/* Copyright (c) 2013 Wildfire Games * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "precompiled.h" #include "lib/frequency_filter.h" static const double errorTolerance = 0.25; static const double sensitivity = 0.10; static const double sampleTime = 2.0; // seconds /** * variable-width window for frequency determination **/ class FrequencyEstimator { NONCOPYABLE(FrequencyEstimator); public: FrequencyEstimator(double resolution) : m_minDeltaTime(4.0 * resolution) // chosen to reduce error but still yield rapid updates. , m_lastTime(0) // will be set on first call , m_numEvents(0) { ENSURE(resolution > 0.0); } bool operator()(double time, double& frequency) { m_numEvents++; if(m_lastTime == 0.0) m_lastTime = time; // count # events until deltaTime is large enough // (reduces quantization errors if resolution is low) const double deltaTime = time - m_lastTime; if(deltaTime <= m_minDeltaTime) return false; frequency = m_numEvents / deltaTime; m_numEvents = 0; m_lastTime = time; return true; // success } private: const double m_minDeltaTime; double m_lastTime; int m_numEvents; }; /** * variable-gain IIR filter **/ class IirFilter { public: IirFilter(double sensitivity, double initialValue) : m_sensitivity(sensitivity), m_prev(initialValue) { } // bias = 0: no change. > 0: increase (n-th root). < 0: decrease (^n) double operator()(double x, int bias) { // sensitivity to changes ([0,1]). const double gain = pow(m_sensitivity, ComputeExponent(bias)); return m_prev = x*gain + m_prev*(1.0-gain); } private: static double ComputeExponent(int bias) { if(bias > 0) return 1.0 / bias; // n-th root else if(bias == 0) return 1.0; // no change else return -bias; // power-of-n } double m_sensitivity; double m_prev; }; /** * regulate IIR gain for rapid but smooth tracking of a function. * this is similar in principle to a PID controller but is tuned for * the special case of FPS values to simplify stabilizing the filter. **/ class Controller { public: Controller(double initialValue) : m_timesOnSameSide(0) { std::fill(m_history, m_history+m_historySize, initialValue); } // bias := exponential change to gain, (-inf, inf) int ComputeBias(double smoothedValue, double value) { if(WasOnSameSide(value)) // (must be checked before updating history) m_timesOnSameSide++; else m_timesOnSameSide = 0; // update history std::copy(m_history, m_history+m_historySize, m_history+1); m_history[m_historySize-1] = value; // dampen jitter if(Change(smoothedValue, value) < 0.04) return -1; // dampen spikes/bounces. if(WasSpike()) return -2; // if the past few samples have been consistently above/below // average, the function is changing and we need to catch up. // (similar to I in a PID) if(m_timesOnSameSide >= 3) return std::min(m_timesOnSameSide, 4); // suppress large jumps. if(Change(m_history[m_historySize-1], value) > 0.30) return -4; // gain -> 0 return 0; } private: bool WasOnSameSide(double value) const { int sum = 0; for(size_t i = 0; i < m_historySize; i++) { const int vote = (value >= m_history[i])? 1 : -1; sum += vote; } return abs(sum) == (int)m_historySize; } static double Change(double from, double to) { return fabs(from - to) / from; } // /\ or \/ in last three history entries bool WasSpike() const { cassert(m_historySize >= 3); const double h2 = m_history[m_historySize-3], h1 = m_history[m_historySize-2], h0 = m_history[m_historySize-1]; if(((h2-h1) * (h1-h0)) > 0) // no sign change return false; if(Change(h2, h0) > 0.05) // overall change from oldest to newest value return false; if(Change(h1, h0) < 0.10) // no intervening spike return false; return true; } static const size_t m_historySize = 3; double m_history[m_historySize]; int m_timesOnSameSide; }; class FrequencyFilter : public IFrequencyFilter { NONCOPYABLE(FrequencyFilter); public: FrequencyFilter(double resolution, double expectedFrequency) : m_frequencyEstimator(resolution), m_controller(expectedFrequency), m_iirFilter(sensitivity, expectedFrequency) , m_stableFrequency((int)expectedFrequency), m_smoothedFrequency(expectedFrequency), m_averagedFrequency(expectedFrequency) , m_numberOfSamples((int)(sampleTime * expectedFrequency) + 1) { } virtual void Update(double time) { double frequency; if(!m_frequencyEstimator(time, frequency)) return; const int bias = m_controller.ComputeBias(m_smoothedFrequency, frequency); m_smoothedFrequency = m_iirFilter(frequency, bias); // Keep a moving average of the frequency over the last two seconds // If there is a spike of more than 25% (e.g. loading screen => game) // then reset the moving average and reset the number of samples needed const double difference = fabs(m_smoothedFrequency - m_averagedFrequency); if (difference > errorTolerance * m_averagedFrequency) { m_averagedFrequency = m_smoothedFrequency; m_numberOfSamples = (int)(m_averagedFrequency * sampleTime) + 1; } else m_averagedFrequency = ((double)(m_numberOfSamples - 1) * m_averagedFrequency + m_smoothedFrequency) / (double)m_numberOfSamples; // allow the smoothed FPS to free-run until it is no longer near the // previous stable FPS value. round up because values are more often // too low than too high. m_stableFrequency = (int)(m_averagedFrequency + 0.99); } virtual double SmoothedFrequency() const { return m_smoothedFrequency; } virtual int StableFrequency() const { return m_stableFrequency; } private: FrequencyEstimator m_frequencyEstimator; Controller m_controller; IirFilter m_iirFilter; int m_stableFrequency; double m_smoothedFrequency; double m_averagedFrequency; int m_numberOfSamples; }; PIFrequencyFilter CreateFrequencyFilter(double resolution, double expectedFrequency) { return PIFrequencyFilter(new FrequencyFilter(resolution, expectedFrequency)); }