/* Copyright (C) 2015 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "Geometry.h" #include "maths/FixedVector2D.h" using namespace Geometry; // TODO: all of these things could be optimised quite easily bool Geometry::PointIsInSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize) { fixed du = point.Dot(u); if (-halfSize.X <= du && du <= halfSize.X) { fixed dv = point.Dot(v); if (-halfSize.Y <= dv && dv <= halfSize.Y) return true; } return false; } CFixedVector2D Geometry::GetHalfBoundingBox(CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize) { return CFixedVector2D( u.X.Multiply(halfSize.X).Absolute() + v.X.Multiply(halfSize.Y).Absolute(), u.Y.Multiply(halfSize.X).Absolute() + v.Y.Multiply(halfSize.Y).Absolute() ); } float Geometry::ChordToCentralAngle(const float chordLength, const float radius) { return acosf(1.f - SQR(chordLength)/(2.f*SQR(radius))); // cfr. law of cosines } fixed Geometry::DistanceToSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize, bool countInsideAsZero) { /* * Relative to its own coordinate system, we have a square like: * * A : B : C * : : * - - ########### - - * # # * # I # * D # 0 # E v * # # ^ * # # | * - - ########### - - -->u * : : * F : G : H * * where 0 is the center, u and v are unit axes, * and the square is hw*2 by hh*2 units in size. * * Points in the BIG regions should check distance to horizontal edges. * Points in the DIE regions should check distance to vertical edges. * Points in the ACFH regions should check distance to the corresponding corner. * * So we just need to check all of the regions to work out which calculations to apply. * */ // du, dv are the location of the point in the square's coordinate system fixed du = point.Dot(u); fixed dv = point.Dot(v); fixed hw = halfSize.X; fixed hh = halfSize.Y; if (-hw < du && du < hw) // regions B, I, G { fixed closest = (dv.Absolute() - hh).Absolute(); // horizontal edges if (-hh < dv && dv < hh) // region I closest = countInsideAsZero ? fixed::Zero() : std::min(closest, (du.Absolute() - hw).Absolute()); // vertical edges return closest; } else if (-hh < dv && dv < hh) // regions D, E { return (du.Absolute() - hw).Absolute(); // vertical edges } else // regions A, C, F, H { CFixedVector2D corner; if (du < fixed::Zero()) // A, F corner -= u.Multiply(hw); else // C, H corner += u.Multiply(hw); if (dv < fixed::Zero()) // F, H corner -= v.Multiply(hh); else // A, C corner += v.Multiply(hh); return (corner - point).Length(); } } CFixedVector2D Geometry::NearestPointOnSquare(CFixedVector2D point, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize) { /* * Relative to its own coordinate system, we have a square like: * * A : : C * : : * - - #### B #### - - * #\ /# * # \ / # * D --0-- E v * # / \ # ^ * #/ \# | * - - #### G #### - - -->u * : : * F : : H * * where 0 is the center, u and v are unit axes, * and the square is hw*2 by hh*2 units in size. * * Points in the BDEG regions are nearest to the corresponding edge. * Points in the ACFH regions are nearest to the corresponding corner. * * So we just need to check all of the regions to work out which calculations to apply. * */ // du, dv are the location of the point in the square's coordinate system fixed du = point.Dot(u); fixed dv = point.Dot(v); fixed hw = halfSize.X; fixed hh = halfSize.Y; if (-hw < du && du < hw) // regions B, G; or regions D, E inside the square { if (-hh < dv && dv < hh && (du.Absolute() - hw).Absolute() < (dv.Absolute() - hh).Absolute()) // regions D, E { if (du >= fixed::Zero()) // E return u.Multiply(hw) + v.Multiply(dv); else // D return -u.Multiply(hw) + v.Multiply(dv); } else // B, G { if (dv >= fixed::Zero()) // B return v.Multiply(hh) + u.Multiply(du); else // G return -v.Multiply(hh) + u.Multiply(du); } } else if (-hh < dv && dv < hh) // regions D, E outside the square { if (du >= fixed::Zero()) // E return u.Multiply(hw) + v.Multiply(dv); else // D return -u.Multiply(hw) + v.Multiply(dv); } else // regions A, C, F, H { CFixedVector2D corner; if (du < fixed::Zero()) // A, F corner -= u.Multiply(hw); else // C, H corner += u.Multiply(hw); if (dv < fixed::Zero()) // F, H corner -= v.Multiply(hh); else // A, C corner += v.Multiply(hh); return corner; } } bool Geometry::TestRaySquare(CFixedVector2D a, CFixedVector2D b, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize) { /* * We only consider collisions to be when the ray goes from outside to inside the shape (and possibly out again). * Various cases to consider: * 'a' inside, 'b' inside -> no collision * 'a' inside, 'b' outside -> no collision * 'a' outside, 'b' inside -> collision * 'a' outside, 'b' outside -> depends; use separating axis theorem: * if the ray's bounding box is outside the square -> no collision * if the whole square is on the same side of the ray -> no collision * otherwise -> collision * (Points on the edge are considered 'inside'.) */ fixed hw = halfSize.X; fixed hh = halfSize.Y; fixed au = a.Dot(u); fixed av = a.Dot(v); if (-hw <= au && au <= hw && -hh <= av && av <= hh) return false; // a is inside fixed bu = b.Dot(u); fixed bv = b.Dot(v); if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks? return true; // a is outside, b is inside if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh)) return false; // ab is entirely above/below/side the square CFixedVector2D abp = (b - a).Perpendicular(); fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a); fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a); fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a); fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a); if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero()) return true; // ray intersects the corner bool sign = (s0 < fixed::Zero()); if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign) return true; // ray cuts through the square return false; } bool Geometry::TestRayAASquare(CFixedVector2D a, CFixedVector2D b, CFixedVector2D halfSize) { // Exactly like TestRaySquare with u=(1,0), v=(0,1) // Assume the compiler is clever enough to inline and simplify all this // (TODO: stop assuming that) CFixedVector2D u (fixed::FromInt(1), fixed::Zero()); CFixedVector2D v (fixed::Zero(), fixed::FromInt(1)); fixed hw = halfSize.X; fixed hh = halfSize.Y; fixed au = a.Dot(u); fixed av = a.Dot(v); if (-hw <= au && au <= hw && -hh <= av && av <= hh) return false; // a is inside fixed bu = b.Dot(u); fixed bv = b.Dot(v); if (-hw <= bu && bu <= hw && -hh <= bv && bv <= hh) // TODO: isn't this subsumed by the next checks? return true; // a is outside, b is inside if ((au < -hw && bu < -hw) || (au > hw && bu > hw) || (av < -hh && bv < -hh) || (av > hh && bv > hh)) return false; // ab is entirely above/below/side the square CFixedVector2D abp = (b - a).Perpendicular(); fixed s0 = abp.Dot((u.Multiply(hw) + v.Multiply(hh)) - a); fixed s1 = abp.Dot((u.Multiply(hw) - v.Multiply(hh)) - a); fixed s2 = abp.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a); fixed s3 = abp.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a); if (s0.IsZero() || s1.IsZero() || s2.IsZero() || s3.IsZero()) return true; // ray intersects the corner bool sign = (s0 < fixed::Zero()); if ((s1 < fixed::Zero()) != sign || (s2 < fixed::Zero()) != sign || (s3 < fixed::Zero()) != sign) return true; // ray cuts through the square return false; } /** * Separating axis test; returns true if the square defined by u/v/halfSize at the origin * is not entirely on the clockwise side of a line in direction 'axis' passing through 'a' */ static bool SquareSAT(CFixedVector2D a, CFixedVector2D axis, CFixedVector2D u, CFixedVector2D v, CFixedVector2D halfSize) { fixed hw = halfSize.X; fixed hh = halfSize.Y; CFixedVector2D p = axis.Perpendicular(); if (p.Dot((u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero()) return true; if (p.Dot((u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero()) return true; if (p.Dot((-u.Multiply(hw) - v.Multiply(hh)) - a) <= fixed::Zero()) return true; if (p.Dot((-u.Multiply(hw) + v.Multiply(hh)) - a) <= fixed::Zero()) return true; return false; } bool Geometry::TestSquareSquare( CFixedVector2D c0, CFixedVector2D u0, CFixedVector2D v0, CFixedVector2D halfSize0, CFixedVector2D c1, CFixedVector2D u1, CFixedVector2D v1, CFixedVector2D halfSize1) { // TODO: need to test this carefully CFixedVector2D corner0a = c0 + u0.Multiply(halfSize0.X) + v0.Multiply(halfSize0.Y); CFixedVector2D corner0b = c0 - u0.Multiply(halfSize0.X) - v0.Multiply(halfSize0.Y); CFixedVector2D corner1a = c1 + u1.Multiply(halfSize1.X) + v1.Multiply(halfSize1.Y); CFixedVector2D corner1b = c1 - u1.Multiply(halfSize1.X) - v1.Multiply(halfSize1.Y); // Do a SAT test for each square vs each edge of the other square if (!SquareSAT(corner0a - c1, -u0, u1, v1, halfSize1)) return false; if (!SquareSAT(corner0a - c1, v0, u1, v1, halfSize1)) return false; if (!SquareSAT(corner0b - c1, u0, u1, v1, halfSize1)) return false; if (!SquareSAT(corner0b - c1, -v0, u1, v1, halfSize1)) return false; if (!SquareSAT(corner1a - c0, -u1, u0, v0, halfSize0)) return false; if (!SquareSAT(corner1a - c0, v1, u0, v0, halfSize0)) return false; if (!SquareSAT(corner1b - c0, u1, u0, v0, halfSize0)) return false; if (!SquareSAT(corner1b - c0, -v1, u0, v0, halfSize0)) return false; return true; }