/* * Slightly modified version of cppformat, by Wildfire Games, for 0 A.D. * Based on cppformat v0.11.0 from https://github.com/cppformat/cppformat */ /* Formatting library for C++ Copyright (c) 2012 - 2014, Victor Zverovich All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "precompiled.h" // Disable useless MSVC warnings. #undef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #undef _SCL_SECURE_NO_WARNINGS #define _SCL_SECURE_NO_WARNINGS #include "format.h" #include #include #include #include #include #include #ifdef _WIN32 # define WIN32_LEAN_AND_MEAN # ifdef __MINGW32__ # include # endif # include # undef ERROR #endif using fmt::LongLong; using fmt::ULongLong; using fmt::internal::Arg; #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable: 4127) // conditional expression is constant #endif namespace { #ifndef _MSC_VER // Portable version of signbit. // When compiled in C++11 mode signbit is no longer a macro but a function // defined in namespace std and the macro is undefined. inline int getsign(double x) { #ifdef signbit return signbit(x); #else return std::signbit(x); #endif } // Portable version of isinf. #ifdef isinf inline int isinfinity(double x) { return isinf(x); } inline int isinfinity(long double x) { return isinf(x); } #else inline int isinfinity(double x) { return std::isinf(x); } inline int isinfinity(long double x) { return std::isinf(x); } #endif #define FMT_SNPRINTF snprintf #else // _MSC_VER inline int getsign(double value) { if (value < 0) return 1; if (value == value) return 0; int dec = 0, sign = 0; char buffer[2]; // The buffer size must be >= 2 or _ecvt_s will fail. _ecvt_s(buffer, sizeof(buffer), value, 0, &dec, &sign); return sign; } inline int isinfinity(double x) { return !_finite(x); } inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } #define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER template struct IsLongDouble { enum {VALUE = 0}; }; template <> struct IsLongDouble { enum {VALUE = 1}; }; // Checks if a value fits in int - used to avoid warnings about comparing // signed and unsigned integers. template struct IntChecker { template static bool fits_in_int(T value) { unsigned max = INT_MAX; return value <= max; } }; template <> struct IntChecker { template static bool fits_in_int(T value) { return value >= INT_MIN && value <= INT_MAX; } }; const char RESET_COLOR[] = "\x1b[0m"; typedef void (*FormatFunc)(fmt::Writer &, int , fmt::StringRef); void report_error(FormatFunc func, int error_code, fmt::StringRef message) FMT_NOEXCEPT(true) { try { fmt::Writer full_message; func(full_message, error_code, message); // TODO: make sure this doesn't throw std::fwrite(full_message.c_str(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } catch (...) {} } const Arg DUMMY_ARG = {Arg::INT, {0}}; // IsZeroInt::visit(arg) returns true iff arg is a zero integer. class IsZeroInt : public fmt::internal::ArgVisitor { public: template bool visit_any_int(T value) { return value == 0; } }; // Parses an unsigned integer advancing s to the end of the parsed input. // This function assumes that the first character of s is a digit. template int parse_nonnegative_int( const Char *&s, const char *&error) FMT_NOEXCEPT(true) { assert('0' <= *s && *s <= '9'); unsigned value = 0; do { unsigned new_value = value * 10 + (*s++ - '0'); // Check if value wrapped around. value = new_value >= value ? new_value : UINT_MAX; } while ('0' <= *s && *s <= '9'); if (value > INT_MAX) { if (!error) error = "number is too big in format"; return 0; } return value; } template const Char *find_closing_brace(const Char *s, int num_open_braces = 1) { for (int n = num_open_braces; *s; ++s) { if (*s == '{') { ++n; } else if (*s == '}') { if (--n == 0) return s; } } throw fmt::FormatError("unmatched '{' in format"); } // Checks if an argument is a valid printf width specifier and sets // left alignment if it is negative. class WidthHandler : public fmt::internal::ArgVisitor { private: fmt::FormatSpec &spec_; public: explicit WidthHandler(fmt::FormatSpec &spec) : spec_(spec) {} unsigned visit_unhandled_arg() { throw fmt::FormatError("width is not integer"); } template unsigned visit_any_int(T value) { typedef typename fmt::internal::IntTraits::MainType UnsignedType; UnsignedType width = value; if (fmt::internal::is_negative(value)) { spec_.align_ = fmt::ALIGN_LEFT; width = 0 - width; } if (width > INT_MAX) throw fmt::FormatError("number is too big in format"); return static_cast(width); } }; class PrecisionHandler : public fmt::internal::ArgVisitor { public: unsigned visit_unhandled_arg() { throw fmt::FormatError("precision is not integer"); } template int visit_any_int(T value) { if (!IntChecker::is_signed>::fits_in_int(value)) throw fmt::FormatError("number is too big in format"); return static_cast(value); } }; // Converts an integer argument to type T. template class ArgConverter : public fmt::internal::ArgVisitor, void> { private: fmt::internal::Arg &arg_; wchar_t type_; public: ArgConverter(fmt::internal::Arg &arg, wchar_t type) : arg_(arg), type_(type) {} template void visit_any_int(U value) { bool is_signed = type_ == 'd' || type_ == 'i'; using fmt::internal::Arg; if (sizeof(T) <= sizeof(int)) { if (is_signed) { arg_.type = Arg::INT; arg_.int_value = static_cast(static_cast(value)); } else { arg_.type = Arg::UINT; arg_.uint_value = static_cast( static_cast::Type>(value)); } } else { if (is_signed) { arg_.type = Arg::LONG_LONG; arg_.long_long_value = static_cast::Type>(value); } else { arg_.type = Arg::ULONG_LONG; arg_.ulong_long_value = static_cast::Type>(value); } } } }; // Converts an integer argument to char. class CharConverter : public fmt::internal::ArgVisitor { private: fmt::internal::Arg &arg_; public: explicit CharConverter(fmt::internal::Arg &arg) : arg_(arg) {} template void visit_any_int(T value) { arg_.type = Arg::CHAR; arg_.int_value = static_cast(value); } }; // This function template is used to prevent compile errors when handling // incompatible string arguments, e.g. handling a wide string in a narrow // string formatter. template Arg::StringValue ignore_incompatible_str(Arg::StringValue); template <> inline Arg::StringValue ignore_incompatible_str( Arg::StringValue) { return Arg::StringValue(); } template <> inline Arg::StringValue ignore_incompatible_str( Arg::StringValue s) { return s; } } // namespace void fmt::SystemError::init( int error_code, StringRef format_str, const ArgList &args) { error_code_ = error_code; Writer w; internal::format_system_error(w, error_code, format(format_str, args)); std::runtime_error &base = *this; base = std::runtime_error(w.str()); } template int fmt::internal::CharTraits::format_float( char *buffer, std::size_t size, const char *format, unsigned width, int precision, T value) { if (width == 0) { return precision < 0 ? FMT_SNPRINTF(buffer, size, format, value) : FMT_SNPRINTF(buffer, size, format, precision, value); } return precision < 0 ? FMT_SNPRINTF(buffer, size, format, width, value) : FMT_SNPRINTF(buffer, size, format, width, precision, value); } template int fmt::internal::CharTraits::format_float( wchar_t *buffer, std::size_t size, const wchar_t *format, unsigned width, int precision, T value) { if (width == 0) { return precision < 0 ? swprintf(buffer, size, format, value) : swprintf(buffer, size, format, precision, value); } return precision < 0 ? swprintf(buffer, size, format, width, value) : swprintf(buffer, size, format, width, precision, value); } const char fmt::internal::DIGITS[] = "0001020304050607080910111213141516171819" "2021222324252627282930313233343536373839" "4041424344454647484950515253545556575859" "6061626364656667686970717273747576777879" "8081828384858687888990919293949596979899"; #define FMT_POWERS_OF_10(factor) \ factor * 10, \ factor * 100, \ factor * 1000, \ factor * 10000, \ factor * 100000, \ factor * 1000000, \ factor * 10000000, \ factor * 100000000, \ factor * 1000000000 const uint32_t fmt::internal::POWERS_OF_10_32[] = {0, FMT_POWERS_OF_10(1)}; const uint64_t fmt::internal::POWERS_OF_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(ULongLong(1000000000)), // Multiply several constants instead of using a single long long constant // to avoid warnings about C++98 not supporting long long. ULongLong(1000000000) * ULongLong(1000000000) * 10 }; void fmt::internal::report_unknown_type(char code, const char *type) { if (std::isprint(static_cast(code))) { throw fmt::FormatError( fmt::format("unknown format code '{}' for {}", code, type)); } throw fmt::FormatError( fmt::format("unknown format code '\\x{:02x}' for {}", static_cast(code), type)); } #ifdef _WIN32 fmt::internal::UTF8ToUTF16::UTF8ToUTF16(fmt::StringRef s) { int length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.c_str(), -1, 0, 0); static const char ERROR[] = "cannot convert string from UTF-8 to UTF-16"; if (length == 0) throw WindowsError(GetLastError(), ERROR); buffer_.resize(length); length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.c_str(), -1, &buffer_[0], length); if (length == 0) throw WindowsError(GetLastError(), ERROR); } fmt::internal::UTF16ToUTF8::UTF16ToUTF8(fmt::WStringRef s) { if (int error_code = convert(s)) { throw WindowsError(error_code, "cannot convert string from UTF-16 to UTF-8"); } } int fmt::internal::UTF16ToUTF8::convert(fmt::WStringRef s) { int length = WideCharToMultiByte(CP_UTF8, 0, s.c_str(), -1, 0, 0, 0, 0); if (length == 0) return GetLastError(); buffer_.resize(length); length = WideCharToMultiByte( CP_UTF8, 0, s.c_str(), -1, &buffer_[0], length, 0, 0); if (length == 0) return GetLastError(); return 0; } void fmt::WindowsError::init( int error_code, StringRef format_str, const ArgList &args) { error_code_ = error_code; Writer w; internal::format_windows_error(w, error_code, format(format_str, args)); std::runtime_error &base = *this; base = std::runtime_error(w.str()); } #endif int fmt::internal::safe_strerror( int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT(true) { assert(buffer != 0 && buffer_size != 0); int result = 0; #if defined(_GNU_SOURCE) && !defined(__BIONIC__) char *message = strerror_r(error_code, buffer, buffer_size); // If the buffer is full then the message is probably truncated. if (message == buffer && strlen(buffer) == buffer_size - 1) result = ERANGE; buffer = message; #elif defined(__MINGW32__) errno = 0; (void)buffer_size; buffer = strerror(error_code); result = errno; #elif defined(_WIN32) result = strerror_s(buffer, buffer_size, error_code); // If the buffer is full then the message is probably truncated. if (result == 0 && std::strlen(buffer) == buffer_size - 1) result = ERANGE; #else result = strerror_r(error_code, buffer, buffer_size); if (result == -1) result = errno; // glibc versions before 2.13 return result in errno. #endif return result; } void fmt::internal::format_system_error( fmt::Writer &out, int error_code, fmt::StringRef message) { Array buffer; buffer.resize(INLINE_BUFFER_SIZE); char *system_message = 0; for (;;) { system_message = &buffer[0]; int result = safe_strerror(error_code, system_message, buffer.size()); if (result == 0) break; if (result != ERANGE) { // Can't get error message, report error code instead. out << message << ": error code = " << error_code; return; } buffer.resize(buffer.size() * 2); } out << message << ": " << system_message; } #ifdef _WIN32 void fmt::internal::format_windows_error( fmt::Writer &out, int error_code, fmt::StringRef message) { class String { private: LPWSTR str_; public: String() : str_() {} ~String() { LocalFree(str_); } LPWSTR *ptr() { return &str_; } LPCWSTR c_str() const { return str_; } }; String system_message; if (FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, 0, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), reinterpret_cast(system_message.ptr()), 0, 0)) { UTF16ToUTF8 utf8_message; if (!utf8_message.convert(system_message.c_str())) { out << message << ": " << utf8_message; return; } } // Can't get error message, report error code instead. out << message << ": error code = " << error_code; } #endif // An argument formatter. template class fmt::internal::ArgFormatter : public fmt::internal::ArgVisitor, void> { private: fmt::BasicFormatter &formatter_; fmt::BasicWriter &writer_; fmt::FormatSpec &spec_; const Char *format_; public: ArgFormatter( fmt::BasicFormatter &f,fmt::FormatSpec &s, const Char *fmt) : formatter_(f), writer_(f.writer()), spec_(s), format_(fmt) {} template void visit_any_int(T value) { writer_.write_int(value, spec_); } template void visit_any_double(T value) { writer_.write_double(value, spec_); } void visit_char(int value) { if (spec_.type_ && spec_.type_ != 'c') { spec_.flags_ |= CHAR_FLAG; writer_.write_int(value, spec_); return; } if (spec_.align_ == ALIGN_NUMERIC || spec_.flags_ != 0) throw FormatError("invalid format specifier for char"); typedef typename fmt::BasicWriter::CharPtr CharPtr; CharPtr out = CharPtr(); if (spec_.width_ > 1) { Char fill = static_cast(spec_.fill()); out = writer_.grow_buffer(spec_.width_); if (spec_.align_ == fmt::ALIGN_RIGHT) { std::fill_n(out, spec_.width_ - 1, fill); out += spec_.width_ - 1; } else if (spec_.align_ == fmt::ALIGN_CENTER) { out = writer_.fill_padding(out, spec_.width_, 1, fill); } else { std::fill_n(out + 1, spec_.width_ - 1, fill); } } else { out = writer_.grow_buffer(1); } *out = static_cast(value); } void visit_string(Arg::StringValue value) { writer_.write_str(value, spec_); } void visit_wstring(Arg::StringValue value) { writer_.write_str(ignore_incompatible_str(value), spec_); } void visit_pointer(const void *value) { if (spec_.type_ && spec_.type_ != 'p') fmt::internal::report_unknown_type(spec_.type_, "pointer"); spec_.flags_ = fmt::HASH_FLAG; spec_.type_ = 'x'; writer_.write_int(reinterpret_cast(value), spec_); } void visit_custom(Arg::CustomValue c) { c.format(&formatter_, c.value, format_); } }; template void fmt::internal::FormatErrorReporter::operator()( const Char *s, fmt::StringRef message) const { if (find_closing_brace(s, num_open_braces)) throw fmt::FormatError(message); } // Fills the padding around the content and returns the pointer to the // content area. template typename fmt::BasicWriter::CharPtr fmt::BasicWriter::fill_padding(CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill) { std::size_t padding = total_size - content_size; std::size_t left_padding = padding / 2; Char fill_char = static_cast(fill); std::fill_n(buffer, left_padding, fill_char); buffer += left_padding; CharPtr content = buffer; std::fill_n(buffer + content_size, padding - left_padding, fill_char); return content; } template template void fmt::BasicWriter::write_double(T value, const FormatSpec &spec) { // Check type. char type = spec.type(); bool upper = false; switch (type) { case 0: type = 'g'; break; case 'e': case 'f': case 'g': case 'a': break; case 'F': #ifdef _MSC_VER // MSVC's printf doesn't support 'F'. type = 'f'; #endif // Fall through. case 'E': case 'G': case 'A': upper = true; break; default: internal::report_unknown_type(type, "double"); break; } char sign = 0; // Use getsign instead of value < 0 because the latter is always // false for NaN. if (getsign(static_cast(value))) { sign = '-'; value = -value; } else if (spec.flag(SIGN_FLAG)) { sign = spec.flag(PLUS_FLAG) ? '+' : ' '; } if (value != value) { // Format NaN ourselves because sprintf's output is not consistent // across platforms. std::size_t size = 4; const char *nan = upper ? " NAN" : " nan"; if (!sign) { --size; ++nan; } CharPtr out = write_str(nan, size, spec); if (sign) *out = sign; return; } if (isinfinity(value)) { // Format infinity ourselves because sprintf's output is not consistent // across platforms. std::size_t size = 4; const char *inf = upper ? " INF" : " inf"; if (!sign) { --size; ++inf; } CharPtr out = write_str(inf, size, spec); if (sign) *out = sign; return; } std::size_t offset = buffer_.size(); unsigned width = spec.width(); if (sign) { buffer_.reserve(buffer_.size() + (std::max)(width, 1u)); if (width > 0) --width; ++offset; } // Build format string. enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg Char format[MAX_FORMAT_SIZE]; Char *format_ptr = format; *format_ptr++ = '%'; unsigned width_for_sprintf = width; if (spec.flag(HASH_FLAG)) *format_ptr++ = '#'; if (spec.align() == ALIGN_CENTER) { width_for_sprintf = 0; } else { if (spec.align() == ALIGN_LEFT) *format_ptr++ = '-'; if (width != 0) *format_ptr++ = '*'; } if (spec.precision() >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } if (IsLongDouble::VALUE) *format_ptr++ = 'L'; *format_ptr++ = type; *format_ptr = '\0'; // Format using snprintf. Char fill = static_cast(spec.fill()); for (;;) { std::size_t size = buffer_.capacity() - offset; #ifdef _MSC_VER // MSVC's vsnprintf_s doesn't work with zero size, so reserve // space for at least one extra character to make the size non-zero. // Note that the buffer's capacity will increase by more than 1. if (size == 0) { buffer_.reserve(offset + 1); size = buffer_.capacity() - offset; } #endif Char *start = &buffer_[offset]; int n = internal::CharTraits::format_float( start, size, format, width_for_sprintf, spec.precision(), value); if (n >= 0 && offset + n < buffer_.capacity()) { if (sign) { if ((spec.align() != ALIGN_RIGHT && spec.align() != ALIGN_DEFAULT) || *start != ' ') { *(start - 1) = sign; sign = 0; } else { *(start - 1) = fill; } ++n; } if (spec.align() == ALIGN_CENTER && spec.width() > static_cast(n)) { unsigned width = spec.width(); CharPtr p = grow_buffer(width); std::copy(p, p + n, p + (width - n) / 2); fill_padding(p, spec.width(), n, fill); return; } if (spec.fill() != ' ' || sign) { while (*start == ' ') *start++ = fill; if (sign) *(start - 1) = sign; } grow_buffer(n); return; } // If n is negative we ask to increase the capacity by at least 1, // but as std::vector, the buffer grows exponentially. buffer_.reserve(n >= 0 ? offset + n + 1 : buffer_.capacity() + 1); } } template template void fmt::BasicWriter::write_str( const Arg::StringValue &str, const FormatSpec &spec) { // Check if StrChar is convertible to Char. internal::CharTraits::convert(StrChar()); if (spec.type_ && spec.type_ != 's') internal::report_unknown_type(spec.type_, "string"); const StrChar *s = str.value; std::size_t size = str.size; if (size == 0) { if (!s) { Char err[] = { '(', 'n', 'u', 'l', 'l', ')' }; write_str(err, sizeof(err)/sizeof(Char), spec); return; } if (*s) size = std::char_traits::length(s); } write_str(s, size, spec); } template inline const Arg &fmt::BasicFormatter::parse_arg_index(const Char *&s) { unsigned arg_index = 0; if (*s < '0' || *s > '9') { if (*s != '}' && *s != ':') report_error_(s, "invalid argument index in format string"); const Arg &arg = next_arg(); if (error_) report_error_(s, error_); return arg; } if (next_arg_index_ > 0) { report_error_(s, "cannot switch from automatic to manual argument indexing"); } next_arg_index_ = -1; arg_index = parse_nonnegative_int(s, error_); if (error_) report_error_(s, error_); // TODO: don't use report_error_ if (arg_index >= args_.size()) report_error_(s, "argument index is out of range in format"); return args_[arg_index]; } template void fmt::BasicFormatter::check_sign( const Char *&s, const Arg &arg) { char sign = static_cast(*s); if (arg.type > Arg::LAST_NUMERIC_TYPE) { report_error_(s, fmt::format( "format specifier '{}' requires numeric argument", sign).c_str()); } if (arg.type == Arg::UINT || arg.type == Arg::ULONG_LONG) { report_error_(s, fmt::format( "format specifier '{}' requires signed argument", sign).c_str()); } ++s; } const Arg &fmt::internal::FormatterBase::next_arg() { if (next_arg_index_ < 0) { if (!error_) error_ = "cannot switch from manual to automatic argument indexing"; return DUMMY_ARG; } unsigned arg_index = next_arg_index_++; if (arg_index < args_.size()) return args_[arg_index]; if (!error_) error_ = "argument index is out of range in format"; return DUMMY_ARG; } const Arg &fmt::internal::FormatterBase::handle_arg_index(unsigned arg_index) { if (arg_index != UINT_MAX) { if (next_arg_index_ <= 0) { next_arg_index_ = -1; --arg_index; } else if (!error_) { error_ = "cannot switch from automatic to manual argument indexing"; } if (arg_index < args_.size()) return args_[arg_index]; if (!error_) error_ = "argument index is out of range in format"; return DUMMY_ARG; } return next_arg(); } template void fmt::internal::PrintfFormatter::parse_flags( FormatSpec &spec, const Char *&s) { for (;;) { switch (*s++) { case '-': spec.align_ = ALIGN_LEFT; break; case '+': spec.flags_ |= SIGN_FLAG | PLUS_FLAG; break; case '0': spec.fill_ = '0'; break; case ' ': spec.flags_ |= SIGN_FLAG; break; case '#': spec.flags_ |= HASH_FLAG; break; default: --s; return; } } } template unsigned fmt::internal::PrintfFormatter::parse_header( const Char *&s, FormatSpec &spec) { unsigned arg_index = UINT_MAX; Char c = *s; if (c >= '0' && c <= '9') { // Parse an argument index (if followed by '$') or a width possibly // preceded with '0' flag(s). unsigned value = parse_nonnegative_int(s, error_); if (*s == '$') { // value is an argument index ++s; arg_index = value; } else { if (c == '0') spec.fill_ = '0'; if (value != 0) { // Nonzero value means that we parsed width and don't need to // parse it or flags again, so return now. spec.width_ = value; return arg_index; } } } parse_flags(spec, s); // Parse width. if (*s >= '0' && *s <= '9') { spec.width_ = parse_nonnegative_int(s, error_); } else if (*s == '*') { ++s; spec.width_ = WidthHandler(spec).visit(handle_arg_index(UINT_MAX)); } return arg_index; } template void fmt::internal::PrintfFormatter::format( BasicWriter &writer, BasicStringRef format, const ArgList &args) { const Char *start = format.c_str(); args_ = args; next_arg_index_ = 0; const Char *s = start; while (*s) { Char c = *s++; if (c != '%') continue; if (*s == c) { write(writer, start, s); start = ++s; continue; } write(writer, start, s - 1); FormatSpec spec; spec.align_ = ALIGN_RIGHT; // Reporting errors is delayed till the format specification is // completely parsed. This is done to avoid potentially confusing // error messages for incomplete format strings. For example, in // sprintf("%2$", 42); // the format specification is incomplete. In a naive approach we // would parse 2 as an argument index and report an error that the // index is out of range which would be rather confusing if the // use meant "%2d$" rather than "%2$d". If we delay an error, the // user will get an error that the format string is invalid which // is OK for both cases. // Parse argument index, flags and width. unsigned arg_index = parse_header(s, spec); // Parse precision. if (*s == '.') { ++s; if ('0' <= *s && *s <= '9') { spec.precision_ = parse_nonnegative_int(s, error_); } else if (*s == '*') { ++s; spec.precision_ = PrecisionHandler().visit(handle_arg_index(UINT_MAX)); } } Arg arg = handle_arg_index(arg_index); if (spec.flag(HASH_FLAG) && IsZeroInt().visit(arg)) spec.flags_ &= ~HASH_FLAG; if (spec.fill_ == '0') { if (arg.type <= Arg::LAST_NUMERIC_TYPE) spec.align_ = ALIGN_NUMERIC; else spec.fill_ = ' '; // Ignore '0' flag for non-numeric types. } // Parse length and convert the argument to the required type. switch (*s++) { case 'h': if (*s == 'h') ArgConverter(arg, *++s).visit(arg); else ArgConverter(arg, *s).visit(arg); break; case 'l': if (*s == 'l') ArgConverter(arg, *++s).visit(arg); else ArgConverter(arg, *s).visit(arg); break; case 'j': ArgConverter(arg, *s).visit(arg); break; case 'z': ArgConverter(arg, *s).visit(arg); break; case 't': ArgConverter(arg, *s).visit(arg); break; case 'L': // printf produces garbage when 'L' is omitted for long double, no // need to do the same. break; default: --s; ArgConverter(arg, *s).visit(arg); } // Parse type. if (!*s) throw FormatError("invalid format string"); if (error_) throw FormatError(error_); spec.type_ = static_cast(*s++); if (arg.type <= Arg::LAST_INTEGER_TYPE) { // Normalize type. switch (spec.type_) { case 'i': case 'u': spec.type_ = 'd'; break; case 'c': // TODO: handle wchar_t CharConverter(arg).visit(arg); break; } } start = s; // Format argument. switch (arg.type) { case Arg::INT: writer.write_int(arg.int_value, spec); break; case Arg::UINT: writer.write_int(arg.uint_value, spec); break; case Arg::LONG_LONG: writer.write_int(arg.long_long_value, spec); break; case Arg::ULONG_LONG: writer.write_int(arg.ulong_long_value, spec); break; case Arg::CHAR: { if (spec.type_ && spec.type_ != 'c') writer.write_int(arg.int_value, spec); typedef typename BasicWriter::CharPtr CharPtr; CharPtr out = CharPtr(); if (spec.width_ > 1) { Char fill = ' '; out = writer.grow_buffer(spec.width_); if (spec.align_ != ALIGN_LEFT) { std::fill_n(out, spec.width_ - 1, fill); out += spec.width_ - 1; } else { std::fill_n(out + 1, spec.width_ - 1, fill); } } else { out = writer.grow_buffer(1); } *out = static_cast(arg.int_value); break; } case Arg::DOUBLE: writer.write_double(arg.double_value, spec); break; case Arg::LONG_DOUBLE: writer.write_double(arg.long_double_value, spec); break; case Arg::STRING: writer.write_str(arg.string, spec); break; case Arg::WSTRING: writer.write_str(ignore_incompatible_str(arg.wstring), spec); break; case Arg::POINTER: if (spec.type_ && spec.type_ != 'p') internal::report_unknown_type(spec.type_, "pointer"); spec.flags_= HASH_FLAG; spec.type_ = 'x'; writer.write_int(reinterpret_cast(arg.pointer_value), spec); break; case Arg::CUSTOM: if (spec.type_) internal::report_unknown_type(spec.type_, "object"); arg.custom.format(&writer, arg.custom.value, "s"); break; default: assert(false); break; } } write(writer, start, s); } template const Char *fmt::BasicFormatter::format( const Char *format_str, const Arg &arg) { const Char *s = format_str; const char *error = 0; FormatSpec spec; if (*s == ':') { if (arg.type == Arg::CUSTOM) { arg.custom.format(this, arg.custom.value, s); return find_closing_brace(s) + 1; } ++s; // Parse fill and alignment. if (Char c = *s) { const Char *p = s + 1; spec.align_ = ALIGN_DEFAULT; do { switch (*p) { case '<': spec.align_ = ALIGN_LEFT; break; case '>': spec.align_ = ALIGN_RIGHT; break; case '=': spec.align_ = ALIGN_NUMERIC; break; case '^': spec.align_ = ALIGN_CENTER; break; } if (spec.align_ != ALIGN_DEFAULT) { if (p != s) { if (c == '}') break; if (c == '{') report_error_(s, "invalid fill character '{'"); s += 2; spec.fill_ = c; } else ++s; if (spec.align_ == ALIGN_NUMERIC && arg.type > Arg::LAST_NUMERIC_TYPE) report_error_(s, "format specifier '=' requires numeric argument"); break; } } while (--p >= s); } // Parse sign. switch (*s) { case '+': check_sign(s, arg); spec.flags_ |= SIGN_FLAG | PLUS_FLAG; break; case '-': check_sign(s, arg); spec.flags_ |= MINUS_FLAG; break; case ' ': check_sign(s, arg); spec.flags_ |= SIGN_FLAG; break; } if (*s == '#') { if (arg.type > Arg::LAST_NUMERIC_TYPE) report_error_(s, "format specifier '#' requires numeric argument"); spec.flags_ |= HASH_FLAG; ++s; } // Parse width and zero flag. if ('0' <= *s && *s <= '9') { if (*s == '0') { if (arg.type > Arg::LAST_NUMERIC_TYPE) report_error_(s, "format specifier '0' requires numeric argument"); spec.align_ = ALIGN_NUMERIC; spec.fill_ = '0'; } // Zero may be parsed again as a part of the width, but it is simpler // and more efficient than checking if the next char is a digit. spec.width_ = parse_nonnegative_int(s, error); if (error) report_error_(s, error); } // Parse precision. if (*s == '.') { ++s; spec.precision_ = 0; if ('0' <= *s && *s <= '9') { spec.precision_ = parse_nonnegative_int(s, error); if (error) report_error_(s, error); } else if (*s == '{') { ++s; ++report_error_.num_open_braces; const Arg &precision_arg = parse_arg_index(s); ULongLong value = 0; switch (precision_arg.type) { case Arg::INT: if (precision_arg.int_value < 0) report_error_(s, "negative precision in format"); value = precision_arg.int_value; break; case Arg::UINT: value = precision_arg.uint_value; break; case Arg::LONG_LONG: if (precision_arg.long_long_value < 0) report_error_(s, "negative precision in format"); value = precision_arg.long_long_value; break; case Arg::ULONG_LONG: value = precision_arg.ulong_long_value; break; default: report_error_(s, "precision is not integer"); } if (value > INT_MAX) report_error_(s, "number is too big in format"); spec.precision_ = static_cast(value); if (*s++ != '}') throw FormatError("unmatched '{' in format"); --report_error_.num_open_braces; } else { report_error_(s, "missing precision in format"); } if (arg.type != Arg::DOUBLE && arg.type != Arg::LONG_DOUBLE) { report_error_(s, "precision specifier requires floating-point argument"); } } // Parse type. if (*s != '}' && *s) spec.type_ = static_cast(*s++); } if (*s++ != '}') throw FormatError("unmatched '{' in format"); start_ = s; // Format argument. internal::ArgFormatter(*this, spec, s - 1).visit(arg); return s; } template void fmt::BasicFormatter::format( BasicStringRef format_str, const ArgList &args) { const Char *s = start_ = format_str.c_str(); args_ = args; next_arg_index_ = 0; while (*s) { Char c = *s++; if (c != '{' && c != '}') continue; if (*s == c) { write(writer_, start_, s); start_ = ++s; continue; } if (c == '}') throw FormatError("unmatched '}' in format"); report_error_.num_open_braces = 1; write(writer_, start_, s - 1); Arg arg = parse_arg_index(s); s = format(s, arg); } write(writer_, start_, s); } void fmt::report_system_error( int error_code, fmt::StringRef message) FMT_NOEXCEPT(true) { // FIXME: format_system_error may throw report_error(internal::format_system_error, error_code, message); } #ifdef _WIN32 void fmt::report_windows_error( int error_code, fmt::StringRef message) FMT_NOEXCEPT(true) { // FIXME: format_windows_error may throw report_error(internal::format_windows_error, error_code, message); } #endif void fmt::print(std::FILE *f, StringRef format_str, const ArgList &args) { Writer w; w.write(format_str, args); std::fwrite(w.data(), 1, w.size(), f); } void fmt::print(std::ostream &os, StringRef format_str, const ArgList &args) { Writer w; w.write(format_str, args); os.write(w.data(), w.size()); } void fmt::print_colored(Color c, StringRef format, const ArgList &args) { char escape[] = "\x1b[30m"; escape[3] = '0' + static_cast(c); std::fputs(escape, stdout); print(format, args); std::fputs(RESET_COLOR, stdout); } int fmt::fprintf(std::FILE *f, StringRef format, const ArgList &args) { Writer w; printf(w, format, args); return std::fwrite(w.data(), 1, w.size(), f); } // Explicit instantiations for char. template fmt::BasicWriter::CharPtr fmt::BasicWriter::fill_padding(CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill); template void fmt::BasicFormatter::format( BasicStringRef format, const ArgList &args); template void fmt::internal::PrintfFormatter::format( BasicWriter &writer, BasicStringRef format, const ArgList &args); // Explicit instantiations for wchar_t. template fmt::BasicWriter::CharPtr fmt::BasicWriter::fill_padding(CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill); template void fmt::BasicFormatter::format( BasicStringRef format, const ArgList &args); template void fmt::internal::PrintfFormatter::format( BasicWriter &writer, BasicStringRef format, const ArgList &args); #ifdef _MSC_VER # pragma warning(pop) #endif