/* Copyright (C) 2015 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ /** * @file * Common code and setup code for CCmpPathfinder. */ #include "precompiled.h" #include "CCmpPathfinder_Common.h" #include "ps/CLogger.h" #include "ps/CStr.h" #include "ps/Profile.h" #include "ps/XML/Xeromyces.h" #include "renderer/Scene.h" #include "simulation2/MessageTypes.h" #include "simulation2/components/ICmpObstruction.h" #include "simulation2/components/ICmpObstructionManager.h" #include "simulation2/components/ICmpTerrain.h" #include "simulation2/components/ICmpWaterManager.h" #include "simulation2/helpers/Rasterize.h" #include "simulation2/serialization/SerializeTemplates.h" REGISTER_COMPONENT_TYPE(Pathfinder) void CCmpPathfinder::Init(const CParamNode& UNUSED(paramNode)) { m_MapSize = 0; m_Grid = NULL; m_TerrainOnlyGrid = NULL; m_ObstructionsDirty.Clean(); m_PreserveUpdateInformations = false; m_NextAsyncTicket = 1; m_DebugOverlay = false; m_AtlasOverlay = NULL; m_SameTurnMovesCount = 0; // Register Relax NG validator CXeromyces::AddValidator(g_VFS, "pathfinder", "simulation/data/pathfinder.rng"); // Since this is used as a system component (not loaded from an entity template), // we can't use the real paramNode (it won't get handled properly when deserializing), // so load the data from a special XML file. CParamNode externalParamNode; CParamNode::LoadXML(externalParamNode, L"simulation/data/pathfinder.xml", "pathfinder"); // Previously all move commands during a turn were // queued up and processed asynchronously at the start // of the next turn. Now we are processing queued up // events several times duing the turn. This improves // responsiveness and units move more smoothly especially. // when in formation. There is still a call at the // beginning of a turn to process all outstanding moves - // this will handle any moves above the MaxSameTurnMoves // threshold. // // TODO - The moves processed at the beginning of the // turn do not count against the maximum moves per turn // currently. The thinking is that this will eventually // happen in another thread. Either way this probably // will require some adjustment and rethinking. const CParamNode pathingSettings = externalParamNode.GetChild("Pathfinder"); m_MaxSameTurnMoves = (u16)pathingSettings.GetChild("MaxSameTurnMoves").ToInt(); const CParamNode::ChildrenMap& passClasses = externalParamNode.GetChild("Pathfinder").GetChild("PassabilityClasses").GetChildren(); for (CParamNode::ChildrenMap::const_iterator it = passClasses.begin(); it != passClasses.end(); ++it) { std::string name = it->first; ENSURE((int)m_PassClasses.size() <= PASS_CLASS_BITS); pass_class_t mask = PASS_CLASS_MASK_FROM_INDEX(m_PassClasses.size()); m_PassClasses.push_back(PathfinderPassability(mask, it->second)); m_PassClassMasks[name] = mask; } } void CCmpPathfinder::Deinit() { SetDebugOverlay(false); // cleans up memory SAFE_DELETE(m_AtlasOverlay); SAFE_DELETE(m_Grid); SAFE_DELETE(m_TerrainOnlyGrid); } struct SerializeLongRequest { template void operator()(S& serialize, const char* UNUSED(name), AsyncLongPathRequest& value) { serialize.NumberU32_Unbounded("ticket", value.ticket); serialize.NumberFixed_Unbounded("x0", value.x0); serialize.NumberFixed_Unbounded("z0", value.z0); SerializeGoal()(serialize, "goal", value.goal); serialize.NumberU16_Unbounded("pass class", value.passClass); serialize.NumberU32_Unbounded("notify", value.notify); } }; struct SerializeShortRequest { template void operator()(S& serialize, const char* UNUSED(name), AsyncShortPathRequest& value) { serialize.NumberU32_Unbounded("ticket", value.ticket); serialize.NumberFixed_Unbounded("x0", value.x0); serialize.NumberFixed_Unbounded("z0", value.z0); serialize.NumberFixed_Unbounded("clearance", value.clearance); serialize.NumberFixed_Unbounded("range", value.range); SerializeGoal()(serialize, "goal", value.goal); serialize.NumberU16_Unbounded("pass class", value.passClass); serialize.Bool("avoid moving units", value.avoidMovingUnits); serialize.NumberU32_Unbounded("group", value.group); serialize.NumberU32_Unbounded("notify", value.notify); } }; void CCmpPathfinder::Serialize(ISerializer& serialize) { SerializeVector()(serialize, "long requests", m_AsyncLongPathRequests); SerializeVector()(serialize, "short requests", m_AsyncShortPathRequests); serialize.NumberU32_Unbounded("next ticket", m_NextAsyncTicket); serialize.NumberU16_Unbounded("same turn moves count", m_SameTurnMovesCount); } void CCmpPathfinder::Deserialize(const CParamNode& paramNode, IDeserializer& deserialize) { Init(paramNode); SerializeVector()(deserialize, "long requests", m_AsyncLongPathRequests); SerializeVector()(deserialize, "short requests", m_AsyncShortPathRequests); deserialize.NumberU32_Unbounded("next ticket", m_NextAsyncTicket); deserialize.NumberU16_Unbounded("same turn moves count", m_SameTurnMovesCount); } void CCmpPathfinder::HandleMessage(const CMessage& msg, bool UNUSED(global)) { switch (msg.GetType()) { case MT_RenderSubmit: { const CMessageRenderSubmit& msgData = static_cast (msg); RenderSubmit(msgData.collector); break; } case MT_TerrainChanged: m_TerrainDirty = true; MinimalTerrainUpdate(); break; case MT_WaterChanged: case MT_ObstructionMapShapeChanged: m_TerrainDirty = true; UpdateGrid(); m_PreserveUpdateInformations = true; break; case MT_TurnStart: m_SameTurnMovesCount = 0; break; } } void CCmpPathfinder::RenderSubmit(SceneCollector& collector) { for (size_t i = 0; i < m_DebugOverlayShortPathLines.size(); ++i) collector.Submit(&m_DebugOverlayShortPathLines[i]); m_LongPathfinder.HierarchicalRenderSubmit(collector); } void CCmpPathfinder::SetAtlasOverlay(bool enable, pass_class_t passClass) { if (enable) { if (!m_AtlasOverlay) m_AtlasOverlay = new AtlasOverlay(this, passClass); m_AtlasOverlay->m_PassClass = passClass; } else SAFE_DELETE(m_AtlasOverlay); } pass_class_t CCmpPathfinder::GetPassabilityClass(const std::string& name) { if (m_PassClassMasks.find(name) == m_PassClassMasks.end()) { LOGERROR("Invalid passability class name '%s'", name.c_str()); return 0; } return m_PassClassMasks[name]; } void CCmpPathfinder::GetPassabilityClasses(std::map& passClasses) const { passClasses = m_PassClassMasks; } void CCmpPathfinder::GetPassabilityClasses(std::map& nonPathfindingPassClasses, std::map& pathfindingPassClasses) const { for (auto& pair : m_PassClassMasks) { if ((GetPassabilityFromMask(pair.second)->m_Obstructions == PathfinderPassability::PATHFINDING)) pathfindingPassClasses[pair.first] = pair.second; else nonPathfindingPassClasses[pair.first] = pair.second; } } const PathfinderPassability* CCmpPathfinder::GetPassabilityFromMask(pass_class_t passClass) const { for (const PathfinderPassability& passability : m_PassClasses) { if (passability.m_Mask == passClass) return &passability; } return NULL; } const Grid& CCmpPathfinder::GetPassabilityGrid() { if (!m_Grid) { UpdateGrid(); m_PreserveUpdateInformations = true; } return *m_Grid; } /** * Given a grid of passable/impassable navcells (based on some passability mask), * computes a new grid where a navcell is impassable (per that mask) if * it is <=clearance navcells away from an impassable navcell in the original grid. * The results are ORed onto the original grid. * * This is used for adding clearance onto terrain-based navcell passability. * * TODO PATHFINDER: might be nicer to get rounded corners by measuring clearances as * Euclidean distances; currently it effectively does dist=max(dx,dy) instead. * This would only really be a problem for big clearances. */ static void ExpandImpassableCells(Grid& grid, u16 clearance, pass_class_t mask) { PROFILE3("ExpandImpassableCells"); u16 w = grid.m_W; u16 h = grid.m_H; // First expand impassable cells horizontally into a temporary 1-bit grid Grid tempGrid(w, h); for (u16 j = 0; j < h; ++j) { // New cell (i,j) is blocked if (i',j) blocked for any i-clearance <= i' <= i+clearance // Count the number of blocked cells around i=0 u16 numBlocked = 0; for (u16 i = 0; i <= clearance && i < w; ++i) if (!IS_PASSABLE(grid.get(i, j), mask)) ++numBlocked; for (u16 i = 0; i < w; ++i) { // Store a flag if blocked by at least one nearby cell if (numBlocked) tempGrid.set(i, j, 1); // Slide the numBlocked window along: // remove the old i-clearance value, add the new (i+1)+clearance // (avoiding overflowing the grid) if (i >= clearance && !IS_PASSABLE(grid.get(i-clearance, j), mask)) --numBlocked; if (i+1+clearance < w && !IS_PASSABLE(grid.get(i+1+clearance, j), mask)) ++numBlocked; } } for (u16 i = 0; i < w; ++i) { // New cell (i,j) is blocked if (i,j') blocked for any j-clearance <= j' <= j+clearance // Count the number of blocked cells around j=0 u16 numBlocked = 0; for (u16 j = 0; j <= clearance && j < h; ++j) if (tempGrid.get(i, j)) ++numBlocked; for (u16 j = 0; j < h; ++j) { // Add the mask if blocked by at least one nearby cell if (numBlocked) grid.set(i, j, grid.get(i, j) | mask); // Slide the numBlocked window along: // remove the old j-clearance value, add the new (j+1)+clearance // (avoiding overflowing the grid) if (j >= clearance && tempGrid.get(i, j-clearance)) --numBlocked; if (j+1+clearance < h && tempGrid.get(i, j+1+clearance)) ++numBlocked; } } } Grid CCmpPathfinder::ComputeShoreGrid(bool expandOnWater) { PROFILE3("ComputeShoreGrid"); CmpPtr cmpWaterManager(GetSystemEntity()); // TODO: these bits should come from ICmpTerrain CTerrain& terrain = GetSimContext().GetTerrain(); // avoid integer overflow in intermediate calculation const u16 shoreMax = 32767; // First pass - find underwater tiles Grid waterGrid(m_MapSize, m_MapSize); for (u16 j = 0; j < m_MapSize; ++j) { for (u16 i = 0; i < m_MapSize; ++i) { fixed x, z; Pathfinding::TileCenter(i, j, x, z); bool underWater = cmpWaterManager && (cmpWaterManager->GetWaterLevel(x, z) > terrain.GetExactGroundLevelFixed(x, z)); waterGrid.set(i, j, underWater ? 1 : 0); } } // Second pass - find shore tiles Grid shoreGrid(m_MapSize, m_MapSize); for (u16 j = 0; j < m_MapSize; ++j) { for (u16 i = 0; i < m_MapSize; ++i) { // Find a land tile if (!waterGrid.get(i, j)) { // If it's bordered by water, it's a shore tile if ((i > 0 && waterGrid.get(i-1, j)) || (i > 0 && j < m_MapSize-1 && waterGrid.get(i-1, j+1)) || (i > 0 && j > 0 && waterGrid.get(i-1, j-1)) || (i < m_MapSize-1 && waterGrid.get(i+1, j)) || (i < m_MapSize-1 && j < m_MapSize-1 && waterGrid.get(i+1, j+1)) || (i < m_MapSize-1 && j > 0 && waterGrid.get(i+1, j-1)) || (j > 0 && waterGrid.get(i, j-1)) || (j < m_MapSize-1 && waterGrid.get(i, j+1)) ) shoreGrid.set(i, j, 0); else shoreGrid.set(i, j, shoreMax); } // If we want to expand on water, we want water tiles not to be shore tiles else if (expandOnWater) shoreGrid.set(i, j, shoreMax); } } // Expand influences on land to find shore distance for (u16 y = 0; y < m_MapSize; ++y) { u16 min = shoreMax; for (u16 x = 0; x < m_MapSize; ++x) { if (!waterGrid.get(x, y) || expandOnWater) { u16 g = shoreGrid.get(x, y); if (g > min) shoreGrid.set(x, y, min); else if (g < min) min = g; ++min; } } for (u16 x = m_MapSize; x > 0; --x) { if (!waterGrid.get(x-1, y) || expandOnWater) { u16 g = shoreGrid.get(x-1, y); if (g > min) shoreGrid.set(x-1, y, min); else if (g < min) min = g; ++min; } } } for (u16 x = 0; x < m_MapSize; ++x) { u16 min = shoreMax; for (u16 y = 0; y < m_MapSize; ++y) { if (!waterGrid.get(x, y) || expandOnWater) { u16 g = shoreGrid.get(x, y); if (g > min) shoreGrid.set(x, y, min); else if (g < min) min = g; ++min; } } for (u16 y = m_MapSize; y > 0; --y) { if (!waterGrid.get(x, y-1) || expandOnWater) { u16 g = shoreGrid.get(x, y-1); if (g > min) shoreGrid.set(x, y-1, min); else if (g < min) min = g; ++min; } } } return shoreGrid; } void CCmpPathfinder::UpdateGrid() { PROFILE3("UpdateGrid"); CmpPtr cmpTerrain(GetSimContext(), SYSTEM_ENTITY); if (!cmpTerrain) return; // error if (!m_PreserveUpdateInformations) m_ObstructionsDirty.Clean(); else m_PreserveUpdateInformations = false; // Next time will be a regular update u16 terrainSize = cmpTerrain->GetTilesPerSide(); if (terrainSize == 0) return; // If the terrain was resized then delete the old grid data if (m_Grid && m_MapSize != terrainSize) { SAFE_DELETE(m_Grid); SAFE_DELETE(m_TerrainOnlyGrid); } // Initialise the terrain data when first needed if (!m_Grid) { m_MapSize = terrainSize; m_Grid = new Grid(m_MapSize * Pathfinding::NAVCELLS_PER_TILE, m_MapSize * Pathfinding::NAVCELLS_PER_TILE); m_TerrainOnlyGrid = new Grid(m_MapSize * Pathfinding::NAVCELLS_PER_TILE, m_MapSize * Pathfinding::NAVCELLS_PER_TILE); m_ObstructionsDirty.dirty = true; m_ObstructionsDirty.globallyDirty = true; m_ObstructionsDirty.globalRecompute = true; m_TerrainDirty = true; } CmpPtr cmpObstructionManager(GetSimContext(), SYSTEM_ENTITY); cmpObstructionManager->UpdateInformations(m_ObstructionsDirty); if (!m_ObstructionsDirty.dirty && !m_TerrainDirty) return; // If the terrain has changed, recompute m_Grid // Else, use data from m_TerrainOnlyGrid and add obstructions if (m_TerrainDirty) { TerrainUpdateHelper(); *m_Grid = *m_TerrainOnlyGrid; m_TerrainDirty = false; m_ObstructionsDirty.globalRecompute = true; m_ObstructionsDirty.globallyDirty = true; } else if (m_ObstructionsDirty.globalRecompute) { ENSURE(m_Grid->m_W == m_TerrainOnlyGrid->m_W && m_Grid->m_H == m_TerrainOnlyGrid->m_H); memcpy(m_Grid->m_Data, m_TerrainOnlyGrid->m_Data, (m_Grid->m_W)*(m_Grid->m_H)*sizeof(NavcellData)); m_ObstructionsDirty.globallyDirty = true; } else { ENSURE(m_Grid->m_W == m_ObstructionsDirty.dirtinessGrid.m_W && m_Grid->m_H == m_ObstructionsDirty.dirtinessGrid.m_H); ENSURE(m_Grid->m_W == m_TerrainOnlyGrid->m_W && m_Grid->m_H == m_TerrainOnlyGrid->m_H); for (u16 i = 0; i < m_ObstructionsDirty.dirtinessGrid.m_W; ++i) for (u16 j = 0; j < m_ObstructionsDirty.dirtinessGrid.m_H; ++j) if (m_ObstructionsDirty.dirtinessGrid.get(i, j) == 1) m_Grid->set(i, j, m_TerrainOnlyGrid->get(i, j)); } // Add obstructions onto the grid cmpObstructionManager->Rasterize(*m_Grid, m_PassClasses, m_ObstructionsDirty.globalRecompute); // Update the long-range pathfinder if (m_ObstructionsDirty.globallyDirty) { std::map nonPathfindingPassClasses, pathfindingPassClasses; GetPassabilityClasses(nonPathfindingPassClasses, pathfindingPassClasses); m_LongPathfinder.Reload(m_Grid, nonPathfindingPassClasses, pathfindingPassClasses); } else m_LongPathfinder.Update(m_Grid, m_ObstructionsDirty.dirtinessGrid); // Notify the units that their current paths can be invalid now. // The passability map will be globally dirty after init, or rejoining, loading a saved game, etc. // In those situations the paths can't be invalid. if (!m_ObstructionsDirty.globallyDirty) { CMessagePassabilityMapChanged msg; GetSimContext().GetComponentManager().BroadcastMessage(msg); } } void CCmpPathfinder::MinimalTerrainUpdate() { TerrainUpdateHelper(false); } void CCmpPathfinder::TerrainUpdateHelper(bool expandPassability) { PROFILE3("TerrainUpdateHelper"); CmpPtr cmpObstructionManager(GetSimContext(), SYSTEM_ENTITY); CmpPtr cmpWaterManager(GetSimContext(), SYSTEM_ENTITY); CmpPtr cmpTerrain(GetSimContext(), SYSTEM_ENTITY); CTerrain& terrain = GetSimContext().GetTerrain(); if (!cmpTerrain || !cmpObstructionManager) return; u16 terrainSize = cmpTerrain->GetTilesPerSide(); if (terrainSize == 0) return; if (!m_TerrainOnlyGrid || m_MapSize != terrainSize) { m_MapSize = terrainSize; SAFE_DELETE(m_TerrainOnlyGrid); m_TerrainOnlyGrid = new Grid(m_MapSize * Pathfinding::NAVCELLS_PER_TILE, m_MapSize * Pathfinding::NAVCELLS_PER_TILE); } Grid shoreGrid = ComputeShoreGrid(); // Compute initial terrain-dependent passability for (int j = 0; j < m_MapSize * Pathfinding::NAVCELLS_PER_TILE; ++j) { for (int i = 0; i < m_MapSize * Pathfinding::NAVCELLS_PER_TILE; ++i) { // World-space coordinates for this navcell fixed x, z; Pathfinding::NavcellCenter(i, j, x, z); // Terrain-tile coordinates for this navcell int itile = i / Pathfinding::NAVCELLS_PER_TILE; int jtile = j / Pathfinding::NAVCELLS_PER_TILE; // Gather all the data potentially needed to determine passability: fixed height = terrain.GetExactGroundLevelFixed(x, z); fixed water; if (cmpWaterManager) water = cmpWaterManager->GetWaterLevel(x, z); fixed depth = water - height; // Exact slopes give kind of weird output, so just use rough tile-based slopes fixed slope = terrain.GetSlopeFixed(itile, jtile); // Get world-space coordinates from shoreGrid (which uses terrain tiles) fixed shoredist = fixed::FromInt(shoreGrid.get(itile, jtile)).MultiplyClamp(TERRAIN_TILE_SIZE); // Compute the passability for every class for this cell NavcellData t = 0; for (PathfinderPassability& passability : m_PassClasses) if (!passability.IsPassable(depth, slope, shoredist)) t |= passability.m_Mask; m_TerrainOnlyGrid->set(i, j, t); } } // Compute off-world passability // WARNING: CCmpRangeManager::LosIsOffWorld needs to be kept in sync with this const int edgeSize = 3 * Pathfinding::NAVCELLS_PER_TILE; // number of tiles around the edge that will be off-world NavcellData edgeMask = 0; for (PathfinderPassability& passability : m_PassClasses) edgeMask |= passability.m_Mask; int w = m_TerrainOnlyGrid->m_W; int h = m_TerrainOnlyGrid->m_H; if (cmpObstructionManager->GetPassabilityCircular()) { for (int j = 0; j < h; ++j) { for (int i = 0; i < w; ++i) { // Based on CCmpRangeManager::LosIsOffWorld // but tweaked since it's tile-based instead. // (We double all the values so we can handle half-tile coordinates.) // This needs to be slightly tighter than the LOS circle, // else units might get themselves lost in the SoD around the edge. int dist2 = (i*2 + 1 - w)*(i*2 + 1 - w) + (j*2 + 1 - h)*(j*2 + 1 - h); if (dist2 >= (w - 2*edgeSize) * (h - 2*edgeSize)) m_TerrainOnlyGrid->set(i, j, m_TerrainOnlyGrid->get(i, j) | edgeMask); } } } else { for (u16 j = 0; j < h; ++j) for (u16 i = 0; i < edgeSize; ++i) m_TerrainOnlyGrid->set(i, j, m_TerrainOnlyGrid->get(i, j) | edgeMask); for (u16 j = 0; j < h; ++j) for (u16 i = w-edgeSize+1; i < w; ++i) m_TerrainOnlyGrid->set(i, j, m_TerrainOnlyGrid->get(i, j) | edgeMask); for (u16 j = 0; j < edgeSize; ++j) for (u16 i = edgeSize; i < w-edgeSize+1; ++i) m_TerrainOnlyGrid->set(i, j, m_TerrainOnlyGrid->get(i, j) | edgeMask); for (u16 j = h-edgeSize+1; j < h; ++j) for (u16 i = edgeSize; i < w-edgeSize+1; ++i) m_TerrainOnlyGrid->set(i, j, m_TerrainOnlyGrid->get(i, j) | edgeMask); } if (!expandPassability) return; // Expand the impassability grid, for any class with non-zero clearance, // so that we can stop units getting too close to impassable navcells. // Note: It's not possible to perform this expansion once for all passabilities // with the same clearance, because the impassable cells are not necessarily the // same for all these passabilities. for (PathfinderPassability& passability : m_PassClasses) { if (passability.m_Clearance == fixed::Zero()) continue; int clearance = (passability.m_Clearance / Pathfinding::NAVCELL_SIZE).ToInt_RoundToInfinity(); ExpandImpassableCells(*m_TerrainOnlyGrid, clearance, passability.m_Mask); } } const GridUpdateInformation& CCmpPathfinder::GetDirtinessData() const { return m_ObstructionsDirty; } ////////////////////////////////////////////////////////// // Async path requests: u32 CCmpPathfinder::ComputePathAsync(entity_pos_t x0, entity_pos_t z0, const PathGoal& goal, pass_class_t passClass, entity_id_t notify) { AsyncLongPathRequest req = { m_NextAsyncTicket++, x0, z0, goal, passClass, notify }; m_AsyncLongPathRequests.push_back(req); return req.ticket; } u32 CCmpPathfinder::ComputeShortPathAsync(entity_pos_t x0, entity_pos_t z0, entity_pos_t clearance, entity_pos_t range, const PathGoal& goal, pass_class_t passClass, bool avoidMovingUnits, entity_id_t group, entity_id_t notify) { AsyncShortPathRequest req = { m_NextAsyncTicket++, x0, z0, clearance, range, goal, passClass, avoidMovingUnits, group, notify }; m_AsyncShortPathRequests.push_back(req); return req.ticket; } void CCmpPathfinder::FinishAsyncRequests() { // Save the request queue in case it gets modified while iterating std::vector longRequests; m_AsyncLongPathRequests.swap(longRequests); std::vector shortRequests; m_AsyncShortPathRequests.swap(shortRequests); // TODO: we should only compute one path per entity per turn // TODO: this computation should be done incrementally, spread // across multiple frames (or even multiple turns) ProcessLongRequests(longRequests); ProcessShortRequests(shortRequests); } void CCmpPathfinder::ProcessLongRequests(const std::vector& longRequests) { for (size_t i = 0; i < longRequests.size(); ++i) { const AsyncLongPathRequest& req = longRequests[i]; WaypointPath path; ComputePath(req.x0, req.z0, req.goal, req.passClass, path); CMessagePathResult msg(req.ticket, path); GetSimContext().GetComponentManager().PostMessage(req.notify, msg); } } void CCmpPathfinder::ProcessShortRequests(const std::vector& shortRequests) { for (size_t i = 0; i < shortRequests.size(); ++i) { const AsyncShortPathRequest& req = shortRequests[i]; WaypointPath path; ControlGroupMovementObstructionFilter filter(true, req.avoidMovingUnits, req.group); ComputeShortPath(filter, req.x0, req.z0, req.clearance, req.range, req.goal, req.passClass, path); CMessagePathResult msg(req.ticket, path); GetSimContext().GetComponentManager().PostMessage(req.notify, msg); } } void CCmpPathfinder::ProcessSameTurnMoves() { if (!m_AsyncLongPathRequests.empty()) { // Figure out how many moves we can do this time i32 moveCount = m_MaxSameTurnMoves - m_SameTurnMovesCount; if (moveCount <= 0) return; // Copy the long request elements we are going to process into a new array std::vector longRequests; if ((i32)m_AsyncLongPathRequests.size() <= moveCount) { m_AsyncLongPathRequests.swap(longRequests); moveCount = (i32)longRequests.size(); } else { longRequests.resize(moveCount); copy(m_AsyncLongPathRequests.begin(), m_AsyncLongPathRequests.begin() + moveCount, longRequests.begin()); m_AsyncLongPathRequests.erase(m_AsyncLongPathRequests.begin(), m_AsyncLongPathRequests.begin() + moveCount); } ProcessLongRequests(longRequests); m_SameTurnMovesCount = (u16)(m_SameTurnMovesCount + moveCount); } if (!m_AsyncShortPathRequests.empty()) { // Figure out how many moves we can do now i32 moveCount = m_MaxSameTurnMoves - m_SameTurnMovesCount; if (moveCount <= 0) return; // Copy the short request elements we are going to process into a new array std::vector shortRequests; if ((i32)m_AsyncShortPathRequests.size() <= moveCount) { m_AsyncShortPathRequests.swap(shortRequests); moveCount = (i32)shortRequests.size(); } else { shortRequests.resize(moveCount); copy(m_AsyncShortPathRequests.begin(), m_AsyncShortPathRequests.begin() + moveCount, shortRequests.begin()); m_AsyncShortPathRequests.erase(m_AsyncShortPathRequests.begin(), m_AsyncShortPathRequests.begin() + moveCount); } ProcessShortRequests(shortRequests); m_SameTurnMovesCount = (u16)(m_SameTurnMovesCount + moveCount); } } ////////////////////////////////////////////////////////// bool CCmpPathfinder::CheckMovement(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r, pass_class_t passClass) { // Test against obstructions first. filter may discard pathfinding-blocking obstructions. CmpPtr cmpObstructionManager(GetSystemEntity()); if (!cmpObstructionManager || cmpObstructionManager->TestLine(filter, x0, z0, x1, z1, r)) return false; // Then test against the passability grid. return Pathfinding::CheckLineMovement(x0, z0, x1, z1, passClass, *m_Grid); } ICmpObstruction::EFoundationCheck CCmpPathfinder::CheckUnitPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r, pass_class_t passClass, bool UNUSED(onlyCenterPoint)) { // Check unit obstruction CmpPtr cmpObstructionManager(GetSystemEntity()); if (!cmpObstructionManager) return ICmpObstruction::FOUNDATION_CHECK_FAIL_ERROR; if (cmpObstructionManager->TestUnitShape(filter, x, z, r, NULL)) return ICmpObstruction::FOUNDATION_CHECK_FAIL_OBSTRUCTS_FOUNDATION; // Test against terrain and static obstructions: u16 i, j; Pathfinding::NearestNavcell(x, z, i, j, m_MapSize*Pathfinding::NAVCELLS_PER_TILE, m_MapSize*Pathfinding::NAVCELLS_PER_TILE); if (!IS_PASSABLE(m_Grid->get(i, j), passClass)) return ICmpObstruction::FOUNDATION_CHECK_FAIL_TERRAIN_CLASS; // (Static obstructions will be redundantly tested against in both the // obstruction-shape test and navcell-passability test, which is slightly // inefficient but shouldn't affect behaviour) return ICmpObstruction::FOUNDATION_CHECK_SUCCESS; } ICmpObstruction::EFoundationCheck CCmpPathfinder::CheckBuildingPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h, entity_id_t id, pass_class_t passClass) { return CCmpPathfinder::CheckBuildingPlacement(filter, x, z, a, w, h, id, passClass, false); } ICmpObstruction::EFoundationCheck CCmpPathfinder::CheckBuildingPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h, entity_id_t id, pass_class_t passClass, bool UNUSED(onlyCenterPoint)) { // Check unit obstruction CmpPtr cmpObstructionManager(GetSystemEntity()); if (!cmpObstructionManager) return ICmpObstruction::FOUNDATION_CHECK_FAIL_ERROR; if (cmpObstructionManager->TestStaticShape(filter, x, z, a, w, h, NULL)) return ICmpObstruction::FOUNDATION_CHECK_FAIL_OBSTRUCTS_FOUNDATION; // Test against terrain: ICmpObstructionManager::ObstructionSquare square; CmpPtr cmpObstruction(GetSimContext(), id); if (!cmpObstruction || !cmpObstruction->GetObstructionSquare(square)) return ICmpObstruction::FOUNDATION_CHECK_FAIL_NO_OBSTRUCTION; entity_pos_t expand; const PathfinderPassability* passability = GetPassabilityFromMask(passClass); if (passability) expand = passability->m_Clearance; SimRasterize::Spans spans; SimRasterize::RasterizeRectWithClearance(spans, square, expand, Pathfinding::NAVCELL_SIZE); for (const SimRasterize::Span& span : spans) { i16 i0 = span.i0; i16 i1 = span.i1; i16 j = span.j; // Fail if any span extends outside the grid if (i0 < 0 || i1 > m_TerrainOnlyGrid->m_W || j < 0 || j > m_TerrainOnlyGrid->m_H) return ICmpObstruction::FOUNDATION_CHECK_FAIL_TERRAIN_CLASS; // Fail if any span includes an impassable tile for (i16 i = i0; i < i1; ++i) if (!IS_PASSABLE(m_TerrainOnlyGrid->get(i, j), passClass)) return ICmpObstruction::FOUNDATION_CHECK_FAIL_TERRAIN_CLASS; } return ICmpObstruction::FOUNDATION_CHECK_SUCCESS; }