/* Copyright (C) 2015 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include #include #include "ObjectBase.h" #include "ObjectManager.h" #include "ps/XML/Xeromyces.h" #include "ps/Filesystem.h" #include "ps/CLogger.h" #include "lib/timer.h" #include "maths/MathUtil.h" #include CObjectBase::CObjectBase(CObjectManager& objectManager) : m_ObjectManager(objectManager) { m_Properties.m_CastShadows = false; m_Properties.m_FloatOnWater = false; } bool CObjectBase::Load(const VfsPath& pathname) { m_UsedFiles.clear(); m_UsedFiles.insert(pathname); CXeromyces XeroFile; if (XeroFile.Load(g_VFS, pathname, "actor") != PSRETURN_OK) return false; // Define all the elements used in the XML file #define EL(x) int el_##x = XeroFile.GetElementID(#x) #define AT(x) int at_##x = XeroFile.GetAttributeID(#x) EL(actor); EL(castshadow); EL(float); EL(material); EL(group); EL(variant); EL(animations); EL(animation); EL(props); EL(prop); EL(mesh); EL(texture); EL(textures); EL(color); EL(decal); EL(particles); AT(file); AT(name); AT(speed); AT(event); AT(load); AT(sound); AT(attachpoint); AT(actor); AT(frequency); AT(width); AT(depth); AT(angle); AT(offsetx); AT(offsetz); AT(minheight); AT(maxheight); AT(selectable); #undef AT #undef EL XMBElement root = XeroFile.GetRoot(); if (root.GetNodeName() != el_actor) { LOGERROR("Invalid actor format (unrecognised root element '%s')", XeroFile.GetElementString(root.GetNodeName()).c_str()); return false; } m_VariantGroups.clear(); m_Pathname = pathname; m_ShortName = pathname.Basename().string(); // Set up the vector> m_Variants to contain the right number // of elements, to avoid wasteful copying/reallocation later. { // Count the variants in each group std::vector variantGroupSizes; XERO_ITER_EL(root, child) { if (child.GetNodeName() == el_group) variantGroupSizes.push_back(child.GetChildNodes().size()); } m_VariantGroups.resize(variantGroupSizes.size()); // Set each vector to match the number of variants for (size_t i = 0; i < variantGroupSizes.size(); ++i) m_VariantGroups[i].resize(variantGroupSizes[i]); } // (This XML-reading code is rather worryingly verbose...) std::vector >::iterator currentGroup = m_VariantGroups.begin(); XERO_ITER_EL(root, child) { int child_name = child.GetNodeName(); if (child_name == el_group) { std::vector::iterator currentVariant = currentGroup->begin(); XERO_ITER_EL(child, variant) { ENSURE(variant.GetNodeName() == el_variant); XERO_ITER_ATTR(variant, attr) { if (attr.Name == at_name) currentVariant->m_VariantName = attr.Value.LowerCase(); else if (attr.Name == at_frequency) currentVariant->m_Frequency = attr.Value.ToInt(); } XERO_ITER_EL(variant, option) { int option_name = option.GetNodeName(); if (option_name == el_mesh) { currentVariant->m_ModelFilename = VfsPath("art/meshes") / option.GetText().FromUTF8(); } else if (option_name == el_textures) { XERO_ITER_EL(option, textures_element) { ENSURE(textures_element.GetNodeName() == el_texture); Samp samp; XERO_ITER_ATTR(textures_element, se) { if (se.Name == at_file) samp.m_SamplerFile = VfsPath("art/textures/skins") / se.Value.FromUTF8(); else if (se.Name == at_name) samp.m_SamplerName = CStrIntern(se.Value); } currentVariant->m_Samplers.push_back(samp); } } else if (option_name == el_decal) { XMBAttributeList attrs = option.GetAttributes(); Decal decal; decal.m_SizeX = attrs.GetNamedItem(at_width).ToFloat(); decal.m_SizeZ = attrs.GetNamedItem(at_depth).ToFloat(); decal.m_Angle = DEGTORAD(attrs.GetNamedItem(at_angle).ToFloat()); decal.m_OffsetX = attrs.GetNamedItem(at_offsetx).ToFloat(); decal.m_OffsetZ = attrs.GetNamedItem(at_offsetz).ToFloat(); currentVariant->m_Decal = decal; } else if (option_name == el_particles) { XMBAttributeList attrs = option.GetAttributes(); VfsPath file = VfsPath("art/particles") / attrs.GetNamedItem(at_file).FromUTF8(); currentVariant->m_Particles = file; // For particle hotloading, it's easiest to reload the entire actor, // so remember the relevant particle file as a dependency for this actor m_UsedFiles.insert(file); } else if (option_name == el_color) { currentVariant->m_Color = option.GetText(); } else if (option_name == el_animations) { XERO_ITER_EL(option, anim_element) { ENSURE(anim_element.GetNodeName() == el_animation); Anim anim; XERO_ITER_ATTR(anim_element, ae) { if (ae.Name == at_name) { anim.m_AnimName = ae.Value; } else if (ae.Name == at_file) { anim.m_FileName = VfsPath("art/animation") / ae.Value.FromUTF8(); } else if (ae.Name == at_speed) { anim.m_Speed = ae.Value.ToInt() / 100.f; if (anim.m_Speed <= 0.0) anim.m_Speed = 1.0f; } else if (ae.Name == at_event) { float pos = ae.Value.ToFloat(); anim.m_ActionPos = clamp(pos, 0.f, 1.f); } else if (ae.Name == at_load) { float pos = ae.Value.ToFloat(); anim.m_ActionPos2 = clamp(pos, 0.f, 1.f); } else if (ae.Name == at_sound) { float pos = ae.Value.ToFloat(); anim.m_SoundPos = clamp(pos, 0.f, 1.f); } } currentVariant->m_Anims.push_back(anim); } } else if (option_name == el_props) { XERO_ITER_EL(option, prop_element) { ENSURE(prop_element.GetNodeName() == el_prop); Prop prop; XERO_ITER_ATTR(prop_element, pe) { if (pe.Name == at_attachpoint) prop.m_PropPointName = pe.Value; else if (pe.Name == at_actor) prop.m_ModelName = pe.Value.FromUTF8(); else if (pe.Name == at_minheight) prop.m_minHeight = pe.Value.ToFloat(); else if (pe.Name == at_maxheight) prop.m_maxHeight = pe.Value.ToFloat(); else if (pe.Name == at_selectable) prop.m_selectable = pe.Value != "false"; } currentVariant->m_Props.push_back(prop); } } } ++currentVariant; } if (currentGroup->size() == 0) { LOGERROR("Actor group has zero variants ('%s')", pathname.string8()); } ++currentGroup; } else if (child_name == el_castshadow) { m_Properties.m_CastShadows = true; } else if (child_name == el_float) { m_Properties.m_FloatOnWater = true; } else if (child_name == el_material) { m_Material = VfsPath("art/materials") / child.GetText().FromUTF8(); } } if (m_Material.empty()) m_Material = VfsPath("art/materials/default.xml"); return true; } bool CObjectBase::Reload() { return Load(m_Pathname); } bool CObjectBase::UsesFile(const VfsPath& pathname) { return m_UsedFiles.find(pathname) != m_UsedFiles.end(); } std::vector CObjectBase::CalculateVariationKey(const std::vector >& selections) { // (TODO: see CObjectManager::FindObjectVariation for an opportunity to // call this function a bit less frequently) // Calculate a complete list of choices, one per group, based on the // supposedly-complete selections (i.e. not making random choices at this // stage). // In each group, if one of the variants has a name matching a string in the // first 'selections', set use that one. // Otherwise, try with the next (lower priority) selections set, and repeat. // Otherwise, choose the first variant (arbitrarily). std::vector choices; std::multimap chosenProps; for (std::vector >::iterator grp = m_VariantGroups.begin(); grp != m_VariantGroups.end(); ++grp) { // Ignore groups with nothing inside. (A warning will have been // emitted by the loading code.) if (grp->size() == 0) continue; int match = -1; // -1 => none found yet // If there's only a single variant, choose that one if (grp->size() == 1) { match = 0; } else { // Determine the first variant that matches the provided strings, // starting with the highest priority selections set: for (std::vector >::const_iterator selset = selections.begin(); selset < selections.end(); ++selset) { ENSURE(grp->size() < 256); // else they won't fit in 'choices' for (size_t i = 0; i < grp->size(); ++i) { if (selset->count((*grp)[i].m_VariantName)) { match = (u8)i; break; } } // Stop after finding the first match if (match != -1) break; } // If no match, just choose the first if (match == -1) match = 0; } choices.push_back(match); // Remember which props were chosen, so we can call CalculateVariationKey on them // at the end. Variant& var ((*grp)[match]); for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) { // Erase all existing props which are overridden by this variant: for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) chosenProps.erase(it->m_PropPointName); // and then insert the new ones: for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) if (! it->m_ModelName.empty()) chosenProps.insert(make_pair(it->m_PropPointName, it->m_ModelName)); } } // Load each prop, and add their CalculateVariationKey to our key: for (std::multimap::iterator it = chosenProps.begin(); it != chosenProps.end(); ++it) { CObjectBase* prop = m_ObjectManager.FindObjectBase(it->second); if (prop) { std::vector propChoices = prop->CalculateVariationKey(selections); choices.insert(choices.end(), propChoices.begin(), propChoices.end()); } } return choices; } const CObjectBase::Variation CObjectBase::BuildVariation(const std::vector& variationKey) { Variation variation; // variationKey should correspond with m_Variants, giving the id of the // chosen variant from each group. (Except variationKey has some bits stuck // on the end for props, but we don't care about those in here.) std::vector >::iterator grp = m_VariantGroups.begin(); std::vector::const_iterator match = variationKey.begin(); for ( ; grp != m_VariantGroups.end() && match != variationKey.end(); ++grp, ++match) { // Ignore groups with nothing inside. (A warning will have been // emitted by the loading code.) if (grp->size() == 0) continue; size_t id = *match; if (id >= grp->size()) { // This should be impossible debug_warn(L"BuildVariation: invalid variant id"); continue; } // Get the matched variant CObjectBase::Variant& var ((*grp)[id]); // Apply its data: if (! var.m_ModelFilename.empty()) variation.model = var.m_ModelFilename; if (var.m_Decal.m_SizeX && var.m_Decal.m_SizeZ) variation.decal = var.m_Decal; if (! var.m_Particles.empty()) variation.particles = var.m_Particles; if (! var.m_Color.empty()) variation.color = var.m_Color; // If one variant defines one prop attached to e.g. "root", and this // variant defines two different props with the same attachpoint, the one // original should be erased, and replaced by the two new ones. // // So, erase all existing props which are overridden by this variant: for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) variation.props.erase(it->m_PropPointName); // and then insert the new ones: for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) if (! it->m_ModelName.empty()) // if the name is empty then the overridden prop is just deleted variation.props.insert(make_pair(it->m_PropPointName, *it)); // Same idea applies for animations. // So, erase all existing animations which are overridden by this variant: for (std::vector::iterator it = var.m_Anims.begin(); it != var.m_Anims.end(); ++it) variation.anims.erase(it->m_AnimName); // and then insert the new ones: for (std::vector::iterator it = var.m_Anims.begin(); it != var.m_Anims.end(); ++it) variation.anims.insert(make_pair(it->m_AnimName, *it)); // Same for samplers, though perhaps not strictly necessary: for (std::vector::iterator it = var.m_Samplers.begin(); it != var.m_Samplers.end(); ++it) variation.samplers.erase(it->m_SamplerName.string()); for (std::vector::iterator it = var.m_Samplers.begin(); it != var.m_Samplers.end(); ++it) variation.samplers.insert(make_pair(it->m_SamplerName.string(), *it)); } return variation; } std::set CObjectBase::CalculateRandomVariation(uint32_t seed, const std::set& initialSelections) { rng_t rng; rng.seed(seed); std::set remainingSelections = CalculateRandomRemainingSelections(rng, std::vector >(1, initialSelections)); remainingSelections.insert(initialSelections.begin(), initialSelections.end()); return remainingSelections; // now actually a complete set of selections } std::set CObjectBase::CalculateRandomRemainingSelections(uint32_t seed, const std::vector >& initialSelections) { rng_t rng; rng.seed(seed); return CalculateRandomRemainingSelections(rng, initialSelections); } std::set CObjectBase::CalculateRandomRemainingSelections(rng_t& rng, const std::vector >& initialSelections) { std::set remainingSelections; std::multimap chosenProps; // Calculate a complete list of selections, so there is at least one // (and in most cases only one) per group. // In each group, if one of the variants has a name matching a string in // 'selections', use that one. // If more than one matches, choose randomly from those matching ones. // If none match, choose randomly from all variants. // // When choosing randomly, make use of each variant's frequency. If all // variants have frequency 0, treat them as if they were 1. for (std::vector >::iterator grp = m_VariantGroups.begin(); grp != m_VariantGroups.end(); ++grp) { // Ignore groups with nothing inside. (A warning will have been // emitted by the loading code.) if (grp->size() == 0) continue; int match = -1; // -1 => none found yet // If there's only a single variant, choose that one if (grp->size() == 1) { match = 0; } else { // See if a variant (or several, but we only care about the first) // is already matched by the selections we've made, keeping their // priority order into account for (size_t s = 0; s < initialSelections.size(); ++s) { for (size_t i = 0; i < grp->size(); ++i) { if (initialSelections[s].count((*grp)[i].m_VariantName)) { match = (int)i; break; } } if (match >= 0) break; } // If there was one, we don't need to do anything now because there's // already something to choose. Otherwise, choose randomly from the others. if (match == -1) { // Sum the frequencies int totalFreq = 0; for (size_t i = 0; i < grp->size(); ++i) totalFreq += (*grp)[i].m_Frequency; // Someone might be silly and set all variants to have freq==0, in // which case we just pretend they're all 1 bool allZero = (totalFreq == 0); if (allZero) totalFreq = (int)grp->size(); // Choose a random number in the interval [0..totalFreq) int randNum = boost::uniform_int<>(0, totalFreq-1)(rng); // and use that to choose one of the variants for (size_t i = 0; i < grp->size(); ++i) { randNum -= (allZero ? 1 : (*grp)[i].m_Frequency); if (randNum < 0) { remainingSelections.insert((*grp)[i].m_VariantName); // (If this change to 'remainingSelections' interferes with earlier choices, then // we'll get some non-fatal inconsistencies that just break the randomness. But that // shouldn't happen, much.) // (As an example, suppose you have a group with variants "a" and "b", and another // with variants "a" and "c"; now if random selection choses "b" for the first // and "a" for the second, then the selection of "a" from the second group will // cause "a" to be used in the first instead of the "b"). match = (int)i; break; } } ENSURE(randNum < 0); // This should always succeed; otherwise it // wouldn't have chosen any of the variants. } } // Remember which props were chosen, so we can call CalculateRandomVariation on them // at the end. Variant& var ((*grp)[match]); for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) { // Erase all existing props which are overridden by this variant: for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) chosenProps.erase(it->m_PropPointName); // and then insert the new ones: for (std::vector::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it) if (! it->m_ModelName.empty()) chosenProps.insert(make_pair(it->m_PropPointName, it->m_ModelName)); } } // Load each prop, and add their required selections to ours: for (std::multimap::iterator it = chosenProps.begin(); it != chosenProps.end(); ++it) { CObjectBase* prop = m_ObjectManager.FindObjectBase(it->second); if (prop) { std::vector > propInitialSelections = initialSelections; if (!remainingSelections.empty()) propInitialSelections.push_back(remainingSelections); std::set propRemainingSelections = prop->CalculateRandomRemainingSelections(rng, propInitialSelections); remainingSelections.insert(propRemainingSelections.begin(), propRemainingSelections.end()); // Add the prop's used files to our own (recursively) so we can hotload // when any prop is changed m_UsedFiles.insert(prop->m_UsedFiles.begin(), prop->m_UsedFiles.end()); } } return remainingSelections; } std::vector > CObjectBase::GetVariantGroups() const { std::vector > groups; // Queue of objects (main actor plus props (recursively)) to be processed std::queue objectsQueue; objectsQueue.push(this); // Set of objects already processed, so we don't do them more than once std::set objectsProcessed; while (!objectsQueue.empty()) { const CObjectBase* obj = objectsQueue.front(); objectsQueue.pop(); // Ignore repeated objects (likely to be props) if (objectsProcessed.find(obj) != objectsProcessed.end()) continue; objectsProcessed.insert(obj); // Iterate through the list of groups for (size_t i = 0; i < obj->m_VariantGroups.size(); ++i) { // Copy the group's variant names into a new vector std::vector group; group.reserve(obj->m_VariantGroups[i].size()); for (size_t j = 0; j < obj->m_VariantGroups[i].size(); ++j) group.push_back(obj->m_VariantGroups[i][j].m_VariantName); // If this group is identical to one elsewhere, don't bother listing // it twice. // Linear search is theoretically not very efficient, but hopefully // we don't have enough props for that to matter... bool dupe = false; for (size_t j = 0; j < groups.size(); ++j) { if (groups[j] == group) { dupe = true; break; } } if (dupe) continue; // Add non-trivial groups (i.e. not just one entry) to the returned list if (obj->m_VariantGroups[i].size() > 1) groups.push_back(group); // Add all props onto the queue to be considered for (size_t j = 0; j < obj->m_VariantGroups[i].size(); ++j) { const std::vector& props = obj->m_VariantGroups[i][j].m_Props; for (size_t k = 0; k < props.size(); ++k) { if (! props[k].m_ModelName.empty()) { CObjectBase* prop = m_ObjectManager.FindObjectBase(props[k].m_ModelName.c_str()); if (prop) objectsQueue.push(prop); } } } } } return groups; }