/* Copyright (C) 2015 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see .
*/
#include "precompiled.h"
#include "simulation2/system/Component.h"
#include "ICmpUnitMotion.h"
#include "simulation2/components/ICmpObstruction.h"
#include "simulation2/components/ICmpObstructionManager.h"
#include "simulation2/components/ICmpOwnership.h"
#include "simulation2/components/ICmpPosition.h"
#include "simulation2/components/ICmpPathfinder.h"
#include "simulation2/components/ICmpRangeManager.h"
#include "simulation2/components/ICmpValueModificationManager.h"
#include "simulation2/helpers/Geometry.h"
#include "simulation2/helpers/Render.h"
#include "simulation2/MessageTypes.h"
#include "simulation2/serialization/SerializeTemplates.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "maths/FixedVector2D.h"
#include "ps/CLogger.h"
#include "ps/Profile.h"
#include "renderer/Scene.h"
// For debugging; units will start going straight to the target
// instead of calling the pathfinder
#define DISABLE_PATHFINDER 0
/**
* When advancing along the long path, and picking a new waypoint to move
* towards, we'll pick one that's up to this far from the unit's current
* position (to minimise the effects of grid-constrained movement)
*/
static const entity_pos_t WAYPOINT_ADVANCE_MAX = entity_pos_t::FromInt(TERRAIN_TILE_SIZE*8);
/**
* Maximum range to restrict short path queries to. (Larger ranges are slower,
* smaller ranges might miss some legitimate routes around large obstacles.)
*/
static const entity_pos_t SHORT_PATH_SEARCH_RANGE = entity_pos_t::FromInt(TERRAIN_TILE_SIZE*6);
/**
* When short-pathing to an intermediate waypoint, we aim for a circle of this radius
* around the waypoint rather than expecting to reach precisely the waypoint itself
* (since it might be inside an obstacle).
*/
static const entity_pos_t SHORT_PATH_GOAL_RADIUS = entity_pos_t::FromInt(TERRAIN_TILE_SIZE*3/2);
/**
* If we are this close to our target entity/point, then think about heading
* for it in a straight line instead of pathfinding.
*/
static const entity_pos_t DIRECT_PATH_RANGE = entity_pos_t::FromInt(TERRAIN_TILE_SIZE*4);
/**
* If we're following a target entity,
* we will recompute our path if the target has moved
* more than this distance from where we last pathed to.
*/
static const entity_pos_t CHECK_TARGET_MOVEMENT_MIN_DELTA = entity_pos_t::FromInt(TERRAIN_TILE_SIZE*4);
/**
* If we're following as part of a formation,
* but can't move to our assigned target point in a straight line,
* we will recompute our path if the target has moved
* more than this distance from where we last pathed to.
*/
static const entity_pos_t CHECK_TARGET_MOVEMENT_MIN_DELTA_FORMATION = entity_pos_t::FromInt(TERRAIN_TILE_SIZE*1);
/**
* If we're following something but it's more than this distance away along
* our path, then don't bother trying to repath regardless of how much it has
* moved, until we get this close to the end of our old path.
*/
static const entity_pos_t CHECK_TARGET_MOVEMENT_AT_MAX_DIST = entity_pos_t::FromInt(TERRAIN_TILE_SIZE*16);
/**
* If we're following something and the angle between the (straight-line) directions to its previous target
* position and its present target position is greater than a given angle, recompute the path even far away
* (i.e. even if CHECK_TARGET_MOVEMENT_AT_MAX_DIST condition is not fulfilled). The actual check is done
* on the cosine of this angle, with a PI/6 angle.
*/
static const fixed CHECK_TARGET_MOVEMENT_MIN_COS = fixed::FromInt(866)/1000;
static const CColor OVERLAY_COLOR_LONG_PATH(1, 1, 1, 1);
static const CColor OVERLAY_COLOR_SHORT_PATH(1, 0, 0, 1);
struct SUnitMotionPlanning
{
WaypointPath nextStepShortPath; // if !nextStepClean, store a short path for the next step here
u32 expectedPathTicket;
bool nextStepClean; // is there any obstruction between the next two long waypoints?
SUnitMotionPlanning() : expectedPathTicket(0), nextStepClean(true) {}
};
/**
* Serialization helper template for SUnitMotionPlanning
*/
struct SerializeUnitMotionPlanning
{
template
void operator()(S& serialize, const char* UNUSED(name), SUnitMotionPlanning& value)
{
SerializeVector()(serialize, "next step short path", value.nextStepShortPath.m_Waypoints);
serialize.NumberU32_Unbounded("expected path ticket", value.expectedPathTicket);
serialize.Bool("next step clean", value.nextStepClean);
}
};
class CCmpUnitMotion : public ICmpUnitMotion
{
public:
static void ClassInit(CComponentManager& componentManager)
{
componentManager.SubscribeToMessageType(MT_Update_MotionFormation);
componentManager.SubscribeToMessageType(MT_Update_MotionUnit);
componentManager.SubscribeToMessageType(MT_PathResult);
componentManager.SubscribeToMessageType(MT_ValueModification);
componentManager.SubscribeToMessageType(MT_Deserialized);
componentManager.SubscribeToMessageType(MT_PassabilityMapChanged);
}
DEFAULT_COMPONENT_ALLOCATOR(UnitMotion)
bool m_DebugOverlayEnabled;
std::vector m_DebugOverlayLongPathLines;
std::vector m_DebugOverlayShortPathLines;
// Template state:
bool m_FormationController;
fixed m_WalkSpeed, m_OriginalWalkSpeed; // in metres per second
fixed m_RunSpeed, m_OriginalRunSpeed;
pass_class_t m_PassClass;
std::string m_PassClassName;
// Dynamic state:
entity_pos_t m_Clearance;
bool m_Moving;
bool m_FacePointAfterMove;
enum State
{
/*
* Not moving at all.
*/
STATE_IDLE,
/*
* Not moving at all. Will go to IDLE next turn.
* (This one-turn delay is a hack to fix animation timings.)
*/
STATE_STOPPING,
/*
* Member of a formation.
* Pathing to the target (depending on m_PathState).
* Target is m_TargetEntity plus m_TargetOffset.
*/
STATE_FORMATIONMEMBER_PATH,
/*
* Individual unit or formation controller.
* Pathing to the target (depending on m_PathState).
* Target is m_TargetPos, m_TargetMinRange, m_TargetMaxRange;
* if m_TargetEntity is not INVALID_ENTITY then m_TargetPos is tracking it.
*/
STATE_INDIVIDUAL_PATH,
STATE_MAX
};
u8 m_State;
enum PathState
{
/*
* There is no path.
* (This should only happen in IDLE and STOPPING.)
*/
PATHSTATE_NONE,
/*
* We have an outstanding long path request.
* No paths are usable yet, so we can't move anywhere.
*/
PATHSTATE_WAITING_REQUESTING_LONG,
/*
* We have an outstanding short path request.
* m_LongPath is valid.
* m_ShortPath is not yet valid, so we can't move anywhere.
*/
PATHSTATE_WAITING_REQUESTING_SHORT,
/*
* We are following our path, and have no path requests.
* m_LongPath and m_ShortPath are valid.
*/
PATHSTATE_FOLLOWING,
/*
* We are following our path, and have an outstanding long path request.
* (This is because our target moved a long way and we need to recompute
* the whole path).
* m_LongPath and m_ShortPath are valid.
*/
PATHSTATE_FOLLOWING_REQUESTING_LONG,
/*
* We are following our path, and have an outstanding short path request.
* (This is because our target moved and we've got a new long path
* which we need to follow).
* m_LongPath is valid; m_ShortPath is valid but obsolete.
*/
PATHSTATE_FOLLOWING_REQUESTING_SHORT,
PATHSTATE_MAX
};
u8 m_PathState;
u32 m_ExpectedPathTicket; // asynchronous request ID we're waiting for, or 0 if none
entity_id_t m_TargetEntity;
CFixedVector2D m_TargetPos;
CFixedVector2D m_TargetOffset;
entity_pos_t m_TargetMinRange;
entity_pos_t m_TargetMaxRange;
fixed m_Speed;
// Current mean speed (over the last turn).
fixed m_CurSpeed;
// Currently active paths (storing waypoints in reverse order).
// The last item in each path is the point we're currently heading towards.
WaypointPath m_LongPath;
WaypointPath m_ShortPath;
// When the passability map has changed, we cannot fully trust the path computed by the
// pathfinder before that change.
bool m_PassabilityMapChangedRecently;
// Motion planning
SUnitMotionPlanning m_Planning;
PathGoal m_FinalGoal;
static std::string GetSchema()
{
return
"Provides the unit with the ability to move around the world by itself."
""
"7.0"
"default"
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
""
"";
}
/*
* TODO: the running/charging thing needs to be designed and implemented
*/
virtual void Init(const CParamNode& paramNode)
{
m_FormationController = paramNode.GetChild("FormationController").ToBool();
m_Moving = false;
m_FacePointAfterMove = true;
m_WalkSpeed = m_OriginalWalkSpeed = paramNode.GetChild("WalkSpeed").ToFixed();
m_Speed = m_WalkSpeed;
m_CurSpeed = fixed::Zero();
if (paramNode.GetChild("Run").IsOk())
m_RunSpeed = m_OriginalRunSpeed = paramNode.GetChild("Run").GetChild("Speed").ToFixed();
else
m_RunSpeed = m_OriginalRunSpeed = m_WalkSpeed;
CmpPtr cmpPathfinder(GetSystemEntity());
if (cmpPathfinder)
{
m_PassClassName = paramNode.GetChild("PassabilityClass").ToUTF8();
m_PassClass = cmpPathfinder->GetPassabilityClass(m_PassClassName);
m_Clearance = cmpPathfinder->GetClearance(m_PassClass);
CmpPtr cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->SetUnitClearance(m_Clearance);
}
m_State = STATE_IDLE;
m_PathState = PATHSTATE_NONE;
m_ExpectedPathTicket = 0;
m_PassabilityMapChangedRecently = false;
m_TargetEntity = INVALID_ENTITY;
m_FinalGoal.type = PathGoal::POINT;
m_DebugOverlayEnabled = false;
}
virtual void Deinit()
{
}
template
void SerializeCommon(S& serialize)
{
serialize.NumberU8("state", m_State, 0, STATE_MAX-1);
serialize.NumberU8("path state", m_PathState, 0, PATHSTATE_MAX-1);
serialize.StringASCII("pass class", m_PassClassName, 0, 64);
serialize.NumberU32_Unbounded("ticket", m_ExpectedPathTicket);
serialize.NumberU32_Unbounded("target entity", m_TargetEntity);
serialize.NumberFixed_Unbounded("target pos x", m_TargetPos.X);
serialize.NumberFixed_Unbounded("target pos y", m_TargetPos.Y);
serialize.NumberFixed_Unbounded("target offset x", m_TargetOffset.X);
serialize.NumberFixed_Unbounded("target offset y", m_TargetOffset.Y);
serialize.NumberFixed_Unbounded("target min range", m_TargetMinRange);
serialize.NumberFixed_Unbounded("target max range", m_TargetMaxRange);
serialize.NumberFixed_Unbounded("speed", m_Speed);
serialize.Bool("moving", m_Moving);
serialize.Bool("facePointAfterMove", m_FacePointAfterMove);
SerializeVector()(serialize, "long path", m_LongPath.m_Waypoints);
SerializeVector()(serialize, "short path", m_ShortPath.m_Waypoints);
serialize.Bool("passability map changed recently", m_PassabilityMapChangedRecently);
SerializeUnitMotionPlanning()(serialize, "planning", m_Planning);
SerializeGoal()(serialize, "goal", m_FinalGoal);
}
virtual void Serialize(ISerializer& serialize)
{
SerializeCommon(serialize);
}
virtual void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize)
{
Init(paramNode);
SerializeCommon(deserialize);
CmpPtr cmpPathfinder(GetSystemEntity());
if (cmpPathfinder)
m_PassClass = cmpPathfinder->GetPassabilityClass(m_PassClassName);
}
virtual void HandleMessage(const CMessage& msg, bool UNUSED(global))
{
switch (msg.GetType())
{
case MT_Update_MotionFormation:
{
if (m_FormationController)
{
fixed dt = static_cast (msg).turnLength;
Move(dt);
}
break;
}
case MT_Update_MotionUnit:
{
if (!m_FormationController)
{
fixed dt = static_cast (msg).turnLength;
Move(dt);
}
break;
}
case MT_RenderSubmit:
{
PROFILE3("UnitMotion::RenderSubmit");
const CMessageRenderSubmit& msgData = static_cast (msg);
RenderSubmit(msgData.collector);
break;
}
case MT_PathResult:
{
const CMessagePathResult& msgData = static_cast (msg);
PathResult(msgData.ticket, msgData.path);
break;
}
case MT_ValueModification:
{
const CMessageValueModification& msgData = static_cast (msg);
if (msgData.component != L"UnitMotion")
break;
}
// fall-through
case MT_Deserialized:
{
CmpPtr cmpValueModificationManager(GetSystemEntity());
if (!cmpValueModificationManager)
break;
fixed newWalkSpeed = cmpValueModificationManager->ApplyModifications(L"UnitMotion/WalkSpeed", m_OriginalWalkSpeed, GetEntityId());
fixed newRunSpeed = cmpValueModificationManager->ApplyModifications(L"UnitMotion/Run/Speed", m_OriginalRunSpeed, GetEntityId());
// update m_Speed (the actual speed) if set to one of the variables
if (m_Speed == m_WalkSpeed)
m_Speed = newWalkSpeed;
else if (m_Speed == m_RunSpeed)
m_Speed = newRunSpeed;
m_WalkSpeed = newWalkSpeed;
m_RunSpeed = newRunSpeed;
break;
}
case MT_PassabilityMapChanged:
m_PassabilityMapChangedRecently = true;
break;
}
}
void UpdateMessageSubscriptions()
{
bool needRender = m_DebugOverlayEnabled;
GetSimContext().GetComponentManager().DynamicSubscriptionNonsync(MT_RenderSubmit, this, needRender);
}
virtual bool IsMoving()
{
return m_Moving;
}
virtual fixed GetWalkSpeed()
{
return m_WalkSpeed;
}
virtual fixed GetRunSpeed()
{
return m_RunSpeed;
}
virtual pass_class_t GetPassabilityClass()
{
return m_PassClass;
}
virtual std::string GetPassabilityClassName()
{
return m_PassClassName;
}
virtual void SetPassabilityClassName(std::string passClassName)
{
m_PassClassName = passClassName;
CmpPtr cmpPathfinder(GetSystemEntity());
if (cmpPathfinder)
m_PassClass = cmpPathfinder->GetPassabilityClass(passClassName);
}
virtual fixed GetCurrentSpeed()
{
return m_CurSpeed;
}
virtual void SetSpeed(fixed speed)
{
m_Speed = speed;
}
virtual void SetFacePointAfterMove(bool facePointAfterMove)
{
m_FacePointAfterMove = facePointAfterMove;
}
virtual void SetDebugOverlay(bool enabled)
{
m_DebugOverlayEnabled = enabled;
UpdateMessageSubscriptions();
}
virtual bool MoveToPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange);
virtual bool IsInPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange);
virtual bool MoveToTargetRange(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange);
virtual bool IsInTargetRange(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange);
virtual void MoveToFormationOffset(entity_id_t target, entity_pos_t x, entity_pos_t z);
virtual void FaceTowardsPoint(entity_pos_t x, entity_pos_t z);
virtual void StopMoving()
{
m_Moving = false;
m_ExpectedPathTicket = 0;
m_State = STATE_STOPPING;
m_PathState = PATHSTATE_NONE;
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
}
virtual entity_pos_t GetUnitClearance()
{
return m_Clearance;
}
private:
bool ShouldAvoidMovingUnits() const
{
return !m_FormationController;
}
bool IsFormationMember() const
{
return m_State == STATE_FORMATIONMEMBER_PATH;
}
bool HasValidPath() const
{
return m_PathState == PATHSTATE_FOLLOWING
|| m_PathState == PATHSTATE_FOLLOWING_REQUESTING_LONG
|| m_PathState == PATHSTATE_FOLLOWING_REQUESTING_SHORT;
}
void StartFailed()
{
StopMoving();
m_State = STATE_IDLE; // don't go through the STOPPING state since we never even started
CmpPtr cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->SetMovingFlag(false);
CMessageMotionChanged msg(true, true);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
void MoveFailed()
{
StopMoving();
CmpPtr cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->SetMovingFlag(false);
CMessageMotionChanged msg(false, true);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
void StartSucceeded()
{
CMessageMotionChanged msg(true, false);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
void MoveSucceeded()
{
m_Moving = false;
CmpPtr cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->SetMovingFlag(false);
// No longer moving, so speed is 0.
m_CurSpeed = fixed::Zero();
CMessageMotionChanged msg(false, false);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
bool MoveToPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange, entity_id_t target);
/**
* Handle the result of an asynchronous path query.
*/
void PathResult(u32 ticket, const WaypointPath& path);
/**
* Do the per-turn movement and other updates.
*/
void Move(fixed dt);
/**
* Analyse the next long path step (if any) and precompute a short path if needed.
* Then use the previous computed short path, if present, for the current step.
*/
void PlanNextStep(const CFixedVector2D& pos);
/**
* Decide whether to approximate the given range from a square target as a circle,
* rather than as a square.
*/
bool ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t hw, entity_pos_t hh, entity_pos_t circleRadius) const;
/**
* Computes the current location of our target entity (plus offset).
* Returns false if no target entity or no valid position.
*/
bool ComputeTargetPosition(CFixedVector2D& out);
/**
* Attempts to replace the current path with a straight line to the goal,
* if this goal is a point, is close enough and the route is not obstructed.
*/
bool TryGoingStraightToGoalPoint(const CFixedVector2D& from);
/**
* Attempts to replace the current path with a straight line to the target
* entity, if it's close enough and the route is not obstructed.
*/
bool TryGoingStraightToTargetEntity(const CFixedVector2D& from);
/**
* Returns whether the target entity has moved more than minDelta since our
* last path computations, and we're close enough to it to care.
*/
bool CheckTargetMovement(const CFixedVector2D& from, entity_pos_t minDelta);
/**
* Returns whether the length of the given path, plus the distance from
* 'from' to the first waypoints, it shorter than minDistance.
*/
bool PathIsShort(const WaypointPath& path, const CFixedVector2D& from, entity_pos_t minDistance) const;
/**
* Rotate to face towards the target point, given the current pos
*/
void FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z);
/**
* Returns an appropriate obstruction filter for use with path requests.
*/
ControlGroupMovementObstructionFilter GetObstructionFilter(bool avoidPathfindingShapes) const;
/**
* Checks our movement towards the next path waypoint.
* Pathfinding-blocking shapes are assumed to be taken into account during the path computation
* and this will only be used to avoid moving units.
*/
bool CheckMovement(entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1) const;
/**
* Start moving to the given goal, from our current position 'from'.
* Might go in a straight line immediately, or might start an asynchronous
* path request.
*/
void BeginPathing(const CFixedVector2D& from, const PathGoal& goal);
/**
* Start an asynchronous long path query.
*/
void RequestLongPath(const CFixedVector2D& from, const PathGoal& goal);
/**
* Start an asynchronous short path query.
*/
void RequestShortPath(const CFixedVector2D& from, const PathGoal& goal, bool avoidMovingUnits);
/**
* Convert a path into a renderable list of lines
*/
void RenderPath(const WaypointPath& path, std::vector& lines, CColor color);
void RenderSubmit(SceneCollector& collector);
};
REGISTER_COMPONENT_TYPE(UnitMotion)
void CCmpUnitMotion::PathResult(u32 ticket, const WaypointPath& path)
{
if (ticket == m_Planning.expectedPathTicket)
{
// If no path was found, better cancel the planning
if (path.m_Waypoints.empty())
m_Planning = SUnitMotionPlanning();
m_Planning.nextStepShortPath = path;
return;
}
// Ignore obsolete path requests
if (ticket != m_ExpectedPathTicket)
return;
m_ExpectedPathTicket = 0; // we don't expect to get this result again
// Check that we are still able to do something with that path
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
{
if (m_PathState == PATHSTATE_WAITING_REQUESTING_LONG || m_PathState == PATHSTATE_WAITING_REQUESTING_SHORT)
StartFailed();
else if (m_PathState == PATHSTATE_FOLLOWING_REQUESTING_LONG || m_PathState == PATHSTATE_FOLLOWING_REQUESTING_SHORT)
StopMoving();
return;
}
if (m_PathState == PATHSTATE_WAITING_REQUESTING_LONG || m_PathState == PATHSTATE_FOLLOWING_REQUESTING_LONG)
{
m_PassabilityMapChangedRecently = false;
m_LongPath = path;
// If we are following a path, leave the old m_ShortPath so we can carry on following it
// until a new short path has been computed
if (m_PathState == PATHSTATE_WAITING_REQUESTING_LONG)
m_ShortPath.m_Waypoints.clear();
// If there's no waypoints then we couldn't get near the target.
// Sort of hack: Just try going directly to the goal point instead
// (via the short pathfinder), so if we're stuck and the user clicks
// close enough to the unit then we can probably get unstuck
if (m_LongPath.m_Waypoints.empty())
m_LongPath.m_Waypoints.emplace_back(Waypoint{ m_FinalGoal.x, m_FinalGoal.z });
if (!HasValidPath())
StartSucceeded();
m_PathState = PATHSTATE_FOLLOWING;
}
else if (m_PathState == PATHSTATE_WAITING_REQUESTING_SHORT)
{
m_ShortPath = path;
// If there's no waypoints then we couldn't get near the target
if (m_ShortPath.m_Waypoints.empty())
{
// If we're globally following a long path, try to remove the next waypoint, it might be obstructed
if (m_LongPath.m_Waypoints.size() > 1)
m_LongPath.m_Waypoints.pop_back();
else if (!IsFormationMember())
{
StartFailed();
return;
}
else
{
m_Moving = false;
CMessageMotionChanged msg(true, true);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
}
// Now we've got a short path that we can follow
StartSucceeded();
m_PathState = PATHSTATE_FOLLOWING;
}
else if (m_PathState == PATHSTATE_FOLLOWING_REQUESTING_SHORT)
{
// Replace the current path with the new one
m_ShortPath = path;
// If there's no waypoints then we couldn't get near the target
if (m_ShortPath.m_Waypoints.empty())
{
// We should stop moving (unless we're in a formation, in which
// case we should continue following it)
if (!IsFormationMember())
{
MoveFailed();
return;
}
else
{
m_Moving = false;
CMessageMotionChanged msg(false, true);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
}
m_PathState = PATHSTATE_FOLLOWING;
}
else
{
LOGWARNING("unexpected PathResult (%u %d %d)", GetEntityId(), m_State, m_PathState);
}
}
void CCmpUnitMotion::Move(fixed dt)
{
PROFILE("Move");
if (m_State == STATE_STOPPING)
{
m_State = STATE_IDLE;
MoveSucceeded();
return;
}
if (m_State == STATE_IDLE)
return;
switch (m_PathState)
{
case PATHSTATE_NONE:
{
// If we're not pathing, do nothing
return;
}
case PATHSTATE_WAITING_REQUESTING_LONG:
case PATHSTATE_WAITING_REQUESTING_SHORT:
{
// If we're waiting for a path and don't have one yet, do nothing
return;
}
case PATHSTATE_FOLLOWING:
case PATHSTATE_FOLLOWING_REQUESTING_SHORT:
case PATHSTATE_FOLLOWING_REQUESTING_LONG:
{
// TODO: there's some asymmetry here when units look at other
// units' positions - the result will depend on the order of execution.
// Maybe we should split the updates into multiple phases to minimise
// that problem.
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return;
CFixedVector2D initialPos = cmpPosition->GetPosition2D();
// If we're chasing a potentially-moving unit and are currently close
// enough to its current position, and we can head in a straight line
// to it, then throw away our current path and go straight to it
if (m_PathState == PATHSTATE_FOLLOWING)
TryGoingStraightToTargetEntity(initialPos);
// Keep track of the current unit's position during the update
CFixedVector2D pos = initialPos;
// If in formation, run to keep up; otherwise just walk
// (TODO: support stamina, charging, etc)
fixed basicSpeed;
if (IsFormationMember())
basicSpeed = GetRunSpeed();
else
basicSpeed = m_Speed; // (typically but not always WalkSpeed)
// Find the speed factor of the underlying terrain
// (We only care about the tile we start on - it doesn't matter if we're moving
// partially onto a much slower/faster tile)
// TODO: Terrain-dependent speeds are not currently supported
fixed terrainSpeed = fixed::FromInt(1);
fixed maxSpeed = basicSpeed.Multiply(terrainSpeed);
bool wasObstructed = false;
// We want to move (at most) maxSpeed*dt units from pos towards the next waypoint
fixed timeLeft = dt;
fixed zero = fixed::Zero();
while (timeLeft > zero)
{
// If we ran out of path, we have to stop
if (m_ShortPath.m_Waypoints.empty() && m_LongPath.m_Waypoints.empty())
break;
CFixedVector2D target;
if (m_ShortPath.m_Waypoints.empty())
target = CFixedVector2D(m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z);
else
target = CFixedVector2D(m_ShortPath.m_Waypoints.back().x, m_ShortPath.m_Waypoints.back().z);
CFixedVector2D offset = target - pos;
// Work out how far we can travel in timeLeft
fixed maxdist = maxSpeed.Multiply(timeLeft);
// If the target is close, we can move there directly
fixed offsetLength = offset.Length();
if (offsetLength <= maxdist)
{
if (CheckMovement(pos.X, pos.Y, target.X, target.Y))
{
pos = target;
// Spend the rest of the time heading towards the next waypoint
timeLeft = timeLeft - (offsetLength / maxSpeed);
if (m_ShortPath.m_Waypoints.empty())
{
m_LongPath.m_Waypoints.pop_back();
PlanNextStep(pos);
}
else
m_ShortPath.m_Waypoints.pop_back();
continue;
}
else
{
// Error - path was obstructed
wasObstructed = true;
break;
}
}
else
{
// Not close enough, so just move in the right direction
offset.Normalize(maxdist);
target = pos + offset;
if (CheckMovement(pos.X, pos.Y, target.X, target.Y))
{
pos = target;
break;
}
else
{
// Error - path was obstructed
wasObstructed = true;
break;
}
}
}
// Update the Position component after our movement (if we actually moved anywhere)
if (pos != initialPos)
{
CFixedVector2D offset = pos - initialPos;
// Face towards the target
entity_angle_t angle = atan2_approx(offset.X, offset.Y);
cmpPosition->MoveAndTurnTo(pos.X,pos.Y, angle);
// Calculate the mean speed over this past turn.
m_CurSpeed = cmpPosition->GetDistanceTravelled() / dt;
}
if (wasObstructed)
{
// Oops, we hit something (very likely another unit, or a new obstruction).
// Stop, and recompute the whole path.
// TODO: if the target has UnitMotion and is higher priority,
// we should wait a little bit.
// Recompute our path
// If we are following a long path and it is still valid
if (!m_LongPath.m_Waypoints.empty() && !m_PassabilityMapChangedRecently)
{
PathGoal goal = { PathGoal::POINT, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z };
RequestShortPath(pos, goal, true);
m_PathState = PATHSTATE_WAITING_REQUESTING_SHORT;
return;
}
// Else, just entirely recompute
BeginPathing(pos, m_FinalGoal);
// TODO: check where the collision was and move slightly.
return;
}
// We successfully moved along our path, until running out of
// waypoints or time.
if (m_PathState == PATHSTATE_FOLLOWING)
{
// If we're not currently computing any new paths:
if (m_LongPath.m_Waypoints.empty() && m_ShortPath.m_Waypoints.empty())
{
if (IsFormationMember())
{
// We've reached our assigned position. If the controller
// is idle, send a notification in case it should disband,
// otherwise continue following the formation next turn.
CmpPtr cmpUnitMotion(GetSimContext(), m_TargetEntity);
if (cmpUnitMotion && !cmpUnitMotion->IsMoving())
{
m_Moving = false;
CMessageMotionChanged msg(false, false);
GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg);
}
}
else
{
// check if target was reached in case of a moving target
CmpPtr cmpUnitMotion(GetSimContext(), m_TargetEntity);
if (cmpUnitMotion && cmpUnitMotion->IsMoving() &&
MoveToTargetRange(m_TargetEntity, m_TargetMinRange, m_TargetMaxRange))
return;
// Not in formation, so just finish moving
StopMoving();
m_State = STATE_IDLE;
MoveSucceeded();
if (m_FacePointAfterMove)
FaceTowardsPointFromPos(pos, m_FinalGoal.x, m_FinalGoal.z);
// TODO: if the goal was a square building, we ought to point towards the
// nearest point on the square, not towards its center
}
}
// If we have a target entity, and we're not miles away from the end of
// our current path, and the target moved enough, then recompute our
// whole path
if (IsFormationMember())
CheckTargetMovement(pos, CHECK_TARGET_MOVEMENT_MIN_DELTA_FORMATION);
else
CheckTargetMovement(pos, CHECK_TARGET_MOVEMENT_MIN_DELTA);
}
}
}
}
void CCmpUnitMotion::PlanNextStep(const CFixedVector2D& pos)
{
if (m_LongPath.m_Waypoints.empty())
return;
const Waypoint& nextPoint = m_LongPath.m_Waypoints.back();
// The next step was obstructed the last time we checked; also check that
// the step is still obstructed (maybe the units in our way moved in the meantime)
if (!m_Planning.nextStepClean && CheckMovement(pos.X, pos.Y, nextPoint.x, nextPoint.z))
{
// If the short path computation is over, use it, else just forget about it
if (!m_Planning.nextStepShortPath.m_Waypoints.empty())
{
m_PathState = PATHSTATE_FOLLOWING;
m_ShortPath = m_Planning.nextStepShortPath;
}
}
m_Planning = SUnitMotionPlanning();
if (m_LongPath.m_Waypoints.size() == 1)
return;
const Waypoint& followingPoint = m_LongPath.m_Waypoints.rbegin()[1]; // penultimate element
m_Planning.nextStepClean = CheckMovement(nextPoint.x, nextPoint.z, followingPoint.x, followingPoint.z);
if (!m_Planning.nextStepClean)
{
CmpPtr cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return;
PathGoal goal = { PathGoal::POINT, followingPoint.x, followingPoint.z };
m_Planning.expectedPathTicket = cmpPathfinder->ComputeShortPathAsync(
nextPoint.x, nextPoint.z, m_Clearance, SHORT_PATH_SEARCH_RANGE, goal, m_PassClass, false, m_TargetEntity, GetEntityId());
}
}
bool CCmpUnitMotion::ComputeTargetPosition(CFixedVector2D& out)
{
if (m_TargetEntity == INVALID_ENTITY)
return false;
CmpPtr cmpPosition(GetSimContext(), m_TargetEntity);
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
if (m_TargetOffset.IsZero())
{
// No offset, just return the position directly
out = cmpPosition->GetPosition2D();
}
else
{
// There is an offset, so compute it relative to orientation
entity_angle_t angle = cmpPosition->GetRotation().Y;
CFixedVector2D offset = m_TargetOffset.Rotate(angle);
out = cmpPosition->GetPosition2D() + offset;
}
return true;
}
bool CCmpUnitMotion::TryGoingStraightToGoalPoint(const CFixedVector2D& from)
{
// Make sure the goal is a point (and not a point-like target like a formation controller)
if (m_FinalGoal.type != PathGoal::POINT || m_TargetEntity != INVALID_ENTITY)
return false;
// Fail if the goal is too far away
CFixedVector2D goalPos(m_FinalGoal.x, m_FinalGoal.z);
if ((goalPos - from).CompareLength(DIRECT_PATH_RANGE) > 0)
return false;
CmpPtr cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return false;
// Check if there's any collisions on that route
if (!cmpPathfinder->CheckMovement(GetObstructionFilter(true), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass))
return false;
// That route is okay, so update our path
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y });
return true;
}
bool CCmpUnitMotion::TryGoingStraightToTargetEntity(const CFixedVector2D& from)
{
CFixedVector2D targetPos;
if (!ComputeTargetPosition(targetPos))
return false;
// Fail if the target is too far away
if ((targetPos - from).CompareLength(DIRECT_PATH_RANGE) > 0)
return false;
CmpPtr cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return false;
// Move the goal to match the target entity's new position
PathGoal goal = m_FinalGoal;
goal.x = targetPos.X;
goal.z = targetPos.Y;
// (we ignore changes to the target's rotation, since only buildings are
// square and buildings don't move)
// Find the point on the goal shape that we should head towards
CFixedVector2D goalPos = goal.NearestPointOnGoal(from);
// Check if there's any collisions on that route
if (!cmpPathfinder->CheckMovement(GetObstructionFilter(true), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass))
return false;
// That route is okay, so update our path
m_FinalGoal = goal;
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y });
return true;
}
bool CCmpUnitMotion::CheckTargetMovement(const CFixedVector2D& from, entity_pos_t minDelta)
{
CFixedVector2D targetPos;
if (!ComputeTargetPosition(targetPos))
return false;
// Fail unless the target has moved enough
CFixedVector2D oldTargetPos(m_FinalGoal.x, m_FinalGoal.z);
if ((targetPos - oldTargetPos).CompareLength(minDelta) < 0)
return false;
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
CFixedVector2D pos = cmpPosition->GetPosition2D();
CFixedVector2D oldDir = (oldTargetPos - pos);
CFixedVector2D newDir = (targetPos - pos);
oldDir.Normalize();
newDir.Normalize();
// Fail unless we're close enough to the target to care about its movement
// and the angle between the (straight-line) directions of the previous and new target positions is small
if (oldDir.Dot(newDir) > CHECK_TARGET_MOVEMENT_MIN_COS && !PathIsShort(m_LongPath, from, CHECK_TARGET_MOVEMENT_AT_MAX_DIST))
return false;
// Fail if the target is no longer visible to this entity's owner
// (in which case we'll continue moving to its last known location,
// unless it comes back into view before we reach that location)
CmpPtr cmpOwnership(GetEntityHandle());
if (cmpOwnership)
{
CmpPtr cmpRangeManager(GetSystemEntity());
if (cmpRangeManager)
{
if (cmpRangeManager->GetLosVisibility(m_TargetEntity, cmpOwnership->GetOwner()) == ICmpRangeManager::VIS_HIDDEN)
return false;
}
}
// The target moved and we need to update our current path;
// change the goal here and expect our caller to start the path request
m_FinalGoal.x = targetPos.X;
m_FinalGoal.z = targetPos.Y;
RequestLongPath(from, m_FinalGoal);
m_PathState = PATHSTATE_FOLLOWING_REQUESTING_LONG;
return true;
}
bool CCmpUnitMotion::PathIsShort(const WaypointPath& path, const CFixedVector2D& from, entity_pos_t minDistance) const
{
CFixedVector2D prev = from;
entity_pos_t distLeft = minDistance;
for (ssize_t i = (ssize_t)path.m_Waypoints.size()-1; i >= 0; --i)
{
// Check if the next path segment is longer than the requested minimum
CFixedVector2D waypoint(path.m_Waypoints[i].x, path.m_Waypoints[i].z);
CFixedVector2D delta = waypoint - prev;
if (delta.CompareLength(distLeft) > 0)
return false;
// Still short enough - prepare to check the next segment
distLeft -= delta.Length();
prev = waypoint;
}
// Reached the end of the path before exceeding minDistance
return true;
}
void CCmpUnitMotion::FaceTowardsPoint(entity_pos_t x, entity_pos_t z)
{
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return;
CFixedVector2D pos = cmpPosition->GetPosition2D();
FaceTowardsPointFromPos(pos, x, z);
}
void CCmpUnitMotion::FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z)
{
CFixedVector2D target(x, z);
CFixedVector2D offset = target - pos;
if (!offset.IsZero())
{
entity_angle_t angle = atan2_approx(offset.X, offset.Y);
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition)
return;
cmpPosition->TurnTo(angle);
}
}
ControlGroupMovementObstructionFilter CCmpUnitMotion::GetObstructionFilter(bool avoidPathfindingShapes) const
{
entity_id_t group;
if (IsFormationMember())
group = m_TargetEntity;
else
group = GetEntityId();
return ControlGroupMovementObstructionFilter(avoidPathfindingShapes, ShouldAvoidMovingUnits(), group);
}
bool CCmpUnitMotion::CheckMovement(entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1) const
{
// If the passability map has changed, we have to check everything in our way until we compute a new path.
if (m_PassabilityMapChangedRecently)
{
CmpPtr cmpPathfinder(GetSystemEntity());
return cmpPathfinder && cmpPathfinder->CheckMovement(GetObstructionFilter(true), x0, z0, x1, z1, m_Clearance, m_PassClass);
}
// If an obstruction blocks tile-based pathfinding, it will be handled during the path computation
// and doesn't need to be matched by this filter for the movement.
ControlGroupMovementObstructionFilter filter = GetObstructionFilter(false);
CmpPtr cmpObstructionManager(GetSystemEntity());
return cmpObstructionManager && !cmpObstructionManager->TestLine(filter, x0, z0, x1, z1, m_Clearance);
}
void CCmpUnitMotion::BeginPathing(const CFixedVector2D& from, const PathGoal& goal)
{
// Cancel any pending path requests
m_ExpectedPathTicket = 0;
// Update the unit's movement status.
m_Moving = true;
// Set our 'moving' flag, so other units pathfinding now will ignore us
CmpPtr cmpObstruction(GetEntityHandle());
if (cmpObstruction)
cmpObstruction->SetMovingFlag(true);
// We are going to recompute our path, so we will use the most recent passability grid
m_PassabilityMapChangedRecently = false;
#if DISABLE_PATHFINDER
{
CmpPtr cmpPathfinder (GetSimContext(), SYSTEM_ENTITY);
CFixedVector2D goalPos = m_FinalGoal.NearestPointOnGoal(from);
m_LongPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.clear();
m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y });
m_PathState = PATHSTATE_FOLLOWING;
return;
}
#endif
// If we're aiming at a target entity and it's close and we can reach
// it in a straight line, then we'll just go along the straight line
// instead of computing a path.
if (TryGoingStraightToTargetEntity(from))
{
if (!HasValidPath())
StartSucceeded();
m_PathState = PATHSTATE_FOLLOWING;
return;
}
// Same thing applies to non-entity points
if (TryGoingStraightToGoalPoint(from))
{
if (!HasValidPath())
StartSucceeded();
m_PathState = PATHSTATE_FOLLOWING;
return;
}
// Otherwise we need to compute a path.
// If it's close then just do a short path, not a long path
// TODO: If it's close on the opposite side of a river then we really
// need a long path, so we shouldn't simply check linear distance
if (goal.DistanceToPoint(from) < SHORT_PATH_SEARCH_RANGE)
{
m_LongPath.m_Waypoints.clear();
m_PathState = PATHSTATE_WAITING_REQUESTING_SHORT;
RequestShortPath(from, goal, true);
}
else
{
m_PathState = PATHSTATE_WAITING_REQUESTING_LONG;
RequestLongPath(from, goal);
}
}
void CCmpUnitMotion::RequestLongPath(const CFixedVector2D& from, const PathGoal& goal)
{
CmpPtr cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return;
PathGoal improvedGoal = goal;
improvedGoal.maxdist = SHORT_PATH_SEARCH_RANGE / 2;
cmpPathfinder->SetDebugPath(from.X, from.Y, improvedGoal, m_PassClass);
m_ExpectedPathTicket = cmpPathfinder->ComputePathAsync(from.X, from.Y, improvedGoal, m_PassClass, GetEntityId());
}
void CCmpUnitMotion::RequestShortPath(const CFixedVector2D &from, const PathGoal& goal, bool avoidMovingUnits)
{
CmpPtr cmpPathfinder(GetSystemEntity());
if (!cmpPathfinder)
return;
m_ExpectedPathTicket = cmpPathfinder->ComputeShortPathAsync(from.X, from.Y, m_Clearance, SHORT_PATH_SEARCH_RANGE, goal, m_PassClass, avoidMovingUnits, m_TargetEntity, GetEntityId());
}
bool CCmpUnitMotion::MoveToPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange)
{
return MoveToPointRange(x, z, minRange, maxRange, INVALID_ENTITY);
}
bool CCmpUnitMotion::MoveToPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange, entity_id_t target)
{
PROFILE("MoveToPointRange");
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
CFixedVector2D pos = cmpPosition->GetPosition2D();
PathGoal goal;
goal.x = x;
goal.z = z;
if (minRange.IsZero() && maxRange.IsZero())
{
// Non-ranged movement:
// Head directly for the goal
goal.type = PathGoal::POINT;
}
else
{
// Ranged movement:
entity_pos_t distance = (pos - CFixedVector2D(x, z)).Length();
if (distance < minRange)
{
// Too close to target - move outwards to a circle
// that's slightly larger than the min range
goal.type = PathGoal::INVERTED_CIRCLE;
goal.hw = minRange + Pathfinding::GOAL_DELTA;
}
else if (maxRange >= entity_pos_t::Zero() && distance > maxRange)
{
// Too far from target - move inwards to a circle
// that's slightly smaller than the max range
goal.type = PathGoal::CIRCLE;
goal.hw = maxRange - Pathfinding::GOAL_DELTA;
// If maxRange was abnormally small,
// collapse the circle into a point
if (goal.hw <= entity_pos_t::Zero())
goal.type = PathGoal::POINT;
}
else
{
// We're already in range - no need to move anywhere
if (m_FacePointAfterMove)
FaceTowardsPointFromPos(pos, x, z);
return false;
}
}
m_State = STATE_INDIVIDUAL_PATH;
m_TargetEntity = target;
m_TargetOffset = CFixedVector2D();
m_TargetMinRange = minRange;
m_TargetMaxRange = maxRange;
m_FinalGoal = goal;
BeginPathing(pos, goal);
return true;
}
bool CCmpUnitMotion::IsInPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange)
{
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
CFixedVector2D pos = cmpPosition->GetPosition2D();
bool hasObstruction = false;
CmpPtr cmpObstructionManager(GetSystemEntity());
ICmpObstructionManager::ObstructionSquare obstruction;
//TODO if (cmpObstructionManager)
// hasObstruction = cmpObstructionManager->FindMostImportantObstruction(GetObstructionFilter(true), x, z, m_Radius, obstruction);
if (minRange.IsZero() && maxRange.IsZero() && hasObstruction)
{
// Handle the non-ranged mode:
CFixedVector2D halfSize(obstruction.hw, obstruction.hh);
entity_pos_t distance = Geometry::DistanceToSquare(pos - CFixedVector2D(obstruction.x, obstruction.z), obstruction.u, obstruction.v, halfSize);
// See if we're too close to the target square
if (distance < minRange)
return false;
// See if we're close enough to the target square
if (maxRange < entity_pos_t::Zero() || distance <= maxRange)
return true;
return false;
}
else
{
entity_pos_t distance = (pos - CFixedVector2D(x, z)).Length();
if (distance < minRange)
return false;
else if (maxRange >= entity_pos_t::Zero() && distance > maxRange)
return false;
else
return true;
}
}
bool CCmpUnitMotion::ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t hw, entity_pos_t hh, entity_pos_t circleRadius) const
{
// Given a square, plus a target range we should reach, the shape at that distance
// is a round-cornered square which we can approximate as either a circle or as a square.
// Choose the shape that will minimise the worst-case error:
// For a square, error is (sqrt(2)-1) * range at the corners
entity_pos_t errSquare = (entity_pos_t::FromInt(4142)/10000).Multiply(range);
// For a circle, error is radius-hw at the sides and radius-hh at the top/bottom
entity_pos_t errCircle = circleRadius - std::min(hw, hh);
return (errCircle < errSquare);
}
bool CCmpUnitMotion::MoveToTargetRange(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange)
{
PROFILE("MoveToTargetRange");
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
CFixedVector2D pos = cmpPosition->GetPosition2D();
CmpPtr cmpObstructionManager(GetSystemEntity());
if (!cmpObstructionManager)
return false;
bool hasObstruction = false;
ICmpObstructionManager::ObstructionSquare obstruction;
CmpPtr cmpObstruction(GetSimContext(), target);
if (cmpObstruction)
hasObstruction = cmpObstruction->GetObstructionSquare(obstruction);
if (!hasObstruction)
{
// The target didn't have an obstruction or obstruction shape, so treat it as a point instead
CmpPtr cmpTargetPosition(GetSimContext(), target);
if (!cmpTargetPosition || !cmpTargetPosition->IsInWorld())
return false;
CFixedVector2D targetPos = cmpTargetPosition->GetPosition2D();
return MoveToPointRange(targetPos.X, targetPos.Y, minRange, maxRange);
}
/*
* If we're starting outside the maxRange, we need to move closer in.
* If we're starting inside the minRange, we need to move further out.
* These ranges are measured from the center of this entity to the edge of the target;
* we add the goal range onto the size of the target shape to get the goal shape.
* (Then we extend it outwards/inwards by a little bit to be sure we'll end up
* within the right range, in case of minor numerical inaccuracies.)
*
* There's a bit of a problem with large square targets:
* the pathfinder only lets us move to goals that are squares, but the points an equal
* distance from the target make a rounded square shape instead.
*
* When moving closer, we could shrink the goal radius to 1/sqrt(2) so the goal shape fits entirely
* within the desired rounded square, but that gives an unfair advantage to attackers who approach
* the target diagonally.
*
* If the target is small relative to the range (e.g. archers attacking anything),
* then we cheat and pretend the target is actually a circle.
* (TODO: that probably looks rubbish for things like walls?)
*
* If the target is large relative to the range (e.g. melee units attacking buildings),
* then we multiply maxRange by approx 1/sqrt(2) to guarantee they'll always aim close enough.
* (Those units should set minRange to 0 so they'll never be considered *too* close.)
*/
CFixedVector2D halfSize(obstruction.hw, obstruction.hh);
PathGoal goal;
goal.x = obstruction.x;
goal.z = obstruction.z;
entity_pos_t distance = Geometry::DistanceToSquare(pos - CFixedVector2D(obstruction.x, obstruction.z), obstruction.u, obstruction.v, halfSize);
// Compare with previous obstruction
ICmpObstructionManager::ObstructionSquare previousObstruction;
cmpObstruction->GetPreviousObstructionSquare(previousObstruction);
entity_pos_t previousDistance = Geometry::DistanceToSquare(pos - CFixedVector2D(previousObstruction.x, previousObstruction.z), obstruction.u, obstruction.v, halfSize);
if (distance < minRange && previousDistance < minRange)
{
// Too close to the square - need to move away
// Circumscribe the square
entity_pos_t circleRadius = halfSize.Length();
entity_pos_t goalDistance = minRange + Pathfinding::GOAL_DELTA;
// ensure it's far enough to not intersect the building itself (TODO is it really needed for inverted move ?)
goalDistance = std::max(goalDistance, m_Clearance + entity_pos_t::FromInt(TERRAIN_TILE_SIZE)/16);
if (ShouldTreatTargetAsCircle(minRange, obstruction.hw, obstruction.hh, circleRadius))
{
// The target is small relative to our range, so pretend it's a circle
goal.type = PathGoal::INVERTED_CIRCLE;
goal.hw = goalDistance;
}
else
{
goal.type = PathGoal::INVERTED_SQUARE;
goal.u = obstruction.u;
goal.v = obstruction.v;
goal.hw = obstruction.hw + goalDistance;
goal.hh = obstruction.hh + goalDistance;
}
}
else if (maxRange < entity_pos_t::Zero() || distance < maxRange || previousDistance < maxRange)
{
// We're already in range - no need to move anywhere
FaceTowardsPointFromPos(pos, goal.x, goal.z);
return false;
}
else
{
// We might need to move closer:
// Circumscribe the square
entity_pos_t circleRadius = halfSize.Length();
if (ShouldTreatTargetAsCircle(maxRange, obstruction.hw, obstruction.hh, circleRadius))
{
// The target is small relative to our range, so pretend it's a circle
// Note that the distance to the circle will always be less than
// the distance to the square, so the previous "distance < maxRange"
// check is still valid (though not sufficient)
entity_pos_t circleDistance = (pos - CFixedVector2D(obstruction.x, obstruction.z)).Length() - circleRadius;
entity_pos_t previousCircleDistance = (pos - CFixedVector2D(previousObstruction.x, previousObstruction.z)).Length() - circleRadius;
if (circleDistance < maxRange || previousCircleDistance < maxRange)
{
// We're already in range - no need to move anywhere
if (m_FacePointAfterMove)
FaceTowardsPointFromPos(pos, goal.x, goal.z);
return false;
}
entity_pos_t goalDistance = maxRange - Pathfinding::GOAL_DELTA;
goal.type = PathGoal::CIRCLE;
goal.hw = circleRadius + goalDistance;
}
else
{
// The target is large relative to our range, so treat it as a square and
// get close enough that the diagonals come within range
entity_pos_t goalDistance = (maxRange - Pathfinding::GOAL_DELTA)*2 / 3; // multiply by slightly less than 1/sqrt(2)
goal.type = PathGoal::SQUARE;
goal.u = obstruction.u;
goal.v = obstruction.v;
entity_pos_t delta = std::max(goalDistance, m_Clearance + entity_pos_t::FromInt(TERRAIN_TILE_SIZE)/16); // ensure it's far enough to not intersect the building itself
goal.hw = obstruction.hw + delta;
goal.hh = obstruction.hh + delta;
}
}
m_State = STATE_INDIVIDUAL_PATH;
m_TargetEntity = target;
m_TargetOffset = CFixedVector2D();
m_TargetMinRange = minRange;
m_TargetMaxRange = maxRange;
m_FinalGoal = goal;
BeginPathing(pos, goal);
return true;
}
bool CCmpUnitMotion::IsInTargetRange(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange)
{
// This function closely mirrors MoveToTargetRange - it needs to return true
// after that Move has completed
CmpPtr cmpPosition(GetEntityHandle());
if (!cmpPosition || !cmpPosition->IsInWorld())
return false;
CFixedVector2D pos = cmpPosition->GetPosition2D();
CmpPtr cmpObstructionManager(GetSystemEntity());
if (!cmpObstructionManager)
return false;
bool hasObstruction = false;
ICmpObstructionManager::ObstructionSquare obstruction;
CmpPtr cmpObstruction(GetSimContext(), target);
if (cmpObstruction)
hasObstruction = cmpObstruction->GetObstructionSquare(obstruction);
if (hasObstruction)
{
CFixedVector2D halfSize(obstruction.hw, obstruction.hh);
entity_pos_t distance = Geometry::DistanceToSquare(pos - CFixedVector2D(obstruction.x, obstruction.z), obstruction.u, obstruction.v, halfSize);
// Compare with previous obstruction
ICmpObstructionManager::ObstructionSquare previousObstruction;
cmpObstruction->GetPreviousObstructionSquare(previousObstruction);
entity_pos_t previousDistance = Geometry::DistanceToSquare(pos - CFixedVector2D(previousObstruction.x, previousObstruction.z), obstruction.u, obstruction.v, halfSize);
// See if we're too close to the target square
if (distance < minRange && previousDistance < minRange)
return false;
// See if we're close enough to the target square
if (maxRange < entity_pos_t::Zero() || distance <= maxRange || previousDistance <= maxRange)
return true;
entity_pos_t circleRadius = halfSize.Length();
if (ShouldTreatTargetAsCircle(maxRange, obstruction.hw, obstruction.hh, circleRadius))
{
// The target is small relative to our range, so pretend it's a circle
// and see if we're close enough to that.
// Also check circle around previous position.
entity_pos_t circleDistance = (pos - CFixedVector2D(obstruction.x, obstruction.z)).Length() - circleRadius;
entity_pos_t previousCircleDistance = (pos - CFixedVector2D(previousObstruction.x, previousObstruction.z)).Length() - circleRadius;
if (circleDistance <= maxRange || previousCircleDistance <= maxRange)
return true;
}
return false;
}
else
{
CmpPtr cmpTargetPosition(GetSimContext(), target);
if (!cmpTargetPosition || !cmpTargetPosition->IsInWorld())
return false;
CFixedVector2D targetPos = cmpTargetPosition->GetPreviousPosition2D();
entity_pos_t distance = (pos - targetPos).Length();
return minRange <= distance && (maxRange < entity_pos_t::Zero() || distance <= maxRange);
}
}
void CCmpUnitMotion::MoveToFormationOffset(entity_id_t target, entity_pos_t x, entity_pos_t z)
{
CmpPtr cmpPosition(GetSimContext(), target);
if (!cmpPosition || !cmpPosition->IsInWorld())
return;
CFixedVector2D pos = cmpPosition->GetPosition2D();
PathGoal goal;
goal.type = PathGoal::POINT;
goal.x = pos.X;
goal.z = pos.Y;
m_State = STATE_FORMATIONMEMBER_PATH;
m_TargetEntity = target;
m_TargetOffset = CFixedVector2D(x, z);
m_TargetMinRange = entity_pos_t::Zero();
m_TargetMaxRange = entity_pos_t::Zero();
m_FinalGoal = goal;
BeginPathing(pos, goal);
}
void CCmpUnitMotion::RenderPath(const WaypointPath& path, std::vector& lines, CColor color)
{
bool floating = false;
CmpPtr cmpPosition(GetEntityHandle());
if (cmpPosition)
floating = cmpPosition->IsFloating();
lines.clear();
std::vector waypointCoords;
for (size_t i = 0; i < path.m_Waypoints.size(); ++i)
{
float x = path.m_Waypoints[i].x.ToFloat();
float z = path.m_Waypoints[i].z.ToFloat();
waypointCoords.push_back(x);
waypointCoords.push_back(z);
lines.push_back(SOverlayLine());
lines.back().m_Color = color;
SimRender::ConstructSquareOnGround(GetSimContext(), x, z, 1.0f, 1.0f, 0.0f, lines.back(), floating);
}
lines.push_back(SOverlayLine());
lines.back().m_Color = color;
SimRender::ConstructLineOnGround(GetSimContext(), waypointCoords, lines.back(), floating);
}
void CCmpUnitMotion::RenderSubmit(SceneCollector& collector)
{
if (!m_DebugOverlayEnabled)
return;
RenderPath(m_LongPath, m_DebugOverlayLongPathLines, OVERLAY_COLOR_LONG_PATH);
RenderPath(m_ShortPath, m_DebugOverlayShortPathLines, OVERLAY_COLOR_SHORT_PATH);
for (size_t i = 0; i < m_DebugOverlayLongPathLines.size(); ++i)
collector.Submit(&m_DebugOverlayLongPathLines[i]);
for (size_t i = 0; i < m_DebugOverlayShortPathLines.size(); ++i)
collector.Submit(&m_DebugOverlayShortPathLines[i]);
}