3], Shift)); } template GLM_FUNC_QUALIFIER genIUType fillBitfieldWithOne ( genIUType const & Value, int const & FromBit, int const & ToBit ) { assert(FromBit <= ToBit); assert(ToBit <= sizeof(genIUType) * std::size_t(8)); genIUType Result = Value; for(signed i = 0; i <= ToBit; ++i) Result |= (1 << i); return Result; } template GLM_FUNC_QUALIFIER genIUType fillBitfieldWithZero ( genIUType const & Value, int const & FromBit, int const & ToBit ) { assert(FromBit <= ToBit); assert(ToBit <= sizeof(genIUType) * std::size_t(8)); genIUType Result = Value; for(signed i = 0; i <= ToBit; ++i) Result &= ~(1 << i); return Result; } namespace detail { template GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); template GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); template GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); /* template inline RET bitfieldInterleave(PARAM x, PARAM y) { RET Result = 0; for (int i = 0; i < sizeof(PARAM) * 8; i++) Result |= (x & 1U << i) << i | (y & 1U << i) << (i + 1); return Result; } template inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z) { RET Result = 0; for (RET i = 0; i < sizeof(PARAM) * 8; i++) { Result |= ((RET(x) & (RET(1) << i)) << ((i << 1) + 0)); Result |= ((RET(y) & (RET(1) << i)) << ((i << 1) + 1)); Result |= ((RET(z) & (RET(1) << i)) << ((i << 1) + 2)); } return Result; } template inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) { RET Result = 0; for (int i = 0; i < sizeof(PARAM) * 8; i++) { Result |= ((((RET(x) >> i) & RET(1))) << RET((i << 2) + 0)); Result |= ((((RET(y) >> i) & RET(1))) << RET((i << 2) + 1)); Result |= ((((RET(z) >> i) & RET(1))) << RET((i << 2) + 2)); Result |= ((((RET(w) >> i) & RET(1))) << RET((i << 2) + 3)); } return Result; } */ template <> GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) { glm::uint16 REG1(x); glm::uint16 REG2(y); REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); return REG1 | (REG2 << 1); } template <> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) { glm::uint32 REG1(x); glm::uint32 REG2(y); REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); return REG1 | (REG2 << 1); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) { glm::uint64 REG1(x); glm::uint64 REG2(y); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); return REG1 | (REG2 << 1); } template <> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) { glm::uint32 REG1(x); glm::uint32 REG2(y); glm::uint32 REG3(z); REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) { glm::uint32 REG1(x); glm::uint32 REG2(y); glm::uint32 REG3(z); glm::uint32 REG4(w); REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); glm::uint64 REG4(w); REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF); REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF); REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF); REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF); REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F); REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F); REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F); REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F); REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303); REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303); REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303); REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303); REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111); REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111); REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111); REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } }//namespace detail GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) { union sign8 { int8 i; uint8 u; } sign_x, sign_y; union sign16 { int16 i; uint16 u; } result; sign_x.i = x; sign_y.i = y; result.u = bitfieldInterleave(sign_x.u, sign_y.u); return result.i; } GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) { return detail::bitfieldInterleave(x, y); } GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) { union sign16 { int16 i; uint16 u; } sign_x, sign_y; union sign32 { int32 i; uint32 u; } result; sign_x.i = x; sign_y.i = y; result.u = bitfieldInterleave(sign_x.u, sign_y.u); return result.i; } GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) { return detail::bitfieldInterleave(x, y); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) { union sign32 { int32 i; uint32 u; } sign_x, sign_y; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; result.u = bitfieldInterleave(sign_x.u, sign_y.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) { return detail::bitfieldInterleave(x, y); } GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) { union sign8 { int8 i; uint8 u; } sign_x, sign_y, sign_z; union sign32 { int32 i; uint32 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); return result.i; } GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) { return detail::bitfieldInterleave(x, y, z); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) { union sign16 { int16 i; uint16 u; } sign_x, sign_y, sign_z; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) { return detail::bitfieldInterleave(x, y, z); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) { union sign16 { int32 i; uint32 u; } sign_x, sign_y, sign_z; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) { return detail::bitfieldInterleave(x, y, z); } GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) { union sign8 { int8 i; uint8 u; } sign_x, sign_y, sign_z, sign_w; union sign32 { int32 i; uint32 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; sign_w.i = w; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); return result.i; } GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) { return detail::bitfieldInterleave(x, y, z, w); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) { union sign16 { int16 i; uint16 u; } sign_x, sign_y, sign_z, sign_w; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; sign_w.i = w; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) { return detail::bitfieldInterleave(x, y, z, w); } }//namespace glm