/* Copyright (C) 2010 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see .
*/
#include "precompiled.h"
#include "Fixed.h"
#include "ps/CStr.h"
#include
template<>
CFixed_15_16 CFixed_15_16::FromString(const CStr8& s)
{
// Parse a superset of the xsd:decimal syntax: [-+]?\d*(\.\d*)?
if (s.empty())
return CFixed_15_16::Zero();
bool neg = false;
CFixed_15_16 r;
const char* c = &s[0];
if (*c == '+')
{
++c;
}
else if (*c == '-')
{
++c;
neg = true;
}
while (true)
{
// Integer part:
if (*c >= '0' && *c <= '9')
{
r = r * 10; // TODO: handle overflow gracefully, maybe
r += CFixed_15_16::FromInt(*c - '0');
++c;
}
else if (*c == '.')
{
++c;
u32 frac = 0;
u32 div = 1;
// Fractional part
while (*c >= '0' && *c <= '9')
{
frac *= 10;
frac += (*c - '0');
div *= 10;
++c;
if (div >= 100000)
{
// any further digits will be too small to have any major effect
break;
}
}
// too many digits or invalid character or end of string - add the fractional part and stop
r += CFixed_15_16(((u64)frac << 16) / div);
break;
}
else
{
// invalid character or end of string
break;
}
}
return (neg ? -r : r);
}
template<>
CFixed_15_16 CFixed_15_16::FromString(const CStrW& s)
{
return FromString(s.ToUTF8());
}
template<>
CStr8 CFixed_15_16::ToString() const
{
std::stringstream r;
u32 posvalue = abs(value);
if (value < 0)
r << "-";
r << (posvalue >> fract_bits);
u16 fraction = posvalue & ((1 << fract_bits) - 1);
if (fraction)
{
r << ".";
u32 frac = 0;
u32 div = 1;
// Do the inverse of FromString: Keep adding digits until (frac<<16)/div == expected fraction
while (true)
{
frac *= 10;
div *= 10;
// Low estimate of d such that ((frac+d)<<16)/div == fraction
u32 digit = (((u64)fraction*div) >> 16) - frac;
frac += digit;
// If this gives the exact target, then add the digit and stop
if (((u64)frac << 16) / div == fraction)
{
r << digit;
break;
}
// If the next higher digit gives the exact target, then add that digit and stop
if (digit <= 8 && (((u64)frac+1) << 16) / div == fraction)
{
r << digit+1;
break;
}
// Otherwise add the digit and continue
r << digit;
}
}
return r.str();
}
// Based on http://www.dspguru.com/dsp/tricks/fixed-point-atan2-with-self-normalization
CFixed_15_16 atan2_approx(CFixed_15_16 y, CFixed_15_16 x)
{
CFixed_15_16 zero;
// Special case to avoid division-by-zero
if (x.IsZero() && y.IsZero())
return zero;
CFixed_15_16 c1;
c1.SetInternalValue(51472); // pi/4 << 16
CFixed_15_16 c2;
c2.SetInternalValue(154415); // 3*pi/4 << 16
CFixed_15_16 abs_y = y.Absolute();
CFixed_15_16 angle;
if (x >= zero)
{
CFixed_15_16 r = (x - abs_y) / (x + abs_y);
angle = c1 - c1.Multiply(r);
}
else
{
CFixed_15_16 r = (x + abs_y) / (abs_y - x);
angle = c2 - c1.Multiply(r);
}
if (y < zero)
return -angle;
else
return angle;
}
template<>
CFixed_15_16 CFixed_15_16::Pi()
{
return CFixed_15_16(205887); // = pi << 16
}
void sincos_approx(CFixed_15_16 a, CFixed_15_16& sin_out, CFixed_15_16& cos_out)
{
// Based on http://www.coranac.com/2009/07/sines/
// TODO: this could be made a bit more precise by being careful about scaling
typedef CFixed_15_16 fixed;
fixed c2_pi;
c2_pi.SetInternalValue(41721); // = 2/pi << 16
// Map radians onto the range [0, 4)
fixed z = a.Multiply(c2_pi) % fixed::FromInt(4);
// Map z onto the range [-1, +1] for sin, and the same with z+1 to compute cos
fixed sz, cz;
if (z >= fixed::FromInt(3)) // [3, 4)
{
sz = z - fixed::FromInt(4);
cz = z - fixed::FromInt(3);
}
else if (z >= fixed::FromInt(2)) // [2, 3)
{
sz = fixed::FromInt(2) - z;
cz = z - fixed::FromInt(3);
}
else if (z >= fixed::FromInt(1)) // [1, 2)
{
sz = fixed::FromInt(2) - z;
cz = fixed::FromInt(1) - z;
}
else // [0, 1)
{
sz = z;
cz = fixed::FromInt(1) - z;
}
// Third-order (max absolute error ~0.02)
// sin_out = (sz / 2).Multiply(fixed::FromInt(3) - sz.Multiply(sz));
// cos_out = (cz / 2).Multiply(fixed::FromInt(3) - cz.Multiply(cz));
// Fifth-order (max absolute error ~0.0005)
fixed sz2 = sz.Multiply(sz);
sin_out = sz.Multiply(fixed::Pi() - sz2.Multiply(fixed::Pi()*2 - fixed::FromInt(5) - sz2.Multiply(fixed::Pi() - fixed::FromInt(3)))) / 2;
fixed cz2 = cz.Multiply(cz);
cos_out = cz.Multiply(fixed::Pi() - cz2.Multiply(fixed::Pi()*2 - fixed::FromInt(5) - cz2.Multiply(fixed::Pi() - fixed::FromInt(3)))) / 2;
}