
Timing Pitfalls and Solutions

Jan Wassenberg

August 5, 2007

Abstract

The seemingly simple task of retrieving a high-resolution time-
stamp on PCs is fraught with peril. Various hardware and software
defects can induce discontinuities in measured time, causing some ap-
plications to fail. After giving a brief overview of time sources in
the PC architecture, this report explores their pitfalls and presents a
high-resolution timing implementation that avoids falling into them.

1 Introduction

High-resolution timing is important for several applications. Profilers1 de-
pend on particularly fine-grained measurements so they can examine the
performance of small sections of code. Interactive games require precise
timestamps to enable smooth updates. Finally, multimedia applications also
benefit from accurate timing to synchronize their audio and video streams.

The ideal timer would be a high-resolution, low jitter, strictly increasing
source of UTC timestamps. Of these properties, monotonicity is the most
important, since many applications understandably cannot cope with their
time reference running backwards. Conversely, exact synchronization of ex-
isting hardware counters to the time of day appears infeasible and even un-
desirable – this issue is discussed in Appendix A. In the following, emphasis
will be placed on acquiring precise relative timestamps.

How close can we come to reaching this goal on today’s systems? Unix
BSD derivatives provide the gettimeofday routine, which delivers a high-
resolution rendition of the time that can easily be converted to UTC. The

1Programs to find bottlenecks in other programs by analyzing their execution time.

1



returned time values are not monotonic nor mostly continuous, but this ca-
pability is provided by the POSIX clock gettime(CLOCK MONOTONIC) fa-
cility2, which meets all our needs. On Windows, however, the situation is
much worse. Due to documented bugs and the lack of a universal patch,
the QueryPerformanceCounter high-resolution timer API cannot safely be
used. On certain systems, only a timer with mere millisecond resolution is
available, and even this is encumbered with the issue of falling behind over
time. The need for further work to improve upon this miserable state of
affairs is thus apparent.

The remainder of this report is structured as follows: Section 2 introduces the
various hardware timers in the PC architecture. Section 3 lists the Windows
timing APIs that access them. Section 4 goes on to explore their respective
pitfalls. Section 5 presents possible workarounds that solve them. Section 6
is concerned with notes pertaining to the implementation of these techniques.
Section 7 then concludes the discussion with a summary of the results.

2 PC Timing Hardware

Due to incremental additions to the PC architecture, there are several hard-
ware modules that can be used to obtain timestamps. For each of them (in
order of adoption), we will see a brief overview of their functionality and
disadvantages.

2.1 PIT

The 8254 Programmable Interval Timer was included in the original PC. At
its heart are three 16-bit counters running at 1.19 MHz3. They are accessible
at fixed addresses in I/O-space, but must be latched and then read as two
single-byte values, which takes 3 µs – the slowest of all the timers. Addi-
tionally, the narrow counter registers roll over too often to measure anything
longer than 55 ms intervals. Instead, the PIT’s utility lies in its ability to
generate periodic interrupts.

2Although CLOCK MONOTONIC is specified as an optional feature, support for it is in-
cluded in glibc 2.3.3, so it is expected to be widely available. [Drepper 2006]

3To save costs, the original PC used a master 14.318 MHz oscillator and fed system
components with various ratios of this frequency – in this case, 1/12.

2



2.2 RTC

The Real-Time Clock was added in XT 286 machines. It also includes a
counter running at 32 kHz but does not provide for direct access. Instead,
the chip uses the count to keep track of the time of day and also generate
periodic interrupts. Its only use nowadays seems to be storing the local
time in battery-buffered CMOS, which is then read during boot time and
maintained by the OS.

2.3 PMT

The Power Management Timer was added as part of the ACPI standard. Its
sole purpose is to deliver timestamps; improvements over the PIT are to be
found in its higher frequency (3x), larger counter width (24 or 32 bits) and
latch-free operation. It is accessed via 32-bit port I/O (at an address given
in the ACPI FACP table), which only takes 0.7 µs.

2.4 TSC

The TimeStamp Counter has been available starting with fifth-generation
CPUs (Pentiums) and represents a 64-bit count of elapsed CPU cycles since
power-on. It can be retrieved with the RDTSC instruction, or by directly
reading the model-specific4 register that holds it; both methods are extremely
fast, on the order of dozens of CPU cycles. Since the CPU clock frequency
is much higher than the that of the other hardware counters, a very fine
resolution is attained. Unfortunately this is counterbalanced somewhat by
the low quality of typical clock oscillators and their thermal drift.

2.5 HPET

The High-Precision Event Timer is a recent addition to the architecture,
specified over 2001–2004 and present in ICH8-based chipsets. It was moti-
vated by troubles with the TSC, the inadequacy of the PMT and the desire
to replace the legacy PIT. The main components are a master 32 or 64-bit
counter running at a frequency of at least 10 MHz (usually the 14.318 MHz

4Note that this particular register will probably remain supported due to its widespread
use.

3



source) and multiple comparator registers. Access is via memory-mapped
I/O (at an address indicated by the ACPI HPET table), which is very conve-
nient and also fast, taking 0.9 µs.

2.6 Others

There are some other esoteric ways to get the time, e.g. polling the DRAM
refresh detect bit, but these aren’t relevant here. The interested reader is
referred to [Heidenstrom 1995].

3 Windows time APIs

Having introduced the underlying hardware, we now examine the multitude
of Windows timing APIs, their overhead, and how they map to these time
sources. The relevant functions are:

GTC GetTickCount returns a counter incremented during every PIT clock
interrupt. Overhead is 10 cycles (load, mul, shift).

GSTAFT GetSystemTimeAsFileTime is also updated during clock inter-
rupts, but returns the system time (subject to NTP adjustment) in
higher resolution units of hectonanoseconds. Each call takes 6 clocks
(64-bit load/store + synchronization5).

TGT timeGetTime is a third interrupt-based timer. Its resolution can be
improved to 1 ms via timeBeginPeriod by speeding up the interrupt
rate6. This function takes 40 cycles; I have not analysed what it does
in detail.

5The system time is mapped into process memory. GSTAFT must make sure it returns
consistent results because the value can change at any time and 64-bit reads may not be
atomic. This is done here by comparing against a second copy of the MSW, and reading
again if it is different (avoids the need for a spin lock).

6Note that this comes at the price of system slowdown – interrupt latency goes up and
the CPU cache suffers. [MS Timer Guidelines] mentions offhand that 1000 Hz interrupt
rates incur ‘serious’ overhead, corroborated by findings of 14 % indirect slowdown by
Tsafrir et al. [2005]

4



QPC QueryPerformanceCounter is the main platform-independent means
of accessing hardware timers. The various versions of Windows differ
in their choice of timer: PIT (Win2k), PMT (WinXP), HPET (Vista)
or TSC (SMP HAL7).

Note that C library functions such as ftime and clock are built on top of
GSTAFT.

4 Pitfalls

What potential problems do applications face when using these functions?
This discussion centers on the above APIs, but most issues are caused by
hardware flaws and are therefore not specific to Windows.

GTC and GSTAFT resolution is far too low – the default 10 or 15 ms tick
interval isn’t enough to resolve individual frames in a game, not to mention
far too coarse for profiling.

TGT can fall behind over time due to delayed or lost clock interrupts8. This
is reported to have caused problems:

In retrospect, timeGetTime() slippage is almost certainly what
is killing many networked games of StarTopia [..;] of course all
our testing in the office was on mainly one or two very similar
models of Dell, so we never saw this problem, even after many
hours. Curse those hardware designers!

Forsyth [2002]

QPC has multiple potential issues, depending on which time source is in use:

PIT Access latency is inconveniently high, causing undesirable overhead
when used for profiling purposes.

PMT Timestamps can jump forward by several hundred ms during heavy
PCI bus load. [QPC Jumps]

PMT Results are undefined if the timer is not polled at least once every
4.6 seconds9. This is caused by hardware bugs and/or incorrect software
handling of counter overflow.

7Hardware Abstraction Layer for Symmetric MultiProcessing systems
8Interrupts can be lost during periods of heavy system load, which games tend to

provoke.
9The period of the underlying 24-bit counter with its 3.57 MHz frequency.

5



TSC MSDN makes brief and vague mention of problems:

[Y]ou can get different results on different processors due to
bugs in the basic input/output system (BIOS) or the hard-
ware abstraction layer (HAL).

This is because TSCs do not start counting at the same time (due
to staggered boot-time processor initialization), nor do they run at
the same rate (due to independent throttling of cores). Unfortunately,
Windows apparently does not take the requisite measures to guarantee
synchronization.

None of the timer APIs are free of potential problems, so we must consider
workarounds.

5 Workarounds

There are two principal ways to work around potentially incorrect timers.
The first is to consult three or more independent timers and ensure they
agree on the time. [Watte 2003] However, it is unclear what to do if the
timers vote differently – which one of them is to be considered correct? This
problem is compounded by the fact that some timers may always return
incorrect results (e.g. QPC using the TSC without proper safeguards).

An alternative to consensus-based operation is to choose one single timer that
is known to be safe on the current platform. This approach is preferable be-
cause it is more predictable and robust; however, it does require all potential
problems to be known. For a full list of the issues that have been considered,
see the extensive comments in the timer implementations’ IsSafe routines.
To choose the best possible safe timer, they are evaluated in order of finer
resolution and lower measuring overhead.

One additional measure must be taken: periodically polling the timer fixes
the PMT wraparound problem mentioned above. As a bonus, this also allows
frequency calibration (helpful to reduce the effects of thermal drift of the TSC
timer).

In summary, we rely on knowledge of existing bugs and limitations to choose
a safe timer.

6



5.1 An unfortunate constellation

There exists one common combination of software and hardware where no
safe high-resolution time source is available. Current dual-core systems fail to
provide a synchronized TSC; capabilities such as an ‘invariant TSC’ [Brunner
2005] and the RDTSCP instruction [Nagendra 2007] are coming into play,
but not yet widespread. In the meantime, since Windows does not offer
a ubiquitous software solution, the TSC is not reliable. In an unfortunate
twist, it is precisely this timer that QPC uses on such dual-core platforms.
One can force it to use the PMT by adding /usepmtimer to boot.ini [QPC
Workaround], but making changes to such a critical system file should not
be asked of users. Finally, despite Microsoft having issued the HPET spec-
ification 5 years ago, support for it has not been patched into Windows XP
and it is only available on Vista.

These circumstances result in the moribund state of affairs that was previ-
ously described: on many systems today, only a mere millisecond-resolution
timer is available. According to Valve Survey, 93 % of the participating
systems are running Windows XP, and 22 % have more than one processor
or core. This large proportion cannot be ignored, so we will have to find a
workaround for the above issue.

5.2 Solution: HPET

Instead of pursuing the very complex task of fixing all problems with the
TSC, we take a step back and realize that dual-core systems are newer and
often include support for the HPET. Developing a driver for it on Windows
XP should resolve the above situation. Note that limited-permission user
accounts have only become widespread with Windows Vista and this driver
only needs to run on Windows XP. We can therefore preassume Administra-
tor rights, which allow starting the driver at run-time to avoid the need for
installation.

Interfacing with the HPET only requires analyzing ACPI tables and accessing
memory-mapped registers. It is thus sufficient to write a kernel-mode driver
that maps physical memory to virtual addresses on behalf of the application.
Since the remaining logic can run in user mode, the driver is simplified and
the risk of a defect that crashes the entire OS is much reduced.

7



Since the HPET Specification is quite clear, an additional description of its
operation is deemed unnecessary. For further reference, see the straightfor-
ward implementation in hpet.cpp.

6 Implementation

With the principles of our approach to safe high-resolution timing having
been established, discussion now turns to various notes on its implementation.

Recall that an update thread is required to prevent hardware counter over-
flow. This works by periodically latching the value and calculating the cur-
rent time via ticks elapsed since then. How can these updates to the timer
state be synchronized with calls to retrieve the time? It turns out that high-
overhead and error-prone locks can be avoided with an approach similar to
RCU. [McKenney et al. 2001] All timer state is maintained in a record and
accessed via pointer. When the update thread becomes active, it linearizes10

the state change by first building a separate record and then atomically up-
dating the pointer. State reads need only retrieve all fields and ensure an
update did not occur during that time. Discarding previous state informa-
tion is achieved by simply swapping the records every update; this avoids the
thorny problem of freeing data that another thread may still be using.

The timer interface is very simple. whrt GetTime returns the elapsed time
since startup, conveniently given as double-precision floating-point values
representing seconds. Assuming a reasonable timer frequency of 10 MHz
(the minimum HPET tick rate), stored timestamps can span a continuously
measured period of 28 years without any error, which indicates plenty of
headroom. whrt Resolution gives the timer resolution, which allows choos-
ing a minimum duration for calibration/delay loops (e.g. for measuring the
CPU frequency) that will still provide a given accuracy.

We note DeviceIoControl-based access to the PMT is much slower than
QueryPerformanceCounter when it uses that source. The overhead is likely
due to slower kernel entry (possibly not using sysenter) and a less direct
path to the hardware. As a consequence, the PMT is only accessed directly
if it is determined that QPC is unsafe.

10Makes an operation appear to happen in one instant, namely the linearization point.

8



7 Conclusion

Timing on PCs is a surprisingly thorny task. Various known problems have
been discussed and a serviceable solution found. The contribution of this
work is a means of choosing and safely using the best available hardware
timer, as well as to unlock the reliable HPET timer on Windows XP sys-
tems. It provides a stable time reference with a resolution of at least 0.1 µs.
Hopefully this discussion and the attached (Free) source code will help pre-
vent further timing issues in games and elsewhere; pay it forward!

Questions/comments/suggestions/bug reports are welcome.
wassenberg1@fom3.fgan.de (remove digits)

A Synchronizing with time-of-day

The above discussion has yielded a precise high-resolution timer. Ideally,
it should be accurate as well, i.e. disciplined to UTC: this would obviate
separate timekeeping and synchronization schemes.

One simple method of achieving this would be to let the timer free-run until it
differs too much from the system time, and then bring them in line. However,
this is unacceptable due to the possibility of observed time moving backwards
– timestamps must increase monotonically.

A better method is to slew the timer frequency according to the current time
difference with respect to UTC. The success of this method hinges on exact
observations of the system time. Without OS support, the best we can do
is rely on the assumption that GSTAFT and the scheduler are driven by the
same clock, i.e. a high-priority thread wakes up immediately after an update
to the system time.11 Given the now hopefully exact system time, we must
build a stable phase-lock loop that converges on it, and doesn’t overshoot too
much or bounce back and forth. [Mills 1994] The central task is finding an
error correction function h(∆) 7→ slew. The simple method given in [Kenny
2000] is a p-controller 12 with clamped maximum adjustment. In my tests, its
gain was way too high, and it was bouncing back and forth at the maximum

11Polling for the start of the next tick is unacceptable because it would incur worst-case
delays of 10 ms.

12Proportional: adjust = gain×error . A typical example is a float regulator. Disadvan-
tages: depending on gain, it either doesn’t track the signal rapidly, or it is unstable, and
diverges. Also, if slightly above/below the target value, it will never correct the difference,
because its adjust goes to 0.

9



allowed adjustment value. A PID controller 13 is more suitable: the timer
can be kept within several µs (!) of the system time.

In retrospect, however, it is unclear whether conjoining high-resolution times-
tamps and the time of day is actually desirable. Many uses of system
time (e.g. recording file modification times) usually do not need to be high-
resolution. Conversely, high-resolution time applications (e.g. profilers) do
not require synchronization or freedom from long-term drift. In fact, sad-
dling the timer with time-of-day anomalies may degrade the value of the
timestamps due to non-uniform updates. Finally, it has been observed that
the system time had not yet been updated after thread wakeup14, thus vio-
lating the central assumption above. Therefore, we keep the timer separate
from UTC and transfer the responsibility of synchronizing clocks to users
who actually need this feature.

References

Rich Brunner. TSC and Power Management Events on AMD Processors.
URL http://lkml.org/lkml/2005/11/4/173. Posted on Linux Kernel
Mailing List, November 2 2005.

Ulrich Drepper. POSIX Option Groups, August 20 2006. URL http://

people.redhat.com/drepper/posix-option-groups.html.

Tom Forsyth. Re: [GD-Windows] More timer fun!
gmane.games.devel.windows Newsgroup, September 2 2002. URL
http://article.gmane.org/gmane.games.devel.windows/105/.

Kris Heidenstrom. Timing on the PC Family under DOS, December 1995.
URL ftp://garbo.uwasa.fi/pc/programming/pctim003.zip.

HPET Specification. IA-PC HPET (High Precision Event Timers) Specifi-
cation. Intel Corporation, October 2004. URL http://www.intel.com/

hardwaredesign/hpetspec_1.pdf.

Kevin Kenny. Increased Resolution for TclpGetTime on Windows, Octo-
ber 26 2000. URL http://www.tcl.tk/cgi-bin/tct/tip/7.html.

13P, and Integral / Differential parts. I sums up previous error values, so that slight
offsets can be corrected. D sees a ‘trend’ early and adjusts for it, thereby tracking the
signal more rapidly.

14Speculation: does this happen in a DPC?

10

http://lkml.org/lkml/2005/11/4/173
http://people.redhat.com/drepper/posix-option-groups.html
http://people.redhat.com/drepper/posix-option-groups.html
http://article.gmane.org/gmane.games.devel.windows/105/
ftp://garbo.uwasa.fi/pc/programming/pctim003.zip
http://www.intel.com/hardwaredesign/hpetspec_1.pdf
http://www.intel.com/hardwaredesign/hpetspec_1.pdf
http://www.tcl.tk/cgi-bin/tct/tip/7.html


Paul E. McKenney, Andi Kleen, Orran Krieger, Rusty Russell, Di-
pankar Sarma, and Maneesh Soni. Read-Copy Update, October 23
2001. URL http://www.eecg.toronto.edu/parallel/pubs_tornado/

ols2001.pdf.

MSDN. MSDN QueryPerformanceCounter Function. Microsoft Corporation,
2005.

David Mills. A Kernel Model for Precision Timekeeping, March 1994. URL
http://www.eecis.udel.edu/~mills/database/rfc/rfc1589.txt.

MS Timer Guidelines. Guidelines for Providing Multimedia Timer Support,
September 20 2002. URL http://www.microsoft.com/whdc/system/

CEC/mm-timer.mspx.

Bhavana Nagendra. AMD TSC Drift Solutions in Red Hat Enterprise Linux,
2007. URL http://developer.amd.com/articles.jsp?id=92&num=7.

QPC Jumps. Performance counter value may unexpectedly leap forward,
November 21 2006. URL http://support.microsoft.com/default.

aspx?scid=KB;EN-US;Q274323&.

QPC Workaround. Programs that use the QueryPerformanceCounter func-
tion may perform poorly in Windows Server 2003 and in Windows XP,
November 14 2006. URL http://support.microsoft.com/kb/895980/

en-us.

Dan Tsafrir, Yoav Etsion, and Dror Feitelson. General-Purpose Timing: The
Failure of Periodic Timers. Technical Report 6, The Hebrew University of
Jerusalem, School of Computer Science and Engineering, February 2005.
URL http://www.cs.huji.ac.il/~dants/papers/Timing05TR.pdf.

Valve Survey. Valve Survey Summary, June 9 2007. URL http://www.

steampowered.com/status/survey.html.

Jon Watte. PC Timers, February 2003. URL http://www.mindcontrol.

org/~hplus/pc-timers.html.

11

http://www.eecg.toronto.edu/parallel/pubs_tornado/ols2001.pdf
http://www.eecg.toronto.edu/parallel/pubs_tornado/ols2001.pdf
http://www.eecis.udel.edu/~mills/database/rfc/rfc1589.txt
http://www.microsoft.com/whdc/system/CEC/mm-timer.mspx
http://www.microsoft.com/whdc/system/CEC/mm-timer.mspx
http://developer.amd.com/articles.jsp?id=92&num=7
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q274323&
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q274323&
http://support.microsoft.com/kb/895980/en-us
http://support.microsoft.com/kb/895980/en-us
http://www.cs.huji.ac.il/~dants/papers/Timing05TR.pdf
http://www.steampowered.com/status/survey.html
http://www.steampowered.com/status/survey.html
http://www.mindcontrol.org/~hplus/pc-timers.html
http://www.mindcontrol.org/~hplus/pc-timers.html

	Introduction
	PC Timing Hardware
	PIT
	RTC
	PMT
	TSC
	HPET
	Others

	Windows time APIs
	Pitfalls
	Workarounds
	An unfortunate constellation
	Solution: HPET

	Implementation
	Conclusion
	Synchronizing with time-of-day
	References

