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Abstract

Refactoring is the process of improving the design of existing programs without

changing their external behaviour. Behaviour preservation guarantees that refac-

toring does not introduce (nor remove) any bugs. If applied properly, refactoring

can make a program easier to understand or modify. While it is possible to refac-

tor a program by hand, tool support is considered invaluable as it is more reliable

and allows refactorings to be done (and undone) easily.

Taking the Haskell programming language as a case study, this research in-

vestigates the prospects of refactoring in the context of functional programming

languages, both to complement the existing work on refactoring within other pro-

gramming paradigms, such as OO, and to make refactoring techniques and tools

available to functional programmers.

By building a tool for refactoring Haskell programs, we addressed the key issues

involved in tool support of refactorings, including the supporting technologies for

building refactoring tools, analysing the side-conditions and transformation rules

of individual refactorings for behaviour preservation purpose, and the preservation

of the layout and comments of the refactored programs.

Along with the development of the Haskell refactorer, we also investigated

the specification and verification of validity of refactorings. This helped us to

clarify the definition of refactorings, to improve our confidence in the behaviour-

preservation of refactorings, and to reduce the need for testing.

x
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Chapter 1

Introduction

1.1 Program Refactoring

Refactoring [34] is a disciplined technique for transforming program source in such

a way that it changes the program’s internal structure and organisation, but not

external behaviour. The key characteristic that distinguishes refactoring from

general code manipulation is its focus on structural changes, strictly separated

from changes in functionality. Functionality-preservation guarantees that refac-

torings do not introduce (nor remove) any bugs or invalidate any existing tests

that do not rely on program’s internal structure. While each refactoring performs

a small-scale program transformation, a sequence of refactorings can produce a

significant restructuring. Refactoring can be used for improving code design and

quality, and for increasing code reuse and productivity [35].

Refactoring can occur at any level of a program. For example, renaming a local

variable only has impact in the entity where the variable is declared; whereas,

renaming a global variable might potentially affect the whole program.

There are both elementary refactorings and composite refactorings. An ele-

mentary refactoring can not be decomposed into simpler refactorings; whereas, a

composite refactoring can be decomposed into a series of elementary refactorings.

Refactoring is a practice that programmers do very often as they modify exist-

ing code, even without using the name refactoring. After establishing a working

1
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piece of code, they may refactor it to improve its design; before changing the

functionality of an existing software system, they may refactor it to make it more

manageable. The term refactoring was first introduced in the work of W. Opdyke

and R. Johnson [78] in 1990.

In the past decade, software development approaches experienced a shift from

the classical waterfall model [95], where analysis is fully completed before de-

sign and design is fully completed before implementation, to evolutionary ap-

proaches [14], where a simple version of what is required is extended iteratively

to build a more complex system and program restructuring is an important stage

during each evolution phase. As a consequence, refactoring has been identified as

central to software development and maintenance, especially within the Software

Engineering (SE) and Object-Oriented (OO) communities [39, 79, 14]

Until recent years, refactoring had been typically done manually or with the

help of text editors with search and replace facilities. Manual refactoring is te-

dious, error-prone and costly. It depends on extensive testing to ensure that

functionalities are preserved [35]. While testing can show up bugs and improve

confidence, it can not prove correctness. Therefore, refactoring tools for various

programming languages, which can help programmers perform refactorings au-

tomatically, and be proven functionality-preserving, are highly desirable. Two

major activities involved in performing a refactoring are program analysis and

program transformation. Program analysis checks whether certain side-conditions

are met by the program under refactoring in order for the refactoring to pre-

serve behaviour, and collects information needed by the program transformation

phase; program transformation carries out the program restructuring step of a

refactoring. Both program analysis and program transformation are amenable to

automation, as manifested by the rich collection of existing work in many areas

of software engineering including compiler construction [5], program understand-

ing [114], debugging and testing [88], program slicing [117], program maintenance

and reverse engineering [47], etc.

Since the first successful and most notable refactoring tool the Refactoring
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Browser [93], which supports Smalltalk refactoring, there has been a growing

number of refactoring tools [34] for a variety of languages such as Java, C, C++,

C#, Python and UML. For example, the most recent release of the IntelliJ IDEA

[48] claims to support 35 Java refactorings.

However, tool support for refactoring functional programs has been explored

much less, and there was no such a practically usable tool for functional program-

mers at the time we started our Refactoring Functional Programs project.

1.2 Functional Programming Languages

Functional programming languages are a class of languages designed to reflect the

way people think abstractly rather than the underlying machine [44]. They were

originally based on Lambda Calculus [20, 10], which embodies a simple model

of computation that provides a formal way to describe function and expression

evaluation. This kind of programming languages view computation as the eval-

uation of mathematical functions. Each function takes zero or more parameters

as input, and returns a single value as the function’s output. In many functional

languages, such as Haskell [53], functions are treated as first-class citizens, which

means that functions can be parameters to other functions and can be the return

values of other functions, and functions of this sort are called higher order func-

tions. Another powerful feature of some functional programming languages such

as Haskell is lazy evaluation, which delays the evaluation of an expression until

the result of the evaluation is needed. Higher order functions and lazy evaluation

together provide good support for modular programming, and make functional

programs smaller and easier to write than programs in conventional programming

languages [45]. In contrast to traditional imperative programming languages such

as C or Pascal, there is no explicit memory allocation and no explicit variable

assignment operation in pure functional languages, and the = operator is treated

as an expression of definitional equality, i.e. the left-hand side is defined to be

the right-hand side in all circumstances. The result of applying a function to a
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given set of parameters will always be the same, no matter when, or where, the

function is evaluated. This referential transparency feature makes verification of

programs written in functional programming languages easier.

Apart from higher order functions and lazy evaluation, modern functional

languages such as Haskell [53], ML [86] and Miranda [108] also manifest features

including equations and pattern matching, type systems with Hindley-Milner type

inference[42, 75] and type classes, etc. Furthermore, monadic programming [116]

adds features such as hidden state and explicit sequencing like I/O to Haskell

without violating its pure functional semantics.

1.3 Refactoring Functional Programs

Refactoring Functional Programs is a project carried out at the Computing Labo-

ratory of University of Kent. The aim of this project is to investigate the prospects

of refactoring in the context of functional programming languages, both to com-

plement existing work on refactoring with a functional programming perspective,

and to make refactoring techniques and tools available to functional programmers.

We take Haskell as a concrete case-study, and explore the application of its results

to other functional languages.

Functional programming languages differ from imperative and object-oriented

languages in both theory and practice. While some functional refactorings, such

as renaming, deleting an unused parameter, etc, have direct OO counterparts and

involve similar program analysis and manipulation, for many other functional

refactorings, the correspondence to their OO counterparts is either less obvious,

or the involved program analysis and manipulation are quite different. For in-

stance, the correspondence between replacing a multiple-equation definition by a

single-equation definition containing a case statement in the functional program-

ming diagram and inlining a virtual method using a case statement in the OO

context is less obvious, and these two refactorings also involve quite different pro-

gram manipulation. Furthermore, there are refactorings which are unique to the
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functional programming paradigm, such as introducing a monadic computation of

a particular expression in a Haskell program. The implementation of a refactor-

ing tool for a real world functional programming language will therefore not be a

simple re-implementation of an existing refactoring tool for a different language.

Similar to other program transformations [25, 83], refactoring is ultimately

based on language semantics and program equivalence. The clean semantics of

functional programming languages and the rich theoretical foundation for rea-

soning about programs make it practicable to rigorously specify and prove the

validity of refactorings, while this is not often practical for existing imperative

and OO languages because of the side effects and lack of formal semantics. From

this point of view, functional programming languages should be more suitable for

refactoring. A case study of refactoring functional programs by S. J. Thompson

and C. Reinke also shows that the ‘first code, then revise’ style of programming

approach is natural for writing functional programs in practice [98].

Program transformation in functional programming has been studied exten-

sively, in the context of program optimisation and efficient program derivation [84,

11, 12, 73, 8, 90]. In the above context, a functional program transformation sys-

tem usually takes a specification as a starting point, then transforms the specifica-

tion into a program of acceptable efficiency by applying a sequence of behaviour-

preserving transformations. This kind of program transformation is vertical in

the sense that it addresses a program’s control or data flow. The program trans-

formation inherent in refactoring is different in that it operates on the structure

of the program, therefore is often horizontal and non-localised.

While there are already a few refactoring tools available for a variety of lan-

guages such as Java and C#, many of them are commercial products, and there

is not much literature (to our knowledge) about the implementation framework

of refactoring tools except that for the Refactoring Browser [93, 94], and most

recently, for C/C++ source program transformation from the Proteus project

[115].

However, implementing a useful refactoring tool for a real world programming
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language is by no means a trivial task. A refactoring tool needs to get access to

the program’s syntax, semantics (possibly including type information), to imple-

ment different kinds of program analysis and transformations, and to preserve the

layout and comments of the transformed program. Apart from that, there are

many criteria for a refactoring tool to be successful, such as efficiency, usability,

completeness and so on. To implement such a complex tool to be used in practice,

a näıve implementation without making use of proper existing frontends and ad-

vanced programming techniques may take years to finish. One aim of this project

is to investigate what kind of implementation framework and technique is more

suitable for implementing a refactoring tool.

1.4 Contributions of this Research

The study of this thesis was carried out as part of the Refactoring Functional

Programs project. This study focuses on the implementation of a refactoring tool

for Haskell programs and the specification and verification of Haskell refactorings.

The main contributions of this research are:

• The study of a set of Haskell refactorings. A collection of Haskell refactorings

have been analysed in terms of their side-conditions and transformation

rules. Side-conditions, together with the transformation rules, guarantee

that a refactoring does not change the program’s external behaviour.

• The design and implementation of the Haskell Refactorer, HaRe. HaRe is

built on top of Programatica [81]’s Haskell frontend and Strafunski [65]’s

generic programming technique. It covers the full Haskell 98 programming

language, and preserves program appearance. By the third release of HaRe,

it supports 23 primitive refactorings and one composite refactoring.

• An approach to program appearance preservation. A novel approach to

program appearance preservation [49] has been proposed and implemented

in HaRe. This approach allows us to preserve the comments and layout of
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the refactored program without modifying Programatica’s Haskell frontend,

on which HaRe is built.

• An API for implementing refactorings or general program transformations

in HaRe. Apart from the supported refactorings, HaRe also exposes an API

which allows the users to implement their own refactorings or more general

program transformations in a compact and high-level way.

• A simple language, λM , for the specification and verification of refactorings.

A λ-calculus augmented with letrec-expressions and a module system has

been defined, and the simple language serves as the vehicle of the specifica-

tion and verification of refactorings.

• The specification and verification of a couple of representative refactorings.

1.5 Thesis Outline

This thesis is structured as follows:

Chapter 1 (this chapter) introduces the topic of refactoring, and places it in the

functional programming paradigm.

Chapter 2 clarifies the basic issues involved in tool-support of refactorings, in-

troduces the Haskell refactoring tool, HaRe, and the list of refactorings we have

examined in this research, as well as other candidate refactorings.

Chapter 3 describes the software artefacts on which HaRe is built, and discusses

our experiences from making these tools work together.

Chapter 4 presents the design of HaRe, including the basic issues involved in

building a refactoring tool, how these issues are addressed in HaRe, and the ar-

chitecture of HaRe.

Chapter 5 describes the implementation of refactorings through two examples:

rename a variable name and from concrete to abstract data type.

Chapter 6 describes the API provided by HaRe, and how it can be used to im-

plement refactorings in a compact and transparent way.
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Chapter 7 presents the simple language used for the specification and verification

of refactorings, and examines the specification of two representative refactorings:

generalise a definition, and move a definition from one module to another, as well

as the verification that show these two refactorings are behaviour-preserving.

Chapter 8 reviews the related work in both refactoring and closely related areas.

Chapter 9 summarizes our overall conclusions, and presents the possible direc-

tions for future work.

Appendix A contains the implementation of the program layout adjustment al-

gorithm, which is used for preserving program layout.

Appendix B lists HaRe’s API.

Appendix C contains the data type representing identifiers defined by Progra-

matica [81].

Appendix D contains some generic strategy and recursive traversal combinators

from Strafunski [65].

Appendix E contains the implementation of the renaming a variable refactoring.

Appendix F contains the implementation of the from concrete to abstract data

type refactoring.



Chapter 2

A Model of Refactoring

Behaviour preservation and program appearance preservation in the context of

refactoring Haskell programs form the basis of this thesis. Behaviour preservation

is the fundamental requirement for refactoring. Generally speaking, given the

same input values, the main function of the program should produce the same

output values before and after a refactoring. However, depending on the appli-

cation area, more behaviour constraints, such as efficiency, memory consumption,

etc, can be added to this requirement. Programming languages vary in their se-

mantics and syntactical rules, therefore expose different contexts for behaviour

preservation. For a tool automating the refactoring process, program appearance

preservation is also essential for the tool to be accepted in practice, though this

is challenging when the concerned programming language does not have a set of

widely used standard layout rules.

This chapter aims to set up the context of this study by clarifying the basic

issues involved. Apart from the meaning of behaviour preservation and program

appearance preservation, this chapter also introduces the Haskell 98 programming

language and some of its properties, gives an overview of the tool we have imple-

mented for refactoring Haskell programs, and describes both the refactorings we

have examined and the refactorings worth examination in the future.

9
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2.1 The Haskell Programming Language

The Haskell [53] programming language is typical of many modern functional lan-

guages. Haskell manifests features such as higher-order functions, lazy evaluation,

equations and pattern matching, a type system with Hindley-Milner type infer-

ence [42, 75] and type classes [80], monadic programming [116], and a module

system [28]. Haskell has evolved continuously since its first publication. The

current standard version is Haskell 98, and defined in Haskell 98 Language and

Libraries: the Revised Report [53].

A Haskell program is a collection of modules. A module defines a collection

of values, data types, type synonyms, classes, etc [53]. A Haskell module may

import definitions from other modules, and re-exports some of them and its own

definitions, making them available to other modules. One of the modules con-

tained in a program must be called Main, by convention, and exports the value

main. The value of the program is the value of the identifier main defined at the

top level of the Main module, which must be a computation of type IO τ for some

type τ . When the program is executed, the computation of main is performed

and its result (of type τ) is discarded [53].

In this research, we examine the application of refactoring techniques to Haskell

programs, and also use Haskell as the implementation language to build the tool

for refactoring Haskell programs. Choosing Haskell as the implementation lan-

guage allows us to explore the usability of Haskell as a language for implementing

refactoring tools, also allows us to find out how refactoring can help us during the

development of a non-trivial Haskell software system. In the rest of this thesis,

we assume a basic familiarity with Haskell 98.
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2.2 The Meaning of Behaviour Preservation

The most essential criterion for behaviour-preservation is: given the same input

value(s), the program should produce the same output before and after (the refac-

toring). However, this basic criterion might not be sufficient in some application

areas, in which case more constraints such as execution time or memory consump-

tion could be added to the definition of behaviour preservation.

Haskell is a general purpose programming language, and most Haskell pro-

grams don’t have constraints on execution time, memory consumption, etc. Hence

it is reasonable to consider only the basic criterion for behaviour preservation when

refactoring general Haskell programs. That is, given the same input values, the

top-level identifier main defined in the Main module of the program under refac-

toring should produce the same output before and after the refactoring. The

semantics of other functions defined in the program could be changed after a

refactoring, as long as the change does not affect the value of main.

2.3 Some Haskell 98 Program Properties

Given a syntactically correct program, the program after a refactoring must still

be syntactically correct, and shows the same observable behaviour as the original

program does. Systematically, a refactoring has three different aspects: a set of

side-conditions that should be met by the program under refactoring in order for

the refactoring to preserve behaviour; a set of transformation rules which specify

how to transform the program in a disciplined way; and a proof showing that the

transformation preserves the program’s behaviour given that the side-conditions

are satisfied.

While refactorings differ in their side-conditions and transformation rules,

there is a set of Haskell 98 program properties that should be taken into ac-

count by the specification of each refactoring. These properties could easily be
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violated by inadequate side-condition checking or improper program transforma-

tions. Violating any of these properties could produce a program that either fails

to compile or compiles but is semantically different from the original program.

These properties include:

• Distinct entity names. The entity names declared in the same scope and

name space must be distinct from each other, otherwise a name conflict

error will be incurred. Nevertheless, the same name can be declared in

inner or outer scopes.

• Unique binding. At each use-site of an identifier, it must be possible to

unambiguously resolve which entity is thereby referred to, that is there must

be only one binding for the identifier. This use-site could be in either the

body or the export list of a module. An undefined identifier error will

be incurred if no definition is bound to the identifier, and an ambiguous

reference error would be given if more than one definition is bound to this

identifier. Ambiguous reference could only happen to top-level identifiers,

and can be avoided using qualified names. In Haskell 98, a qualified name is

a name prefixed with a qualifier (a module name or a module name alias),

which is used to resolve conflicts between entities defined in different modules

but with the same name.

• No name clashes in the export list. The unqualified names of the entities

exported by a module must all be distinct to avoid name clashes.

• No unexported entities in import declarations. The entities explicitly stated

in an import declaration that imports a module, say M, must be exported

by M.

• Compatible type signature. After a refactoring, the type signature should be

compatible with the type inferred by the compilers for the related entity.

• No name capture. Name capture must not happen during the refactoring

process. Name capture occurs when an identifier that should be free in a
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scope becomes bound because of the declaration of the same name across

nested scopes. For instance, in the example:

g y = f y + 17 where h z = z + 34

renaming h to f will capture the use of the free variable f in the definition

of g. Unlike the above listed properties, name capture is an error which

could not, in general, be detected by the compiler, and can only be avoided

by proper side-condition checking and transformation rules.

2.4 Program Appearance Preservation

Like manual refactoring, a tool that automates the refactoring process also needs

to address the problem of program appearance preservation. By program ap-

pearance preservation, we mean that the refactored program should preserve the

original program’s layout and comment information as much as possible. Program

layouts reflect programming habits, which are normally different from person to

person, especially when a standard layout is not enforced by the program edi-

tor. Comment information is valuable for program understanding and long-term

maintenance, hence should not be discarded by the refactorer.

A similar opinion regarding to program appearance preservation was also

pointed out by J.R. Cordy in a keynote paper [23], where he stated: ”... Recogniz-

ability of the source therefore becomes an important issue. Even if our automated

maintenance systems do a wonderful job of renovating or updating an application,

if the source code comes back reformatted, even just by changing the indentation

or comment placement, the recognizability and hence the deep understanding is

disturbed. It just doesn’t look like their old friend any more, and they want their

old code back.”.

Program appearance preservation is a challenging task given the existing pro-

gramming language processing frameworks. A refactoring tool normally carries



CHAPTER 2. A MODEL OF REFACTORING 14

out program analysis and transformation on some internal representation of pro-

grams, such as the abstract syntax tree (AST), the control flow graph (CFG) [5],

the program dependency graph (PDG) [97], etc. Naturally, the refactoring tool

needs to reproduce the program source from the internal representation after the

refactoring process. However, most programming language processors discard lay-

out or comment information or even both during the transformation from program

source to the internal representation, and most pretty-printing tools for producing

program source from ASTs just pretty-print the layout and completely ignore the

original one. Together, this makes program appearance preservation a hard task.

A novel approach to program appearance preservation has been proposed in

our implementation of the Haskell refactorer. In this approach, we use both the

AST and the token stream as the internal representations of the source code.

Both layout and comment information are kept in the token stream, and only

some layout information is kept in the AST. After a refactoring, instead of pretty-

printing the AST, we extract the source code from the transformed token stream.

The detailed description of this approach is presented in Chapter 4.

2.5 HaRe: The Haskell Refactorer

HaRe is the tool we have built to support refactoring Haskell programs. It covers

the full Haskell 98 standard language, and is integrated with the two most widely

used Haskell development environments (according to our survey [2]): Vim [3] and

(X)Emacs [1, 4]. Apart from preserving behaviour, HaRe aims to preserve both

the comments and layout of the refactored programs as much as possible. HaRe

is implemented in Haskell using the Programatica [81] frontend for Haskell and

the Strafunski library [65, 67, 66] for generic AST traversals and transformations.

The first version of HaRe, containing a collection of scope-related single-module

refactorings, was released in October 2003; multiple-module versions of these refac-

torings were added in HaRe 0.2, released in January 2004; various data-oriented

refactorings were added in HaRe 0.3, released in November 2004, and this version
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also restructures HaRe to expose an API for implementing refactorings and more

general transformations of Haskell programs using HaRe’s framework. HaRe op-

erates on a project, which is a collection of files containing Haskell modules that

are closed under the import relations between them. A multi-module refactoring

could potentially affect every module contained in a project, but has no effect

beyond the project.

2.6 The Refactorings in HaRe

This section describes the refactorings we have examined and implemented in

HaRe. These refactorings fall into three categories: structural refactorings, mod-

ule refactorings and data-oriented refactorings. The refactorings implemented in

HaRe is only a subset of the still evolving refactoring catalogue [91] maintained by

Simon Thompson. Due to time limit, we could not implement all the refactorings

listed in the catalogue. Nevertheless, we chose to implement those refactorings

which are basic, but useful, and most importantly can give us insight into the ba-

sic problems involved in setting up the framework of implementing a refactoring

tool. With a properly established framework, implementing more refactorings is

just a time issue. What follows is a brief description of each refactoring and its

side-conditions.

2.6.1 Structural Refactorings

These refactorings mainly concern the name and scope of the entities defined in

a program and the structure of definitions.

Rename a variable, type variable, data constructor, type constructor or a type

class name, and update all the references to it. Renaming is possibly the most

basic, but very useful, refactoring. It allows the name of an identifier yo keep

reflecting the identifier’s meaning. Suppose the old and new names are bar and

foo respectively, then the side-conditions on renaming are:



CHAPTER 2. A MODEL OF REFACTORING 16

• No binding for foo may exist in the same scope. This condition avoids name

conflict in the scope where bar is defined.

• No binding for foo may intervene between the binding of bar and any of its

uses, and the binding to be renamed must not intervene between existing

bindings and the uses of foo. This condition avoids name capture.

• If the bar to be renamed is a top-level identifier, then foo (either qualified

or unqualified) should not be exported by a module by which the bar to be

renamed is also exported. This condition avoids name clash in the export

list.

The possible ambiguous reference problems caused by renaming can be avoided

using qualified names.

Delete a definition. The definition must not be used, or explicitly exported, by

the module that contains it. If the definition is implicitly exported, it should not

be used by any module that imports it. We say an entity is explicitly exported by

a module if it occurs in the export list of the module; and an entity is implicitly

exported by a module if it is exported by the module, but does not occur in the

module’s export list. This refactoring helps to clean up the program.

Duplicate a function under a user-provided new name. For conditions on the

new name see the renaming refactoring. This refactoring is usually used as a

precursor to making a modified version of the duplicated definition.

Promote a definition from a local scope to a wider scope, or directly to the top

level of the module, say M . Widening the scope of an identifier allows the identifier

to be used by a wider range of entities in the program. Lifting a definition to the

top level of a program also allows easier testing of the definition’s functionality.

Suppose the name bound by the definition to be promoted is foo, then the side-

conditions on promoting are:
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• Promoting the definition must not intervene between any binding of foo and

its uses in the outer scope.

• No binding for foo may exist in the binding group to which the definition is

promoted.

• Free variables that are used by the definition but unbound at the outer

scope are converted to parameters of the lifted definition. This requires:

a) the free variables must not be used polymorphically if it is defined by a

pattern binding, and b) the definition foo must be a function definition or a

simple pattern binding (i.e. a pattern binding is which the pattern consists

of only a single variable), rather than a complex pattern binding (i.e. a

pattern binding which is not simple), so that parameters can be added to

the definition if necessary.

• If foo is exported by the module containing the definition to be promoted

(this foo could be defined by some other module, and imported by M), then

the definition can not be promoted to the top level of the module if it will

be exported by the module automatically.

Demote a definition which is only used within one definition to be local to that

definition. This refactoring helps to group the related definitions together and to

clean up the program. In contrast to promoting a definition, demoting a definition

tries to remove parameters using free variables if possible. The side-conditions on

demoting a definition are:

• All uses of the definition must be within the inner scope to which the defi-

nition is moved.

• Variables used by the definition must not be captured when the definition

is moved over nested scopes.

• The definition can not be demoted if it is explicitly exported by the module

containing it.
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Unfold a definition by replacing an identified occurrence of the left-hand

side(LHS) of a definition with the instantiated right-hand side (RHS). This refac-

toring helps to reveal the actual definition of the unfolded identifier. The unfolded

definition should be a function definition or a simple pattern binding. Unfolding a

complex pattern binding might involve extracting the part of the definition related

to a particular identifier defined by the pattern binding, and this is not supported

by the current implementation of HaRe. Unfolding a definition with guards and/or

multiple equations requires the guards to be removed and the multiple equations

to be transformed into a single-equation at the side of unfolding. In the imple-

mentation of HaRe, we use conditional expressions to remove guards, and use

case expressions to transform a multi-equation definition into a single-equation

definition. The side-conditions on unfolding are:

• The bindings for the free variables of the RHS of the unfolded definition

must be accessible at the site of unfolding.

• The free variables (parameters) at the site of unfolding should not be cap-

tured by the bound variables of the instantiated RHS of the unfolded defi-

nition.

Introduce a new definition to name a user-identified expression. The in-

troduced definition is added as a local definition of the definition whose RHS

sub-expression has been identified. This can be followed by a promoting refactor-

ing to take the definition to the top-level, so that the definition can be used by

other definitions in the program. The conditions on the new definition name are:

• No binding for the new name may exist in the binding group where the new

definition is added to.

• The new binding should not intervene between the existing bindings of the

new name and any of its uses.

Generalise a definition by making an identified expression of its right-hand

side into a value passed into the function via a new formal parameter, therefore
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improve the usability of this definition. The new parameter is added as the first

parameter of the generalised definition, so that we do not need to worry about

partial applications. When the generalised definition has multiple equations, the

new parameter is added to all the equations. The type signature (if there is any) of

the generalised definition needs to be amended to reflect the change to parameters.

The side-conditions on generalisation are:

• The new formal parameter must not conflict with the definition’s existing

formal parameters. i.e. the new parameter name should not be the same as

any of the definition’s existing formal parameter names.

• The new formal parameter must not capture any existing uses of free vari-

ables.

• After generalisation, the identified expression (or alternatively, a newly in-

troduced identifier denoting this expression) becomes the first argument of

the generalised function at every call-site of it. For each new occurrence

of this expression, it is required that the bindings of all the free variables

within the expression are resolved in the same way as they are in the original

occurrence.

Add an argument to a function definition/simple pattern binding as its first

argument. undefined is added to the call-sites of the definition as its default first

argument. This refactoring is normally followed by future manipulations to the

definition to make use of the newly added argument. The side-conditions on the

new argument name are:

• The new name should not be the same as any of existing arguments of the

function.

• The new name should not be used as a free variable in the function defini-

tion/simple pattern binding.

Remove an argument from a function definition. This refactoring also helps

to clean up the definition. The only condition is that the argument is not used
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by the definition. However removing the last parameter of a function should not

trigger the monomorphic restriction [53] of Haskell 98.

2.6.2 Module Refactorings

Module refactorings concern the imports and exports of individual modules, and

the relocation of definitions among modules.

Clean an import list to remove redundant import declarations and entities.

This refactoring does not have side-conditions. Corresponding to this refactoring

is clean an export list, which removes the unused entities from the export list. The

latter is not supported by the current release of HaRe, but could be implemented

without difficulty.

Add to an import declaration an explicit list of all the imported entities

which are actually used in the module containing the declaration. This refactor-

ing is useful when only a few of the entities brought into scope by the import

declaration are actually used by the module. Corresponding to this refactoring

is adding an explicit list to a module, which is another candidate refactoring for

HaRe.

Add an entity to the export list of a module. It is required that the entity is

in scope at the top-level of the module, and the same entity name is not already

exported by this module.

Remove an entity from the export list. This refactoring requires that the entity

is not used by other modules in the project. The use-site could be in either the

import/export list of a module or the body of the module.

Move a definition from one module, A say, to a user-specified target mod-

ule, B say. Relocating definitions between modules allows the user to put the
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closely-related definitions together in a single module, hence to improve the mod-

ule structure of the program regarding to import relations. The side-conditions

on this refactoring are:

• No binding for the same name may exist at the top-level of module B.

• The free variables used in the definition to be moved should be in scope in

module B, and refer to the same bindings as they do in module A.

• If the name defined by this definition is used as a free variable in module B,

it should refer to this definition.

• Moving the definition should not introduce mutually-recursive modules.

That is, the definition should not be used by any module which is imported

by module B either directly or indirectly. We try to avoid introducing

mutually-recursive modules during refactoring due to the fact that trans-

parent compilation of mutually recursive modules are not yet supported by

the current working Haskell compilers/interpreters.

A variety of this refactoring is moving a group of definitions from one module to

another. This refactoring is useful when the user-identified definition depends on

some other definitions in the same module, and these definitions could be moved

together.

2.6.3 Data-oriented Refactorings

Data-oriented refactorings are associated with data type definitions. One large-

scale, data-oriented refactoring implemented in HaRe is the from concrete to

abstract data type refactoring, which turns a user-specified concrete data type

into an abstract data type (ADT). A concrete data type exposes the representation

of the data type, and allows the user to get access to the data constructors defined

in the data type, as shown in the example in Figure 1; whereas an abstract data

type [43] hides the data constructors from the users. Making a data type abstract

allows changing the representation of the data type without affecting the client
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functions that use this data type. From concrete to abstract data type is a

composite refactoring built from a number of elementary ones in a sequential way.

What follows is a description of these elementary refactorings, accompanied with

illustrations showing how the data type Tree defined in Figure 1 can be refactored

to an abstract data type.

— Tree.hs
module Tree where

data Tree a
= Leaf a
| Node a (Tree a) (Tree a)

— Main.hs
module Main where
import Tree

flatten :: Tree a → [a]
flatten (Leaf x ) = [x ]
flatten (Node x l r ) = x : (flatten l ++ flatten r)

main = print $ flatten (Node 1 (Leaf 2) (Leaf 3))

Figure 1: Tree as a concrete data type.

Add field names to the data type if field names do not exist. These field

names can be used as selector functions to extract a component from a structure.

Applying this refactoring to the data type Tree in HaRe will turn its definition

into:

data Tree a

= Leaf {leaf 1 :: a}

| Node {node1 :: a, node2 :: Tree a, node3 :: Tree a}

The fresh new names are chosen by the refactorer automatically, however the user
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can rename them. This also applies to the following two refactorings. This refac-

toring assumes that the datatype under refactoring is not an existential datatype

(a Haskell extension).

Add a discriminator function for each data constructor defined in the data

type, if a discriminator for this data constructor does not exist in the current

module. A discriminator function indicates whether or not a value is constructed

using a particular constructor. Applying this refactoring to the data type Tree

will add the following discriminator functions to module Tree:

isLeaf :: Tree a → Bool

isLeaf (Leaf ) = True

isLeaf = False

isNode :: Tree a → Bool

isNode (Node ) = True

isNode = False

Add a constructor function for each data constructor defined in the data type

if such a constructor function does not exist in the current module. A constructor

function for a data constructor builds a data structure from its components, and

has the same signature as the constructor. Applying this refactoring to the data

type Tree will add the following functions to module Tree:

mkLeaf :: a → Tree a

mkLeaf = Leaf

mkNode :: a → Tree a → Tree a → Tree a

mkNode = Node
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Remove nested patterns. A nested pattern is a pattern containing constructors

from other data types. Consider the following example, which uses the data

constructor Leaf :

f (Leaf [x ]) = x + 17

In order to make Tree an abstract data type, we need to replace the pattern

Leaf [x ] by a variable. However, Leaf [x ] is a nested pattern as the list constructor

is used within it. Before removing the Leaf pattern, we need to remove the List

pattern first, otherwise we will lose access to the variable x . Note that only

patterns that are nested inside the data type we are trying to make abstract

will be removed, and others will not be affected by this refactoring. The List

pattern can be removed by using guards and case expressions. This refactoring

does not have a side-condition. By removing nested patterns, the above function

will become:

f (Leaf p)

| case p of

[x ] → True

→ False = (\[x ] − > x + 17) p

The guard is necessary in order for the computation to “fall-through” to the next

equation (if there is one) in case that this pattern matching fails.

Eliminate the explicit uses of data constructors. This refactoring elimi-

nates the explicit uses of data constructors declared in the data type throughout

the system except in the discriminator/constructor functions. The refactoring

requires the following conditions:

• Discriminator, constructor and selector functions exist for each involved data

constructor.

• The patterns using the involved data constructors are not nested patterns

in the sense above.
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Back to the example shown in Figure 1, the definitions of flatten and main will

be affected by applying this refactoring to the data type Tree, and after the

refactoring, they become:

flatten :: Tree a → [a]

flatten p

|isLeaf p = [leaf 1 p]

flatten p

|isNode p = (node1 p) : (flatten (node2 p) ++ flatten (node3 p))

main = print $ flatten (mkNode 1 (mkLeaf 2) (mkLeaf 3))

Create an ADT interface. This refactoring creates the module interface so

that the definition of the specified data type is invisible from outside the module,

whereas other definitions which should be visible to other modules are exported.

This refactoring requires that the data constructors declared in the data type are

not used by other modules on either the right-hand side or left-hand side of any

definitions. This refactoring does not move any definition out of the ADT module,

however, if necessary, moving a definition out of the ADT module can be achieved

using the move a definition from one module to another refactoring. The program

shown in Figure 1 becomes what is shown in Figure 2 after applying the above

sequence of elementary refactorings to the data type Tree.
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— Tree.hs
module Tree(Tree, isLeaf , isNode, leaf 1,mkLeaf ,mkNode,node1,node2,node3) where

data Tree a
= Leaf {leaf 1 :: a}
| Node {node1 :: a, node2 :: Tree a, node3 :: Tree a}

mkLeaf :: a → Tree a
mkLeaf = Leaf

mkNode :: a → Tree a → Tree a → Tree a
mkNode = Node

isLeaf :: Tree a → Bool
isLeaf (Leaf ) = True
isLeaf = False

isNode :: Tree a → Bool
isNode (Node ) = True
isNode = False

— Main.hs
module Main where
import Tree

flatten :: Tree a → [a]
flatten p

|isLeaf p = [leaf 1 p]
flatten p

|isNode p = (node1 p) : (flatten (node2 p) ++ flatten (node3 p))

main = print $ flatten (mkNode 1 (mkLeaf 2) (mkLeaf 3))

Figure 2: Tree as an abstract data type.

2.7 Some Refactorings Which are not in HaRe

Apart from the refactorings we have examined implemented in HaRe, there are

some other common Haskell refactorings we would like to add to HaRe. A more

extensive catalogue of these refactorings, maintained by Simon Thompson, is avail-

able from our project website [91]. Some representative refactorings from this
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catalogue are:

2.7.1 Structural Refactorings

• Eliminating duplicated code by extracting a common function. Dupli-

cated code arises naturally during the development of software systems for

a number of reasons such as copy and paste, however duplicated code have

a negative effect on the maintenance of such software systems. This refac-

toring involves both detecting and removing the duplicated code. While

eliminating those exactly duplicated code might be relatively straightfor-

ward, eliminating those code which is not exactly the same but very similar

is more challenging. Chris Brown from the HaRe group has been looking

into this refactoring.

• Swapping the position of two arguments of a function. A simplified version

of swapping the first two arguments of a function has been implemented as

an example illustrating the uses of HaRe API (see Chapter 6). A complete

implementation of this refactoring needs to take partial application and type

information into account.

• Converting between curried and uncurried arguments. A function which

takes its arguments one at a time is said to be a curried function, and a

function which takes all its arguments together as a tuple is said to an

uncurried function. From curried functions to uncurried functions needs to

handle partial application.

• Converting between let expressions and where clauses, which could po-

tentially narrow/widen the scope of those involved bindings.

• Introducing pattern matching over an argument position by re-

placing the variable argument at this position with an exhaustive set of

patterns over the type of the variable. This refactoring is suitable when
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the right-hand side of the definition is a case expression switching over the

variable.

• Replacing a multiple-equation definition with a single-equation def-

inition using case expressions. This transformation has been used in the

implementation of unfolding a definition, but is worth of being a separate

refactoring.

• Splitting a function doing two things into two separate ones. Separating

the loosely-related functionalities in one definition makes the function eas-

ier to understand and reuse. One special case of this refactoring is to split

a function returning a tuple into two functions returning each part of the

tuple separately. This refactoring can be a composite refactoring, and some

elementary refactorings such as introduce a definition, promoting a defini-

tion, remove an argument can be the building blocks for this refactoring.

Program slicing techniques [117, 118] could also help the implementation of

this refactoring.

2.7.2 Module Refactorings

Apart from the refactorings mentioned in Section 2.6.2, some other useful module

refactorings include:

• Splitting a single module into two so as to seperate loosely related def-

initions into different modules.

• Combining a number of modules into one module to group together

closely related definitions. Both this refactoring and the above refactoring

need to amend the import and export lists of the affected modules.

2.7.3 Data-Oriented Refactorings

• Naming a type using type. Proper type synonyms make a program easier

to understand. Uses of a type should be identified and made instances of
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the type synonym.

• Naming a type using data or newtype. This changes the meaning of

the data type as new data values have to be introduced (an extra ⊥ is also

added to the value domain when data is used), and hence might change the

meaning of the program, therefore could be called “not quite a refactoring”.

• Introducing class and instance by identifying a type and a collection

of functions over that type.

• Monadification. This refactoring turns non-monadic programs into monadic

form. For example, a non-monadic program can be ‘sequentialized’ to make

it monadic, or alternatively, a program with explicit actions, but without

explicit uses of monads, can be turned into a program which explicitly uses

the monadic operations. Existing work on describing modification includes

M. Erwig and D. Ren’s monadification [33] and R. Lämmel’s monad intro-

duction [61].

A suite of basic operators for datatype transformation, including permutation of

type parameters and constructor components, introduction and elimination of type

declarations, folding and unfolding of type declarations, etc, has been studied and

implemented in Haskell by J. Kort and R. Lämmel [60]. Integration of these

datatype transformations into HaRe would be desirable.

2.8 The Design Space Problem

During the specification and implementation of refactorings, quite often we are

in a situation where there is a choice of the specification/implementation, and

need to decide which solution we should choose. There are basically three kinds

of scenarios where we might need to make a design decision:
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• Interpreting the definition of a refactoring. Given the name of the refactor-

ing, there may be more than one interpretation. For example, by general-

ising a definition, one could mean to generalise either the definition whose

right-hand side directly contains the identified expression, or the outmost

definition containing the identified expression, as shown in the following

function definition:

sumSqs x y = x ∧ pow + y ∧ pow where pow = 2

where by identifying the expression 2, we could generalise either the function

pow or the function sumSqs.

Another example is the introduce a new definition refactoring, in which case

one could mean to replace only the highlighted expression, or all or some

of the occurrences of the identified expression within the module by the

instantiation of the newly-created definition.

• Balancing between side-conditions and transformation rules. In general,

the combination of side-conditions and transformation rules guarantees the

behaviour preservation of refactorings. However, it is not always clear where

a line should be drawn between the side-conditions and transformation rules.

On one hand, stronger side-conditions could simplify the transformation

rules, but may allow fewer refactoring opportunities or increase the number

of necessary refactoring steps to achieve a target state of the program. On

the other hand, weaker side-conditions could complicate the transformation

rules, but may allow more refactoring opportunities or reduce the number of

necessary refactoring steps to get to a target program state. For instance, the

move a definition from one module to another refactoring moves an identified

definition from its current module to a user-specified target module. One

situation comes along with this refactoring is that some variables that are

free in the definition to be moved are not in scope in the target module, as

shown in the following simple example:
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— M1.hs

module M 1 where

sq x = x ∧ pow where pow = 2

foo x y = sq x + sq y

— Main.hs

module Main where

import M 1

main x y = print $ foo x y

where sq is a free variable used in the definition of foo, and moving the

definition of foo to module Main requires sq to be in-scope in module Main.

In this case, one solution is to invalidate the refactoring by requiring, as

part of the side-conditions, that all these free variables must be in-scope

in the target module; the other solution is to proceed with the refactoring

by bringing those free variables into scope during the transformation phase.

The second solution is more powerful, but involves more complex program

analysis and transformation.

• Implementation considerations. Even if the side-conditions have been

fixed, there are still decisions needed to be made during the program trans-

formation phase. Again with the move a definition from one module to

another refactoring, suppose the definition to be moved is exported by its

current module, then we need to decide, in the refactored program, whether

the current module should still export the definition, and which module

(the current module or the target module) should a client module import

the definition from. While behaviour preservation can be guaranteed in both

case, the transformation rules regarding to the imports/exports of involved

modules will be different.

The combination of different design decisions at different stages could produce

a number of variants under the same refactoring name, and it is not possible
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to implement all of them in practice. Therefore we try to implement the most

reasonable decision from both the user’s point of view and the implementation

considerations. One of our design principles is to make the definition and imple-

mentation of a single refactoring as clean and simple as possible. We try to avoid

doing too many things in one single refactoring by decomposing a complex refac-

toring into simple ones. This allows the implementation of the basic refactorings

easier to understand, maintain and reuse, and also allows the user to have better

control over the refactoring process and to compose the basic refactoring steps in

new ways.



Chapter 3

Technology Background

Implementing a tool for refactoring programs written in a non-trivial program-

ming language, Haskell, needs tool support itself. Briefly, a complete Haskell-in-

Haskell (we are using Haskell to write the Haskell refactorer) frontend, including

a lexer, a parser, a type-checker, a module analysis system and a pretty-printer,

is indispensable. Haskell generic programming techniques, especially for abstract

syntax tree (AST) traversals, which can significantly reduce the implementation

time and the amount of code are highly desirable, as both program analysis and

transformation involve huge amount of AST traversals. As an interactive program

manipulation tool, it is important for the tool to be integrated with the mostly

commonly used Haskell editors/IDEs, so that it is easily accessible, and people do

not need to give up their favourite development environments in order to use the

refactoring tool.

Instead of developing these supporting tools from scratch, we tried to make

use of the existing Haskell frontends and generic programming techniques, so that

we could concentrate on the most important part of implementing a refactoring

tool, i.e. analysing the inherent logic of refactorings. One problem with reusing

the existing Haskell frontends is that some information we have expected to be

available may not be provided by the tool, or is provided in a way different from

what we have expected. This, to some extent, affects the design of the refactoring

tool as explained in chapter 4.

33
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This chapter describes the software artefacts on which our HaRe is built, and

discusses our experiences from making these tools work together.

3.1 Introduction

Like text editors, refactoring tools support interactive program manipulation; but

unlike text editors, refactoring tools operate on the level of program syntax and

semantics instead of character strings.

Syntactically, a Haskell refactoring tool needs to get access to the different

kinds of syntax phrases in a program, such as declarations, expressions, identifiers,

etc. This can be achieved by using the AST representation of programs. ASTs,

typically generated by a parser, capture the essential structure of the program by

using a collection of mutually recursive data types, while omitting the unnecessary

syntax details, such as brackets, keywords, etc. Some examples will be given in

Section 3.2.

Semantically, a Haskell refactoring tool needs to have certain kinds of static

semantics information, including scope information, type information and module

information, of the program under refactoring for the purpose of side-condition

checking and program transformation. Scope information reflects the name space

of identifiers and the binding structure of the program (binding structure refers

to the association of uses of identifiers with their definitions in a program, and is

determined by the scope of the identifiers); type information tells the type and

kind information of identifiers; and module information reveals the module graph

of the program and the interfaces of individual modules contained in the program.

Static semantic analysis, type analysis and module system analysis are needed to

obtain this information.

Comments and layout information are essential for a refactorer to preserve

program appearance. Hence, it wound be ideal if this information is kept in the

AST, and the pretty-printer, which produces program sources from ASTs, could

make use of it during the pretty-printing process. Unfortunately, most parsers or
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lexers discard this information, and almost all pretty-printers ignore it even if the

information is kept in the AST. Therefore, efforts have had to be made in order

to preserve program appearance while still using the existing Haskell frontends.

After having examined and compared the Haskell frontends provided by GHC [38],

Haddock [69], Hatchet [70], and Programatica [81], we decided to use Programat-

ica’s frontend for our Haskell refactorer based on the fact that it best supported

the full Haskell 98 and provides the most complete information compared with the

other systems available. This was done at the project start, i.e. autumn/winter

2002.

Although, in theory, program analysis and transformation functionalities can

be written over ASTs without further tool support, the programmer will soon

realise the huge amount of boilerplate code he, or she, has to write for AST

traversals. This is due to the large size of Haskell 98 abstract syntax, whose

representation normally contains a large number of mutual recursive algebraic

data types, each being a sum of a large number of data constructors. While

some generalised higher order functions, such as map, fold , can be written in

plain Haskell, it is still not convenient to program over the complex, recursive,

nested abstract syntax of Haskell. To attack this problem, a generic programming

technique which allows a high-level, succinct specification of program analyses and

transformations is needed.

At the time we started our refactoring project, the Strafunski [65, 67, 66] tool

had just begun to be stabilised. Strafunski is a Haskell-centred software bundle

developed for supporting generic programming in application areas that involve

term traversals over large abstract syntaxes. After having experimented with

Strafunski on some program analysis/transformation examples, we felt that Stra-

funski is the right tool for our AST traversal purposes. Our later experience also

showed that using Strafunski was a correct decision. In late 2003, another generic

programming approach, i.e. the scrap your boilerplate approach[63, 64], emerged.

This approach is also a lightweight generic programming approach focusing on
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term traversal as the prime idiom of generic programming. Originated from Stra-

funski, the scrap your boilerplate approach is now fully supported by GHC 6.4,

and provides another choice of generic programming (in Haskell) support for AST

traversals.

Finally, as the refactoring tool supports interactive program manipulation,

it has to be integrated with Haskell development environments. Choosing the

proper development environments is also crucial for the refactorer to be accepted

in practice, as people may be unwilling to use the refactoring tool if it is not

supported by their favourite Haskell development environment(s). For this pur-

pose, we launched a Haskell editing survey[2] in July 2002, which showed that

Vim [3] and (X)Emacs [1, 4] cover the vast majority of Haskell programmers’ de-

velopment environments. Hence, we decided to choose Vim and (X)Emacs as the

environments to host our Haskell refactoring tool.

3.2 Programatica’s Haskell Frontend

Programatica [81] is a project carried out at the OGI School of Science & Engineer-

ing, Oregon Health & Science University. Programatica is a system implemented

in Haskell for the development of high-assurance software in Haskell. It supports

an interactive development environment in which the program, its properties, and

evidence are simultaneously developed and improved. To this purpose, the Progra-

matica team have developed a very expressive logic, called P-logic, and they have

extended Haskell to support property definitions and assertions in P-logic. Source

code written in Programatica’s extended Haskell can include both definitions of

executable code and assertions of properties, and an assertion of properties can be

accompanied by a certificate which encapsulates the evidence for this assertion.

Programatica supports the full Haskell 98 standard language and a number

of Haskell extensions to varying degree. Components of Programatica’s frontend

include a lexer, a parser, a type-checking system, a module analysis system, and

a pretty printer. As all these components contribute to the implementation of
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HaRe, a brief description of each part of the frontend is given in what follows.

3.2.1 The Lexer

Instead of being hand-written in Haskell, the main part of Programatica’s lexer

[41], the token recognition, is generated from the lexical syntax specification in the

Haskell report [53] using a regular expression compiler. The lexer takes program

source as input and produces a list of tokens, which is called the token stream.

The whole lexer is split up into several passes, and the first passes of the lexer

preserve both comments and white spaces (‘ ’, ‘\t’, ‘\n’, ‘\f’ and ‘\r’) are also

tokens in the token stream, and consecutive whitespace characters are put in one

single token. The type of the lexer is defined as:

type Lexer = String → [(Token, (Pos, String))]

where the first String represents the program source, Token is a data type classi-

fying different kinds of tokens, Pos represents the token’s position in the source

in terms of row and column numbers, and the second String contains the content

of the token.

3.2.2 The Abstract Syntax

Programatica represents the ordinary Haskell abstract syntax [53] with a param-

eterised syntax. The definition of parameterised syntax is split into two levels: a

structure defining level, and a recursive knot-tying level [100]. For example, the

data type defining the structure of an expression is as shown in Figure 3 , where

the parameter i represents the type of identifiers, e represents the type of expres-

sions, p represents the type of patterns, ds represents the type of declarations,

t represents the type of types and c represents the type of type context. The

definition of these parameter types can also be recursive. The definition which

ties the recursive knots of the expression type is:

newtype HsExpI i
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data EI i e p ds t c
= HsId (HsIdentI i)
| HsLit HsLiteral
| HsInfixApp e (HsIdentI i) e
| HsApp e e
| HsNegApp SrcLoc e
| HsLambda [p] e
| HsLet ds e
| HsIf e e e
| HsCase e [HsAlt e p ds]
| HsDo (HsStmt e p ds)
| HsTuple [e]
| HsList [e]
| HsParen e
| HsLeftSection e (HsIdentI i)
| HsRightSection (HsIdentI i) e
| HsRecConstr i (HsFieldsI i e)
| HsRecUpdate e (HsFieldsI i e)
| HsEnumFrom e
| HsEnumFromTo e e
| HsEnumFromThen e e
| HsEnumFromThenTo e e e
| HsListComp (HsStmt e p ds)
| HsExpTypeSig SrcLoc e c t
| HsAsPat i e
| HsWildCard
| HsIrrPat e

Figure 3: The data type defining the structure of an expression

= Exp (EI i (HsExpI i) (HsPatI i) [HsDeclI i ] (HsTypeI i) [HsTypeI i ])

where i represents the type of identifiers, and a new layer of data constructor,

Exp, has been introduced.

Parameterised syntax provides support for syntax variants and extensions. For

example, the type defining a Haskell module is defined as:

data HsModuleI m i ds

= HsModule { hsModSrcLoc :: SrcLoc,

hsModName :: m,

hsModExports :: Maybe [HsExportSpecI m i ],



CHAPTER 3. TECHNOLOGY BACKGROUND 39

hsModImports :: [HsImportDeclI m i ],

hsModDecls :: ds }

where the parameter m represents the type of module name, i represents the

type of identifiers, and ds represents the type of a declaration list. Different

instantiations of these three parameters will result in different abstract syntaxes.

The disadvantage of this two-level approach is that it introduces an extra layer of

tagging in the data structures.

The Haskell 98 abstract syntax defined by Programatica consists of 20 data

types and 110 data constructors in total. Even the data type defining expressions

contains 26 data constructors itself as shown in Figure 3. Näıvely writing AST

traversals on this non-trivial sized mutually recursive abstract syntax without

proper generic programming support would produce huge amount of boilerplate

code, and negatively impact the maintenance and reusability of the produced

code.

3.2.3 The Parser

Programatica’s parser is based on HsParser, a Haskell 98 parser now in the haskell-

src package of the Haskell hierarchical libraries, but using Programatica’s lexer

rather than the lexer in HsParser, and the parameterised abstract syntax. The

parser produces a variant of the abstract syntax where every identifier is paired

with its actual source location in the file. Source location is represented by the

combination of the file name, the actual character position, the row number and

the column number. The type for identifiers with source location is SN HsName,

where SN and HsName are defined as:

data SN i = SN i SrcLoc

data SrcLoc = SrcLoc { srcPath :: FilePath,

srcChar , srcLine, srcColumn :: !Int }

data HsName = Qual ModuleName String

| UnQual Id
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data ModuleName = PlainModule String

| MainModule FilePath

A further static scoping process on the AST adds more information to each

identifier, and produces another variant of the AST, which is called the scoped

AST. The scoped AST representation of a Haskell module is defined as:

type HsModuleP = HsModuleI ModuleName PNT [HsDeclI PNT ]

In the scoped AST, each identifier is associated with not only its actual source

location, but also the location of its defining occurrence and name space infor-

mation. The type for this kind of identifiers is called PNT and is defined as:

data PNT = PNT (PN HsName Orig) (IdTy Pid) OptSrcLoc

where

• HsName contains the name of the identifier;

• Orig specifies the identifier’s origin information (which usually contains the

identifier’s defining module and position);

• IdTy Pid specifies the category (i.e. variable, field name, type construc-

tor, data constructor, class name, etc) of the identifier with information of

relevant type if the identifier is a field name, type constructor or a data

constructor (see Appendix A).

• OptSrcLoc contains the identifier’s source location information unless the

identifier is generated internally by Programatica itself.

The complete definition of PNT and its component data types are given in ap-

pendix A. Compared with normal ASTs, the scoped AST makes life easier for the

user in several aspects:

• Source position information makes the mapping from a fragment of code in

the source to its corresponding representation in the scoped AST easier.
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• Identifiers can be distinguished by just looking at their PNT representations.

Two identifiers are semantically the same if and only if they have the same

origin.

• Given an identifier, the scoped AST makes it easy to find the identifier’s

definition and use sites.

The source location information for identifiers in the AST reveals the program’s

layout to some extent. More information, including comments and their locations,

locations for keywords and some special characters, is needed in order to record

the complete layout of a program. Unfortunately, this information is not kept in

the AST, and we have to get it from the token stream. The scoped AST is the

version of AST used in HaRe’s implementation.

3.2.4 The Module System

As part of the Programatica project, a formal specification of the Haskell 98 mod-

ule system has been developed by Iavor S. Diatchki, et al. [28]. The specification

is written in Haskell, and is executable as a program. In this approach, the seman-

tics of a Haskell program with respect to the module system is a mapping from a

collection of modules to their corresponding in-scope and export relations. Given

a list of modules, the analysis program either reports a list of errors found in each

module, or returns the in-scope and export relations of the respective modules.

3.2.5 The Type Checker

Programatica’s type checking system [82] is influenced by a number of earlier

pieces of work. Mark P. Jones’ Typing Haskell in Haskell has provided general

guidance, some naming conventions, the class Types and operations on substitu-

tions [50]; Johan Nordlander’s O’Haskell type checker [77] has suggested ways of

avoiding both threading an accumulating substitution and applying substitutions

to the environments; HBC’s [7] type checker has also been relevant. The type

checker is structured to allow large parts to be reusable in extended versions of
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the language. The type checking system generates another variant of the abstract

syntax tree where all declaration lists have been decorated with the kinds and

types of the entities defined in the list, and all applications of polymorphic func-

tions have been decorated with the instantiation of the type variables. The top

level of the type checked AST can is defined by:

type TiModule = HsModuleI ModuleName PNT (TiDecls PNT )

The advantage of AST annotated with type information is that it allows the

user to extract the type information of the entities while traversing the AST. The

disadvantage is that the type information makes the AST several times larger than

the scoped AST, which has a potential to slow down the traversal and therefore

any refactoring using the typed AST. Apart from that, the type inference engine

itself is relatively slow.

3.2.6 The Pretty Printer

Programatica’s pretty printer is based on the modified version of John Hughes’ and

Simon Peyton Jones’ Pretty Printer Combinators [46, 51]. Instances in the pretty

printing class Printable have been defined for each data type in the abstract syntax

of Haskell. The pretty printer does not use any of the source location information

in the AST.

3.3 The Strafunski Library

Strafunski [65, 67, 66] is a Haskell-centred software bundle, developed by R.

Lämmel and J. Visser, for supporting generic programming in application areas

that involve term traversals over large abstract syntaxes. The key idea underly-

ing the Strafunski style of generic programming is to view traversals as a kind

of generic function that can traverse into terms while mixing uniform and type-

specific behaviour. Strafunski is based on the notion of functional strategy. A
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functional strategy is a first-class generic function, which can be applied to argu-

ments of any type, can exhibit type-specific behaviour, and can perform generic

traversal to subterms. The advantage of Strafunski is that it allows the user to

write concise, type-safe, generic functions for AST traversals, in which only the

strictly relevant constructors need to be mentioned. Code written using Strafunski

is normally substantially shorter than the code written using plain Haskell, and

it is much easier to see that code is correct by inspection, as there is no irrelevant

information.

Strafunski can be implemented in two different ways. One implementation is

based on a specific universal term representation, and supported by a generative

tool based on DrIFT [72] for the automated derivation of Haskell class instances;

the other implementation is based on GHC’s support for the Typeable and Data

classes. The classes Typeable and Data comprise members for type-safe cast and

processing constructor applications [64]. To use the second implementation, a

clause for deriving the Typeable and Data class instances needs to be added to

the definition of every relevant data type.

The Strafunski library is organised so: StrategyLib is the top-level module of

the library; under this module is a collection of modules covering a range of generic

programming ‘themes’, such as traversal, name analyses, refactoring, metrics, etc;

at the bottom of the library are two modules: the StrategyPrimitives module,

which defines the strategy types and a suite of basic strategy combinators, and

the Term module defining a type class Term as the generic term interface used

by the DrIFT-based approach. A more detailed description of the strategy types,

basic combinators, and the commonly used recursive traversal strategies is given

next.

3.3.1 Strategy Types and Combinators

Two strategy types are distinguished in Strafunski: TP for type-preserving strate-

gies and TU for type-unifying strategies. The result of applying a type-preserving

strategy to a term of type t is of type t in a monadic form, whereas the result
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of applying a type-unifying strategy is always of a specific type (in a monadic

form), regardless of the type of the input term. Monads are used to handle effects

such as state, environment, IO, failure, etc. Normally, type-preserving strategies

are used for program transformation purposes, and type-unifying strategies are

used for program analysis. The exact definition of TP and TU depends on the

underlying models, and should be treated as abstract data types.

Functional strategies are composed and updated in a combinator style. A suite

of basic strategy combinators has been defined in StrategyLib. These combinators,

as listed in Section B.1 in Appendix B, cover strategy application, strategy up-

date, strategy composition, term traversal, and monad transformation. Strafunski

also provides a collection of high-level combinators defined on top of these basic

combinators. These high-level combinators are grouped into a number of generic

programming ‘themes’, including a traversal theme, an overloading theme, control

and data flow themes, a fixpoint theme, a keyhole theme, a name theme, a path

theme, an effect theme, a refactoring theme and a metric theme.

Among the pre-defined themes, the recursive traversal combinators defined in

the traversal theme are the most heavily used strategies in our refactoring tool

implementation. These traversal combinators are listed in Section B.2 of Appendix

B, where the definitions of the first and third combinator are also given. Four kinds

of recursive traversals have been defined, and they are:

• Full traversals. A full traversal visits every node in the term.

• Traversals with stop conditions. A traversal with stop conditions cuts

off the below nodes where the argument strategy succeeds, but it proceeds

the traversal with the sibling nodes.

• Single hit traversals. A single hit traversal terminates at the first node

where its argument strategy succeeds.

• Traversals with environment propagation. A traversal with environ-

ment propagation starts the traversal with an initial environment, and mod-

ifies the environment during the traversal process.
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Some of the traversals, for example full traversals, can proceed in either top-down

or bottom-up order, and in this case two versions are defined for each traversal as

reflected in the combinator list in Section B.2 in Appendix B.

3.3.2 Some Examples of Using StrategyLib

This section shows how the Strafunski combinators can be used to write generic

program analysis/transformation functions over Programatica’s abstract syntax

by two examples. The first example is a type-unifying function which collects

all the data constructors in a fragment of Haskell code; the second example is

a type-preserving function which renames all occurrences of a specified identifier

to a new name. For comparison, an incomplete implementation of the renaming

functionality without using Strafunski is also given, and it is very obvious how

the amount of code can be reduced by using Strafunski’s combinators.

The first example, shown in Figure 4, collects all the data constructors in a

fragment of Haskell code. Here, the functions applyTU , stop tdTU , failTU and

adhocTU are type-unifying variants of strategy combinators from StrategyLib:

applyTU applies a type-unifying strategy to a term; stop tdTU traverses the AST

in a top-down order, and cuts off below the nodes where its argument strategy

succeeds and the result is collected; the polymorphic strategy failTU always fails

(by using mzero from the Monadplus class) independent of the incoming term; and

adhocTU updates a strategy to add a type-specific behaviour so that it behaves

just like the function on the left except when the type is such that the function

on the right can be applied. We don’t use full traversal in this example as terms

blow the PNT node do not contribute to the result.

When the strategy represented by strategy is applied to an AST, it performs

a top-town traversal of the AST to the terms of type PNT, where it calls pntSite.

This latter function returns the data constructor name in a list nested in the Maybe

monad (Just [pname]) if the current identifier is a data constructor, otherwise, it

returns Nothing. The List data type is used to collect together the results when

there are several data constructor names. The default strategy failTU indicates
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hsDataConstrs :: (Term t) ⇒ t → Maybe [PName]
hsDataConstrs = applyTU strategy

where
strategy = stop tdTU (failTU ′adhocTU ′ pntSite)
pntSite :: PNT → Maybe [PName]
pntSite (PNT pname (ConstrOf ) )

= Just [pname]
pntSite = Nothing

Figure 4: Collecting data constructors

that this function always fails when faced with terms of any other types than PNT .

In combination with stop tdTU , this means that only applications of pntSite to

terms of type PNT contribute to the result of applying strategy to an AST.

The second example, shown in Figure 5, renames all occurrences of a specified

identifier to a new name in an AST. Using the combinators applyTP , full tdTP , adhocTP

and idTP from StrategyLib, this function carries out a full top-down traversal over

the AST as specified by full tdTP . This way, it will reach each node in the in-

put AST. Most of the time, it behaves like idTP which denotes the polymorphic

identity strategy, but it will call the function pnameSite whenever a term of type

PName is encountered. The function pnameSite replaces the identifier name con-

tained in current subterm (with type PName) by newName if this identifier is the

same as the identifier to rename. Otherwise, it returns the subterm unchanged.

rename :: (Term t) ⇒ PName → HsName → t → t
rename oldPName newName = runIdentity.applyTP strategy

where
strategy = full tdTP (idTP ′adhocTP ′ pnameSite)
pnameSite :: PName → Maybe PName
pnameSite pn@(PN name orig)

| pn == oldPName = return (PN newName orig)
pnameSite pn = return pn

Figure 5: Renaming an identifier

In the above examples, only the strictly relevant data types are mentioned.
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instance Rename HsExp
where

rename oldName newName (Exp (HsId id))
= Exp (HsId (rename oldName newName id))

rename oldName newName (Exp (HsLit x ))
= Exp(HsLit x )

rename oldName newName (Exp (HsInfixApp e1 op e2))
= Exp (HsInfixApp (rename oldName newName e1)

(rename oldName newName op)
(rename oldName newName e2))

rename oldName newName (Exp (HsApp e1 e2))
= Exp (HsApp (rename oldName newName e1)

(rename oldName newName e2))
rename oldName newName (Exp(HsNegApp e))

= Exp (HsNegApp (rename oldName newName e))
rename oldName newName (Exp(HsLambda ps e))

= Exp (HsLambda (rename oldName newName ps)
(rename oldName newName e))

rename oldName newName (Exp (HsLet ds e))
= Exp (HsLet (rename oldName newName ds)

(rename oldName newName e)
...

rename oldName newName (Exp (HsExpTypeSig Loc e c t))
= Exp (HsExpTypeSig Loc (rename oldName newName e)

(rename oldName newName e)
(rename oldName newName t))

Figure 6: Rename the occurrences of an identifier in expressions

This liberates us from the complexity of the abstract syntax, and reduces the

boilerplate code we need to write. The same renaming functionality has been im-

plemented without using the Strafunski library. Figure 6 shows the class instance

renaming the occurrences of a specified identifier in an expression. There would

be one clause for each data constructor, therefore 26 clauses for only this class

instance. Comparing the implementations in Figure 5 and 6, the advantage of

using Strafunski is immediately clear.
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3.4 Integrating Strafunski with Programatica

As mentioned in Section 3.3, there are two variants of Strafunski: the DrIFT-

based model and the GHC-deriving model. We chose to use the DrIFT-based

model for our refactoring project, as it began to stabilise and the other model did

not exist at the time we started our project (2002). To use this version, Term

and Typeable class instances need to be derived for Programatica’s AST-related

data types. This is automated by the instance-deriving tool DrIFT [72]. What

we needed to do was to extract those AST-related data types from Programatica

into a single file, add our instance deriving commands, and feed the file to DrIFT.

This way, we hoped that we needed to make no further modifications to Pro-

gramatica. Nevertheless, during the automatic deriving process, DrIFT run into

various problems with Programatica’s more complex data types and efforts were

made to solve these problems. For example, initially DrIFT could not cope with

Programatica’s parameterised two-level types, and several patches were needed to

handle it; DrIFT also had a problem with deriving Term class instances with data

type of the form data T a = D [a]: there was an ambiguous overlap of the String

and [a] instances of Term, and we had to add Term [a] to the instance context

so as to delay the decision between the two instances to the point of usage; the

unguarded calls to the function head made it difficult to trace an error, etc.

Our own refactoring-implementing modules are built on top of Strafunski’s

traversal library and Programatica’s Haskell frontend. One major problem with

linking these two libraries together was caused by the Haskell module system’s

inadequate control over the import/export of class instances. Conflicts occur

when a different class instance has been defined by both libraries or their support

libraries, and both the modules defining the instances are imported by some other

module in the system. Class conflicts had to be solved by renaming data types

and/or factoring out common instances during the integration process.
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3.5 Some Pitfalls with Using Strafunski

Strafunski allows us to write concise and robust AST traversal functions, but

learning how to use Strafunski takes some time, especially for those who are not

very familiar with functional programming and/or AST traversals. From our

experience, we found there are several points where Strafunski learners can easily

get confused. What follows is a summary of our experience, which might be useful

for other Strafunski learners.

• Choosing the correct default strategy. It is crucial to choose the proper

default strategy for different traversals. For example, idTP , which returns

the incoming term without change, can be used as the default strategy for

full tdTP and full buTP , whereas failTP cannot; for type-preserving traver-

sals with stop conditions, such as stop tdTP , once tdTP , and once buTP ,

failTP (which always fails) is the proper default strategy, whereas idTP is

not; for the type-unifying full traversal full tdTU , constTU [], which always

returns the empty list, can be used as the default strategy; and for type-

unifying traversals with stop conditions, such as stop tdTU , once tdTU ,

once buTU and once peTU , failTU is always the proper default strategy.

• Top-down or bottom-up? For full traversals, choosing top-down or bottom-

up normally does not make much difference. However, there is one special

case with full buTP and full tdTP . When a full traversal tries to extend a

syntax phrase to a larger syntax phrase of the same type like in the example

shown in Figure 7, where a single identifier expression is replaced by this

expression applied to undefined , we found that full buTP can do the job

correctly, but full tdTP causes stack overflow because it keeps expanding

the AST by adding the expression undefined .

• The two-layer monads when using TU traversals. Strafunski uses monads

to manage the backtracking behaviour of its traversal combinators, there-

fore the traversal is always in a monad form. When using a type-unifying
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addParam pn = applyTP strategy
where

strategy = full buTP (idTP ′adhocTP ′ inExp)
inExp (exp@(Exp (HsId (HsVar (PNT pn ′ )))) :: HsExpP)

|pn == pn ′

= return $ Exp (HsParen (Exp (HsApp exp (nameToExp “undefined”)))
inExp x = return x

Figure 7: Add undefined as the first argument of the parameter identifier.

traversal for collecting information, one might want to use a list to collect

the results. In this case, there are two nested monads involved in the traver-

sal: one for backtracking, and one for collecting data. Consequently, in the

returned result, there should be two layers of monads as shown in the exam-

ple in Figure 4, where Maybe monad is used for backtracking by Strafunski,

List monad is used for collecting data, and the control monad is outside the

collecting monad. Omitting one of the monads would lead to wrong results.



Chapter 4

The Design of HaRe

This chapter describes the design of HaRe, including the basic issues involved

in building a refactoring tool, how these issues are addressed in HaRe, and the

implementation architecture of HaRe. We start from examining the basic steps

involved in manually refactoring a trivial Haskell 98 program, then point out the

problems we need to address during the refactoring process, and the design of

HaRe is explained after that.

As explained in the previous chapter, HaRe is built on top of Programatica’s

Haskell frontend and Strafunski’s traversal library. One of our design principles

of HaRe is to try to make good use of the information provided by Programatica,

but try to modify the library as little as possible. Programatica is currently a

work-in-progress, and modifications have been made to the system by the Progra-

matica team from time to time. Minimising our own modifications makes HaRe’s

upgrading to new Programatica versions easier. As a result, to some extent, the

design of HaRe was influenced by how information is provided by Programatica’s

frontend, which is especially reflected by HaRe’s handling of program appearance

preservation.

51
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4.1 An Example Refactoring

We take the rename an identifier refactoring as an example. This refactoring

renames a specified identifier as a user-supplied new name as shown in Figure

8, where the identifier f defined in module Test1 is renamed to sq at both its

define-site and use-sites. In Figure 8, the program on the left-hand column is the

program before the renaming, and the program after the renaming is shown on

the right-hand column.

— Test1.hs — Test1.hs
module Test1(f , sumSqs) where module Test1(sq , sumSqs) where

f x = x∧ pow sq x = x ∧ pow
where pow = 2 where pow = 2

sumSqs x y = f x + f y sumSqs x y = sq x + sq y

— Main.hs — Main.hs
module Main where module Main where
import Test1(f ) import Test1(sq)

sq x = x + x sq x = x + x

main = print $ sq 10 + f 30 main = print $ Main.sq 10 + Test1.sq 30

Figure 8: Rename the identifier f defined in module Test1 as sq

To perform this refactoring by hand, the following steps are necessary:

• Locate the definition of identifier f , and infer its scope and name space. In

this example, f is a variable defined at the top-level of module Test1, and

explicitly exported by Test1.

• At the define-site of f , check whether the new name, sq, would conflict with

any of the existing bindings in the same binding group. The answer is no in

this case, so we can continue the refactoring. If the answer is yes, we would

have to abort the refactoring, and ask to choose another new name.
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• At the use-sites of f , check whether the new name would cause name capture

of f , ambiguous reference or name clash (name clash is only possible in the

export list). In this example, f is used not only in its defining module

Test1, but also in the module Main, which imports f . A top-level identifier

could be referred to in the right-hand side of declarations, in the import

declarations or in the export lists. Normally, a name capture or ambiguous

reference involving top-level identifiers can be resolved by using qualified

names, whereas a name clash error is only resolvable by changing the name.

For local variables, none of the above errors can be resolved without changing

the name, as local variables cannot be qualified.

In this example, the new name sq does not cause any problem in module

Test1, but it will cause ambiguous reference in the main function of module

Main, since two sqs would be in scope in module Main after the renaming,

and the compiler will not be able to resolve which sq refers to which binding.

At this stage, we can choose to use qualified names to solve the problem and

proceed with the refactoring, or abort the refactoring and ask for another

new name. We follow the first option in this example.

• After the previous two steps of checking, it is clear that f can be renamed

to sq without affecting the program’s behaviour. So we rename f to sq at

both its define-site and use-sites throughout the program, qualify the uses

of sq in the main function in the Main module, and finish the refactoring

process.

In the above process, the first step locates the focus of the refactoring; the next

two steps check whether the transformation will change the behaviour of the pro-

gram; and the last step carries out the source-to-source program transformation.

Apart from renaming the identifier, this step also shows an auxiliary transforma-

tion, i.e. qualifying the uses of sq , to enable behaviour preservation. All these

steps of program analysis and transformation activities are good candidates for

automation. Obviously, a tool that automates this refactoring process needs to
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automate all these steps. However, unlike human beings who can infer certain

semantics by examining the program source and manipulate the program source

in a sensible way, a refactoring tool needs to work on some internal representation

of the program, such as the abstract syntax tree or the concrete syntax tree, as

the string representation of the programs does not provide enough information

for a refactoring tool to carry out program analysis and transformation. Conse-

quently, two steps need to be added to the above process: before the refactoring,

the source representation needs to be parsed into an internal representation; af-

ter the refactoring, the representation needs to be transformed back to program

source. Apart from the representation construction, the refactoring tool needs

a more formal way to infer module information and type information. Module

information is normally necessary when refactoring multi-module programs, and

type information is needed by some refactorings for inferring the type of a syn-

tax phrase, such as an expression, and also for keeping the refactored program

well-typed. While manual refactoring can preserve the program appearance with-

out being noticed, this problem could become a big issue when the new program

source has to be reconstructed from the internal representation.

So far, we can summarise that a refactoring tool needs to address at least the

following basic problems:

• transforming program source into some internal representation, and derive

the necessary information, such as scope information, module information

and type information;

• analysing the program to validate the side-conditions of a refactoring;

• transforming the program according to the transformation rules specified by

a refactoring;

• preserving program appearance as much as possible;

• transforming internal representations back to program source, and present-

ing the refactored program to the user.
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The design of HaRe is explained in the next section, with an emphasis on how

these problems are solved.

4.2 The Framework of HaRe

4.2.1 Information Gathering

As discussed in Section 3.1 and revealed by the example in the previous section, a

Haskell refactoring tool needs the following information to carry out a refactoring:

• The internal representation of programs (we choose to use AST).

• Scope information.

• Type information.

• Module information.

• Layout and comment information.

All these information can be derived from Programatica’s frontend in its own par-

ticular way. Table 1 summaries the information we need (the left-hand column)

and how it is provided by Programatica’s frontend (the right-hand column). All

AST Generated by parser
Scope information Annotated in the AST after scope analysis
Type information Annotated in the AST after type checking
Module information Generated by the module analysis system
Comments In the token stream generated by the Lexer
Layout information In the token stream and partially in the AST

Table 1: How information is provided by Programatica’s frontend

this information is easily accessible by invoking the relevant frontend functions.

The only problem is that the complete layout and comment information is kept in

the token stream instead of the AST. This is fairly understandable, as it is much

easier to keep layout and comments in the token stream than in the AST, due

to the fact that comments can appear everywhere (except inside the identifiers or
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literals) in a Haskell program and there is no standard rules for associating com-

ments with the commented code. However, the separation of layout and comment

information from the AST imposed a challenge on the design of HaRe, and finally

led to a framework where both the AST and token stream are manipulated during

the transformation phase, as will be described in Section 4.2.3

4.2.2 Program Analysis and Transformation

Program analysis and transformation form the essence of the refactoring process.

Program analysis serves to check whether the side-conditions of a refactoring

are satisfied by the program under refactoring, and to collect information that is

needed by the program transformation phrase; program transformation transforms

the program according to the refactoring’s transformation rules. The refactoring

process fails if the side-conditions are not satisfied by the program.

For a functional programming language like Haskell 98, the AST annotated

with scope information (and type information if needed), together with the module

system information, provides enough semantic information for most refactorings.

Having scope information in the AST is one of Programatica’s advantages over

other Haskell frontends. Many refactorings involve names and their manipulation,

and it is crucial that these manipulation do not unintentionally disrupt the binding

structure of the program. Scope information gives a clear view of the binding

structure of the program, and makes the program analysis much easier.

Using Strafunski’s AST traversal library, various program analysis and trans-

formation functions can be written over the Programatica-based AST without too

much difficulty. Using Strafunski also allows the exposure of the AST representa-

tion of programs being minimised, which makes porting HaRe from one Haskell

frontend to another easier.
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4.2.3 Program Appearance Preservation

If the refactoring tool is designed to demonstrate the variety of ideas (it is a proof

of concept), then it would be sufficient to pretty-print the transformed AST.

However, for a refactoring tool to be used in real world, program appearance

preservation is unavoidable, and the above program transformation process has

to be adapted to take this problem into account.

With Programatica’s frontend, we have comments and layout information in

the token stream, and location information for identifiers and literals in the AST.

Further examination revealed that given a syntax phrase from the AST, we can

roughly locate it in the token stream without much difficulty, as long as the given

syntax phrase contains some identifiers in it (this constraints could be removed by

adding location information for expressions/patterns in the AST). For example,

Figure 9 shows the AST and token stream representations of the same syntax

phrase: if a then b else c, which is extracted from some example code. For each

identifier, there is a natural correspondence between its AST representation and

its token representation because of the source location information.

Inspired by this mapping between AST and token stream, HaRe’s solution to

preserving program appearance is to make use of both the AST and the token

stream. In this approach, the refactorer still carries out program analysis with

the AST, but it performs program transformation with both the AST and the

token stream: whenever the AST is modified, the token stream will be modified

to reflect the same change in the program source. After a refactoring, instead of

pretty-printing the AST to get the refactored program, we extract the program

source from the token stream, which is fairly straightforward. We look at this

process in more detail in the remainder of this section.

From AST to Token Stream

HaRe takes two views of the program: one in the AST format and the other in the

token stream format. The source location information attached to the identifiers
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— The AST representation of ‘if a then b else c’.
— Note: in the PNT representation of an identifier, the
— first location is the identifier’s defining location,
— and the second location is its source location.

(Exp (HsIf
(Exp (HsId (HsVar

(PNT (PN (UnQual “a”)(S (“D .hs”, 37, 5, 5))) Value
(N (Just (“D .hs”, 48, 5, 16)))))))

(Exp (HsId (HsVar
(PNT (PN (UnQual “b”)(S (“D .hs”, 39, 5, 7))) Value

(N (Just (“D .hs”, 55, 5, 23)))))))
(Exp (HsId (HsVar

(PNT (PN (UnQual “c”)(S (“D .hs”, 41, 5, 9))) Value
(N (Just (“D .hs”, 62, 5, 30)))))))))

— The token stream representation of ‘if a then b else c’
(Reservedid , (Pos char = 45, line = 5, column = 13, “if ”)),
(Whitespace, (Pos char = 47, line = 5, column = 15, “ ”)),
(Varid , (Pos char = 48, line = 5, column = 16, “a”)),
(Whitespace, (Pos char = 49, line = 5, column = 17, “ ”)),
(Reservedid , (Pos char = 50, line = 5, column = 18, “then”)),
(Whitespace, (Pos char = 54, line = 5, column = 22, “ ”)),
(Varid , (Pos char = 55, line = 5, column = 23, “b”)),
(Whitespace, (Pos char = 56, line = 5, column = 24, “ ”)),
(Reservedid , (Pos char = 57, line = 5, column = 25, “else”)),
(Whitespace, (Pos char = 61, line = 5, column = 29, “ ”)),
(Varid , (Pos char = 62, line = 5, column = 30, “c”)),
(Whitespace, (Pos char = 63, line = 5, column = 31, “ ”))

Figure 9: Mapping from AST to token stream

serves as a connection between the AST and the token stream. For an identifier

from the AST, its token representation can be found by simply searching the token

stream for the token with the same source location. Mapping other syntax phrases

from the AST to token stream is slightly less straightforward because keywords

and special characters, such as brackets and comma, are not part of the abstract

syntax, and there is no span information, i.e. the begin and end position of a

syntax phrase in the source, stored in the AST.

Under this approach, we first find the tokens for the first and last identifier
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in the abstract syntax phrase, then look to the left of the first token and/or

to the right of the last token to include the tokens for those keywords or spe-

cial characters preceding/following the first/last identifier in the concrete syntax

phrase. For example, in order to map the AST representation of the expression

if a then b else c, shown in Figure 9, to its token stream representation, we fetch

the locations of the identifiers a and c from their PNT representations in the

AST, and find their corresponding tokens in the token stream based on the loca-

tions, then search backwards from the token representing the identifier a to find

the token for the keyword if . For this purpose, the class StartEndLoc, as shown

below, with a single method called startEndLoc has been defined to fetch the start

and end location of the corresponding token sequence of arbitrary abstract syntax

phrases.

class StartEndLoc t where

— PosToken: token with position information;

— type SimpPos = (Int, Int)

startEndLoc :: [PosToken] → t → (SimpPos, SimpPos)

startEndLoc takes the token stream of the program and the syntax phrase as

arguments, and returns the start and end location of the syntax phrase in the

program source in terms of row and column numbers. White space before/after

the syntax phrase is not covered by the start/end location.

How To Handle Newly Created Code

For the mapping from AST to token stream to work properly, we require: a) the

same occurrence of an identifier has the same source location information in both

the AST and the token stream; and b) the locations are unique. While this is

natural for a freshly lexed and parsed program, it may not always be true without

proper care of the newly created code during the program transformation phase.

A newly created piece of code (the AST representation) could be derived from

the existing code, or composed from scratch by the refactorer. Whenever it is
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possible, we try to get the new code’s string representation from the existing

token stream, otherwise the refactorer will pretty-print the AST of the newly

created piece of code to create its string representation, as the case for the add a

discriminator refactoring.

In both cases, the new code’s string representation will be lexed (tokenised)

with a fresh start source location, and the location for each identifier in the newly

created tokens will be injected back to the new code’s AST representation, so as to

keep the source locations between the token stream and the AST consistent. For

example, suppose the expression if a then b else c is composed by the refactorer

from a case expression, and this conditional expression will be pretty-printed by

the refactorer and replace the case expression in the source. The composed AST

representation of the conditional expression (extracted from one of our experiment

results) is:

(Exp (HsIf (Exp (HsId (HsVar

(PNT (PN (UnQual “a”)(S (“D .hs”, 21, 3, 5))) Value

(N (Just (“D .hs”, 34, 3, 18)))))))

(Exp (HsId (HsVar

(PNT (PN (UnQual “b”)(S (“D .hs”, 23, 3, 7))) Value

(N (Just (“D .hs”, 62, 4, 24)))))))

(Exp (HsId (HsVar

(PNT (PN (UnQual “c”)(S (“D .hs”, 25, 3, 9))) Value

(N (Just (“D .hs”, 75, 5, 24)))))))))

where the source locations no longer reflect the identifiers’ actual locations.

By tokenising the pretty-printed expression “if a then b else e” with a fresh

start location, let’s use (-1000, 1) in this example, we get a sequence of tokens as

shown below:

(Reservedid , (Pos char = 0, line = −1000, column = 1, “if ”)),

(Whitespace, (Pos char = 0, line = −1000, column = 3, “ ”)),

(Varid , (Pos char = 0, line = −1000, column = 4, “a”)),

(Whitespace, (Pos char = 0, line = −1000, column = 5, “ ”)),

(Reservedid , (Pos char = 0, line = −1000, column = 6, “then”)),
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(Whitespace, (Pos char = 0, line = −1000, column = 10, “ ”)),

(Varid , (Pos char = 0, line = −1000, column = 11, “b”)),

(Whitespace, (Pos char = 0, line = −1000, column = 12, “ ”)),

(Reservedid , (Pos char = 0, line = −1000, column = 13, “else”)),

(Whitespace, (Pos char = 0, line = −1000, column = 17, “c”))

In the above token stream, the value for the char field is always zero. This field

is not used by the refactorer, and we set it to zero to indicate that the token is a

newly created token.

By updating the AST of “if a then b else e” with the new locations, we have:

(Exp (HsIf (Exp (HsId (HsVar

(PNT (PN (UnQual “a”)(S (“D .hs”, 21, 3, 5))) Value

(N (Just (“D .hs”, 0,−1000, 4)))))))

(Exp (HsId (HsVar

(PNT (PN (UnQual “b”)(S (“D .hs”, 23, 3, 7))) Value

(N (Just (“D .hs”, 0,−1000, 11)))))))

(Exp (HsId (HsVar

(PNT (PN (UnQual “c”)(S (“D .hs”, 25, 3, 9))) Value

(N (Just (“D .hs”, 0,−1000, 17)))))))))

The fresh start source location is created by the refactorer automatically, and

this aims to guarantee the uniqueness of source locations. The fresh location does

not have to be the new code’s actual start location in the program source, as the

concrete value of the location has no effect on the mapping between AST and

token stream.

Tokenising the newly created code not only allows us to keep the mapping

from AST to token stream correct, but also allows the refactorer to manipulate

the new code in both the AST and the token stream correctly, which is necessary

for some refactorings, such as swapping the arguments of a function definition.
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Basic Token Stream Operations

Apart from the class StartEndLoc, a collection of token stream manipulation func-

tions have been defined in HaRe, and among which are:

• Functions for classifying tokens based on the token’s content and category.

For example the function isWhere :: PosToken → Bool checks whether a

token represents the reserved identifier where.

• The function getToks :: (SimpPos, SimpPos) → [PosToken] → [PosToken],

which takes an abstract syntax phrase as input and extracts its token stream

representation.

• Functions for modifying the token stream. They are:

replaceToks :: [PosToken] → SimpPos → SimpPos → [PosToken] → [PosToken],

where replaceToks tokens start end new replaces the subsequence of tokens

specified by the start and end locations by the new sequence;

addToks :: [PosToken] → [PosToken] → PosToken → [PosToken],

where addToks tokens new t adds the sequence of tokens, new , after the spe-

cific token t in the token stream tokens; and

deleteToks :: [PosToken] → SimpPos → SimpPos → [PosToken],

where deleteToks tokens start end deletes the subsequence of tokens speci-

fied by the start and end locations from the token stream.

The above three functions should be used together with AST transforma-

tions, and the replaced/added/deleted tokens should correspond to proper

syntax phrase(s) in the program.

• A core function adjustLayout :: [PosToken] → Int → Int → [PosToken],

which encodes a layout adjustment algorithm (see next section for details)

and serves to adjust the token stream to compensate for the layout changes

because of replacing/adding/deleting tokens. This function is called by

replaceToks, addToks and deleteToks. for adjusting the program layout.
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The Layout Adjustment Algorithm

There are two issues to do with layout preservation for Haskell programs. One

issue is to keep the layout correct so that the refactored program does not violate

any layout rules; the other issue is to ensure that the code is as much as possible

like the original one in appearance. The layout adjustment algorithm mainly

addresses the first issue. The second issue is relatively straightforward, as the

token stream for the code which is irrelevant to the refactoring is not touched by

the refactorer, and their layout can be preserved naturally when extracting and

concatenating the contents of the tokens. For the code which is affected by the

refactoring, there is no standard algorithm, but we try to use the existing layout

information as much as possible in the implementation of individual refactorings.

We discuss the layout adjustment algorithm next.

Haskell programs can be written in either layout-sensitive or layout-insensitive

style as described in the Haskell 98 report [53]. Most Haskell programmers tend to

use the layout-sensitive style. A layout-sensitive program uses program layout (or

the layout rule, see Section 9.3 of the Haskell 98 report [53]) to convey the infor-

mation which is otherwise provided by braces and semicolons. Informally stated,

the layout rule takes effect whenever the open brace is omitted after the keyword

where, let , do or of . When this happens, the indentation of the new lexeme is

remembered and the omitted open brace is inserted. For each subsequent line, if it

contains only whitespace or is indented more, then the previous item is continued;

if it is indented the same amount, then a new item begins; and if it is indented

less, then the layout list ends and a close brace is inserted. As the meaning of a

Haskell program may depend on its layout, it is essential for a refactorer not to

violate the layout rules when transforming a program. However, näıve updating

of the token stream can destroy the existing layout very easily as shown in the

output 1 part of Figure 10, where the identifier f is renamed to sumSq. The cor-

rect result in shown in the output 2 part of that Figure, where white space has

been added to shift the affected line(s) to the right.
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As only the layout of the source which is lexcially after the point where modifi-

cation has been made could possibly be affected by a token stream manipulation,

the function adjustLayout starts by checking whether the offset of the token, say t,

which is right after the modified token sequence, has been changed, and whether

a layout rule applies at some point between t and the end of the line to which t

belongs. If neither of the checks is positive, then the layout has not been violated

and the token stream will remain unchanged; otherwise, the following lines will

need to be shifted to the left/right by removing/adding a number of whitespace

tokens until a line has been reached whose indentation is less than t ’s original

indention. The number of whitespace added/removed is decided by the change to

t ’s indention. The implementation of adjustLayout is given in Appendix C.

— The original program.

module Test where

f x y = sq x + sq y where sq x = x∧ pow
pow = 2

test = f 10 20

— Output 1: only update the token containing ’f’.

module Test where

sumSq x y = sq x + sq y where sq x = x∧ pow
pow = 2

test = sumSq 10 20

— Output 2: update the token containing ’f’, and adjust the layout.

module Test where

sumSq x y = sq x + sq y where sq x = x∧ pow
pow = 2

test = sumSq 10 20

Figure 10: A layout sensitive Haskell program
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Association of Comments and Program Entities

Comments usually rely on the commented program entities to exist. During the

refactoring process, when a program entity has been moved/removed, the com-

ments for that program entity should be moved/removed as well. Even more, in

some cases the comments need also to be refactored to be consistent with the

refactored program entity. HaRe does not support refactoring the content of com-

ments so far, but it tries to move/remove comments together with the commented

program entities if possible.

Like most programming languages, there is no standard for associating com-

ments with program entities in Haskell 98. In principle, a programmer can put

the comments for a program entity randomly as long as this does not violate the

syntax rules. In practice, people tend to put comments next to the commented

program entity. Based on this fact, we use some heuristics to decide when to

move/remove comments together with definitions. For example, when moving a

definition, we also move the last consecutive comments right before this definition

(with at most one empty line between the comments and the definition); we also

move the comment whose start location is in the same line as the definition’s last

line of code. This was also made possible by the token stream manipulation.

Another idea to keep the consistence between comments and the commented

code is to highlight those comments which are most likely to need examination

after a refactoring has taken place. This is not supported by the current imple-

mentation of HaRe, but worth further exploration.

Discussion

Program appearance preservation is a general problem when tool support for

interactive source-to-source program transformation is concerned. The approach

taken for HaRe is substantially affected by the chosen frontend, i.e., Programatica,

and the design decision to minimise the modifications to Programatica. However,

whatever approach is taken, keeping the correct program layout and the proper
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association of comments and program entities are unavoidable problems.

Program appearance preservation is not trivial, especially for programming

languages that do not have an editor-enforced standard layout, and previous re-

search effort has already been spent on it. Extending abstract syntax trees, or

parse trees, with layout and comment information is currently the most popu-

lar approach to recording program appearance information. For example, this

approach has been used by the Proteus project [115] in the implementation of

a high-fidelity C transformation system. This system effectively uses a special

form of AST which contains layout and comment information, and automatically

propagates layout and comment information during transformations. A more de-

tailed description of Proteus is given in Section 8.1.3. ASF+SDF [56, 109] is a

meta-environment supporting source code analysis and transformation using term

rewriting. SDF (Syntax Definition Formalism) is used for describing the syntax

of programming languages, and ASF (Algebraic Specification Formalism) is for

describing their semantics. The system has recently been extended so that layout

can be parsed and rewritten like any other program structure [110]; support for

this in the infrastructure of the system has required substantial changes to the

system.

4.2.4 The Interface of HaRe

HaRe can be invoked from either of the two program editors: Vim and (X)Emacs,

or from the command line.

The Editor Interface

HaRe is integrated with two program editors: Vim and (X)Emacs. The integration

was mainly designed and implemented by Claus Reinke. To make the explanation

of HaRe complete, a sequence of snapshots of HaRe embedded in Emacs are given

in Figures 11-13. This sequence of figures also show the process of generalising the

function f over the subexpression 2. In Figure 11, the subexpression 2 has been
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Figure 11: A snapshot showing the application of generalising a definition

highlighted, and the command Generalise def is being chosen from the Definitions

submenu, which is in the Refactor menu. After that, the refactorer would prompt

the the user to input the name of the new parameter in the mini-buffer, as shown

in Figure 12. After having input the parameter name as m, the user would press

the Enter key. The result of the refactoring is shown in Figure 13: the function

f has been generalised over the subexpression 2 with a new parameter m, and 2

is now an argument of f at its call-site(s) outside the definition of f , and within

the definition of f , m is supplied to the recursive call(s) of f as an argument.

The Command line Interface

pfe is Programatica’s front-end tool, and can be invoked from the command line.

It supports a host of commands covering from basic project management to type

checking, simple program transformations, metrics, etc. We extended Progra-

matica’s command set with our own refactoring commands, and these refactoring

commands can be invoked from the command line just like those from Progra-

matica itself. For example, the following command line snapshot shows how the

generalising a definition refactoring can be invoked from the pfe environment.
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Figure 12: A snapshot asking for the parameter name during generalisation

myrtle$ pfe
generaliseDef /home/cur/hl/HaRe/test/Main.hs m 6 13 6 14
Analyzing: /home/cur/hl/HaRe/test/Main.hs
modified: /home/cur/hl/HaRe/test/Main.hs

In the above generaliseDef command, 6 and 13 specifies the start line number

and column number of the identified expression respectively; 6 and 14 specified

the end line and column number of the expression; and m is the new parameter

name. This commands performs the same refactoring as shown in Figure 11. The

two lines that follow the generaliseDef command is outputted by the refactorer.

4.2.5 The Implementation Architecture

To conclude this section, we summarise HaRe’s implementation architecture as

shown in Figure 14.
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Figure 13: A snapshot showing the result of generalising a definition

Programatica’s frontend
( Lexer, Parser,
   Module analysis,
   Type checker )

AAST

MI
+ 

TS
transformation 

Program analysis and 

using
Strafunski 

(with DrIFT)
AAST’

TS’

token stream
the modified Program
program from
Extract the 

Program

TS: token stream ;     AAST: annotated abstract syntax tree;    MI: module information

Figure 14: The implementation architecture of HaRe



Chapter 5

The Implementation of HaRe

The initial release of HaRe, in October 2003, supported a dozen of scope-related

single-module refactorings. Since then, single-module refactorings have been ex-

tended to support multi-module programs; various data-oriented refactorings and

module refactorings have been added; and an API has been exposed to HaRe’s

infrastructure for implementing refactorings and more general program transfor-

mations. Apart from these external evolutions, the internal implementation of

refactorings has been restructured mainly in two aspects:

• Factoring out the common token stream and AST manipulations. In the

previous implementation of HaRe, explicit token stream and AST manipu-

lations were used heavily. An AST manipulation is normally accompanied

with a token stream manipulation in order to keep the AST and token stream

consistent. Keeping two views of the program in mind is hard, and the code

produced looks complex. We therefore refactored our implementation, and

extracted a number of functions to encapsulate the basic token stream and

AST manipulations. These functions are now part of HaRe’s API which will

be discussed in Chapter 6. For instance, one of the representative functions

we have extracted is update. This function replaces a syntax phrase with

another of the same type in both the AST and the token stream. Using

70
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these extracted functions, we were able to eliminate the explicit manipula-

tions of token stream in the implementation of individual refactorings, and

make the code much easier to understand and to write (enabling others to

contribute the project).

• Separation of condition checking and program transformation. Another ma-

jor refactoring to HaRe’s implementation is that we separated the condition

checking part from the program transformation part. The advantage of do-

ing this is three-folded: first, it helps to make the implementation clearer,

more readable and maintainable; second, this helps to extract the common

side-conditions among different refactorings; and third, the separation makes

it easier to skip the unnecessary side-condition checking when elementary

refactorings are composed into composite ones.

This chapter presents the internal implementation of refactorings. We take two

refactorings as examples: rename a variable name and from concrete to abstract

data type. Using the first refactoring, we explain the implementation of elemen-

tary refactorings and how multi-module programs are handled; through the second

refactoring, we explain how a composite refactoring can be composed from ele-

mentary refactorings. Before that, we give an overview of the module architecture

of HaRe.

5.1 The Module Architecture of HaRe

Figure 15 illustrates the module hierarchy of HaRe. At the bottom of this struc-

ture are the infrastructure modules on which HaRe is built, including about 210

modules from Programatica’s Haskell frontend, the module RefacLocUtils which

contains a repertoire of token stream related functions, the DriftStructUtils mod-

ule generated by running DrIFT over Programatica’s data types defining the ab-

stract syntax, and the Strafunski library’s top-level module StrategyLib.

Built on top of these infrastructure modules is the module RefacUtils. This
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module defines HaRe’s API, as presented in Chapter 6, and also exports the ab-

stract syntax defined by Programatica, module StrategyLib and DriftStructUtils .

Pfe 

 interface modules     
Programatica command

PfeRefactoringCmds

    . . . . . .RefacRenaming RefacMoveDef RefacGenDef RefacADT

RefacUtils (API)

DriftStructUtilsRefacLocUtils StrategyLib

Programatica modules

Figure 15: The module hierarchy of HaRe

At the centre of the hierarchy are those modules implementing individual refac-

torings. Each module contains one or more refactorings. Normally, only closely

related refactorings are put together in a single module. For example, the module

RefacMoveDef includes three refactorings: promote a definition one level, promote

a definition to the top level, and demote a definition one level. All refactoring

commands are assembled in the module PfeRefactoringCmds, as an extension to

the frontend commands provided by Programatica. Finally at the top of the hi-

erarchy is the Main module defined by Programatica, but modified by us, in the

file pfe.hs.
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5.2 Implementing Elementary Refactorings

– Renaming as an Example

While refactorings differ from each other in their side-conditions and transfor-

mation rules, their implementation normally follows a similar pattern. In this

section, we go through the implementation of rename a variable, with an aim to

shed light on the implementation of other elementary refactorings. The variable

to be renamed can be either a top-level identifier or a local identifier.

Renaming is one of the basic, but useful, refactorings supported by almost all

the available refactoring tools. The fundamental requirement for renaming is not

to violate the binding structure of the program. Basic as it is, the implementation

is by no means a trivial task due to the many layers of nesting scopes that a

Haskell program can have.

In a multi-module program, renaming a top-level exported identifier affects

not only the module, say A, containing the identifier’s definition, but also those

modules importing A. A refactoring on a multi-module program succeeds if and

only if the refactoring succeeds on all the affected modules. When refactoring

multi-module programs, we first carry out side-condition validation over the pro-

gram, then transform the module where the refactoring is initiated, and after that,

transform those modules importing the refactored module. For convenience, we

refer to the module where the refactoring is initiated as the current module ( the

renaming refactoring can only be initiated from the module where the identifier

is defined, hence the current module is also the identifier’s defining module), and

those modules that import the current module as the client modules. Normally

the current module and the client modules need different transformations, but all

the client modules use the same transformation rules.

To explain the implementation of rename a variable, we start by assuming

that the current module is not imported by any other modules, then extend the

implementation to get rid of this assumption. The complete implementation of

this refactoring is given in Appendix D, and we refer to that implementation when
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we talk about the functions used in the implementation.

5.2.1 Refactoring the Current Module

As discussed in Section 4.1, a refactoring process normally involves the follow-

ing steps: transforming program source into internal representations; locating the

focus of the refactoring; validating the side-conditions of the refactoring; trans-

forming the program according to the transformation rules; and presenting the

refactored program to the user. These steps are reflected in the top-level function

of individual refactorings. The top-level function of rename a variable is as shown

in Figure 16. This function only refactors the current module, and it takes 4

arguments: the name of the file containing the declaration of the variable, say x ,

the new variable name, say y , and row and column number of one of the variable’s

occurrence.

Among the called functions, locToPNT (see Appendix F) turns the textual

selection of the identifier into its PNT representation, one of the abstract repre-

sentations of identifiers defined by Programatica [81].

— The top-level function of renaming
rename fileName newName row col
= do

modName ← fileNameToModName fileName
— inscps: in-scope entities; exps: exported entities; mod: the AST;

info@(inscps, exps, mod , ) ← parseSourceFile fileName
— turns textual selection to the PNT represenation

let pnt@(PNT pn ) = locToPNT fileName (row , col) mod
— condition checking in the curremt module

condChecking pn newName modName (inscps, exps, mod)
— transformation: renaming in the current module

r ← applyRefac (doRename pn newName modName) (Just info) fileName
writeRefactoredFiles False [r ] — output the result.

Figure 16: The top-level function of rename a variable.

The side-condition checking function condChecking consists of two parts. The

first part is defined in the local function condChecking1, see Appendix D, which
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does some trivial checking that do not need AST traversals, such as whether the

new name is a lexically valid variable identifier, whether the name to be renamed is

the main defined at the top-level of the Main module, whether the new name will

cause name clash in the export list of the current module, etc. The second part is

defined in the local function condChecking2. This function performs a top-down

traversal of the AST until it reaches a syntax entity, say E, such that E contains

the declaration of x , and all the references to the x in question. E could be the

Haskell module, a declaration defining a function, a declaration defining a pattern

binding, an expression, a branch in a case-expression, or a do statement. The

syntax phrase E forms the context for condition checking, and at the place where

it is reached, the function condChecking ′ is called, and the traversal terminates.

Inside the function condChecking ′, three conditions are checked. The first

condition ensures that the new name does not exist in the same binding group,

where the function declaredVarsInSameGroup (from the API) is used to fetch

all the variable names declared in the same binding group where x is declared.

The second condition checks whether the new name will intervene between the

existing uses of y and its bindings, where function hsFreeAndDeclaredNames is

used to fetch the free and declared variables in the argument syntax phrase. The

third condition checks whether the new name is declared somewhere between

the declaration of identifier to be renamed and one of its call-sites, and function

hsVisibleNames is used to collect the names which are declared in the given syntax

phrase and visible to one of the call-sites of the identifier. In the local functions,

including inMatch, inPattern, and inAlt , the values defaultPNT and/or [ ] are

used to shadow those variables declared in the same syntax phrase but in an

outer scope.

In this implementation, ambiguous references are avoided using qualified names,

therefore it is not checked during the side-condition validation phase.

doRename is the function that actually performs the renaming. This function

does two things: it renames all the occurrences of the identified variable to the

new name, and it qualifies the uses of the new name if otherwise an ambiguous
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reference would happen. Function renamePN ′ is used to do renaming in the

import list, and renamePN is called to do renaming in the export list and the

body of the module. The only difference between renamePN ′ and renamePN

is that renamePN ′ does not check whether the name needs to be qualified, as

qualified names can not be used in the import list. Function renamePN traverses

the AST in top-down order searching for the PNT representation of identifiers,

where it calls the function inPNT . This latter function checks and renames the

identifier according to several conditions:

• The identifier will be renamed if it has the same define location as x , and the

new name y does not cause ambiguous reference. If the identifier is qual-

ified/unqualified before the renaming, then it is still qualified/unqualified

after the renaming.

• The identifier will be renamed and qualified if it has the same define location

as x , but this occurrence of x will cause ambiguous reference after renaming.

• The identifier will be qualified if it has the same name as y , and is unquali-

fiedly used in a scope where the x in question is visible.

• The identifier will be left as it is in all other cases.

The function update is used to update the identifier in both the AST and the

token stream.

5.2.2 Refactoring the Client Modules

For the renaming refactoring to work with multi-module programs, both the side-

condition checking and the program transformation need to be extended.

In a module that imports the renamed identifier, the only possible non-resolvable

violation is name clashes in the module’s export list. So we have defined another

condition checking function clientModsCondChecking, to ensure that none of the

client modules will have conflicting exports after the renaming. Another function
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doRenameInClientMod has been defined to perform renaming in the client mod-

ules. This function is similar to doRename in terms of the traversal strategy, but

is different from doRename at two points:

• Qualified names are used to resolve both ambiguity and name capture.

• The qualifier for the renamed variable has to be inferred from the in-scope

relation of the module.

Finally, the top-level function of the refactoring, rename, is extended to accommo-

date the side-condition checking and transformation for the client modules, and

the implementation becomes complete.

5.2.3 Some Strategies for Refactoring Multi-module Pro-

grams

The general strategy is to minimise the amount of AST traversal, program analysis

and transformation.

As to side-condition checking, we try to confine the scope of checking within the

module where the refactoring is initiated, and resolve the possible problems caused

in the client modules during the program transformation phase. For example,

lifting a function definition to the top level of a module may expose this identifier

to other modules. In this case, instead of checking each module for possible

ambiguous references or name clashes in the export lists, we chose to hide the

identifier in those import declarations which explicitly import the current module

without explicitly specifying the imported entities, so that none of the client

modules’ in-scope/export relations will be changed after the refactoring. Qualified

names can also be used to resolve some ambiguity and conflict problems. In the

case that a violation can not be resolved using these techniques, condition checking

over multiple modules is unavoidable.

As to the program transformation phase, the refactorer needs to go through

every affected module to perform the transformation rules. Nevertheless, we still
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try to keep the transformation as simple as possible. For example, when general-

ising an exported top-level binding, it is possible that some of the global variables

contained in the identified expression are not visible to some of the use-sites of

the generalised function in the client modules. In this case, instead of analysing

and transforming each client module to make those free variables available, we

choose simply to bind the identified expression to a newly created identifier in the

current module, and to make the identifier visible to those involved modules by

exporting/importing this identifier.

5.3 Implementing Complex Refactorings

A complex or large scale refactoring normally involves a number of transformation

steps. When a number of separate transformations have been performed, it might

become hard to maintain the correctness of the binding structure in the AST, and

difficult to continue the transformation. In this case, one solution is to decompose

the complex refactoring into a number of simpler elementary refactorings (some of

these elementary refactorings might already exist), so that performing these ele-

mentary refactorings in a specific order (sequentially or iteratively) would achieve

the same effect as the complex refactoring does.

Suppose a complex refactoring, R, is decomposed into a chain of elementary

refactorings: R1, R2, ... , Rn, then each of these elementary refactorings will have

its own side-conditions and transformation rules, therefore can be applied in its

own right, and re-used in other refactoring scenarios.

Closely relevant to the decomposition of complex refactorings, a number of

elementary refactorings could also be composed into a composite refactoring to

perform a complex refactoring task. In this way, instead of invoking the involved

elementary refactorings one after another, we only need to invoke the composite

refactoring once to achieve the same effect. Moreover, composite refactorings could

possibly need less side-condition checking, and be more efficient. For example,

when the elementary refactorings, R1, R2, ..., Rn, are composed sequentially into
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a composite refactoring, R, the side-condition of R may not be the sum of the

elementary refactorings’ side-conditions, as Ri may establish the side-conditions

of Ri+j(j=0..(n−i)).

More about composite refactorings, especially the derivation of composite

refactorings’ side-conditions, is discussed by D. B. Roberts in [94], M. Cinnide, et

al. in [22], and G. Kniesel, et al. in [57].

One complex refactoring implemented in HaRe is from concrete to abstract

data type. This refactoring turns a user-identified data type into an abstract

data type (ADT). In the implementation, we decomposed this refactoring into 6

elementary refactorings: add field names, add discriminators, add constructors, re-

move nested patterns, eliminate the explicit uses of data constructors, and creating

the ADT interface, as described in Section 2.6.3. Implementing these elementary

refactorings follows a similar pattern as the implementation of renaming, and each

refactoring has its condition checking and transformation completely separated.

These elementary refactorings have also been composed into the composite refac-

toring from concrete to abstract data type, in which all the elementary refactorings’

side-condition checking have been skipped, as this composite refactoring does not

have any side-conditions. The top-level function of this composite refactoring

is given in Figure 17, where the function seqRefac performs the listed transfor-

mations one by one sequentially. The complete implementation of this complex

refactoring and its supporting elementary refactorings are given in Appendix E.

In the current implementation, there is no reuse of ASTs between elementary

refactorings, but this could be improved in the future research. The main chal-

lenge with reusing ASTs is that the refactorer needs to guarantee that no dirty

information is introduced during the transformation phase and the information

stored in the ASTs is up-to-date regarding to the new program. That is, the

refactorer should ensure the correctness of existing static semantic information

including the binding structure and type information annotated in the ASTs, and

the module system information. Furthermore, the location information in the

ASTs should also reflect the new status of the program. The reuse of AST is
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discussed further in Section 9.2.

fromAlgebraicToADT fileName row col
= do

info@( , , mod , ) ← parseSourceFile fileName
case locToTypeDecl fileName row col mod of

Nothing → error ”Invalid cursor position!”
Just decl → do

let typeCon = pNtoName $ fromJust $ getTypeCon decl
seqRefac [doAddFieldLabels typeCon (Just info) fileName,

doAddDiscriminators typeCon Nothing fileName,
doAddConstructors typeCon Nothing fileName,
doElimNestedPatterns typeCon Nothing fileName,
doElimPatterns typeCon Nothing fileName,
doCreateADT typeCon Nothing fileName
]

Figure 17: The top-level function of from concrete to abstract data type.

Figure 18 and 19 show the snapshots of before and after applying from concrete

to abstract data type to the data type Tree.

5.4 Summary

This chapter discussed the implementation of refactorings. So far there are about

8000 lines of code in HaRe (outside of Programatica/Strafunski), about half of

which is for the API implementation. The code for implementing a primitive

refactoring appears to average out at about 200 lines. The balance between con-

dition checking and transformation differs from refactoring to refactoring. For

example condition checking is more complex than transformation in the renam-

ing refactoring, whereas transformation is more complex than condition checking

in the elementary refactorings of from concrete to abstract data type. Undo is

supported by HaRe, and this allows the users to refactor their program in an

exploratory way, since there is no cost in undoing a refactoring which proves not

to be useful. There is still a long way for HaRe to progress before it becomes

an indispensable part of Haskell programmers’ daily used tools, due to the fact
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Figure 18: Before applying from concrete to abstract data type

Figure 19: After applying from concrete to abstract data type to data type Tree
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that it does not support most of the Haskell extensions, and that the number of

supported refactorings is still limited. However, implementing HaRe provides us

with a platform for exploring our refactoring and program transformation ideas,

and with the established framework and our experience from implementing the

existing refactorings, populating more refactorings into HaRe will not be a prob-

lem. As a matter of fact, the established framework is currently being used by

Chris Brown, a PhD student in the Computing Lab at the University of Kent,

to continue the investigation of tool support for refactoring functional programs,

and one refactoring he has implemented using this framework is duplicated code

elimination. Finally, the implementation of HaRe also makes it possible to in-

tegrate some of the existing stand alone Haskell program transformations into

HaRe’s system. For example, José Proença, from the University of Minho, visited

the HaRe team during April-May 2005 and integrated a number of ‘pointfree’

transformations into HaRe.



Chapter 6

An API for Defining Refactorings

An API has been exposed from HaRe’s infrastructure for implementing refactor-

ings. It contains a collection of functions for program analysis and transformation,

covering a wide range of syntax entities of Haskell 98. Moreover, the token stream

manipulations, used to ensure that layout and comments are preserved, are hid-

den in the program transformation functions provided by this API. This chapter

gives a description of the API and illustrates how it can be used to implement

refactorings in a compact and transparent way.

6.1 The Origin of HaRe’s API

HaRe’s API was derived gradually during our implementation of more than a

dozen of refactorings in HaRe. The functions included in the API are not specific

to a particular refactoring, but rather common for a wide range of refactorings or

general program analysis and transformation. Being well tested and documented,

this API could save other developers of HaRe from having to re-implement the

same or similar functionalities.

Before the API was written, a function which transforms the program normally

contained two parts of code: one part for modifying the AST and the other part

for modifying the token stream, and it was the developer’s responsibility to coor-

dinate the two kinds of modifications. Our experience showed that it was quite

83
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difficult for other developers of HaRe to understand the token stream manipula-

tion mechanism and they normally chose to ignore the token stream part to start

with. By deriving this API, we were able to wrap the token stream manipulations

inside the individual program transformation functions. With this API, the col-

lection of token stream manipulation functions introduced in page 62 is no longer

visible to the refactoring developers, and a program appearance-preserving trans-

formation can be written without the underlying layout and comment preservation

mechanism being noticed.

This domain-specific API is supposed to be used together with Programatica’s

abstract syntax for Haskell 98 and the Strafunski [65] library for AST traver-

sals, and it serves as the basis for implementing primitive refactorings or general-

purpose program transformations. This API alone does not guarantee the behaviour-

preservation of refactorings, but it can give a high confidence that the implemen-

tation is faithful to its intention, because code written using the API is compact

and high level.

6.2 What is in HaRe’s API?

HaRe’s API covers a wide range of syntax entities of Haskell 98, including iden-

tifiers, expression, patterns, declarations, imports, export lists and so forth, and

provides functions such as free and declared variable analysis, simplification of

multi-equation definitions, updating/adding/removing syntax phrase, etc. These

functions fall into three categories: program analysis, program transformation and

some miscellaneous functions. What follows is a summary of the API, and a full

list of this API can be found in Appendix F.

The Program analysis API. A program analysis function returns some

information about the program, but does not modify the program. The program

analysis API covers the following aspects:

• Import and export analysis. A collection of functions for checking the im-

ported/exported entities of a module.
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• Variable analysis. A collection of functions for different kinds of free and

bound variable analyses, and for collecting a specific kind of variable from

a given syntax phrase.

• Property checking. Functions for checking whether a given syntax phrase

satisfies a specific property, such as whether an identifier is a top-level iden-

tifier, whether a syntax phrase contains free variables, etc.

• Modules and files. Functions for module graph analysis.

The Program transformation API. A program transformation function

transforms the program from one state to another. The program transformation

API covers:

• Adding a given syntax phrase, such as a declaration, to a specified place in

the program.

• Removing a syntax phrase, such as a function definition, a parameter, etc,

from the program. A syntax phrase can be added/removed only if the result

program is still syntactically correct.

• Updating an existing syntax phrase, such as an expression, in the program

with a new phrase of the same type.

Some miscellaneous functions. These functions are not for program analysis

or transformation purpose, but have also been used extensively in HaRe. They

are:

• Functions for lexing/parsing Haskell programs, and for producing the refac-

tored source code from token streams/ASTs.

• Functions for mapping a textual selection to an AST representation.

• Functions for applying a refactoring to a module or a set of modules.

• A function for creating fresh names based on a collection of existing names

and a given prefix.
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• Functions for converting from expression to patterns and vice versa, and

functions for converting between the different abstract representations of

identifiers, e.g. from PNT representation to PName representation.

• Functions for manipulating locations in the AST, such as removing location

information, converting absolute locations to relative locations, etc. Con-

verting absolute locations to relative locations allows us to identify a wider

range of identity between syntax phrases using equality comparison. For

example, after this transformation, we are able to treat the different oc-

currences of the lambda expression, for instance \x → x + 1, as the same.

This is not possible using absolute locations as the variable x has different

defining locations at different occurrences.

6.3 Implementing Refactorings Using HaRe’s API

This section illustrates how refactorings can be implemented using the API within

HaRe’s infrastructure, with an emphasis on the compactness and high level nature

of the code produced. For this purpose, we take the implementation of a simplified

version of swap the first two arguments (of a function) as an example. This

refactoring swaps the first two arguments of an identified function at both its

definition site and call-sites. For simplicity reason, we assume that the first two

arguments are always supplied to the function at its call-sites, and that the types

of first two arguments are accessible in the function’s type signature if there is

one. However, neither of these is an essential restriction.

Figure 20 shows the implementation of swap the first two arguments. The

top-level function implementing this refactoring is called swapArgs. This func-

tion takes 3 arguments: the name of the file in which the identified function is

declared, the row and column number of one of the function name’s occurrences

in this file. Using locToPNT , the body of the function turns the textual selection

of the identifier into its AST representation pnt , if possible, and then calls the

doSwap function to effect the transformation on the current module as well as
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those modules which could possibly import the identifier. The function doSwap

takes the identifier pnt as an argument.

In doSwap itself, the functions applyTP , full buTP , idTP and adhocTP are

type-preserving strategy combinators from Strafunski [65]. full buTP performs

a bottom-up traversal of the AST, and its argument strategy searches for ab-

stract syntax phrases of type HsMatchP , HsExpP and HsDeclP , on which it calls

functions inMatch, inExp and inDecl respectively. Abstract syntax phrases of

any other types are returned without any change. The functions inMatch, inExp

and inDecl are the places where the arguments are actually swapped. Function

inMatch swaps the first two formal arguments of the function definition equation

if this equation defines the identifier pnt ; function inExp swaps the first two ar-

guments of pnt if the current expression is an application of pnt to its at least

first two arguments; and function inDecl swaps the type signature for the two

arguments if the type signature declaration defines pnt ’s type.

The API function update replaces a syntax phrase with a new syntax phrase of

the same type in both the AST and the token stream. The functions locToPNT ,

parseSourceFile, isFunPNT , isExported , applyRefac, applyRefacToClientMods,

update, expToPNT and isTypeSigOf are all from the API, and their meaning

can be found in Appendix F or in the API documentation available from the

HaRe webpage [91].

6.4 Summary

Together with Strafunski and Programatica, the HaRe API reduces the size and

complexity of the code implementing refactorings, and improves our confidence

in the code produced. The program analysis API can serve as the basic building

blocks for implementing side-condition checking. The program transformation

API liberates us from modifying the AST and token stream, and allows us to

focus on interpreting the transformation rules in the implementation. This way,

the implementation can more closely reflect the inherent logic of the refactorings,
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instead of the complex implementation details. The API also makes it feasible

for the users to design and implement their own refactorings or general program

transformations. For example, in summer 2004, Chau Ngyuen Viet worked on

implementing traditional transformations, such as deforestration, using the API,

and his work is reported in the technical report Transformation in HaRe [19].
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module RefacSwapArgs(swapArgs) where
import RefacUtils

swapArgs fileName row col
= do

modInfo@( , exps, mod , toks) ← parseSourceFile fileName
let pnt = locToPNT fileName (row , col) mod
if isFunPNT pnt mod
then do

r ← applyRefac (doSwap pnt) (Just modInfo) fileName
rs ← if isExported pnt exps

then applyRefacToClientMods (doSwap pnt) fileName
else return []

writeRefactoredFiles False (r : rs)
else error ”Invalid cursor position!”

doSwap pnt ( , , mod)
= applyTP (full buTP (idTP ‘adhocTP ‘ inMatch

‘adhocTP ‘ inExp
‘adhocTP ‘ inDecl)) mod

where
— At the define site.

inMatch ((HsMatch loc fun pats rhs ds) :: HsMatchP)
|fun == pnt

= case pats of
(p1 : p2 : ps) → do

pats ′′ ← update p2 p1 =% update p1 p2 pats
return (HsMatch loc fun pats ′′ rhs ds)

→ error ”Insufficient arguments to swap.”
inMatch m = return m

inExp exp@((Exp (HsApp (Exp (HsApp e e1)) e2)) :: HsExpP)
| expToPNT e == pnt

= update e2 e1 =% update e1 e2 exp
inExp e = return e

inDecl (decl@(Dec (HsTypeSig loc is c tp)) :: HsDeclP)
|isTypeSigOf pnt decl

= if length is == 1
then do

let (t1 : t2 : ) = tyFunToList tp
update t2 t1 =% update t1 t2 decl

else error $ ”This type signature defines the type of more than one identifier”
inDecl d = return d

tyFunToList (Typ (HsTyFun t1 t2)) = t1 : (tyFunToList t2)
tyFunToList t = [t ]

Figure 20: Implementation of swap the first two arguments of a function.



Chapter 7

Specification and Verification of

Refactorings

This chapter focuses on the specification and verification of refactorings. The

specification of refactorings aims to give an accurate description of what the refac-

toring is supposed to do, and in particular to give a clear description of the side-

conditions on the refactoring, whereas one of the most important properties to

verify is that the specified transformation does not change the behaviour of the

program given that the side-conditions of the refactoring are satisfied. Therefore

clear specification and sound verification of refactorings help to clarify the defini-

tion of refactorings, to guarantee program correctness and behaviour preservation,

and so to minimise the need for testing.

As refactoring is ultimately rooted in the semantics of, and program equiva-

lence for, the programming language in question, it is natural to base the speci-

fication and verification of refactorings on the definition of the language and its

semantics. Compared to imperative languages, pure functional programming lan-

guages have a stronger theoretical basis, and reasoning about programs written in

pure functional languages is less complicated due to the referential transparency

[45] property. This is also manifested by the collection of related work in the

90
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functional programming paradigm where functionality-preserving program trans-

formations are used for reasoning about programs [85], for deriving efficient imple-

mentations from program specifications [18, 25, 83], and for compiler optimisation

[52].

Two refactorings are examined in detail in this chapter, and they are generalise

a definition and move a definition from one module to another. The former is a

typical structural refactoring, and the later is a typical module refactoring. By

examining these two refactorings, we hope to illustrate how other structural and

module refactorings can be described in a similar way. For each of the two, we

give its specification consisting of the representation of the program before the

refactoring, the side-conditions for the refactoring and the representation of the

program after the refactoring, and the verification that the programs before and

after the refactoring are equivalent in functionality under the given side-conditions.

Although both generalise a definition and move a definition from one module

to another are module-aware refactorings, we will examine generalise a defini-

tion without examining its effect on the module system; however, it should be

straightforward to extend its specification and verification to cover the module

system aspect after move a definition from one module to another has been ex-

amined. The specification and verification of data-oriented refactorings and how

type information can be used need in verification further research, and are not

discussed in this thesis.

While HaRe is targeted at Haskell 98, our first specification of refactorings

is based on the simple λ-calculus augmented with letrec-expressions (denoted as

λLetrec). By starting from λLetrec, we could keep our specifications and proofs

simple and manageable, but still reflect the basic characteristics of refactorings.

In the case that a refactoring involves features not covered by λLetrec, such as data

constructors, the type system, etc, we could extend λLetrec accordingly. Another

reason for choosing λLetrec is that although Haskell has been evolved to maturity

in the last two decades, an officially defined, widely accepted semantics for this

language does not exist yet.
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The remainder of this chapter is organised as follows. Section 7.1 introduces

λLetrec. Section 7.2 presents some definitions and lemmas needed for working with

λLetrec. The formal specification and verification of generalise a definition are

studied in Section 7.3 and 7.4 respectively. In Section 7.5 , we extend λLetrec to

λM to accommodate a simple module system. Some fundamental definitions with

the module system are given in Section 7.6. The formal specification of move a

definition from one module to another is given in Section 7.7, and a rigorous but

informal verification of this refactoring is given in Section 7.8. Some conclusions

are drawn in Section 7.9.

7.1 The λ-calculus with letrec (λLetrec)

The syntax of λLetrec terms is:

E ::=x

| λx.E

| E1 E2

| letrec D in E

D ::= ε | xi = Ei | D, D

where E represents expressions, and D is a sequence of bindings. Recursive

definitions are allowed in a letrec expression, and the scope of the recursion

variables xi, 1 ≤ i ≤ n, in the expression, letrec x1 = E1, ..., xn = En in E, is

E and all the Eis. For the same letrec expression, we also require that the

recursion variables xi, 1 ≤ i ≤ n, are distinct from each other. A letrec expression

without bindings is allowed and written as: letrec ε in E. No ordering among

the bindings in the letrec expression is assumed. By convention, we use ≡ to

represent syntactic equivalence, and
.
= to represent semantic equivalence. If D1

and D2 are the list of declarations x1 = E1, ...., xm = En and y1 = E ′
1, ..., yn = E ′

n,

respectively, such that ∀i, j : xi '≡ yj, then we denote the list of declarations
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x1 = E1, ...., xm = En, y1 = E ′
1, ..., yn = E ′

n by D1D2.

Type information is not reflected in λLetrec, the main reason for choosing this

calculus to represent refactorings is that type information has not been used in

the implementation of HaRe; the other reason is that we would like to keep the

calculus as simple as possible at the starting point, whilst representing the essential

features of Haskell.

As to the reduction strategy, one option for calculating lambda expressions

with letrec is call-by-need [119, 68], which is an implementation technique for the

call-by-name [85] semantics that avoids re-evaluating expressions multiple times

by memoising the result of the first evaluation, whereas call-by-name is a normal

order, leftmost and outmost reduction, in which argument expressions are passed

unevaluated. In the case that behaviour-preservation does not care about intro-

ducing or removing sharing of computation, a call-by-need calculus might disallow

many refactorings which preserve the observable behaviour, but change the shar-

ing of computation. Therefore, in this study, we use call-by-name for reasoning

about program transformations, so that sharing could be lost or gained during

the transformation. However, comments about the change of sharing during a

refactoring will be given when appropriate.

Instead of developing the call-by-name semantics for λLetrec from scratch, we

make use of the research from the paper Lambda Calculi plus Letrec [120], in which

Z. M. Ariola and S. Blom developed a call-by-name cyclic calculus (λ◦name), where

cyclic implies that recursion is handled in this calculus. The goal of the paper is to

develop a theory of cycles so that more source-to-source program transformation

on recursive functions are expressible and reasonable. To this purpose, the authors

developed a precise connection in the form of an axiom system between the terms

of the lambda calculus extended with letrec (cyclic terms) and the class of well-

formed cyclic lambda graphs. Among other extensions, the axiom system was

extended to be sound and complete with respect to tree unwinding of graphs.

The axiom system for tree unwinding combined with a notion of β-reduction

constitutes the axiomization of the paper’s cyclic lambda structures. The presence
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of cycles and lambda-abstraction causes confluence to fail. So, instead of showing

confluence, the authors shown that the cyclic calculus satisfies an approximate

notion of confluence which guarantees uniqueness of the infinite normal form of a

cyclic term. λ◦name defines exactly the same set of terms as λLetrec does, only with

slightly different syntax notation. To make the presentation clearer, we stick to

our λLetrec notation in the remaining of this chapter. What follows are the axioms

of λ◦name expressed using the λLetrec notation of terms.

β◦ :

(λx. E) E1
.
= letrec x = E1 in E, if x '∈ FV (E1).

Substitution :

letrec x = E, D in C[x]
.
= letrec x = E, D in C ′[E]

letrec x = C[x1], x1 = E1, D in E .= letrec x = C ′[E1], x1 = E1, D in E

Lift :

(letrec D in E) E1
.= letrec D′ in E ′ E1

E (letrec D in E1)
.
= letrec D′ in E E ′

1

λx.(letrec D1, D2 in E)

.
= letrec D1 in λx.(letrec D2 in E), if D1 ⊥ D2 and x '∈ FV (D1).

Merge :

letrec x = letrec D in E1, D1 in E .= letrec x = E ′
1, D

′, D1 in E

letrec D1 in ( letrec D in E)
.
= letrec D1, D′ in E ′

Garbage collection :

letrec ε in E
.
= E

letrec D, D1 in E .= letrec D in E, if D1⊥D and D1⊥E.

Copying :

E .= E1, if ∃σ : ν → ν, Eσ
1 ≡ E.

In the above rules, a ′ attached to a term indicates that some bound variables
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in the term might be renamed to avoid name capture during the transformation;

A context C[] is a term with a hole in the place of one subterm, as defined by

definition 4 in section 7.2. The first substitution axiom requires that the x in the

hole occurs free in C[x], and similarly, in the second substitution axiom, x1 should

occur free in C[x1]. FV (E) means the set of free variables in term E as defined

by definition 2 in section 7.2. D1⊥D2 means that the set of variables that occur

as the left-hand side of an equation in D1 does not intersect with the set of free

variables of D2.

The copying axiom was introduced in order to prove equal every two repre-

sentations of graphs with the same tree unwinding. In this axiom, σ is a function

from recursion variables to recursion variables, and Eσ is the term obtained by

replacing all occurrences of recursion variable x by σ(x) (leaving the free variables

of E unchanged), followed by a reduction to normal form with the unification rule:

x = E, x = E → x = E. The following equality is an example of the copying

axiom:

letrec y = λz.w, w = λx.y in y
.
= letrec y = λz.w′, w′ = λx.y′, y′ = λz.w′ in y

where the mapping σ is: w′ → w, y → y, and y′ → y. In this case, E1
σ is

letrec y = λz.w, w = λx.y, y = λz.w in y,

which reduces to letrec y = λz.w, w = λx.y in y.

To make provable equality a congruence relation, we also assume the presence

of the following axiom and inference rules.

E
.
= E

E1
.= E2 ⇒ E2

.= E1

E1
.
= E2 ⇒ E2

.
= E3 ⇒ E1

.
= E3

E1
.= E2 ⇒ C[E1]

.= C[E2]



CHAPTER 7. SPECIFICATION AND VERIFICATION OF REFACTORINGS96

7.2 The Fundamentals of λLetrec

This section introduces some definitions and lemmas working with λLetrec. While

these definitions and lemmas are introduced mainly for the specification and verifi-

cation of generalise a definition, most of them should be useful for the specification

and verification of other structural refactorings as well.

Definition 1. Given two expressions E and E ′, E ′ is a sub-expression of E (no-

tation E ′ ⊆ E), if E ′ ∈ sub(E), where sub(E), the collection of sub-expressions

of E, is defined inductively as follows:

sub(x)
.
= {x}

sub(λx.E)
.
= {λx.E} ∪ sub(E)

sub(E1 E2)
.= {E1 E2} ∪ sub(E1) ∪ sub(E2)

sub( letrec x1 = E1, ..., xn = En in E)
.= { letrec x1 = E1, ..., xn = En in E} ∪ sub(E) ∪ ... ∪ sub(En)

Definition 2. FV (E) is the set of free variables in expression E, and can be

defined as:

FV (x) .= {x}

FV (λx . E)
.
= FV (E) − {x}

FV (E1 E2)
.= FV (E1) ∪ FV (E2)

FV ( letrec x1 = E1, ..., xn = En in E)
.= (FV (E1) ∪ ... ∪ FV (En) ∪ FV (E)) − {x1, ...xn}

Definition 3. TBV (E) is the set of variables which are bound at the top level of

E and can be defined as:

TBV (x) .= { }

TBV (λx . E)
.
= {x}

TBV (E1 E2)
.= { }

TBV ( letrec x1 = E1, ..., xn = En in E)
.
= {x1, ..., xn}

Definition 4. A Context C[ ] is an expression with a hole in the place of one
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subterm:

C[ ]
.
= [ ]

| λx.C[ ]

| C[ ] E

| E C[ ]

| letrec x1 = E1, ..., xn = En in C[ ]

| letrec x1 = C[ ], ..., xn = En in E

. . .

| letrec x1 = E1, ..., xn = C[ ] in E

Definition 5. A multi-place context M [ ] is an expression with none, one or more

holes in the places of subterms:

M [ ]
.
= [ ]

| x

| λx.M [ ]

| M1[ ] M2[ ]

| letrec x1 = M1[ ], ..., xn = Mn[ ] in M [ ]

Definition 6. Given an expression E and a context C[ ], we define sub(E, C) as

those sub-expressions of C[E] which contain the hole filled with the expression E,

that is:

e ∈ Sub(E, C) iff ∃ C1[ ], C2[ ], such that e ≡ C2[E] ∧ C[ ] ≡ C1[C2[ ]].

Definition 7. The result of substituting N for the free occurrences of x in E with

automatic renaming is defined as:

x[x := N ] .= N

y[x := N ]
.
= y; y '≡ x

(E1E2)[x := N ] .= E1[x := N ]E2[x := N ]
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(λx.E)[x := N ]
.
= λx.E

(λy.E)[x := N ] .= λz.E[y := z][x := N ],

where y '≡ x, and z ≡ y if x '∈ FV (E) ∨ y '∈ FV (N), otherwise z is a fresh

variable.

(letrec x1 = E1, ..., xn = En in E)[x := N ]
.
= letrec z1 = E1[

→
xi:=

→
z i][x := N ], ..., zn = En[

→
x i:=

→
z i][x := N ]

in E[
→
x i:=

→
z i][x := N ],

where zi ≡ xi if x '∈ FV ( letrec x1 = E1, ..., xn = En in E) ∨ xi '∈ FV (N),

otherwise zi is a fresh variable (i=1..n).

Definition 8. The result of substituting N for the free occurrences of x in E

without automatic renaming is defined as:

x[x := N ]nr
.= N

y[x := N ]nr
.
= y; y '≡ x

(E1E2)[x := N ]nr
.= E1[x := N ]nrE2[x := N ]nr

(λx . E)[x := N ]nr
.
= λx . E

(λy . E)[x := N ]nr (y '≡ x) .= λy .E[x := N ]nr,

if x '∈ FV (E) ∨ y '∈ FV (N).

( letrec x1 = E1, ..., xn = En in E)[x := N ]nr

.= letrec x1 = E1[x := N ]nr, ..., zn = En[x := N ]nr in E[x := N ]nr,

if x '∈ FV ( letrec x1 = E1, ..., xn = En in E) ∨xi(i=1..n) '∈ FV (N).

Definition 9. Given x ∈ FV (E) and a context C[ ], we say that x is free over

C[E] if and only if ∀e, e ∈ sub(E, C) ⇒ x ∈ FV (e). Otherwise we say x becomes

bound over C[E].

Lemma 1. Let E ′, E be expressions, and E ≡ C[z], where z is a free variable in

E and does not occur free in C[ ]. If none of the free variables in E ′ will become

bound over C[E ′], then E[z := E ′] ≡ C[E ′].

Proof. By induction on the structure of E.

Case 1. E is a variable. Then E ≡ z, and C[ ] ≡ [ ] by the condition.

Therefore E[z := E ′] .= E ′ ≡ C[E ′]
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Case 2: E = λx.E1. Then x '≡ z, x should not occur free in E ′, and C[ ] is of the

form λx.C1[ ] by the condition. We have:

E[z := E ′] .= (λx.E1)[z := E ′]

.
=λx.(E1[z := E ′]) since x is not free in E ′

.=λx.(C1[E
′]) by induction hypothesis

≡C[E ′]

Case 3: E = E1E2.

Case 3.1. z occurs in E1, then C[ ] is of the form C1[ ]E2, and E1 ≡ C1[z].

E[z := E ′] .= (E1E2)[z := E ′]

.
= E1[z := E ′]E2 since z does not occur in E2

.= C1[E
′]E2 by induction hypothesis

≡C[E ′]

Case 3.2. z occurs in E2. Similar as Case 3.1.

Case 4: E = letrec x1 = E1, ..., xn = En in E0

Case 4.1. z occurs in Ei, then C[ ] is of the form:

letrec x1 = E1, ..., xi = Ci[ ], ..., xn = En in E, and Ei ≡ Ci[z], and we have:

E [z := E ′]

.
= (letrec x1 = E1, ..., xi = Ei, ..., xn = En in E)[z := E ′]

.
= letrec x1 = E1, ..., xi = Ei[z := E ′], ..., xn = En in E

.
= letrec x1 = E1, ..., xi = Ci[E

′], ..., xn = En in E

≡C[E ′]

Case 4.2. z occurs in E0. Similar as Case 4.1.

Lemma 2. Substitution Lemma: If x '≡ y, and x '∈ FV (L), then
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E[x := E ′][y := L] = E[y := L][x := E ′[y := L]]

Proof. Proof by induction on the structure of E.

7.3 Specification of Generalise a Definition

The following definition specifies generalise a definition. A commentary on the

definition and discussions about some variations to the given specification follow.

Definition 10. Given an expression

letrec x1 = E1, ..., xi = Ei, ..., xn = En in E0

Assume E is a sub-expression of Ei, and Ei ≡ C[E]. Then the condition for

generalising the definition xi = Ei on E is:

xi '∈ FV (E) ∧ ∀x, e : (x ∈ FV (E) ∧ e ∈ sub(Ei, C) ⇒ x ∈ FV (e)).

After generalisation, the original expression becomes:

letrec x1 = E1[xi := xiE],

. . . ,

xi = λz.(C[z][xi := xiz]),

. . . ,

xn = En[xi := xiE]

in E0[xi := xiE], where z is a fresh variable

What follows provides some explanation of the conditions in the definition

above:

• The condition xi '∈ FV (E) means that there should be no recursive calls

to xi within the identified sub-expression E. This is necessary in the case

that the generalised definition xi = Ei is a directly recursive function. For

instance, in the expression shown in Figure 21 (the syntax of this example is

not supported by λLetrec), generalising the definition f on the sub-expression
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f 10 will result in an expression in which the f in the sub-expression f 10 has

wrong number of arguments. While allowing recursive calls in the identified

expression is possible but would need extra care to make sure that the

generalised function has the correct number of parameters at its call-sites.

— The expression before generalising the definition of f on sub-expression f 10.

let f x = if x = 0 then 1
else f (x − 1) + f 10

in f 17

— The expression after generalisation.

let f y x = if x = 0 then 1
else f y (x − 1) + y

in f (f 10) 17

Figure 21: Generalisation on a directly recursive definition

• The condition ∀x, e : (x ∈ FV (E) ∧ e ∈ sub(Ei, C) ⇒ x ∈ FV (e)) ensures

that the none of the free variables in E is locally declared in the definition

xi = Ei.

Discussion. Some variations to the above specification are discussed next.

These variations also reflect the general observation that under the same refactor-

ing name, different people may mean different things, and there is no unique way

of resolving this choice.

• The specification given in Section 7.3 allows automatic renaming, hence

some bound variables might be renamed to avoid name capture during the

substitution phase. Without automatic renaming, the refactoring would

fail if any of the substitution fails. For the refactoring to succeed without

automatic renaming, the following side-condition needs to be added:

∀e, j : (Ej ≡ C[e] ∧ xi is free over C[e] ⇒ TBV (e) ∩ FV (xiE) = φ),
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which means that none of the free variables in the expression xiE should be

captured when xiE is substituted for xi at the call-sites of xi.

• The specification given replaces only the identified occurrence of E in the

definition xi = Ei by the formal parameter z. Another variant is to replace

all the occurrences of E in xi = Ei by z. This does not change the side-

conditions for the refactoring, but it does change the transformation within

the definition xi = Ei. With all the occurrences of E being replaced in

xi = Ei, the resulting program would be:

letrec x1 = E1[xi := xiE],

. . . ,

xi = λz.(M [z][xi := xiz]),

. . . ,

xn = En[xi := xiE]

in E0[xi := xiE], where z is a fresh variable

where M [ ] is the resulting context by replacing each occurrence of E in

E with a hole, and all the replaced occurrences of E should be syntacti-

cally equivalent (modulo α-renaming of bound variables) and semantically

equivalent.

• According to the specification given, this refactoring could introduce dupli-

cated computation. One way to avoid duplicating the computation of xiE

is to introduce a new binding to represent the expression, instead of dupli-

cating it at each call-site of xi. Then after the generalisation, we have:

letrec x1 = E1[xi := x′
i]

. . .

xi = λz.C[z][xi := xiz]

x′
i = xiE
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. . .

xn = En[xi := x′
i]

in E[xi := x′
i], where z, x′

i are fresh variables.

7.4 Verification of Generalise a Definition

In order to prove that this refactoring is behaviour-preserving, we decompose the

transformation into a number of steps. If each step is behaviour-preserving, then

we can conclude that the whole transformation is behaviour-preserving.

Proof. Given the original expression:

letrec x1 = E1,

. . . ,

xi = Ei,

. . . ,

xn = En

in E

Generalising the definition xi = Ei on the sub-expression E can be decomposed

into the following steps:

Step 1. add definition x′
i = λz.C[z], where x′

i and z are fresh variables, and

C[E] ≡ Ei, we get

letrec x1 = E1,

. . . ,

xi = Ei,

x′
i = λz.C[z],

. . . ,
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xn = En

in E

This step does not change the semantics as x′
i is not used. Formally, the equiv-

alence of semantics is guaranteed by the garbage collection axiom and the com-

mutability of bindings within letrec.

Step 2. By the side-conditions and axioms, in the context of the definition of x′
i,

we can prove

x′
iE ≡ (λz.C[z])E

.
= letrec z = E in C[z] by β ◦
.
= letrec z = E in C[E] by substitution axiom and side-conditions

.
= C[E] by garbage collection axioms

≡ Ei

Therefore replace Ei with x′
iE in the context of the definition does not change its

semantics, and the original expression is equivalent to:

letrec x1 = E1,

. . . ,

xi = x′
iE,

x′
i = λz.C[z],

. . . ,

xn = En

in E

Step 3. Using the second substitution axiom, it is trivial to prove that substituting

x′
iE

′
i for the free occurrences of xi in the right-hand-side of x′

i does not change the
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semantics of x′
i. We get

letrec x1 = E1,

. . . ,

xi = x′
iE,

x′
i = (λz.C[z])[xi := x′

iE],

. . . ,

xn = En

in E

As z '∈ FV (x′
iE], we have:

letrec x1 = E1,

. . . ,

xi = x′
iE,

x′
i = λz.C[z][xi := x′

iE],

. . . ,

xn = En

in E

Step 4. In the definition of x′
i, replace E with z. we get:

letrec x1 = E1,

. . . ,

xi = x′
iE,

x′
i = λz.C[z][xi := x′

iz],

. . . ,



CHAPTER 7. SPECIFICATION AND VERIFICATION OF REFACTORINGS106

xn = En

in E

It is evident that the right-hand side (RHS) of the definition of x′
i defined in

this step is not semantically equal to the RHS defined in step 3. However we can

prove the equivalent of x′
iE from step 3 to step 4 in the context of the bindings

for x1, ..., xn (note that x′
i does not depend on the definition of xi, so there is no

mutual dependency between xi and x′
i). Let’s use x′

i(E) and x′
i(z) to represent the

x′
is defined in step 3 and 4 respectively. Then

x′
i(z)E

.=(λz.(C[z][xi := x′
i(z)z]))E

.
= letrec z = E in C[z][xi := x′

i(z)z] by β ◦
.= letrec z = E in C[z][xi := x′

i(z)z][z := E] by substitution

.
=C[z][xi := x′

i(z)z][z := E] by garbage collection

.
=C[z][z := E][xi := x′

i(z)z[z := E]] by the substitution lemma

.
=C[E][xi := x′

i(z)E] by lemma 1

.
=Ei[xi := x′

i(z)E]

In a similar way, we can derive: x′
i(E)E

.
= Ei[xi := x′

i(E)E]. The equivalent of

x′
i(E)E between x′

i(z)E can be proved using scoped lambda-graphs proposed by Z.

M. Ariola and S. Blom in Lambda Calculi plus Letrec [120], as they correspond to

the same scoped lambda-graph. As xi
.
= x′

i(E)E , we have xi
.
= x′

i(z)E.

Step 5. Substituting x′
iE for the free occurrences of xi outside the definition of xi

and x′
i does not change the semantics of the let-expression, as xi

.
= x′

i(z)E from

step 4.

letrec x1 = E1[xi := x′
iE],

. . . ,

x′
i = λz.C[z][xi := x′

iz],



CHAPTER 7. SPECIFICATION AND VERIFICATION OF REFACTORINGS107

. . . ,

xn = En[xi := x′
iE]

in E[xi := x′
iE]

Step 6. Remove the definition of xi, we get

letrec x1 = E1[xi := x′
iE],

. . . ,

x′
i = λz.C[z][xi := x′

iz],

. . . ,

xn = En[xi := x′
iE]

in E[xi := x′
iE]

This does not change the semantics because of the garbage collection axiom.

Step 7. Renaming x′
i to xi, we have

letrec x1 = E1[xi := x′
iE][x′

i := xi],

. . . ,

xi = λz.C[z][xi := x′
iz][x′

i := xi],

. . . ,

xn = En[xi := x′
iE][x′

i := xi]

in E[xi := x′
iE][x′

i := xi]

Capture-free renaming of bound variables, i.e. α renaming, does not change the

semantics. Finally, by the substitution lemma, we have

letrec x1 = E1[xi := xiE],

. . . ,

xi = λz.C[z][xi := xiz],
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. . . ,

xn = En[xi := xiE]

in E[xi := xiE]

Some of the steps used in this proof, such as step 1 (adding a new defini-

tion), step 2 (remove an unused definition), step 3 (unfold a definition), and

step 7 (rename a function name), are elementary refactorings on their own, while

the others are not. This raises the question of whether generalise a definition

should be treated as a composite refactoring, or more generally, whether there

is a clear distinction between elementary refactorings and composite refactorings.

In this thesis, we distinguish elementary and composite refactorings from the im-

plementation point of view. If the implementation of a refactoring is based on the

implementation of other refactorings, as is the case for from concrete to abstract

data type, then we regard this refactoring as a composite refactoring, otherwise,

we say that the refactoring is elementary. While elementary refactorings are used

in the above proof, they are not used in the implementation for efficiency reason,

therefore, generalise a definition is treated as an elementary refactoring in this

thesis.

7.5 λLetrec Extended With a Module System

A module-aware refactoring normally affects not only the definitions in a module,

but also the imports and exports of the module. More than that, it may poten-

tially affect every module in the system. A typical module-aware refactoring is

move a definition from one module to another. This refactoring moves an identi-

fied declaration from its current module to a specified target module, as shown in

the example in Figure 22, where the definition of foo is moved from module M 1

to M 2. Together with the move of foo’s definition is the modification to the im-

ports/exports of the affected modules, which compensates for the changes caused
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by moving the definition.

module M 1(foo, sq) where module M 1(sq) where

sq x = x∧ pow sq x = x∧ pow
where pow = 2 where pow = 2

foo x y = sq x + sq y module M 2 where
import M 1(sq)

module M 2 where
import M 1(sq) foo x y = sq x + sq y

bar x y = sq(x + y) bar x y = sq(x + y)

module Main where module Main where
import M 1 import M 1
import M 2(bar) import M 2(bar , foo)

main main
= print $ foo 10 20 + bar 30 40 = print $ foo 10 20 + bar 30 40

Figure 22: Move the definition of foo to module M2

In order to describe module-aware refactorings, we extend λLetrec with a mod-

ule system. The definition of the resulted new language, which is called λM, is

given next’.

The syntax of λM terms is defined as:

Program ::= let Mod in (Exp; Imp; letrec D in E)

Mod ::= ε | Modid = (Exp; Imp; D) | Mod; Mod

Exp ::= ε | (Ep1, ..., Epn) (n ≥ 0)

Ep = x | Modid.x | module Modid

Imp ::= (Ip1, ..., Ipn) (n ≥ 0)

Ip = import Qual Modid Alias ImpSpec

Modid ::= Mi (i ≥ 0)

Qual ::= ε | qualified
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ImpSpec ::= ε | (x1, ..., xn) | hiding (x1, ..., xn) (n ≥ 0)

Alias ::= ε | as Modid

E ::= x

| λx.E

| Modid.x

| E1 E2

| letrec D in E

D ::= ε | x = E | D, D

In the above definition, Program represents a program and Mod is a sequence

of modules. Each module has a unique name in the program. A module consists

of three parts: Exp, which exports some of the locally available identifiers for use

by other modules; Imp, which imports identifiers defined in other modules; and

D, which defines a number of value identifiers. The (Exp; Imp; letrec D in E)

part of the definition of Program represents the Main module of the program,

and the expression E represents the main expression. ε means a null export list

in the definition of Exp, a null entity list in the definition of ImpSpec, and empty

in other definitions. Qualified names are allowed, and we assume that the usage

of qualified names follows the rules specified in the Haskell 98 Report [53].

The module system has been defined to model aspects of the Haskell 98 module

system. Because only value variables can be defined in λM , λM ’s module system is

actually a subset of the Haskell 98 module system. We assume that the semantics

of this module system follows the semantics of the Haskell 98 module system.

A formal specification of the Haskell 98 module system has been described in

the paper A Formal Specification for the Haskell 98 Module System [28], where

the semantics of a Haskell program with regard to the module system is a map-

ping from the collection of modules to their corresponding in-scope and export

relations. The in-scope relation of a module represents the set of names (with

the represented entities) that are visible within this module, and this forms the
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top-level environment of the module. The export relation of a module represents

the set of names (also with the represented entities) that are made available by

this module for other modules to use; in other words, it defines the interface of

the module. Although the term “relation” is used in the specification, a name

should only refer to one entity in a valid Haskell program.

In the following specification of module-aware refactorings, we assume that,

using the module system analysis algorithm from the formal specification given

in [28], we are able to get the in-scope and export relations of each module, and

for each identifier in the in-scope/export relation, we can infer the name of the

module in which the identifier is defined. In fact, the same module analysis system

is used in the implementation of HaRe.

When only module-level information is relevant, i.e., the exact definitions of

entities is not of concern, we can view a multi-module program in this way: a

program P consists of a set of modules and each module consists of four parts:

the module name, M, the set of identifiers defined by this module, D, the set of

identifiers imported by this module, I, and the set of identifiers exported by this

module, E. Each top-level identifier can be uniquely identified by the combination

of the identifier’s name and its defining module as (modid, id), where modid is

the name of the identifier’s defining module and id is the name of the identifier.

Two identifiers are the same if they have the same name and defining module.

Accordingly, we can use P = {(Mi, Di, Ii, Ei)i=1..n to denote the program.

7.6 Fundamentals of λM

Some definitions related to λM (mainly the module system part) are introduced

in the section. These definitions, together with the definitions given in Section

7.2, serve as the basis for the specification and verification of module-aware refac-

torings.

Definition 11. A client module of module M is a module which imports M either

directly or indirectly.
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Definition 12. A server module of module M is a module which is imported by

module M either directly or indirectly.

Definition 13. Given a module M=(Exp, Imp, D), we say module M is exported

by itself if Exp is ε or module M occurs in Exp.

Definition 14. The defining module of an identifier is the name of the module

in which the identifier is defined.

Definition 15. Suppose v is an identifier that is in scope in module M, we use

defineMod(v, M) to represent the name of the module in which the identifier is

defined.

Definition 16. TBV(D) is the set of top-level identifiers declared in D (a sequence

of declarations) and can be defined as:

TBV(ε)={ }

TBV(x = E) = { x }

TBV (D1, D2)=TBV(D1) ∪ TBV (D2)

Definition 17. FV(D) is the set of free variables in D (a sequence of declarations),

and can be defined as:

FV (ε) = {}

FV (x = E) = FV (E) − {x}

FV (D1, D2) = FV (D1) ∪ FV (D2) − TBV (D1, D2)

Definition 18. Binding structure refers to the association of uses of identifiers

with their definitions in a program. Binding structure involves both top-level vari-

ables and local variables. When analysing module-level phenomena, it is only the

top-level bindings that are relevant, in which case we define the binding structure,

B, of a program P = {(Mi, Di, Ii, Ei)}i=1..n as B ⊂ ∪(Di × (Di ∪ Ii))i=1..n, so that

{((m1, id1), (m2, id2)) ∈ B | id2 occurs free in the definition of id1; the defining

module of id1 is m1, and the defining module of id2 is m2 }.

Definition 19. We say that the identifier x defined in module N is used by module

M=(Exp, Imp, D) (M '= N) if DefineMod(x,M) = N and either x ∈ FV(D) or x
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is exported by module M, otherwise we say that the x defined in module N is not

used by module M.

The following definitions, which modify the export/import list of a module,

define the most commonly used operations to the module interface when module-

aware refactorings are implemented.

Definition 20. Given a set of identifiers Y and an export list Exp,

rmFromExp(Exp,Y) is the export list Exp with the occurrences of the identifiers

from Y removed.

rmFromExp (ε, Y ) = ε

rmFromExp ((), Y ) = ()

rmFromExp ((e, Ep2, ..., Epn), Y ) (e '∈ Y )

= (e, rmFromExp(Ep2, ..., Epn), Y )

rmFromExp ((e, Ep2, ..., Epn), Y ) (e ∈ Y )

= rmFromExp ((Ep2, ..., Epn), Y )

Definition 21. Given an identifier y which is defined in module M, and the export

list, Exp, of module M, addToExp (Exp, y M) is the export list with y added if it

is not already exported by Exp, and can be defined as:

addToExp (ε, y, M) = ε

addToExp (( ), y, M) = (y)

addToExp ((Ep1, ..., Epn), y, M)

= (Ep1, ..., Epn) if ∃i, y ≡ Epi (1 ≤ i ≤ n);

otherwise (Ep1, ..., Epn, y)

In the following two definitions, qualifiers and alias used in import declarations

are not affected, so we omit them from the definitions for simplicity reason.

Definition 22. Given an identifier y which is exported by module M, and Imp

which is a sequence of imports, rmFromImp (Imp, y, M) is the import sequence

Imp with the occurrences of y removed from the import declarations that import

M. The function can be used to cleanup the uses of y in import declarations that
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import module M when y is no longer exported by M. rmFromImp (Imp, y, M) is

defined as:

rmFromImp (( ), y, M) = ( )

rmFromImp ((import N, Ip1, Ip2, ..., Ipn), y, M)

= (import N, rmFromImp ((Ip2, ..., Ipn), y, M))

rmFromImp ((import N(x1, ..., xi, ..., xn), Ip2, ..., Ipn), y, M)

= if N ≡ M ∧ xi ≡ y

then (import N(x1, ..., xi−1, xi+1, ..., xn),

rmFromImp ((Ip2, ..., Ipn), y, M))

else (import N(x1, ..., xi, ..., xn),

rmFromImp ((Ip2, ..., Ipn), y, M))

rmFromImp ((import N hiding (x1, ..., xi, ..., xn)), Ip2, ..., Ipn), y, M)

= if N ≡ M ∧ xi ≡ y

then (import N hiding (x1, ..., xi−1, xi+1, ..., xn),

rmFromImp ((Ip2, ..., Ipn), y, M))

else (import N hiding (x1, ..., xi, ..., xn),

rmFromImp ((Ip2, ..., Ipn), y, M))

Definition 23. Given an identifier y which is exported by module M (M is not

necessarily the module where y is defined) and Imp which is a sequence of imports,

then hideInImp(Imp, y, M) is the import sequence Imp with y removed from the ex-

plicit entity list or added to the explicit hiding entity list in the import declarations

which import module M, so that the resulting Imp does not bring this identifier

into scope by importing it from module M. hideInImp(Imp, y, M) is defined as:

hideInImp (( ), y, M) = ( )

hideInImp ((import N, Ip2, ..., Ipn), y, M)

= if (N ≡ M)

then (import N hiding (y), hideInImp ((Ip2, ..., Ipn), y, M))

else (import N, hideInImp ((Ip2, ..., Ipn), y, M))

hideInImp (( import N(x1, ..., xi, ..., xn), Ip2, ..., Ipn), y, M)

= if (N ≡ M, xi ≡ y)



CHAPTER 7. SPECIFICATION AND VERIFICATION OF REFACTORINGS115

then (import N(x1, ..., xi−1, xi+1, ..., xn),

hideInImp ((Ip2, ..., Ipn), y, M))

else (import N(x1, ..., xn), hideInImp ((Ip2, ..., Ipn), y, M))

hideInImp ((import N hiding (x0, ..., xn), Ip2, ..., Ipn), y, M)

= if (N ≡ M ∧ y '∈ {x1, ..., xn})

then (import N hiding (x0, ..., xn, y), hideInImp ((Ip2, ..., Ipn), y, M))

else (import N hiding (x0, ..., xn), hideInImp ((Ip2, ..., Ipn), y, M))

Definition 24. Suppose the same binding, say y, is exported by both module M1

and M2, and Imp is a sequence of import declarations, then chgImpPath(Imp, y,

M1, M2) is the import sequence Imp with the importing of y from M1 changed to

M2, and is defined as:

chgImpPath (( ), y, M1, M2) = ( )

chgImpPath ((import Qual N as Modid ε), Ip2, ..., Ipn), y, M1, M2)

= if (N ≡ M1)

then (import Qual N as Modid hiding (y), import Qual M2 as Modid (y),

chgImpPath ((Ip2, ..., Ipn), y, M1, M2))

else (import Qual N as Modid ε,

chgImpPath ((Ip2, ..., Ipn), y, M1, M2))

chgImpPath ((import Qual N ε ε), Ip2, ..., Ipn), y, M1, M2)

= if (N ≡ M1)

then (import Qual N ε hiding (y), import Qual M2 as N (y),

chgImpPath ((Ip2, ..., Ipn), y, M1, M2))

else (import Qual N as Modid ε,

chgImpPath ((Ip2, ..., Ipn), y, M1, M2))

chgImpPath ((import Qual N as Modid (x1, ..., xi, ..., xn), Ip2, ..., Ipn), y, M1, M2)

= if (N ≡ M1 ∧ xi ≡ y)

then (import Qual N as Modid (x1, ..., xi−1, xi+1, ..., xn),

import Qual M2 as Modid (y), chgImpPath((Ip2, ..., Ipn), y, M1, M2))

else (import Qual N as Modid (x1, ..., xi, ..., xn),

chgImpPath((Ip2, ..., Ipn), y, M1, M2))
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chgImpPath ((import Qual N ε (x1, ..., xi, ..., xn), Ip2, ..., Ipn), y, M1, M2)

= if (N ≡ M1 ∧ xi ≡ y)

then (import Qual N ε (x1, ..., xi−1, xi+1, ..., xn),

import Qual M2 as N (y), chgImpPath((Ip2, ..., Ipn), y, M1, M2))

else (import Qual N ε (x1, ..., xi, ..., xn),

chgImpPath((Ip2, ..., Ipn), y, M1, M2))

chgImpPath ((import Qual N as Modid hiding (x1, ..., xn), Ip2, ..., Ipn), y, M1, M2)

= if (N ≡ M1 ∧ y '∈ {x1, ..., xn})

then (import Qual N as Modid hiding (x1, ..., xn, y),

import Qual M2 as Modid (y), chgImpPath((Ip2, ..., Ipn), y, M1, M2))

else (import Qual N as Modid hiding (x1, ..., xn),

chgImpPath ((Ip2, ..., Ipn), y, M1, M2))

chgImpPath ((import Qual N ε hiding (x1, ..., xn), Ip2, ..., Ipn), y, M1, M2)

= if (N ≡ M1 ∧ y '∈ {x1, ..., xn})

then (import Qual N ε hiding (x1, ..., xn, y),

import Qual M2 as N (y), chgImpPath((Ip2, ..., Ipn), y, M1, M2))

else (import Qual N ε hiding (x1, ..., xn),

chgImpPath ((Ip2, ..., Ipn), y, M1, M2))

7.7 Specification of Move a Definition from One

Module to Another

Move a definition from one module to another is a non-trivial refactoring, and the

realisation of this refactoring is also non-unique. Suppose we would like to move

the definition of foo from module M to module N , the design decisions we made

during the implementation of HaRe are:

• If a variable occurs free in the definition of foo, but is not in scope in module

N , then the refactorer will ask the user to make this variable visible within

module N first.
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• If the identifier foo is already in scope in module N (either defined by module

N or imported from other modules), but it refers to another foo other than

the one defined in module M , the user will be prompted to do renaming

first.

• Mutually recursive modules should not be introduced during the refactoring.

Although mutually recursive modules are allowed in Haskell 98, transparent

compilation of mutually recursive modules are not yet supported by the

current working Haskell compilers/interpreters. Therefore, we try to avoid

introducing mutually recursive modules during refactoring.

• If module M exports foo before the refactoring, then it still exports foo after

the refactoring as long as doing this does not introduce recursive modules;

If module M does not export foo before the refactoring, then it does not

export foo after the refactoring either.

• Module N will export foo after the refactoring only if foo is either exported

by module M or used by the other definitions in module M before the

refactoring.

• The importing of foo will be via M if module M still exports foo after the

refactoring; otherwise via N .

The following definition specifies move a definition from one module to another.

A commentary on the definition follows, and it may be helpful to read this in

conjunction with the specification.

Definition 25. Given a valid program P:

P = let M1 = (Exp1; Imp1; x1 = E1, ..., xi = Ei, ..., xn = En);

M2 = (Exp2; Imp2; D2);

. . . ;

Mm = (Expm; Impm; Dm)

in (Exp0; Imp0; letrec D0 in E)
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The conditions for moving the definition xi = Ei from module M1 to another

module, M2 say, are:

a) If xi is in scope at the top level of M2, then DefineMod(xi, M2) = M1.

b) ∀ v ∈ FV (xi = Ei), if DefineMod(v, M1)=N,

then v is in scope in M2 and DefineMod(v, M2)=N.

c) If M1 is a server module of M2, then {xi, M1.xi} ∩ FV (Ej(j %=i)) = ∅.

d) If module Mj(j %=1) is a server module of M2, and xi ∈ FV (Dj),

then DefineMod(xi, Mj) '= M1 (xi could be qualified or not).

To make the specification clear, the program after the refactoring, P ′, is given

by two cases according to whether xi is exported by M1. In each case, different

situations are considered.

Case 1. xi is not exported by M1.

Case 1.1. xi is not used by other definitions in M1,

that is, {xi, M1.xi} ∩ FV (Ej(j %=i)) = ∅

P ′ = let M1 = (Exp1; Imp1; x1 = E1, ..., xi−1 = Ei−1, xi+1 = Ei+1, ..., xn = En);

M2 = (Exp2; Imp2; xi = Ei[M1.xi := M2.xi], D2);

. . . ;

Mm = (Expm; Imp′m; Dm)

in (Exp0; Imp′0; letrec D0 in E)

where

Imp′j =hideInImp (Impj , xi, M2) if M2 is exported by itself ;

Impj otherwise. (3 ≤ j ≤ m or j = 0)

Case 1.2. xi is used by other definitions in M1.

P ′ = let M1 = (Exp1; Imp′1; x1 = E1, ..., xi−1 = Ei−1, xi+1 = Ei+1, ..., xn = En);

M2 = (Exp′2; Imp2; xi = Ei[M1.xi := M2.xi], D2);

. . . ;
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Mm = (Expm; Imp′m; Dm)

in (Exp0; Imp′0; letrec D0 in E)

where

Imp′1 =hideInImp (Imp1, xi, M2); import M2 as M1(xi)

Exp′2 = addToExp (Exp2, xi, M2)

Imp′j =hideInImp (Impj, xi, M2) (3 ≤ j ≤ m or j = 0)

Case 2. xi is exported by M1.

Case 2.1. M2 is not a client module of M1.

P ′ = let M1 = (Exp1; Imp′1; x1 = E1, ..., xi−1 = Ei−1, xi+1 = Ei+1, ..., xn = En);

M2 = (Exp′2; Imp2; xi = Ei[M1.xi := M2.xi], D2);

. . . ;

Mm = (Expm; Imp′m; Dm)

in (Exp0; Imp′0; letrec D0 in E)

where

Imp′1 = Imp1; import M2 as M1(xi)

Exp′2 = addToExp (Exp2, xi, M2)

Imp′j =hideInImp (Impj, xi, M2) (3 ≤ j ≤ m or j = 0)

Case 2.2. M2 is a client module of M1.

P ′ = let M1 = (Exp′1; Imp1; x1 = E1, ..., xi−1 = Ei−1, xi+1 = Ei+1, ..., xn = En);

M2 = (Exp′2; Imp′2; xi = Ei[M1.xi := M2.xi], D2);

. . . ;

Mm = (Expm; Imp′m; Dm)

in (Exp0; Imp′0; letrec D0 in E)

where
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Exp′1 = rmFromExp (Exp1, xi, M1)

Exp′2 = addToExp (Exp2, xi, M2)

Imp′2 = rmFromImp (Imp2, xi, M1)

Imp′j = if Mj is a server module of M2

then rmFromImp (Impj , xi, M1)

else rmFromImp (chgImportPath (Imp′′
j , xi, M1, M2), xi, M1)

(3 ≤ j ≤ m or j = 0)

Imp′′j = if xi is exported by M2 before refactoring, then Impj ;

hideInImp (Impj, xi, M2) otherwise. (3 ≤ j ≤ m or j = 0)

What follows provides some explanation of the above definition:

• As to the side-conditions, condition a) means that if xi is in scope in the tar-

get module, M2, then this xi should be the same as the xi whose definition is

to be moved. This condition aims to avoid causing name conflict/ambiguity

in M2; condition b) requires that all the free variables used in the definition

of xi are in scope in M2. An entity can be brought into scope by either

refactoring the exports/imports of the involved modules, or using the move

a definition from one module to another refactoring to move the definition

into scope. While it is possible for this refactoring itself to bring those

variables into scope, doing this will make its definition and implementation

more complicated, therefore we chose to divide the functionality into more

elementary ones; finally, conditions c) and d) together guarantee that mutual

recursive modules won’t be introduced during the refactoring process.

• The design of transformation rules was made complicated mainly by two

reasons.

First, it is not clear whether M1 should still export xi after the refactoring, if

it does before the refactoring. After having examined a number of examples

with the original module, M1, and the target module, M2, having different
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relationships in the module graph, we concluded that the answer to whether

M1 should still export xi depends on the concrete situation and the user’s

intention. Either answering yes or no will only be reasonable for some cases,

but unreasonable for some others. In this specification, we choose to let M1

still export xi whenever possible.

The second reason is due to the Haskell 98 module system. The module

system of Haskell 98 is simple and flexible, but not very powerful at con-

trolling the export list. For example, in Haskell 98, an entity in the export

list can be of the form “Module M”, which represents the set of all entities

that are in scope with both an unqualified name “e” and a qualified name

“M.e”. But unlike the case for import declarations, where entities can be

excluded using hiding (ip1,...,ipn), there is no such mechanism with exports.

Therefore, when “module M” is used in the export list, no entity which is in

scope with both an unqualified name “e” and a qualified name “M.e” can

be excluded from being exported. Another example is that if the export

list of a module is omitted, then all values, types and classes defined in the

module are exported. The only way to exclude some entities from being

exported is to use an explicit list to specify those entities to export. This is

inconvenient when the program developer wants to export most of, but not

all of, the defined entities in the module.

From the refactoring point of view, a major inconvenience caused by this

lack of control in the export list is that, when a new identifier is brought

into scope in a module, the identifier could also be exported automatically

by this module, and then further exported by other modules if this module

is imported and exported by those modules. This is dangerous in some

cases as the new entity could cause name conflict/ambiguity in modules

that import it either directly or indirectly, as shown in the example in Figure

23. While it is possible to check each potentially affected module to detect

these problems, it will certainly slow down the refactoring process. Two
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module M 1 where

sq x = x∧ 2

module M 2 ( module M 1, bar) where
import M 1

bar x y = x + y

module Main where
import M 2

foo = x∧ 3
main

= print $ foo 10 + bar 20 30

Figure 23: Adding a definition named foo to module M1 will cause ambiguity in
the module Main

strategies are used in the transformation rules in order to overcome the

inconvenience caused by this lack of control in the export list. The first

strategy is to use hiding in an import declaration to exclude an identifier

from being imported by a client module of a module, N say, when we would

like to, but unable to, exclude it from being exported by module N , as in case

1.1. The second strategy is to use a proper alias in the import declaration

that changes the import path of an identifier from one module to another,

therefore avoiding the changes to the module interface. This is used in the

definition of chgImpPath(Imp, y, M1, M2), as well as in the specification

of Imp′1 in case 1.2 and case 2.1, where import M2 as M1(xi) is used to

ensure that the interface of module M1 stays unchanged. This way, we are

able to confine the affected modules to M1, M2, and those that directly

import M1 or M2, and we are also able to keep the qualifiers associated with

the identifier whose definition is being moved unchanged (except in module

M2).

Let us re-visit the example shown in Figure 22, where the definition of foo
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is moved from module M1 to M2. The result shown in the right-hand side of

Figure 22 is slightly different from what we would get, as shown in Figure 24,

by applying the above specified transformation rules to the original program.

However, a couple of subsequent refactorings, i.e., removing an unused mod-

ule alias and cleaning the import list, could simplify the import declarations

of the Main module to a single import declaration: import M 2(bar , foo).

module M 1(foo, sq) where module M 1(sq) where

sq x = x∧ pow sq x = x∧ pow
where pow = 2 where pow = 2

foo x y = sq x + sq y module M 2 where
import M 1(sq)

module M 2 where
import M 1(sq) foo x y = sq x + sq y

bar x y = sq(x + y) bar x y = sq(x + y)

module Main where module Main where
import M 1 import M 1
import M 2(bar) import M 2(bar)

import M 2 as M 1(foo)
main

= print $ foo 10 20 + bar 30 40 main
= print $ foo 10 20 + bar 30 40

Figure 24: Move the definition of foo from module M1 to M2

7.8 Verification of Move a Definition from One

Module to Another

We argue towards the correctness of this refactoring from two aspects: the pro-

gram after the refactoring is syntactically correct, and does not violate any static

semantic properties, i.e., the program after the refactoring compiles without errors;
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the refactoring does not change the behaviour of individual functions throughout

the program. More details follow.

• Syntactically, this refactoring affects modules M1, M2 and all those modules

that directly import M1 or M2. Syntactic correctness is obvious from the

transformation rules. As to static semantic properties, possible violations

are avoided in a number of ways. In this proof, we take case 2.2 in the

specification as an example. Proof for the other cases follows the similar

pattern.

In module M1, where the definition is no longer in scope after the refactoring,

side-condition c) guarantees that undefined identifier will not be caused

in the body of the module, and rmFromExp (Exp1, xi, M1) ensures that

undefined identifier will not occur in the export list of this module.

In module M2, side-condition a) guarantees that adding the definition does

not cause name conflict in the top level of M2; side-condition b) guarantees

that undefined identifier will not occur within the definition after it has

been moved to M2; rmFromImp (Imp2, xi, M1) ensures that M2 no longer

imports the identifier from M1, therefore unexported identifier in the import

list of M2 is avoided; addToExp (Exp2, xi, M2) ensures that the identifier is

available to other modules.

In the client modules of M1, Mj say, uses of rmFromImp ensure that Mj no

longer imports the definition from M1, therefore unexported identifier in the

import list is avoided; The uses of ChgImpPath ensure that the identifier is

still visible to the sites where it is called after its definition has been moved.

The visibility of the definition in the client modules of M2 is unchanged after

the refactoring.

Recursive modules are not introduced during this refactoring. On one hand,

moving the definition does not add any import declarations to M2, therefore,

there is no chance for M2 to import any of its client modules. On the other

hand, an import declaration importing M2 is added to other modules only
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when it is necessary and M2 is not a client module of them because of

conditions c), d) and the condition checking in case 2.2.

• The refactoring does not change the behaviour of individual functions. Firstly,

the refactoring does not change the structure of individual definitions. It

is obvious from the transformation rules that, apart from the definition of

xi = Ei, none of the other function declarations is syntactically modified by

this refactoring. Within the definition of xi = Ei, the only change is that

the uses of M1.xi have been changed to M2.xi, this is necessary as xi is now

defined in module M2. We keep the qualified names qualified in order to

avoid name capture within Ei.

Secondly, the refactoring does not change the binding structure of variables.

It is clear that the binding structure of local variables is not affected during

the refactoring. As to lop-level identifiers, this refactoring creates a binding

structure which is isomorphic to the one before the refactoring. Suppose the

binding structures before and after the refactoring are B and B ′ respectively,

then B and B′ satisfy the following relation:

B′ = {(f x, f y)|(x, y) ∈ B},

where f(M, x) = (M2, xi) if(M, x) ≡ (M1, xi); (M, x) otherwise.

The only change from B to B ′ is that the defining module of xi has been

changed from the original M1 to M2. This is ensured through the changes to

the import/export declarations of those involved modules and side-condition

b).

7.9 Summary

Clear specification of refactorings provides a way to express the meaning of refac-

torings accurately, and a verification of behaviour preservation ensures the correct-

ness of the specification. This chapter explores the specification and verification
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of behaviour preservation of refactorings in the context of refactoring Haskell pro-

grams. To this purpose, we first defined the simple lambda-calculus called λLetrec,

and then augmented it with a module system. Two representative refactorings

are examined in this chapter, and they are generalise a definition and move a

definition from one module to another.

More structural refactorings or module-related refactorings, such as renaming,

specialise a definition, lifting a definition, add an item to the export list, etc, can

be specified and verified in this framework without difficulty.

The framework needs to be extended to accommodate more features from the

Haskell 98 language, such as constants, case expressions, data types, etc, so that

more complex refactorings, such as data-type related refactorings can be specified.

Nevertheless, this work provides a foundation for the further study of specification

and verification of Haskell refactorings. Finally, a formally defined semantics for

Haskell could help the (potentially automated) verifications of Haskell refactor-

ings.



Chapter 8

Related Work

This chapter reviews relevant work in the literature in both refactoring and those

related areas. It is structured as follows. Section 8.1 explores current research on

the support of refactorings, including bad smell detections, guarantee of behaviour

preservation, existing refactoring tools and their implementations, and language-

parameterised refactoring. Section 8.2 discusses program transformations

in the functional programming paradigm, including the well-known fold-unfold

program derivation system[18] , the Munich CIP Project [11, 12] and some other

program transformation systems. The program slicing technique and its relation

to refactoring are discussed in Section 8.3.

8.1 Existing Refactoring Approaches

Various tools, techniques and formalisms have been developed over the last decade

for supporting different activities involved in the refactoring process for a vari-

ety of programming languages. There are tools for detecting where and which

refactorings should be applied to a software, and tools for automating the ap-

plication of refactorings. There are also proposed techniques for guaranteeing

behaviour preservation or maintaining the consistency between the refactored

program source and other software artefacts such as design specifications, doc-

umentations and tests.

127
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8.1.1 Bad Smell Detection

When refactoring a program, the first decision to make is where and which refac-

toring should be applied to the program. The most widely used approach is the

identification of bad smells. According to Martin Fowler and Kent Beck [35], bad

smells are ‘structures in the code that suggest(sometimes scream for) the possi-

bility of refactoring’. For example, a parameter not used by the function body

indicates the remove an unused parameter refactoring. While human examination

is still the most widely used approach to detecting bad smells, some tools have

emerged to help detecting the opportunities for refactoring.

One of the bad smells is duplicated code. Manual source code copy and modifi-

cation is often used by programmers as an easy means for functionality reuse. Such

practice produces duplicated pieces of code where consistent maintenance might

be difficult. A variety of approaches to detecting duplicated or near-duplicated

code have been proposed in [13], [29], [9], [24]. While different strategies are

used in these papers, duplicated code detection usually involves three steps: first

transform the source code into an internal format such as AST, token stream or

processed string; then a comparison algorithm is performed on the internal data,

and after that the result is shown in an understandable format. CloneDRTM

[99] is a commercial product sold by Semantic Designs, Inc. The tool can auto-

matically locate exact and near-miss duplicated code in software systems written

in C, C++, Java or COBOL. Detected duplicated code can be automatically or

interactively removed depending on the language.

As a proof of concept, T. Tourwé et al. [106] proposed a semi-automated

approach based on logic meta programming (LMP) to formally specify and detect

bad smells, and to propose refactoring opportunities that remove those bad smells.

This LMP technique is independent of the particular base language that is used.

One prototype tool they have implemented was within the VisualWorks object-

oriented programming environment, of which the Refactoring Browser[17] is an

integral part. The tool offers a list of logic queries that can directly be invoked
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by the user from within the Smalltalk browser. Upon selection of a class and a

query, the user can invoke the logic query, and the logic query will be executed

and the results will be shown.

In [101], F. Simon et al. use object-oriented metrics to identify bad smells

and propose refactorings. They focus on use relations (features that heavily use

each other should belong to the same class) to propose move method/attribute and

extract/inline class refactorings. The key underlying concept is the distance-based

cohesion metric, which measures the degree to which methods and variables of a

class belong together. This approach is combined with automatic visualisation

technique to make the results understandable and adjustable to individual goals.

In [55], Kataoka et al. proposed to use program invariants to automatically

identify candidate refactorings based on the idea that a particular pattern of

invariants identifies a candidate refactoring and where to apply it. For example,

remove parameter is applicable when a parameter is a constant or a function of

other variables in scope at the procedure entry (invariants at a procedure entry).

In this approach, a dynamic invariant detection technique is used to discover

possible invariants from program executions by instrumenting the target program

to trace the variables of interest, running the instrumented program over a test

suite, and inferring invariants over the instrumented values. This approach is

complementary to other approaches based on static information.

The number of refactorings that can be proposed by tools is still limited as the

detection of some bad smells can be very computation intensive. Another problem

is that the proposed refactorings may not always the ones that were needed, human

judgement is still required to decide whether a candidate refactoring should be

applied.

8.1.2 Guarantee of Behaviour Preservation

Refactorings should preserve the behaviour of software. Ideally, the most funda-

mental approach is to formally prove that refactorings preserve the full program

semantics. This requires a formal semantics for the target language to be defined.
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However, for most complex languages such as C++, it is very difficult to define

a formal semantics. Even for a functional programming language like Haskell 98,

there is still a lack of an officially defined semantics. In this case, people usu-

ally adopt the idea of invariants, pre-conditions or post-conditions, to ensure the

preservation of semantics. The refactorings in HaRe were written in a compact

and transparent way using Strafunski and the HaRe API. Together with the for-

mal specification of refactorings, this gives us a high degree of assurance about

the behaviour-preservation of the implemented refactorings.

Opdyke [79] proposed a set of seven invariants to preserve behaviour for refac-

torings. These invariants, which were found to be easily violated if explicit checks

were not made before a program was refactored, are: unique superclass, distinct

class names, distinct member names, inherited member variables not redefined,

compatible signatures in member function redefinition, type-safe assignments and

semantically equivalent reference and operations. Opdyke’s refactorings were ac-

companied by proofs which demonstrated that the enabling conditions he iden-

tified for each refactoring preserved the invariants. Opdyke did not prove that

preserving these invariants preserves program behaviour. In [105], Tokuda et al.

also made use of program invariants to preserve behaviour of refactorings.

The notion of precondition is also used in [15] for formal restructuring using

the formal language WSL. The objective of this paper is to recover a formal

requirement specification for a legacy system, given only the source written in a

typical second or third generation language.

In [104], F. Tip et al. explored the use of type constraints to verify the precon-

ditions and to determine the allowable source code modifications for a number of

generalisation related refactorings (e.g., extract interface for re-routing the access

to a class via a newly created interface, and pull up members for moving members

into a superclass) in an object-oriented program language context. In this setting,

the authors start with a well-typed program, and use type constraints to deter-

mine whether declarations can be updated, or whether members can be moved

without affecting a program’s well-typedness.
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Using a different approach, Tom Mens et al. [74] explored the idea of using

graph transformation to formalise the effect of refactorings and prove behaviour

preservation. Their motivation is that there is a direct correspondence between

refactoring and graph transformation: programs can be expressed as graphs, and

refactorings correspond to graph production rules, the application of a refactor-

ing corresponds to a graph transformation, refactoring pre and post conditions

can be expressed as application pre and post conditions. This approach pro-

posed the graph representation of those aspects (access relation, update relation

and call relation) of the source code that should be preserved by a refactoring,

and graph rewriting rules as a formal specification for the refactoring transfor-

mations themselves. Type graphs, forbidden subgraphs, embedding mechanisms,

negative application conditions and controlled graph rewriting were used in the

formalisation. The formalisation of two sample refactorings, EncapsulateField and

PullupMethod, was discussed in [74]. This research is still in its early stage, further

research is needed to find out whether this approach can handle more complex

refactorings, such as multi-module refactorings, and other aspects of behaviour

preservation.

8.1.3 Existing Refactoring Tools

A number of tools have been developed to automate the application of refactorings,

especially for object-oriented programming languages. While most of these tools

have been populated with some basic refactorings such as extracting a method,

renaming and moving a piece of code around, the number of supported refactorings

is still limited compared with the catalogue of refactorings proposed by Martin

Fowler in his refactoring book [35]. Table 2 summarises most of the currently

available refactoring tools and the systems and languages they support, many of

which are commercial products. More detail information can be found at Fowler’s

refactoring website http://www.refactoring.com/tools.html. The following is an

overview of a representative selection of those tools mainly from the academic

area.
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Language Refactoring Tool Description
Smalltalk Refactoring Browser A browser for VisualWorks,

VisualWorks/ENVY, and IBM Smalltalk.
Java IntelliJ IDEA A Java IDE with refactoring support.

CodeGuide A Java IDE with refactoring support.
Eclipse A Java-based extensible development platform.
JFactor A plug-in for JBuilder and Visual Age.
XRefactory A C and Java Refactoring Browser for

Emacs, XEmacs and jEdit.
JRefactory A plug-in for JBuilder, NetBeans, and Elixir IDEs.
RefactorIt A plug-in for NetBeans, Sun Java Studio, Eclipse,

JDeveloper and JBuilder, or as a stand-alone tool.
JavaRefactor A plug-in for JEdit.
Elbereth A Java refactoring tool based on Star Diagram
DPT A tool for introducing design patterns
ConTraCT A refactoring editor for Java

.NET ReSharper An add-in for VisualStudio.NET.
C# Refactory An add-in for VisualStudio.NET.
Refactor!Pro A .NET refactoring tool that supports both

C# and Visual Basic.
C/C++ SlickEdit A program editor supporting C/C++ refactorings.

Ref++ A visual studio add-in that supports
C++ refactorings.

XRefactory A C and Java Refactoring Browser for
Emacs, XEmacs and jEdit.

CRefactory A refactoring tool for C programs.
Proteus A tool focus on C/C++ source transformation.

Visual Basic Refactor!Pro A .NET refactoring tool that supports both
C# and Visual Basic.

Python Bicycle Repair Man A refactoring browser for python.
Self Guru A tool for restructuring inheritance

hierarchies written in Self.
Delphi ModelMaker A class explorer and refactoring

browser for Delphi.
Haskell HaRe A Haskell 98 refactorer embedded in Emacs and Vim.

Table 2: A summary of the currently available refactoring tools
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The Smalltalk Refactoring Browser

The Refactoring Browser is the first successfully implemented tool, and still one

of the most full-featured refactoring tools. It supports Smalltalk refactorings [93,

94]. The success of this tool is mostly due to its integration with the Smalltalk

environment and development tools, its support for undo/redo of refactorings, and

its efficiency. The Refactoring Browser can be considered as an extension to the

Smalltalk development browser, which offers both program transformation and

code browsing facilities.

The Refactoring Browser implements the preconditions proposed by Opdyke

[79], and it also uses postconditions, which were proposed by Roberts in his PhD

thesis [94], to eliminate some of the analysis in proving preconditions inside com-

posite refactorings.

The Refactoring Browser operates by first parsing the code to be refactored

and creating an abstract syntax tree (AST). The available transformations are

encoded as templates in the form of ASTs, which may contain template variables.

The transformation is accomplished by a parse tree rewriter that matches the

concrete AST with a template AST and performs the tree-to-tree transformation.

Finally, the modified AST is passed to the Formatter to get the source back

from the tree. Instead of using the standard Smalltalk parser, the Refactoring

Browser uses its own Smalltalk parser in order to accept pattern variables and

keep comments in the AST. The Refactoring Browser does not preserve program

layout.

Refactorings are implemented using RefactoryChange objects in the Refac-

toring Browser. Each RefactoryChange object also implements an undo method

which can undo the changes performed by the object. By ensuring that each of

small changes can undo itself reliably, the Refactoring Browser can ensure that

complex refactorings can be undone safely.

The refactorings implemented in the Refactoring Browser, as shown in table
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Add Class Add Instance Variable
Remove Class Remove Instance Variable
Rename Class Rename Instance Variable
Remove Method Abstract Instance Variable
Rename Method Create Accessors for Instance Variable
Add Parameter to Methods Add Class Variable
Remove Parameter from Method Remove Class Variable
Rename Temporary Rename Class Variable
Inline Temporary Abstract Class Variable
Convert Temporary to Instance Variable Create Accessors for Class Variable
Extract Code as Temporary Convert Superclass to Sibling
Extract Code as Method Inline Call
Push Up/Down Method Push Up/Down Instance Variable
Push Up/Down Class Variable Move Method to Component
Convert Instance Variable to Value Holder Protect Instance Variable
Move Temporary to Inner Scope

Table 3: Refactorings implemented in the Refactoring Browser

3, are typical to most object-oriented programming languages, and can be cate-

gorised as: class refactorings which change the relationships between the classes

in the systems, method refactorings which change the methods within the system,

and variable refactorings which change the instance variables within classes.

CRefactory

A. Garrido at the UIUC is working on a refactoring tool, called CRefactory, for C

Programs [36]. A major challenge with refactoring C programs is that the source

code of C programs has preprocessor directives intermixed. Preprocessor direc-

tives are hard to handle because it is difficult to carry information of directives

from the source code to abstract program representations and it is difficult to

guarantee correctness in the transformation. As a matter of fact, preprocessor

directives is also an issue for practical Haskell libraries. In [37], Garrido pro-

posed an approach to allow incompatible conditional branches to be analysed and

modified simultaneously, and this is achieved by maintaining multiple branches

in the transformed program tree, each annotated with its respective conditions.

In order to include conditional directives in the AST, a pre-transformation phase
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is performed to ensure that condition directives appear at the same level as ex-

ternal declarations or statements in the C program. As to the implementation

architecture, Garrio reused most of the design ideas of the Smalltalk Refactoring

Browser [93], with the re-implementation of some components of the architecture

in a C context.

Proteus

Proteus [115] is a current research project at Bell Labs focusing on the devel-

opment of a C/C++ source transformation system. Two significant problems

addressed in their research are: 1) retaining layout and comment details in the

transformed code whenever possible; and 2) correct handling of C preprocessing

and the presentation of a semantically correct view of the program during transfor-

mation. Differing from our approach to program appearance preservation, Proteus

uses a specialised form of AST which retains literal (keywords and punctuation),

layout and commenting information. This form of AST, also called Literal-Layout

AST (LL-AST), is usually much larger than the equivalent basic AST. As to the

handling of C/C++ preprocessor directives, instead of extending the grammar

to cater for directives (as in [37]), Proteus treats all directives as layout by em-

bedding them directly into layout strings, and uses recorded macro expansion

coupled with slicing and merging of parallel conditional branches. In order to

hide the complexity of the LL-AST, a transformation language call YATL(Yet

Another Transformation Language) was developed over the LL-AST. Primitives

provided by Stratego (a weakly-typed strategy library akin to Strafunski) [112],

including generic traversals, term matching, construction and deletion, are used

by YATL.

Star Diagram

The Star Diagram is a graphical visualisation tool developed by Bowdidge [16].

A star diagram is generated from the abstract syntax tree and the program de-

pendency graph. It provides a hierarchical tree-structured visual representation
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of the source code relating to a particular data structure, eliding code unrelated

to the data structure’s use (this technique is also known as program slicing, see

Section 8.3). Similar code fragments are merged into node stacks to reveal po-

tentially redundant computations. The tool can help a programmer plan out a

change with respect to how the change is distributed and how the fragments are

related to each other. The visualisation is mapped directly to the program text,

therefore manipulation of the visualisation also restructures the program.

The visualisation provided by the Star Diagram system is targeted at support-

ing the specific task of data encapsulation. Other kinds of transformation would

require the assistance of other views.

Tools based on the notion of star diagram have been developed for C, Ada,

and Tcl/Tk. Korman applied the star diagram concept to Java programs and

implemented a tool called Elbereth. In [59], he described how programmers can

be supported in performing a variety of refactoring tasks, such as extracting a

method or replacing an existing class with an enhanced version. While the tool

can assist the programmer in planning the restructuring, the restructuring itself

has to be performed by hand.

Guru

Guru is a prototype tool developed by I. Moore for restructuring inheritance

hierarchies expressed in the Self programming language [76]. This tool can auto-

matically restructure an inheritance hierarchy into an optimal one for the objects

currently in the system, whilst preserving the behaviour of programs. Here, op-

timal means that there are no duplicated methods and there are the minimum

number of objects and inheritance relationships required for such an inheritance

hierarchy.

The optimisation is achieved by first creating a copy of the objects to be

restructured, in which the inheritance hierarchy is thrown away, then building a

replacement inheritance which ensures no duplication.

Moore found that the inheritance hierarchies produced by Guru are easy to



CHAPTER 8. RELATED WORK 137

understand when restructuring well-written code. For poorly written code, the

inheritance hierarchies created by Guru may bear so little resemblance either to

the original system or to any concepts that are understood by the programmer

or designer that the restructured system may be very difficult to understand,

although it may assist the programmer in identifying the faults of the original

design.

The Design Pattern Tool (DPT)

In his PhD thesis [21], Mel Ó Cinnéide extended the existing work on refactoring

and behaviour preservation (primarily that of Opdyke and Roberts) by merging

this with the notion of design patterns as targets for automated program transfor-

mations. His methodology deals with the issues of reusing existing transformations

for building more complex transformations, preservation of program behaviour,

and the application of the transformations to existing program code. He also

extended the existing refactoring composition method by allowing the transfor-

mations (composite refactorings) to contain not only simple sequences, but also

iteration and conditional statements.

Mel Ó Cinnéide developed a prototype tool called DPT for the automatic ap-

plication of design patterns to an existing Java program in a behaviour-preserving

way. To apply a design pattern with this tool, the user first selects the program en-

tities, then requests the tool to perform the transformation. DTP makes sweeping

changes to a program when it applies a pattern, and this may prevent program-

mers from using the tool when they do not have a clear mental model of what the

tool does.

ConTraCT

ConTraCT, a Conditional Transformation Composition Tool, is a refactoring ed-

itor for Java developed by G. Kniesel and H. Koch [57]. In this experimental

system, the authors further explored the idea of composite refactorings from D.

Roberts [94] and Mel Ó Cinnéide [22], and examined the idea of static composition



CHAPTER 8. RELATED WORK 138

of a sequence of Java Refactorings. The refactoring editor provides the ability to

compose larger refactorings from existing ones, that is, it provides a set of atomic

conditions and transformations along with the ability to edit, compose, store, load

and execute conditional transformation of Java programs. In this research, condi-

tional transformation(CT) is used to represent a pair consisting of a precondition

and a transformation, where the transformation is performed on a given program

only if its precondition evaluates to true, therefore, a refactoring is just a special

form of conditional transformation, i.e., a behaviour-preserving one. As revealed

in [57], one major issue with static composition of refactorings is the automatic

derivation of the preconditions for the composed refactoring; and another is the

design of a complete, but minimal, collection of condition and transformation API.

8.1.4 Language-parameterised Refactoring

Ralf Lämmel has proposed the idea of representing program transformations for

refactoring in a language-parametric manner using Strafunski [62, 65].

The basic idea of language-parameterised refactoring (or generic refactoring)

framework is like this: first, generic algorithms are offered to perform simple

analysis and transformations in the course of refactoring; second, an abstraction

interface is provided to deal with the relevant abstractions of a language; and

then the actual generic refactorings are defined in terms of generic algorithms

and against the abstraction interface. The framework is designed in a way that

it can be instantiated for different languages, such as Java, Prolog and Haskell.

Lämmel used the abstraction extraction refactoring as a running example, and

illustrated how this framework can be instantiated for (a subset of) Java. This is

a challenging task because of the multiple languages that are subject to analysis

and transformation, the program-entity based nature of refactoring tools, the

complexity of language semantics, and the different semantics between different

programming languages. In other words, it is impossible to be completely language

independent.
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8.2 Program Transformation for Functional Pro-

grams

Program transformation for functional programs has a long history, with early

work in this field being described in the survey papers [83, 44]. Apart from refac-

torings, which transform the structure of a program and many are ‘bidirectional’,

most other functional program transformations have a ‘direction’ , for instance

from less to more efficient. In this context, a program transformation system takes

a functional specification of an intended computation or a source-level program,

rewrites the program using transformation rules into an efficient program. Pro-

gram transformations are also used automatically in optimising compilers, acting

either on source level programs or their intermediate language representation. For

example, in [52], Simon Peyton Jones describes the experience of the GHC team

in applying transformational techniques in a particularly thorough-going way in

the Glasgow Haskell Compiler (GHC) [38].

Representative works of program transformation are Burstall and Darling-

ton’s well known fold/unfold program derivation system [18], the Munich CIP

Project [11, 12] and the Bird-Meertens formalism (BMF) [73, 8, 90], which we

discuss in more detail now.

8.2.1 Fold/Unfold

The fold/unfold system [18] was intended to transform recursively defined func-

tions. This system is based on six transformation rules:

• Definition: introducing a new recursion equation whose left-hand expression

is not an instance of the left-hand expression of any previous equation.

• Unfolding : replacing a function call with the body of the function where

actual parameters are substituted for formal parameters.

• Folding : replacing an expression with a function call if the function’s body

can be instantiated to the given expression with suitable actual parameters.
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• Instantiation: introducing a substitution instance of an existing equation.

• Abstraction: introducing a where clause by deriving from a previous equa-

tion a new equation.

• Laws: the use of laws about the primitives (associativity, commutativity,

etc) of the language to obtain a new equation.

The advantage of this methodology lays on its simplicity and effectiveness at a

wide range of program transformations. One disadvantage is that the use of the

fold rule may result in non-terminating definitions, and apart from that, this rule

requires that a history of the program must be kept as it is being transformed,

which is not supported by our current refactoring framework.

8.2.2 The Munich CIP Project

Another representative work of program transformation is the Munich project

CIP (Computer-aided Intuition-guided Programming) [11, 12], consists of two

main parts: the design of a programming language and the development of a pro-

gram transformation system. The key idea of the program transformation system

was to develop programs by a series of small, well understood transformations.

It used a rule-based language to describe transformations, and all transformation

rules are specified by laws about program schemes (of which concrete programs

are a special case) [84]. For instance, a rule to eliminate a conditional statement

can be expressed as:

if  B  then  E else E

E
DEF(B)

This rule uses scheme variables B and E to identify parts of the expression to be

transformed. The side condition of this rule states that the transformation is only

valid if the Boolean expression B is defined.

This approach preserves total correctness as long as all rules preserve total cor-

rectness, and it allows the user to derive their own transformation rules. Somehow
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similar to refactoring tools, the expressiveness of this approach depends on the

available transformation rules, so systems using this approach may have dozens

of transformation rules, and the user needs to search for applicable rules to solve

the problem at hand.

8.2.3 The Bird-Meertens Formalism (BMF)

The Bird-Meertens Formalism (BMF) [73, 8, 90] also called Squiggol, is a calculus

for deriving programs from their specification by a process of equational reasoning.

It consists of a set of higher-order functions that operate mainly on lists including

map, fold, scan, filter, inits, tails, cross product and function composition. BMF

is based on a computational model of categorical data types and their accompany

operations. Program developments in BMF are directed by considerations of data

structure, as opposed to program structure.

8.2.4 Other Program Transformation Systems

What follows is a list of more recently developed transformation tools, most of

which are aimed on program derivation and optimisation.

• Stratego/XT [112, 113] is a framework for the development of fully au-

tomatic program transformation systems. The framework consists of the

transformation language Stratego and the XT collection of transformation

tools. Stratego is a modular language for the specification of fully automatic

program transformation systems based on the paradigm of correctness pre-

serving rewriting under the control of programmable rewriting strategies

in different ways. In Stratego, basic transformation steps are specified by

means of conditional rewrite rules, and different transformation rules can

be composed into rewriting strategies. Similar to Strafunski, Stratego also

supports Generic traversal by means of a set of traversal combinators. An-

other feature of Stratego is the use of concrete syntax patterns for specifying

transformation rules. The XT tools provide facilities for the infrastructure
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of transformation systems including parsing and pretty-printing. Stratego

has been used in the implementation of the refactoring tool Proteus as men-

tioned in the previous section.

• HsOpt [111] is an optimiser for the Helium (a subset of Haskell) compiler

implemented in the transformation language Stratego.

• Ultra [40] is an interactive program transformation system intends to assist

programmers in the formal derivation of correct and efficient programs from

high-level descriptive or operational specifications. The transformation cal-

culus supported by Ultra has its roots in the transformation semantics of

the CIP system [11, 12]. The formulation of target programs in Ultra is

based on the functional language Haskell.

• PATH [107] is another interactive program transformation system. The sys-

tem was built with an aim to have the advantages of both the unfold/unfold

approach and the approach taken by the CIP project, and the disadvantages

of neither. PATH preserves the termination of definitions.

• MAG [102] is a program transformation system for a small functional lan-

guage similar to Haskell. One feature of MAG is that it allows the user to

write source code that actively takes part in the compilation process by pro-

viding instructions to the compiler on how to optimise it. The other feature

is that a novel higher order matching algorithm [27] for lambda expressions

is used in the implementation.

• HULA [30, 31] is a rule-based language for expressing changes to Haskell

programs in a systematic and reliable way. The update language essentially

offers update commands for all constructs of the object language (a subset

of Haskell). The update language can be translated into a core calculus

consisting of a small set of basic updates and update combinators. The

idea underneath the update language is to view programs as abstract data

types (ADT) [32] and performing program changes by applying well-defined
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ADT operations on the program, and basic updates are be combined into

update programs that can be stored. A type change inference system that

can automatically infer type changes for updates has been developed, and

the type of an update program is given by the possible type changes it can

cause for an object programs.

8.3 Program Slicing

Program slicing is a technique for aiding program debugging, testing and under-

standing by isolating portions of a software system to reduce its complexity. Two

major forms of slicing are static slicing and dynamic slicing. A static program

slice with respect to a set of variables V at some point of interest p is the parts

of the program that may affect the values of some variables in V at the point p.

(p,V) is also called a slicing criterion. Therefore, a static program slice can be

derived by deleting the statements that have no effect on the slicing criterion. The

concept of static slicing was originally proposed by Mark Weiser in [117, 118]. A

dynamic program slice is the part of a program that “affects” the computation

of a variable of interest during program execution of a specific program input.

Dynamic program slicing was originally proposed by Korel et al. [58] for program

debugging purpose, but its application has been extended beyond that. Normally,

static slices are typically larger, but cater for every possible execution of the orig-

inal program; dynamic slices are much smaller, but only cater for a single input.

Different slicing techniques and algorithms have been proposed in the last decade

to improve the precision and performance of program slicing tools [103].

Program slicing can be used for refactoring to reduce the unnecessary coupling

of parameters, variables or design concerns. An example is to refactor a function

that returns a tuple, say (f, g), into two separate functions returning f and g

respectively.

The idea of sliced-based method extraction was firstly explored in [71], and

more recently by Nate [26], a project currently carried out at Oxford University
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with a focus on slicing-based refactorings. Compared with the method extraction

refactoring provided by traditional refactoring tools, sliced-based method extraction

allows extracting a non-consecutive computation for the program.

8.4 Summary

The main challenges faced by automating the refactoring process are: a) iden-

tifying refactoring opportunities, b) global behaviour-preserving program trans-

formation, and c) program appearance preservation. Automating the refactoring

process benefits from the previous work on program lexing, parsing, analysis and

transformation, but also exposes new research areas, such as producing ASTs or

token streams with richer information, verifying global behaviour preservation, a

general framework for building refactoring tools, etc. In the last decade, efforts

have been made to support various aspects of the refactoring process, especially

for object-oriented programming languages, and our work complement the exist-

ing research by exploring the properties of refactoring from the functional program

language paradigm and building a refactoring tool for a full and layout-sensitive

language. As functional programming languages and object-oriented program-

ming languages expose different program structures, it is no surprise that each

of them have a collection refactorings particularly favoured by their own pro-

gram structures. However, there are still some refactorings, such as renaming,

add/remove parameters, duplicated code elimination, etc, common to both pro-

gramming paradigms, and the same challenges mentioned above need to be ad-

dressed when implementing refactoring tool for either programming paradigms.

Proof of behaviour-preservation of refactorings for purely functional languages

is relatively straightforward due to the clean semantics and the rich theoretical

foundation for reasoning about functional programs.
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Conclusions and Future Work

9.1 Summary of Contributions

This study has explored several aspects of refactoring in the functional program-

ming paradigm, as a complement to the existing works in refactoring programs

written in object-oriented or imperative programming languages. The principal

artefacts of this work are the Haskell refactorer, HaRe, and the API as a plat-

form for implementing new refactorings and general program transformations. In

particular, the following contributions have been made:

• The study of a set of Haskell refactorings.

• The design and implementation of the Haskell refactorer, which can be used

by real-world Haskell 98 programmers.

• An approach to program appearance preservation.

• An API for implementing refactorings or general program transformations

in HaRe.

• A simple language, λM (λLetrec extend with a module system), for the spec-

ification of refactorings.

• The specification and proof of a couple of representative refactorings using

λM or λLetrec.

145
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9.2 Future Work

Our current work can be further developed in a number of directions.

• Furture Development of HaRe.

– Adding more refactorings to HaRe. The number of supported

refactorings in HaRe is still limited comparing with the catalogue of

refactorings listed on our project website [91]. C. Brown has been work-

ing on duplicated code elimination, which will be available from HaRe

0.4. Apart from that, more refactorings, such as the other refactorings

mentioned in Section 2.7, can be implemented using the established

framework and API.

– Making use of type information. The existing refactorings in

HaRe do not utilize type information so far. This is partially because

the type checking system from Programatica [81] is not efficient enough

to be used in an interactive environment. However, type information

is necessary for some refactorings. Apparently, any refactorings to do

with classes and especially instances need type information. Apart

from that, there are some other examples which need type information

as well. For instance, when generalising a function definition which has

a type signature declared, the type of the identified expression needs

to be inferred, and added to the type signature as the type of the

function’s first argument. Another example is the lifting a definition

refactoring. Lifting a simple pattern binding (i.e. a pattern binding

in which the pattern consists of only a single variable) to the top level

may make an originally polymorphic definition monomorphic, and fail

the program at compilation. This problem could be avoided by adding

proper type signature to the lifted pattern binding, but again, type

information is needed in order to infer the type signature.
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– Coping with modules without source code. The current Programatica-

based HaRe requires the source file for each module in the project for

analysis purpose. A project normally contains the user’s own source

files and some library modules. The problem arises when the user is

using a binary distribution of the libraries. One shortcut solution is to

define a dummy module for each no-source module so that the project

can be created and compiled. However, extra care still needs to be

taken when a refactoring could involve the source code of the dummy

functions defined in dummy modules. For example, apply the unfold-

ing refactoring to the call-site of a library function does not make

sense if the function is defined in a dummy module. C. Ryder from

our research group is currently investigating the possibility of moving

HaRe from Programatica to the GHC API [54] which is expected to

be released via a package of GHC (6.6). If this switch succeeds, this

problem will be solved automatically. Porting to GHC API would also

give us faster type checking and support for commonly used language

extensions. Moreover, the successful switching from Programatica to

GHC API would also make it possible to incorporate HaRe with Visual

Haskell [54], which is a full-featured Haskell development environment

currently under development.

– More interaction between HaRe and the user. Interaction be-

tween HaRe and the user during the refactoring process will allow the

users to provide the refactorer with more information so as to guide

the refactorer to proceed, therefore provides more flexibility to the

user. For instance, when introducing a definition to represent a user-

identified expression, the user may want to replace only the identified

occurrence of the expression, some or all the occurrences of the ex-

pression. The current version of HaRe supports the two extreme cases,

but does not support replacing some occurrences of the identified ex-

pression. Being able to interact with the user, the refactoring could
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highlight the next found occurrence of the expression, and then ask

the user whether he/she wants to replace this occurrence and proceed

according to the user’s answer. As to the implementation, this func-

tionality mainly involves the interaction between the refactorer and the

editor which hosts it.

• Optimization of HaRe.

– Reuse of the AST and module information between refactor-

ings. The efficiency of HaRe can be improved by reusing the available

information as much as possible from one refactoring to another. The

most obvious reusable information is the AST and the module system

information. Being able to reuse this information, we could avoid the

program source being re-parsed and modules being re-analysed when

the next refactoring is invoked. However, this reusability is not straight-

forward. As the AST changes during the refactoring process, the refac-

torer needs to guarantee that no dirty information is introduced during

the transformation phase. That is, apart from keeping the AST syn-

tactically correct, the refactorer should also ensure the correctness of

semantic information and location information in the ASTs, and that

the module information reflects the new status of the program. For ex-

ample, when a function definition, say foo, is lifted to the top level, the

abstract syntax representation of foo should be changed to reflect the

fact that foo is now a top-level identifier, and all the references to this

identifier should be changed to refer to its new abstract representation.

If foo will be exported by its defining module after the refactoring, then

the defining module’s export relation should be modified to accommo-

date this new top-level identifier. After the refactoring, the source

locations of the identifiers which occur in the lifted definition will be

changed as well. Tracing the changes of locations is very delicate and
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complex in practice, and one possible solution is to lex the new pro-

gram source after the refactoring, and then inject the new locations

back into the ASTs. The new program source can be extracted from

the token stream after the refactoring. The current implementation of

HaRe allows dirty information to exist in the AST as long as this does

not affect the refactoring process, and the module information is not

updated during the refactoring process.

• Support for scripting refactorings. A set of elementary refactorings

can be applied sequentially or iteratively to a program in order to achieve

the effect of a complex refactoring process, like the case of introducing ab-

stract data type discussed in Section 5.3. In some other scenarios, it may

well be that certain patterns of refactorings can be seen to occur. For ex-

ample, moving a definition from a module to another can be followed by

cleaning up the import list, and lifting a definition can be preceded by re-

naming the identifier. The more refactorings HaRe provides, the more likely

that there will be some commonly used refactoring patterns. Therefore, it

would be helpful to have a simple script language which can be used by

HaRe or the users to easily build composite refactorings from the existing

ones. This script language should provide the basic tactics for building com-

posite refactorings, such as sequential, iterating and conditional application

of refactorings. Obviously, there should also be a mechanism for interpreting

and storing the script, so that the script can be invoked once it has been

defined.

One of the foreseen challenges with supporting scripting refactorings within

the current HaRe framework lies in how to specify the parameters for the

elementary refactorings involved in a composite refactoring. A refactoring

normally takes some syntax phrase(s) as input. In the current implemen-

tation of HaRe, a syntax phrase is identified by its start and end location

(or just the start location if the syntax phrase only contains an identifier)
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in the source file, and this is very convenient for the user as he/she only

needs to highlight the syntax phrase (or mouse click on the identifier) in the

source, and HaRe will then infer the locations from the editor. However, for

a scripted composite refactoring, users normally do not have access to the

intermediate refactoring results, hence are not able to highlight any syntax

phrase for the intermediate refactorings. Moreover, the location of identi-

fiers can change from refactoring to refactoring, and the user will not be

able to infer the changes and inform the refactorer the location of the syn-

tax phrase. Therefore, except for some special cases where the parameters

can be specified from the very beginning of the composite refactoring pro-

cess using highlighting, some other method needs to be invented to identify

syntax phrases in the program source. An obvious idea is to use addresses

within the AST in some way or to use some scope information.

A näıve way of executing a composite refactoring is to execute the involved

elementary refactorings in the specified order, and the composite refactor-

ing fails if one of the elementary refactoring fails, and succeeds if all the

elementary refactorings succeed. In this style, the execution of a composite

refactoring follows a side-condition checking → program transformation →

side-condition checking → program transformation → . . . pattern. However,

this can be improved by calculating the side-conditions for the whole com-

posite refactorings beforehand. In this way, the execution of the composite

refactoring will follow a side-condition checking → program transformation

→ program transformation → . . . pattern, and if the composite refactoring

will not succeed, it will fail in an early stage. In another word, we would like

the scripts to put together the side-conditions and transformations, rather

than the simple (whole) refactorings. The side-condition of a composite

refactoring may not be the same as the union of the side-conditions of the

elementary refactorings, as some conditions which are not satisfied by the

current program might become satisfied after certain refactorings, and vice

versa. The idea of post-condition has been used to infer the side-conditions
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for composite refactorings [94], and how side-conditions for composite refac-

torings can be computed manually has been discussed in [22]. The automatic

derivation of side-conditions is examined in [57].

• Towards metric-based refactoring. The MEDINA [96] library is a col-

lection of functions and data structures written in Haskell to aid in the

implementation of software metrics for Haskell programs. Along with this

library and a collection of simple metrics, visualisation functions are also

provided to support the display of metric values and the program being

measured. This work was carried out by C. Ryder for his PhD research at

the University of Kent. By putting HaRe and MEDINA in the same pro-

gram development environment, the user would be able to make use of the

functionalities from both tools. Further more, the values of metrics can help

the users to detect potential refactoring opportunities or bad smells, and

after a refactoring, the program can be measured again to check whether

the program’s structure has been improved regarding to the measured pa-

rameters.

• Maintaining the consistency between the refactored program source

and other accompanying software artefacts. A real-world program

source hardly exists alone. Together with the software, there might be doc-

umentation, testing suites, design documents, etc. It would be valuable to

provide a systematic way to keep the different software artefacts consistent

during the refactoring process. Even within the program source itself, the

comments might become out-of-date when the commented source has been

refactored. Automatic or semi-automatic refactorisation of the comments

would also be helpful.

• Further development of the specification and verification of refac-

torings. The current simple language λM can be extended to accommo-

date more features from the Haskell 98 language, such as constants, case-

expressions, data types, etc, so that more refactorings can be specified and
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verified in this framework. With the supporting of scripting refactorings,

corresponding theory needs to be developed to specify and verify composite

refactorings.

• Applying the research results to other functional programming

languages. The established framework gives us a starting point to look into

refactorings in other functional programming languages, such as Clean [87],

Standard ML [6], Erlang [89], OCaml [92], etc. Among these programming

languages, Clean shares more features with Haskell than other languages,

therefore applying the research results to it should be easier than to the

other languages. We are going to build refactoring support for Erlang as

part of the EPSRC supported project Formally-based tool support for Er-

lang development. Although Erlang differs from Haskell in many aspects,

the experience gained from this research will be invaluable for building the

Erlang refactoring tool.



Appendix A

The Definition of PNT

-- The definition of PNT and its comprising data types.

data PNT = PNT PName (IdTy PId) OptSrcLoc

data PN i = PN i Orig

type PName = PN HsName

type PId = PN Id

data HsName = Qual ModuleName Id
| UnQual Id

type Id = String

data Orig = L Int
| G ModuleName Id OptSrcLoc
| D Int OptSrcLoc
| S SrcLoc
| Sn Id SrcLoc
| P

data ModuleName = PlainModule String
| MainModule FilePath

newtype OptSrcLoc = N (Maybe SrcLoc)
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data SrcLoc = SrcLoc {srcPath :: FilePath
srcChar, srcLine, srcColumn :: !Int}

data IdTy i = Value
| FieldOf i (TypeInfo i)
| MethodOf i [i]
| ConstrOf i (TypeInfo i)
| Class [i]
| Type (TypeInfo i)
| Assertion
| Property

data TypeInfo i = TypeInfo { defType :: (Maybe DefTy)
constructors :: [ConInfo i]
fields :: [i]

}
data DefTy = Newtype

| Data
| Synonym
| Primitive

data ConInfo i = ConInfo { conName :: i
conArity :: Int
conFields :: (Maybe [i])

}



Appendix B

Some Combinators From

StrategyLib

B.1 The Basic Combinators

-- Strategy application:
applyTP ::(Monad m, Term t) => TP m -> t -> m t
applyTU ::(Monad m, Term t) => TU a m -> t -> m a

-- Strategy update:
adhocTP ::(Monad m, Term t) => TP m -> (t -> m t) -> TP m
adhocTU ::(Monad m, Term t) => TU a m -> (t -> m a) -> TU a m

-- Deterministic combinators:
seqTP :: Monad m => TP m -> TP m -> TP m
seqTU :: Monad m => TP m -> TU a m -> TU a m

passTP :: Monad m => TU a m -> (a -> TP m) -> TP m
passTU :: Monad m => TU a m -> (a -> TU b m) -> TU b m

-- Combinators for partiality and non-determinism:
choiceTP :: MonadPlus m => TP m -> TP m -> TP m
choiceTU :: MonadPlus m => TU a m -> TU a m -> TU a m

-- * Traversal combinators:
-- Succeed for all children
allTP :: Monad m => TP m -> TP m
allTU :: Monad m => (a -> a -> a) -> a -> TU a m -> TU a m

-- Succeed for one child; don’t care about the other children
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oneTP :: MonadPlus m => TP m -> TP m
oneTU :: MonadPlus m => TU a m -> TU a m

-- Succeed for as many children as possible
anyTP :: MonadPlus m => TP m -> TP m
anyTU :: MonadPlus m => (a -> a -> a) -> a -> TU a m -> TU a m

-- Succeed for as many children as possible but at least for one
someTP :: MonadPlus m => TP m -> TP m
someTU :: MonadPlus m => (a -> a -> a) -> a -> TU a m -> TU a m

-- * Useful defaults for strategy update.
-- Returns the incoming term without change.
idTP :: Monad m => TP m

-- Always fails, independent of the incoming term.
failTP :: MonadPlus m => TP m
failTU :: MonadPlus m => TU a m

-- Always returns the argument value ’a’,
-- independent of the incoming term.
constTU :: Monad m => a -> TU a m

-- Replace one monad by another:
msubstTP ::(Monad m, Monad m’)

=> (forall t . m t -> m’ t) -> TP m -> TP m’
msubstTU ::(Monad m, Monad m’)

=> (m a -> m’ a) -> TU a m -> TU a m’

B.2 The Recursive Traversal Combinators

-- * Full traversals
-- Full traversal in top-down order.
full_tdTP :: Monad m => TP m -> TP m
full_tdTP s = s ‘seqTP‘ (allTP (full_tdTP s))

full_tdTU :: (Monad m, Monoid a) => TU a m -> TU a m

-- | Full traversal in bottom-up order.
full_buTP :: Monad m => TP m -> TP m
full_buTP s = (allTP (full_buTP s)) ‘seqTP‘ s

-- * Traversals with stop conditions.
-- Top-down traversal that is cut of below nodes
-- where the argument strategy succeeds.
stop_tdTP :: MonadPlus m => TP m -> TP m
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stop_tdTU :: (MonadPlus m, Monoid a) => TU a m -> TU a m

-- * Single hit traversal
-- Top-down traversal that performs its argument
-- strategy at most once.
once_tdTP :: MonadPlus m => TP m -> TP m
once_tdTU :: MonadPlus m => TU a m -> TU a m

-- Bottom-up traversal that performs its
-- argument strategy at most once.
once_buTP :: MonadPlus m => TP m -> TP m
once_buTU :: MonadPlus m => TU a m -> TU a m

-- * Traversal with environment propagation
-- Top-down type-unifying traversal with
-- propagation of an environment.
once_peTU :: MonadPlus m
= e -- initial environment
-> (e -> TU e m) -- environment modification at downward step
-> (e -> TU a m) -- extraction of value, dependent on environment.
-> TU a m



Appendix C

The Layout Adjustment
Algorithm

The function adjustLayout adjusts the token stream to compensate the change

to layout caused by a token stream manipulation. It takes four parameters. The

first parameter is the sequence of tokens starting from the token, say t, which

is right after the added/deleted/updated tokens to the end of the token stream;

the second parameter is t ’s original off-side, and the third parameter is t’s new

off-side; the fourth parameter is an interger used to create fresh locations.
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-- Some auxiliary functions used by ‘adjustLayout’.
tokenRow (_, (Pos _ r _, _)) = r

tokenCon (_,(_,s)) = s

hasNewLn (_,(_,s))=isJust (find (==’\n’) s)

isWhiteSpace (t,(_,s)) = t==Whitespace && s==" "

isWhite (t,_) = t==Whitespace || t==Commentstart
|| t==Comment || t==NestedComment

notWhite = not.isWhite

isKeyword t = elem (tokenCon t)["where","let","do","of"]

lenOfToks ts = length (concatMap tokenCon ts)

lastLineLenOfTok (_,(_,s))=
= (length.(takeWhile (\c->c/=’\n’)).reverse) s

whiteSpaceTokens (row, col) n
= if n<=0 then []

else (Whitespace, (Pos 0 row,col, " ")
: whiteSpaceTokens (row,col+1) (n-1)
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adjustLayout::[PosToken]->Int->Int->Int->[PosToken]
adjustLayout [] _ _ _ = []
adjustLayout _ oldOffset newOffset _ |oldOffset == newOffset = toks
adjustLayout toks oldOffset newOffset freshVal
= case layoutRuleApplies of

--offset: indentation of the not-white lexeme after the keyword.
(True,offset)->let (ts:ts’) = groupTokensByLine toks

chgInOffset = newOffset - oldOffset
in ts++addRmSpaces (last ts) chgInOffset offset ts’

_ ->toks
where
layoutRuleApplies

= let ts = takeWhile (not.hasNewLn) toks
(ts1, ts2) = break isKeyword ts

in case (filter notWhite ts2) of
(_:t:_)->let ts2’= takeWhile (\t->isKeyword t || isWhite t) ts2

in (tokenCon t /="{", oldOffset+lenOfToks(ts1++ts2’))
_ ->(False,0)

groupTokensByLine [] = []
groupTokensByLine xs

= let (xs’, xs’’) = break hasNewLn xs
in if (length xs’’==0) then [xs’]

else (xs’++[head xs’’]):groupTokensByLine (tail xs’’)

addRmSpaces t n offset [] = []
addRmSpaces t n offset toks@(ts:ts’)

= case find notWhite ts of
Just t -> if lastLineLenOfTok t + lenOfToks ts1>= offset

then addRmSpaces’ n ts
++ addRmSpaces (last ts) n offset ts’

else concat toks
_ -> ts ++ addRmSpaces (last ts) n col ts’

where (ts1, _) = break notWhite ts

addRmSpaces’ 0 ts = ts
addRmSpaces’ _ [] = []
addRmSpaces’ n ts@(t:ts’)

= case n >0 of
True -> whiteSpaceTokens (freshVal, 0) n ++ ts
_ -> if isWhiteSpace t

then addRmSpaces’ (n+1) ts’
else error $ "Layout adjusting failed at line:"

++ show (tokenRow t)++ "."



Appendix D

The Implementation of rename a
Variable

This appendix gives the implementation of rename a value variable name. The

value variable to be renamed can be either a top-level variable or a local vari-

able. In this implementation, qualified names are used to avoid ambiguous oc-

currence throughout the refactored program. This implementation works with

multi-module programs.

This implementation can be further refactored by merging the two similar

functions doRename and doRenameInClientMod into a single function, so as to

eliminate the duplicated code. To make the representation clearer, we keep them

as separate functions in this appendix.

The definitions of those API functions used by this implementation are not

given in this appendix, nevertheless their names should reflect the meaning.
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module RefacRenaming(rename) where

import Maybe
import List
import RefacUtils

-- The top-level function of renaming.
rename fileName newName row col
= do modName <- fileNameToModName fileName

-- inscps: in-scope entities; exps: exported entities;
-- mod: the AST; toks: the token stream.
modInfo@(inscps, exps, mod, _) <- parseSourceFile fileName
-- turns textual selction to the PNT represenation
let pnt@(PNT pn _ _)= locToPNT fileName (row, col) mod
-- * Condition checking
-- Condition checking in the current module.
condChecking pn newName modName (inscps, exps, mod)
clientFiles

<-if isExported pnt exps
then do clientModsAndFile <- clientModsAndFiles modName

return (map snd clientModsAndFile)
else return []

clientModsInfo <- mapM parseSourceFile clientFiles
-- Condition checking in client modules
let _ = clientModsCondChecking pnt newName clientModsInfo
-- * Transformation
-- Renaming in the current module.
r <- applyRefac (doRename pn newName modName)

(Just modInfo) fileName
-- Renaming in client modules.
rs <- applyRefacToMods (doRenameInClientMod pnt newName)

(Just clientModsInfo) clientFiles
-- * output result
writeRefactoredFiles False (r:rs)
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-- Condition checking in the current module.
condChecking pn newName modName (inscps, exps, mod)
= do condChecking1 pn newName modName

condChecking2 pn newName modName (inscps, exps, mod)
where
defMod = if isTopLevelPN oldPN

then fromJust (hasModName oldPN)
else modName

-- Some trivial condition checking.
condChecking1 oldPN newName modName
= do let old = pNtoName oldPN

unless (oldPN /= defaultPN && isVarId old)
$ error "Invalid cursor position!"

unless (isVarId newName)
$ error "The new name is invalid!"

unless (oldName /= newName)
$ error "The new name is the same as the old name!"

unless (defMod == modName)
$ error "The identifier is not defined in this module!"

when (isTopLevelPN oldPN && old=="main" && isMainModule modName)
$ error "This ’main’ function should not be renamed!"

when (isTopLevelPN oldPN
&& causeConflictInExports oldPN newName exps)

$ error "Renaming will cause conflicting exports!"
return ()

-- Some non-trivial condition checking.
condChecking2 oldPN newName modName (inscps, exps, mod)

= applyTP (once_tdTP (failTP ‘adhocTP‘ inMod
‘adhocTP‘ inMatch
‘adhocTP‘ inPattern
‘adhocTP‘ inExp
‘adhocTP‘ inAlt
‘adhocTP‘ inStmts)) mod

where
-- return True if oldPN is declared by t.
isDeclaredBy t = isDeclaredBy’ t == Just True
where
isDeclaredBy’ t

= do (_ , d) <- hsFreeAndDeclaredPNs t
Just (elem oldPN d )

-- The name is a top-level identifier
inMod (mod::HsModuleP)
| isDeclaredBy (hsModDecls mod)
= condChecking’ mod

inMod _ = mzero
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-- The name is declared in a function definition.
inMatch (match@(HsMatch loc1 fun pats rhs ds)::HsMatchP)
|isDeclaredBy pats
= condChecking’ (HsMatch loc1 defaultPNT pats rhs ds)

|isDeclaredBy ds
=condChecking’ (HsMatch loc1 defaultPNT [] rhs ds)

|otherwise = mzero

-- The name is declared in a pattern binding.
inPattern (pat@(Dec (HsPatBind loc p rhs ds)):: HsDeclP)
|isDeclaredBy p
= condChecking’ pat

|isDeclaredBy ds
= condChecking’ (Dec (HsPatBind loc defaultPat rhs ds))

inPattern _ = mzero

-- The name is declared in a expression.
inExp (exp@(Exp (HsLambda pats body))::HsExpP)
|isDeclaredBy pats
= condChecking’ exp

inExp (exp@(Exp (HsLet ds e)):: HsExpP)
|isDeclaredBy ds
= condChecking’ exp

inExp _ = mzero

-- The name is declared in a case alternative.
inAlt (alt@(HsAlt loc p rhs ds)::HsAltP)
|isDeclaredBy p
= condChecking’ alt

|isDeclaredBy ds
= condChecking’ (HsAlt loc defaultPat rhs ds)

|otherwise = mzero

-- The name is declared in a do statement.
inStmts (stmts@(HsLetStmt ds _)::HsStmtP)
|isDeclaredBy ds
= condChecking’ stmts

inStmts (stmts@(HsGenerator _ pat exp _)::HsStmtP)
|isDeclaredBy pat
= condChecking’ stmts

inStmts _ = mzero

condChecking’ t
= do when (elem newName (map pNtoName

(declaredVarsInSameGroup oldPN t)))
$ error "The new name exists in the same binding group!"

(f, d) <- hsFreeAndDeclaredNames t
when (elem newName f)
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$ error "Existing uses of the new name will be captured!"
-- fetch all the declared variables in t that
-- are visible to the places where oldPN occurs.
ds<-hsVisibleNames oldPN t
when (elem newName ds)

$ error "The new name will cause name capture!"
return t

-- Renaming in the current module.
doRename oldPN newName modName (inscps, _, mod)
= do imps’<- renamePN’ (hsModImports mod)

exps’<- renamePN (hsModExports mod)
ds’ <- renamePN (hsModDecls mod)
return $ mod {hsModImports = imps’,

hsModExports = exps’, hsModDecls = ds’}
where
renamePN’ = applyTP (stop_tdTP (adhocTP failTP inPNT))
where
inPNT pnt@(PNT pn _ _)
|pn ==oldPN
= update pnt (renameInPNT pnt Nothing newName) pnt

renamePN = applyTP (stop_tdTP (adhocTP failTP inPNT))
where
inPNT pnt@(PNT pn _ _)
|pn ==oldPN && defineLoc pnt == sourceLoc pnt
= update pnt (renameInPNT pnt Nothing newName) pnt

inPNT pnt@(PNT pn@(PN (UnQual _) _) _ _)
|pn == oldPN
= if isInScopeAndUnqualified newName inscps && isTopLevelPN oldPN

then update pnt (renameInPNT pnt (Just modName) newName) pnt
else update pnt (renameInPNT pnt Nothing newName) pnt

inPNT pnt@(PNT pn@(PN (Qual _ _) _) _ _)
|pn == oldPN
= update pnt (renameInPNT pnt Nothing newName) pnt

inPNT pnt@(PNT pn@(PN (UnQual _) _) _ _)
|pNtoName pn == newName && isTopLevelPNT pnt && isTopLevelPN oldPN
= do let qual’=Just $ ghead "renamePN" $ hsQualifier pnt inscps

update pnt (renameInPNT pnt qual’ newName) pnt

inPNT _ = mzero
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-- Condition checking in client modules.
clientModsCondChecking oldPN newName clientsInfo
= any (==False) $ map (condChecking’ oldPN newName) clientsInfo
where
condChecking’ oldPN newName (_, exps, mod, _)
= if causeConflictInExports oldPN newName exps

then error
$ "The new name will cause conflicting exports in "

++ show (hsModName mod) ++ "!"
else False

-- Renaming in client moudles.
doRenameInClientMod pnt@(PNT oldPN _ _) newName (inscps,exps,mod)
= do imps’<- renamePN’ (hsModImports mod)

exps’<- renamePN (hsModExports mod)
ds’ <- renamePN (hsModDecls mod)
return $ mod {hsModImports = imps’,

hsModExports = exps’, hsModDecls = ds’}
where
qual = ghead "doRenameInClientMod" $ hsQualifier pnt inscps

renamePN’ = applyTP (stop_tdTP (adhocTP failTP inPNT))
where
inPNT pnt@(PNT pn _ _)

|pn ==oldPN
= update pnt (renameInPNT pnt Nothing newName) pnt

renamePN t = applyTP (stop_tdTP (adhocTP failTP inPNT)) t
where
inPNT pnt@(PNT pn@(PN (UnQual _) _) _ _)

| pn == oldPN
= if isInScopeAndUnqualified newName inscps

then update pnt (renameInPNT pnt (Just qual) newName) pnt
else do let qual’ = do vs <-hsVisibleNames pnt t

if elem newName vs
then Just qual else Nothing

update pnt (renameInPNT pnt qual’ newName) pnt

inPNT pnt@(PNT pn@(PN (Qual qual _) _) _ _)
| pn == oldPN
= update pnt (renameInPNT pnt Nothing newName) pnt

inPNT pnt@(PNT pn@(PN (UnQual _) _) _ _)
| pNtoName pn == newName && isTopLevelPNT pnt
&& isInScopeAndUnqualified (pNtoName oldPN) inscps

= do let qual’ = Just $ head $ hsQualifier pnt inscps
update pnt (renameInPNT pnt qual’ newName) pnt

inPNT _ = mzero
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The Implementation of From
Concrete to ADT

This appendix gives the implementation of the composite refactoring, from con-
crete to abstract data type, and its supporting refactorings.

module RefacADT(addFieldLabels,addDiscriminators,addConstructors,
elimNestedPatterns,elimPatterns,createADTMod,
fromAlgebraicToADT) where

import Maybe
import List
import Char
import Prelude hiding (putStrLn)
import AbstractIO (putStrLn)
import RefacUtils
--------------------------------------------------------------
-- Refactoring: from concrete data type to abstract data type.
--------------------------------------------------------------
fromAlgebraicToADT fileName row col
= do info@(_, _, mod, _)<-parseSourceFile fileName

case locToTypeDecl fileName row col mod of
Left errMsg ->do putStrLn errMsg
Right decl ->
do let typeCon = pNtoName $ fromJust (getTypeCon decl)

seqRefac [doAddFieldLabels typeCon (Just info) fileName,
doAddDiscriminators typeCon Nothing fileName,
doAddConstructors typeCon Nothing fileName,
doElimNestedPatterns typeCon Nothing fileName,
doElimPatterns typeCon Nothing fileName,
doCreateADT typeCon Nothing fileName
]

-- perform a list of refactorings.
seqRefac = seqRefac’.addFlagParam
where
addFlagParam [] = []
addFlagParam (r:rs) = (r False): (map (\r’->r’ True) rs)
seqRefac’ []= return ()
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seqRefac’ (r:rs) = do r; seqRefac’ rs

doAddFieldLabels typeCon info fileName isSubRefactor
= applyRefac’ addFieldLabels’ typeCon info fileName isSubRefactor

doAddDiscriminators typeCon info fileName isSubRefactor
= applyRefac’ addDiscriminators’ typeCon info fileName isSubRefactor

doAddConstructors typeCon info fileName isSubRefactor
= applyRefac’ addCons’ typeCon info fileName isSubRefactor

doElimNestedPatterns typeCon info fileName isSubRefactor
= applyRefac’ elimNestedPatterns’ typeCon info fileName isSubRefactor

doElimPatterns typeCon info fileName isSubRefactor
= applyRefac’ elimPatterns’ typeCon info fileName isSubRefactor

doCreateADT typeCon info fileName isSubRefactor
= applyRefac’ createADT’ typeCon info fileName isSubRefactor

applyRefac’ fun typeCon info fileName isSubRefactor
= do info’@(_,_, mod,_) <- if isJust info then return (fromJust info)

else parseSourceFile fileName
case findDataTypeDecl typeCon mod of
Left errMsg -> do putStrLn errMsg
Right decl -> fun decl info’ fileName isSubRefactor

--------------------------------------------------------------
-- Refactoring:
-- adding field labels to the identified data type declaration.
--------------------------------------------------------------
addFieldLabels fileName row col
=do info@(_, _, mod, _) <- parseSourceFile fileName

case locToTypeDecl fileName row col mod of
Left errMsg -> putStrLn errMsg
Right decl -> addFieldLabels’ decl info fileName False

addFieldLabels’ decl modInfo@(inscps, _, _, _) fileName isSubRefactor
= do clients <-clientModsAndFiles =<<fileNameToModName fileName

clientInfo <- mapM parseSourceFile (map snd clients)
let inscps’ = concatMap inScopeInfo

(inscps:(map (\(a,_,_,_)->a) clientInfo))
inscpNames = map (\(x,_,_,_)->x) inscps’

r <- applyRefac (addFieldLabels’’ inscpNames decl)
(Just modInfo) fileName

writeRefactoredFiles isSubRefactor [r]

addFieldLabels’’ inscpNames decl (_, _, mod)
= do let (decls1, decls2) = break (==decl) (hsModDecls mod)
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newDecl <- conDeclToRecDecl inscpNames decl
decl’<-update decl newDecl decl
return $ mod {hsModDecls=decls1++(decl’:(tail decls2))}

-- Add field labels to each data constructor declaration.
conDeclToRecDecl inscpeNames = applyTP strategy
where
strategy = (full_buTP (idTP ‘adhocTP‘ inConDecl))

inConDecl (decl@(HsConDecl loc is c i ts):: HsConDeclP)
= do ts’<-createFieldLabels 1 i ts

return (HsRecDecl loc is c i ts’)
inConDecl x = return x

createFieldLabels val dataCon [] = return []
createFieldLabels val dataCon (t:ts)
= do let prefix = map toLower (pNTtoName dataCon)

name <- mkNewName prefix inscpeNames (Just val)
let nextVal = ord (glast "createFieldLabels" name)- ord ’0’+ 1
ds’ <- createFieldLabels nextVal dataCon ts
return $ ([nameToPNT name], t):ds’

---------------------------------------------------------------------
-- Refactoring: adding a discriminator function for each data
-- constructor declared in the identified data type declaration.
---------------------------------------------------------------------
addDiscriminators fileName row col
=do info@(inscps, exps, mod, toks) <- parseSourceFile fileName

case locToTypeDecl fileName row col mod of
Left errMsg -> putStrLn errMsg
Right decl -> addDiscriminators’ decl info fileName False

addDiscriminators’ decl info@(inscps, _, _, _) fileName isSubRefactor
= do clients <-clientModsAndFiles =<<fileNameToModName fileName

clientInfo <- mapM parseSourceFile (map snd clients)
let inscps’ = concatMap inScopeInfo

(inscps:(map (\(a,_,_,_)->a) clientInfo))
existingNames = map (\(x,_,_,_)->x) inscps’

r <- applyRefac (addDiscriminators’’ inscpNames decl)
(Just info) fileName

writeRefactoredFiles isSubRefactor [r]

addDiscriminators’’ existingNames
decl@(Dec (HsDataDecl _ c tp conDecls _)) (_,_,mod)

=do let consWithDiscrs = existingDiscriminators mod decl
if (length conDecls == length consWithDiscrs)
then return mod
else do let conDecls’ = filter (\x->isNothing (find

conName’ x==) (map fst consWithDiscrs))) conDecls
funs <- mapM (mkDiscriminator tp mod) conDecls’
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addDecl mod Nothing (concat funs,Nothing) True
where
mkDiscriminator tp mod (decl@(HsRecDecl _ _ _ i ts):: HsConDeclP)
= mkDiscriminator’ tp mod i ts

mkDiscriminator tp mod
(decl@(HsConDecl _ _ _ i ts):: HsConDeclP)

= mkDiscriminator’ tp mod i ts

-- compose a discriminator function.
mkDiscriminator’ tp mod i ts
=do newName <- mkNewName ("is"++(pNTtoName i))

existingNames (Just 0)
let funNamePNT =nameToPNT newName

typeSig = (Dec (HsTypeSig loc0 [funNamePNT] [](Typ
(HsTyFun tp (Typ (HsTyCon (nameToPNT "Bool")))))))

match1 =let pats= if length ts ==0
then [Pat (HsPId (HsCon i))]
else [Pat (HsPParen (Pat (HsPApp i

(mkWildCards (length ts)))))]
in (HsMatch loc0 funNamePNT pats

(HsBody (nameToExp "True")) [])
match2 = HsMatch loc0 funNamePNT [Pat HsPWildCard]

(HsBody (nameToExp "False")) []
fun = Dec (HsFunBind loc0 [match1, match2])

return $ ([typeSig, fun])

mkWildCards 0 = []
mkWildCards n = (Pat HsPWildCard) : mkWildCards (n-1)

-- Collect the exisiting discriminator functions associated with
-- the specified data type.
existingDiscriminators mod (Dec (HsDataDecl _ c tp conDecls _))
= filter (\x -> isJust (snd x))

$ map (findDiscriminator (hsModDecls mod)) conDecls
where
findDiscriminator decls (conDecl:: HsConDeclP)
= let (dataCon,numOfFields)

= case conDecl of
(HsRecDecl _ _ _ i ts) -> (pNTtoPN i, length ts)
(HsConDecl _ _ _ i ts) -> (pNTtoPN i, length ts)

decls’ = filter (\x -> isDiscriminator x
(dataCon, numOfFields)) decls

in if decls’==[]
then (dataCon, Nothing)
else (dataCon, Just (ghead "findDiscriminator"

(definedPNs (head decls’))))

-- Return True if a function is a discriminator function
-- for the specified data constructor.
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isDiscriminator (Dec (HsFunBind _ [m1@(HsMatch _ _ [p] _ _),m2]))
(dataCon,numOfFields)

= case getConAndArity p of
Just (con, arity) -> (con, arity) == (dataCon, numOfFields)

&& (prettyprint (rhsExp m1))== "True"
&& prettyprint (rhsExp m2) == "False"

_ -> False
where
getConAndArity (Pat (HsPApp i ps)) = Just ((pNTtoPN i), length ps)
getConAndArity (Pat (HsPId (HsCon i))) = Just ((pNTtoPN i),0)
getConAndArity (Pat (HsPParen p)) = getConAndArity p
getConAndArity (Pat (HsPAsPat i p)) = getConAndArity p
getConAndArity _ = Nothing

rhsExp (HsMatch _ _ _ (HsBody e) _) = Just e
rhsExp _ = Nothing

isDiscriminator _ _ = False

---------------------------------------------------------------------
-- Refactoring: adding a constructor function for each data constructor
-- declared in the identified data type declaration.
---------------------------------------------------------------------
addConstructors fileName row col
=do info@(_,_,mod,_) <- parseSourceFile fileName

case locToTypeDecl fileName row col mod of
Left errMsg -> putStrLn errMsg
Right decl -> addCons’ decl info fileName False

addCons’ decl info@(inscps, _, _, _) fileName isSubRefactor
= do clients <-clientModsAndFiles =<<fileNameToModName fileName

clientInfo <- mapM parseSourceFile (map snd clients)
let inscps’ = concatMap inScopeInfo

(inscps:(map (\(a,_,_,_)->a) clientInfo))
inscpNames = map (\(x,_,_,_)->x) inscps’

r <- applyRefac (addCons’’ inscpNames decl) (Just info) fileName
writeRefactoredFiles isSubRefactor [r]

addCons’’ existingNames
decl@(Dec (HsDataDecl _ c tp conDecls _))(_, _, mod)

= do let consWithConstrs = existingCons mod decl
if (length conDecls == length consWithConstrs)
then return mod
else do let conDecls’ = filter (\x->isNothing (find

(conName’ x==)(map fst consWithConstrs))) conDecls
funs <- mapM mkCon conDecls’
addDecl mod Nothing (concat funs,Nothing) True

where
mkCon (decl@(HsRecDecl _ _ _ i ts):: HsConDeclP)
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= mkCon’ i (map (typeFromBangType.snd) ts)
mkCon (decl@(HsConDecl _ _ _ i ts):: HsConDeclP)

= mkCon’ i (map typeFromBangType ts)

mkCon’ i ts
= do newName <- mkNewName ("mk" ++ (pNTtoName i))

existingNames (Just 0)
let funNamePNT =nameToPNT newName
numOfParams = length ts
typeSig = (Dec (HsTypeSig loc0 [funNamePNT] []

(mkTypeFun tp ts)))
fun = (Dec (HsFunBind loc0 [HsMatch loc0 funNamePNT []

(HsBody (pNtoExp (pNTtoPN i))) []]))
return $ ([typeSig, fun])

mkTypeFun t ts = foldr (\ t1 t2 ->(Typ (HsTyFun t1 t2))) t ts

typeFromBangType (HsBangedType t) = t
typeFromBangType (HsUnBangedType t) = t

-- Fetch the existing constructor functions associated with
-- the specified data type declaration.
existingCons mod (Dec (HsDataDecl _ _ _ conDecls _))
= filter (\x -> isJust (snd x))

$ map (findCons (hsModDecls mod)) conDecls
where
findCons decls (conDecl:: HsConDeclP)

= let (dataCon,numOfFields)
= case conDecl of
(HsRecDecl _ _ _ i ts) -> (pNTtoPN i, length ts)
(HsConDecl _ _ _ i ts) -> (pNTtoPN i, length ts)

decls’ = filter (\x -> isCon x (dataCon, numOfFields)) decls
in if decls’==[]

then (dataCon, Nothing)
else (dataCon, Just (ghead "findCons"

(definedPNs (head decls’))))

isCon (Dec (HsFunBind _ [m1@(HsMatch _ _ ps (HsBody e) _ )]))
(dataCon,numOfFields)

|length ps== numOfFields && all isVarPat ps
= hsPNs e == dataCon : (hsPNs ps)

isCon (Dec (HsPatBind _ _ (HsBody e) _)) (dataCon, _)
= prettyprint e == pNtoName dataCon

isCon _ _ = False

---------------------------------------------------------------------
-- Refactoring: eliminating nested patterns, i.e. removing uses of the
-- ‘‘other’’ data constructors inside data constructors declared by
-- the specified data type.
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---------------------------------------------------------------------

elimNestedPatterns fileName row col
=do info@(_, _, mod, _) <- parseSourceFile fileName

case locToTypeDecl fileName row col mod of
Left errMsg -> putStrLn errMsg
Right decl -> elimNestedPatterns’ decl info fileName False

elimNestedPatterns’ decl info fileName isSubRefactor
= do r <- applyRefac elimNestedPats’’ (Just info) fileName

modName <- fileNameToModName fileName
clients <- clientModsAndFiles modName
rs <- applyRefacToClientMods elimNestedPats’’

Nothing (map snd clients)
writeRefactoredFiles isSubRefactor $ (r:rs)

where
conNames = map pNTtoPN (conPNTs decl)

elimNestedPats’’ (_, _, mod) = applyTP strategy mod
where
strategy = full_buTP (idTP ‘adhocTP‘ inMatch

‘adhocTP‘ inExp)

-- Eliminating nested patterns in the formal parameters
-- of a function declaration.
inMatch (m@(HsMatch loc i ps rhs ds)::HsMatchP)
= do m’ <-mkNewAST mkNewMatch conNames match ps

if (m/=newMatch) then update m newMatch m
else return newMatch

-- Eliminating nested patterns in expressions.
inExp (exp@(Exp (HsLambda ps e))::HsExpP)
= do newExp <-mkNewAST mkNewLambdaExp conNames exp ps

if (exp/=newExp) then update exp newExp exp
else return newExp

inExp exp@(Exp (HsListComp stmts))
= do newExp <- applyTP (full_buTP (idTP ‘adhocTP‘ inStmt)) exp

if (exp/=exp’) then update exp newExp exp
else return newExp’

where
inStmt (stmt@(HsGenerator loc p e stmts)::HsStmtP)
= mkNewAST mkNewListStmt conNames stmt p

inStmt m = return m

inExp exp@(Exp (HsDo stmts))
= do exp’ <-applyTP (full_buTP (idTP ‘adhocTP‘ inStmt)) exp

if (exp/=exp’) then update exp exp’ exp
else return exp’
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where
inStmt (stmt@(HsGenerator loc p e stmts)::HsStmtP)
= mkNewAST mkNewDoStmt conNames stmt p

inStmt m = return m

inExp exp@(Exp (HsCase e alts))
= do exp’<-applyTP (full_buTP (idTP ‘adhocTP‘ inAlt)) exp

if (exp/=exp’) then update exp exp’ exp
else return exp’

where
inAlt (alt@(HsAlt loc p rhs ds)::HsAltP)
= mkNewAST mkNewAlt conNames alt p

inExp m = return m

mkNewAST fun conNames ast p
= do fds <-existingVbls ast

p’ <-rmNestedPatternInParams fds conNames p
resetVal
varsAndPats <- getExpPatPairs fds conNames p
resetVal
return (fun ast p’ varsAndPats)

mkNewDoStmt stmt@(HsGenerator loc p e stmts) p’ varsAndPats
= case varsAndPats of

Nothing -> stmt
Just (vars, pats) ->
(HsGenerator loc p’ e (HsLast (Exp (HsCase vars
[HsAlt loc0 pats (HsBody (Exp (HsDo stmts))) []]))))

mkNewListStmt stmt@(HsGenerator loc p e stmts) p’ varsAndPats
= case varsAndPats of

Nothing -> stmt
Just (vars, pats)->
(HsGenerator loc p’ e
(HsGenerator loc pats (Exp (HsList [vars])) stmts))

mkNewLambdaExp exp@(Exp (HsLambda ps e)) ps’ varsAndPats
= case varsAndPats of

Nothing -> exp
Just (vars,pats) ->
(Exp (HsLambda ps’ (Exp (HsCase vars

[HsAlt loc0 pats (HsBody e) []]))))

mkNewAlt alt@(HsAlt loc p rhs@(HsBody e) ds) p’ expsAndPats
= case expsAndPats of

Nothing -> alt
Just (exps, pats)->
(HsAlt loc p’ (HsGuard [(loc0, (Exp (HsCase exps
[HsAlt loc0 pats (HsBody fakeTrueExp) [],
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HsAlt loc0 (Pat HsPWildCard) (HsBody fakeFalseExp) []])),
(Exp (HsApp (Exp (HsParen

(Exp (HsLambda [pats] e)))) exps)))]) ds)

mkNewAlt alt@(HsAlt loc p rhs@(HsGuard es) ds) p’ expsAndPats
= case expsAndPats of

Nothing -> alt
Just (exps, pats) ->

let rhs’= HsGuard $ map (addToGuards (exps, pats)) es
in (HsAlt loc p’ rhs’ ds)

mkNewMatch ((HsMatch loc i ps rhs@(HsBody e) ds)::HsMatchP)
ps’ expsAndPats

= case expsAndPats of
Nothing -> HsMatch loc i ps’ rhs ds
Just (exps, pats) ->

(HsMatch loc i ps’ (HsGuard [(loc0, (Exp (HsCase exps
[HsAlt loc0 pats (HsBody (nameToExp "True")) [],
HsAlt loc0 (Pat HsPWildCard)

HsBody (nameToExp "False")) []])),
(Exp (HsApp (Exp (HsParen

(Exp (HsLambda [pats] e)))) exps)))]) ds)

mkNewMatch (HsMatch loc i ps rhs@(HsGuard es) ds) ps’ expsAndPats
= case expsAndPats of

Nothing-> HsMatch loc i ps’ rhs ds
Just (exps, pats)->

let rhs’= HsGuard $ map (addToGuards (exps,pats)) es
in (HsMatch loc i ps’ rhs’ ds)

addToGuards (exp, pat) (loc, e1, e2)
= let g1 = Exp (HsCase exp

[HsAlt loc0 pat (HsBody (nameToExp "True")) [],
HsAlt loc0 (Pat HsPWildCard)

(HsBody (nameToExp "False")) []])
e1’= Exp (HsInfixApp g1 (HsVar (nameToPNT "&&")) e1)
e2’= Exp (HsApp (Exp (HsParen

(Exp (HsLambda [pat] e2)))) exp)
in (loc, e1’, e2’)

getExpPatPairs d conNames ps
= do r <- applyTU (stop_tdTU (failTU ‘adhocTU‘ inPat)) ps

let r’ = filter (\(x,y) -> isJust x) r
r’’= map (\(x,y)->(patVarToExpVar (fromJust x),y)) r’
(exps, pats) = (map fst r’’, map snd r’’)
result = if lenght exps ==0 the Nothing

else if length exps == 1
then Just (head exps, head pats)
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else Just (Exp (HsTuple exps),
Pat (HsPTuple pats)))

return r
where
inPat (pat@(Pat (HsPApp i is))::HsPatP)

| isJust (find (==pNTtoPN i) conNames)
= do is’<- collectVarsAndPats d conNames is

let caseExps = filter (\(x,y) ->isJust x) is’
return caseExps

inPat _ = mzero

patVarToExpVar (Pat (HsPId (HsVar id)))
= (Exp (HsId (HsVar id)))

collectVarsAndPats d conNames
= applyTU (stop_tdTU (failTU ‘adhocTU‘ inAppPat))
where
inAppPat pat

| isVarPat pat = return [(Nothing, pat)]
inAppPat pat@(Pat (HsPApp i ps))

|isNothing (find (==pNTtoPN i) conNames)
= replacePatByVar pat Nothing

inAppPat pat@(Pat (HsPAsPat i1 (Pat (HsPApp i2 ps))))
|isNothing (find (==pNTtoPN i2) conNames)
= replacePatByVar pat (Just (pNTtoName i1))

inAppPat pat@(Pat (HsPInfixApp _ (HsCon i) _))
|isNothing (find (==pNTtoPN i) conNames)
= replacePatByVar pat Nothing

inAppPat pat@(Pat (HsPAsPat i1
(Pat (HsPInfixApp _ (HsCon i2) _))))

|isNothing (find (==pNTtoPN i2) conNames)
= replacePatByVar pat (Just (pNTtoName i1))

inAppPat pat@(Pat (HsPRec i _))
|isNothing (find (==pNTtoPN i) conNames)
= replacePatByVar pat Nothing

inAppPat pat@(Pat (HsPAsPat i1 (Pat (HsPRec i2 _))))
|isNothing (find (==pNTtoPN i2) conNames)
= replacePatByVar pat (Just (pNTtoName i1))

inAppPat pat
= replacePatByVar pat Nothing

replacePatByVar pat (Just varName)
= return [(Just (nameToPat varName), pat)]

replacePatByVar pat Nothing
= do (_,d’) <- hsFreeAndDeclaredPNs pat

var <- mkNewName "p" (map pNtoName (d\\d’)) Nothing
return [(Just (nameToPat var), pat)]

rmNestedPatternInParams d conNames
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= applyTP (stop_tdTP (failTP ‘adhocTP‘ inPat))
where
inPat (pat@(Pat (HsPApp i is))::HsPatP)

| isJust (find (==pNTtoPN i) conNames)
= do is’<-rmNestedPatternInParams’ is

return (Pat (HsPApp i is’))
inPat _ = mzero

-- replace the nested patterns by variables.
rmNestedPatternInParams’

= applyTP (stop_tdTP (failTP ‘adhocTP‘ inAppPat))
where
inAppPat pat
| isVarPat pat = mzero

inAppPat pat@(Pat (HsPApp i ps))
|isNothing (find (==pNTtoPN i) conNames)
= replacePatByVar pat Nothing

inAppPat pat@(Pat (HsPAsPat i1 (Pat (HsPApp i2 ps))))
|isNothing (find (==pNTtoPN i2) conNames)
= replacePatByVar pat (Just (pNTtoName i1))

inAppPat pat@(Pat (HsPInfixApp _ (HsCon i) _))
|isNothing (find (==pNTtoPN i) conNames)
= replacePatByVar pat Nothing

inAppPat pat@(Pat (HsPAsPat i1 (Pat
(HsPInfixApp _ (HsCon i2) _))))

|isNothing (find (==pNTtoPN i2) conNames)
= replacePatByVar pat (Just (pNTtoName i1))

inAppPat pat@(Pat (HsPRec i _))
|isNothing (find (==pNTtoPN i) conNames)
= replacePatByVar pat Nothing

inAppPat pat@(Pat (HsPAsPat i1 (Pat (HsPRec i2 _))))
|isNothing (find (==pNTtoPN i2) conNames)
= replacePatByVar pat (Just (pNTtoName i1))

inAppPat pat
= replacePatByVar pat Nothing

replacePatByVar pat (Just varName)
= update pat (nameToPat varName) pat

replacePatByVar pat Nothing
= do (_,d’) <- hsFreeAndDeclaredPNs pat

newName <- mkNewName "p" (map pNtoName (d\\d’)) Nothing
update pat (nameToPat newVarName) pat

---------------------------------------------------------------------
-- Refactoring: eliminating patterns, i.e. eliminating the explicit uses
-- of data constructors defined by the specified data type declaration.
---------------------------------------------------------------------
elimPatterns fileName row col
= do info@(_,_,mod,_) <- parseSourceFile fileName

case locToTypeDecl fileName row col mod of



APPENDIX E. THE IMPLEMENTATION OF FROM CONCRETE TO ADT178

Left errMsg -> putStrLn errMsg
Right decl -> do elimPatsCondChecking decl mod

elimPatterns’ decl info fileName False
where
-- Condition checking.
elimPatsCondChecking decl@(Dec (HsDataDecl _ _ _ con _)) mod

= do findFun conNames sels
"Selector does not exist for data constructor: "

findFun conNames discrs
"Discriminator not exis for data constructor: "

findFun conNames cons
"Constructor does not exist for data constructor: "

where
conNames = map pNTtoPN $ conPNTs decl

findFun conNames funs errMsg
= mapM (flip findFun’ funs) conNames
where
findFun’ conName funs

= let r = find (\(x,y)->x==conName) funs
in if isNothing r then error $ errMsg++ pNtoName conName

else return $ (snd.fromJust) r

sels = map selectors con
where
selectors ((HsRecDecl _ _ _ i ts):: HsConDeclP)

= (pNTtoPN i, map pNTtoName (concatMap fst ts))
selectors ((HsConDecl _ _ _ i _)::HsConDeclP)

= (pNTtoPN i, [])

discrs = map (\(x,y)->(x, pNtoName (fromJust y)))
$ existingDiscriminators mod decl

cons = map (\(x,y) -> (x, pNtoName (fromJust y)))
$ existingCons mod decl

elimPatterns’ decl@(Dec (HsDataDecl _ _ _ con _))
info@(_, exps, mod, _) fileName isSubRefactor

= do r <- applyRefac (elimPatternsInMod decl) (Just info) fileName
if (any (flip isExported exps) (conPNTs decl))
then do modName <- fileNameToModName fileName

clients <- clientModsAndFiles modName
rs <- applyRefacToClientMods (elimPatsInClients modName)

Nothing (map snd clients)
writeRefactoredFiles isSubRefactor (r:rs)

else writeRefactoredFiles isSubRefactor $ [r]
where
typeCon = fromJust $ getTypeCon decl
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conNames = map pNTtoPN $ conPNTs decl

sels = map selectors con
where
selectors ((HsRecDecl _ _ _ i ts):: HsConDeclP)
= (pNTtoPN i, map pNTtoName (concatMap fst ts))

selectors ((HsConDecl _ _ _ i _)::HsConDeclP)
= (pNTtoPN i, [])

discrs = map (\(x,y)->(x, pNtoName (fromJust y)))
$ existingDiscriminators mod decl

cons = map (\(x,y) -> (x, pNtoName (fromJust y)))
$ filter (\(x,y)->isJust y) $ existingCons mod decl

elimPatternsInMod decl (_, exps , mod)
= rmPatterns =<< doCreateADTInterface True decl mod exps

elimPatsInClients serverModName (_, _, mod)
= do --replace exports of data constructors by exports of functions.

let entsToAdd= map (\x-> pNtoVarEnt (nameToPN x))(findEntsToAdd
typeCon sels discrs cons (exportedEnts mod)

mod’<- addItemsToExport mod Nothing False (Right entsToAdd)
--replace imports of data constructors by imports of functions.
mod’’<-addToImport serverModName typeCon sels discrs cons mod’
rmPatterns mod’’

rmPatterns = applyTP (full_tdTP (idTP ‘adhocTP‘ inMatch
‘adhocTP‘ inPatBinding
‘adhocTP‘ inExp))

where
-- Remove patterns in the formal parameters of a function.
inMatch (match@(HsMatch loc i ps rhs ds)::HsMatchP)
|isNothing (find (==(pNTtoName i)) (map snd (discrs++cons)))
= do (ps’, sels, guards) <-rmPatternsInParams conNames match ps

r’<-replaceVarsBySels sels rhs
r’’<-replacePatsByCons conNames cons r’
r’’’<-if guards/=[]

then addGuardsToRhs r’’ $ fromJust (mkGuard guards)
else return rhs’’

ds’<- replaceVarsBySels sels ds
ds’<-replacePatsByCons conNames cons ds’
return $ (HsMatch loc i ps’ r’’’ ds’)

inMatch m = return m

-- Remove patterns in the LHS of a pattern binding.
inPatBinding (pat@(Dec (HsPatBind loc i rhs ds)::HsDeclP))
|isNothing (find (==(pNTtoName.patToPNT) i)

(map snd (discrs++cons)))
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= do rhs’<-replacePatsByCons conNames cons rhs
ds’<-replacePatsByCons conNames cons ds
return $ (Dec (HsPatBind loc i rhs’ ds’))

inPatBinding m = return m

-- Remove patterns in expressions.
inExp (exp@(Exp (HsLambda ps e))::HsExpP)
= do (ps’,sels,guards) <-rmPatternsInParams conNames exp ps

e’<-replaceVarsBySels sels e
let e’’= if guards/=[] then

(Exp (HsCase (fromJust (mkGuard guards))
[HsAlt loc0 (nameToPat "True") (HsBody e’) []]))

else e’
exp’= Exp (HsLambda ps’ e’’)

if (exp/=exp’) then update exp exp’ exp
else return exp’

inExp exp@(Exp (HsListComp stmts))
= do exp’<-applyTP (full_buTP (idTP ‘adhocTP‘ inStmt)) exp

if (exp/=exp’) then update exp exp’ exp
else return exp’

where
inStmt (stmt@(HsGenerator loc p e stmts)::HsStmtP)
= do (p’, sels, guards) <-rmPatternsInParams conNames stmt p

e’<-replaceVarsBySels sels e
stmts’<-replaceVarsBySels sels stmts
let stmts’’=

if guards/=[]
then (HsQualifier (fromJust (mkGuard guards)) stmts’)
else stmts’

return $ HsGenerator loc p’ e’ stmts’’
inStmt m = return m

inExp exp@(Exp (HsDo stmts))
= do exp’ <-applyTP (full_buTP (idTP ‘adhocTP‘ inStmt)) exp

if (exp/=exp’) then update exp exp’ exp
else return exp’

where
inStmt (stmt@(HsGenerator loc p e stmts)::HsStmtP)

= do (p’, sels, guards) <-rmPatternsInParams conNames stmt p
e’<-replaceVarsBySels sels e
stmts’<-replaceVarsBySels sels stmts
let stmts’’ =

if guards/=[] then
(HsLast (Exp (HsCase (fromJust (mkGuard guards))
[HsAlt loc0 (nameToPat "True")

(HsBody (Exp (HsDo stmts’))) []])))
else stmts’

return (HsGenerator loc p’ e’ stmts’’)
inStmt m = return m
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inExp exp@(Exp (HsCase e alts))
= do exp’<-applyTP (full_buTP (idTP ‘adhocTP‘ inAlt)) exp

if (exp/=exp’) then update exp exp’ exp
else return exp’

where
inAlt (alt@(HsAlt loc p rhs ds)::HsAltP)

= do (p’, sels, guards) <-rmPatternsInParams conNames alt p
r’<- replaceVarsBySels sels rhs
r’’<-if guards/=[]

then addGuardsToRhs r’ (fromJust (mkGuard guards))
else return rhs’

ds’<-replaceVarsBySels sels ds
return (HsAlt loc p’ r’’ ds’)

inExp m = return m

rmPatternsInParams conNames ast ps
= do fds <-existingVbls ast

ps’ <- collectPatsInParams fds conNames ps
resetVal
(sels, guards) <-rmPatternInParams fds conNames ps
resetVal
return (ps’,sels, guards)

collectPatsInParams d conNames
= applyTP (stop_tdTP (failTP ‘adhocTP‘ inPat))
where
inPat pat@(Pat (HsPParen (Pat (HsPApp i is))))

| isJust (find (==pNTtoPN i) conNames)
= inPat’ pat Nothing

inPat pat@(Pat (HsPAsPat i1 (Pat (HsPParen
(Pat (HsPApp i2 is))))))

| isJust (find (==pNTtoPN i2) conNames)
= inPat’ pat (Just (pNTtoName i1))

inPat (pat@(Pat (HsPApp i is))::HsPatP)
| isJust (find (==pNTtoPN i) conNames)
= inPat’ pat Nothing

inPat pat@(Pat (HsPAsPat i1 (Pat (HsPApp i2 is))))
| isJust (find (==pNTtoPN i2) conNames)
= inPat’ pat (Just (pNTtoName i1))

inPat pat@(Pat (HsPId (HsCon i)))
| isJust (find (==pNTtoPN i) conNames)
= inPat’ pat Nothing

inPat pat@(Pat (HsPParen (Pat (HsPId (HsCon i)))))
| isJust (find (==pNTtoPN i) conNames)
= inPat’ pat Nothing

inPat pat@(Pat (HsPAsPat i1 (Pat (HsPId (HsCon i2)))))
| isJust (find (==pNTtoPN i2) conNames)
= inPat’ pat (Just (pNTtoName i1))
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inPat pat@(Pat (HsPAsPat i1 (Pat (HsPParen
(Pat (HsPId (HsCon i2)))))))

| isJust (find (==pNTtoPN i2) conNames)
= inPat’ pat (Just (pNTtoName i2))

inPat _ = mzero

inPat’ pat varName
= do unless (not (isNestedPattern conNames pat))

$ error "Nested patterns exist!"
(_,d’) <- hsFreeAndDeclaredPNs pat
newVarName <- if isJust varName

then return (fromJust varName)
else mkNewName "p" (map pNtoName

(d \\d’)) Nothing
update pat (nameToPat newVarName) pat

rmPatternInParams d conNames ps
= do r<-applyTU (stop_tdTU (failTU ‘adhocTU‘ inPat)) ps

return (concatMap fst r, concatMap snd r)
where
inPat (pat@(Pat (HsPApp i is))::HsPatP)
| isJust (find (==pNTtoPN i) conNames)
= inPat’ (pNTtoPN i) pat Nothing

inPat (pat@(Pat (HsPId (HsCon i)))::HsPatP)
| isJust (find (==pNTtoPN i) conNames)
= inPat’ (pNTtoPN i) pat Nothing

inPat (pat@(Pat (HsPAsPat i1 i2)))
| case rmPParen i2 of

(Pat (HsPApp i2’ _)) ->
isJust (find (==pNTtoPN i2’) conNames)

(Pat (HsPId (HsCon i2’)))->
isJust (find (==pNTtoPN i2’) conNames)

_ ->False
= (\pat -> case pat of

(Pat (HsPApp i2’ ps))->
inPat’ (pNTtoPN i2’) pat (Just (pNTtoName i1))

(Pat (HsPId (HsCon i2’)))->
inPat’ (pNTtoPN i2’) pat

(Just (pNTtoName i1))) (rmPParen i2)
inPat _ =mzero

inPat’ conPN pat varName
= do (_,d’) <- hsFreeAndDeclaredPNs pat

newName <-
if isJust varName
then return (fromJust varName)
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else mkNewName "p" (map pNtoName (d\\d’)) Nothing
let sels’ = snd.fromJust

$ find (\(x,y) -> x==conPN) sels
selFuns =mkSelFuns conPN newName "" sels’ pat
guardExps = mkGuardExps newName discrs pat

return [(selFuns, guardExps)]

isNestedPattern conNames appPat
= isJust $ find (==True) $ head $ applyTU strategy appPat
where
strategy = full_tdTU (constTU [] ‘adhocTU‘ inAppPat)

inAppPat pat | isVarPat pat =return []
inAppPat pat@(Pat (HsPApp i ps))
|isJust (find (==pNTtoPN i) conNames)
= return []

inAppPat pat@(Pat (HsPId (HsCon i)))
|isJust (find (==pNTtoPN i) conNames)
=return []

inAppPat pat@(Pat (HsPInfixApp _ (HsCon i) _))
|isJust (find (==pNTtoPN i) conNames)
= return []

inAppPat pat@(Pat (HsPRec i _))
|isJust (find (==pNTtoPN i) conNames)
= return []

inAppPat pat@(Pat (HsPAsPat i1 i2))
= applyTU strategy i2

inAppPat pat@(Pat (HsPParen p))
= applyTU strategy p

inAppPat _ = return [True]

replaceVarsBySels [] p = return p
replaceVarsBySels sels p = applyTP strategy p

where
strategy = full_buTP (idTP ‘adhocTP‘ inExp)
inExp exp@(Exp (HsId (HsVar (PNT pn _ _))))
|isJust (find (==pn) (map fst sels))
= do let sel = (snd.fromJust)

(find (\(x,y)-> x==pn) sels)
update exp sel exp

inExp e = return e

replacePatsByCons conNames constrs
= applyTP (full_tdTP (idTP ‘adhocTP‘ inExp))
where
inExp exp@(Exp (HsRecConstr i fields))
| isJust (find (==pNTtoPN i) conNames)
= do let con = (snd.fromJust)

$ find (\(x,y)->x == pNTtoPN i) constrs
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es = map (\(HsField _ e ) -> e) fields
exp’= (Exp (HsParen (foldl (\e1 e2->(Exp

(HsApp e1 e2))) (nameToExp con) es)))
update exp exp’ exp

inExp e
| isJust (find (==(pNTtoPN.expToPNT) e) conNames)
= do let (PNT pn ty src)=expToPNT e

con = (snd. fromJust)
$ find (\(x,y)-> x==pn) consts

renamePN pn Nothing con True e

inExp e = return e

mkGuardExps newVarName discrs (Pat (HsPApp i ps))
= let discr = snd.fromJust

$ find (\(x,y) -> x== pNTtoPN i) discrs
g = Exp (HsApp (Exp (HsId (HsVar (nameToPNT discr))))

(Exp (HsId (HsVar (nameToPNT newVarName)))))
in [g]

mkGuardExps newVarName discrs (Pat (HsPId (HsCon i)))
= let discr = snd.fromJust

$ find (\(x,y) -> x==pNTtoPN i) discrs
g = Exp (HsApp (Exp (HsId (HsVar (nameToPNT discr))))

(Exp (HsId (HsVar (nameToPNT newVarName)))))
in [g]

mkGuard [] = Nothing
mkGuard (e:es)

= Just (foldl (\e1 e2 -> (Exp (HsInfixApp e1 (HsVar
(nameToPNT "&&")) e2))) e es)

mkSelFuns con newName posfix selectors (Pat (HsPApp i ps))
= concatMap mkSelFuns’ (zip selectors ps)
where
mkSelFuns’ (sel, pat@(Pat (HsPId (HsVar i))))
= let f = if posfix ==[]

then (Exp (HsParen (Exp (HsApp (nameToExp sel)
(nameToExp newName)))))

else (Exp (HsParen (Exp (HsApp (nameToExp
(sel++"."++posfix))(nameToExp newName))))))]

in [(pNTtoPN i, f)]
mkSelFuns’ (sel, (Pat (HsPParen p)))
= mkSelFuns’ (sel, p)

mkSelFuns’ (sel, pat@(Pat (HsPApp i ps)))
= mkSelFuns con newName

(if posfix=="" then sel
else sel++"."++posfix) selectors pat

mkSelFuns’ (sel, _) = []
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mkSelFuns _ _ _ _ _ = []

addToImport serverModName typeCon sels discrs constrs mod
=applyTP (full_buTP (idTP ‘adhocTP‘ inImport)) mod
where
inImport (imp@(HsImportDecl _ (SN modName _) _ _ h)::HsImportDeclP)

| serverModName == modName && findPN typeCon h
= case h of

Nothing -> return imp
Just (b, ents) ->
do let funs=findEntsToAdd typeCon sels discris constrs ents

if (funs==[]) then return imp
else addItemsToImport serverModName Nothing (Left funs) imp

inImport imp = return imp

---------------------------------------------------------------------
-- Refactoring: creating the ADT module interface.
---------------------------------------------------------------------
createADTMod fileName row col
= do info@(_,_,mod,_) <- parseSourceFile fileName

clients <- clientModsAndFiles =<< fileNameToModName fileName
clientInfo <- mapM parseSourceFile (map snd clients)
case locToTypeDecl fileName row col mod of
Left errMsg -> putStrLn errMsg
Right decl -> do condChecking decl clientInfo

createADT’ decl info fileName False
where
condChecking decl clientInfo

= let r = findPNs (conName decl)
(map (\ (_, _, mod,_) -> hsModDecls mod) clientInfo)

in case r of
True -> error ("Some of the data constructors declared by "

++ "this datatype are used by at least one "
++ " of the client modules! ")

False -> return ()

createADT’ decl info fileName isSubRefactor
= do r <-applyRefac (doCreateADTMod decl) (Just info) fileName

let typeCon = fromJust $ getTypeCon decl
clients <-clientModsAndFiles =<< fileNameToModName fileName
clientInfo <- mapM parseSourceFile (map snd clients)
rs <- applyRefacToClientMods (createADTInClients typeCon)

(Just clientInfo) (map snd clients)
writeRefactoredFiles isSubRefactor $ (r:rs)

createADTInClients typeCon (_, _, mod)
= rmSubEntsFromExport typeCon mod
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doCreateADTMod decl@(Dec (HsDataDecl _ _ _ cons _)) (_, exps, mod)
= doCreateADTInterface False decl mod exps

doCreateADTInterface forElimPat
decl@(Dec (HsDataDecl _ _ _ cons _)) mod exps

= addToExport (typeCon:(sels++discs++constrs))
where
typeCon = fromJust $ getTypeCon decl

conNames = map pNTtoPN $ conPNTs decl

discs = map (fromJust.snd) $ existingDiscriminators mod decl

constrs = map (fromJust.snd) $ existingCons mod decl

sels = concatMap sels’ cons
where
sels’ ((HsRecDecl _ _ _ i ts):: HsConDeclP)
= map pNTtoPN (concatMap fst ts)

sels’ ((HsConDecl _ _ _ i _) :: HsConDeclP)
= []

addToExport pns
=let filteredExps = map fromJust

$ filter isJust (map fromEntToEntE exps)
modName = ModuleE $ hsModName mod

in case hsModExports mod of
Nothing -> if forElimPat then return mod

else addItemsToExport mod Nothing
True (Right entsToBeExported)

-- There are explicitly exported entities.
Just exports ->
case isJust (find (==modName) exports) of

-- The whole module is implicity exported.
True-> if forElimPat then return mod

else do let e = [sNtoName (hsModName mod)]
mod’ <- rmItemsFromExport mod (Left (e, pns))
addItemsToExport mod’ Nothing True

(Right entsToBeExported)
-- Individual entities are explicitly exported

False -> do let entsToAdd = map pNtoVarEnt
$ (pns \\(findEnts pns exports))

addItemsToExport mod Nothing False (Right entsToAdd)
where
entsToBeExported
= nub $ map fromJust

$ filter isJust (map fromEntToEntE exps)
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fromEntToEntE (_, Ent modName (HsCon con) (Type _))
= if sNtoName con == pNtoName typeCon

then Just $ EntE (Abs (nameToPNT (sNtoName con)))
else Just $ EntE (AllSubs (nameToPNT (sNtoName con)))

fromEntToEntE (_, Ent modName (HsVar var) _)
= Just $ EntE (Var (nameToPNT (sNtoName var)))

fromEntToEntE _ = Nothing

findEnts pns ents
= filter (\pn->any (\e->case e of

ModuleE _ -> False
EntE e’ -> match pn e’) ents) pns

where match pn (Var pnt) = pNTtoPN pnt == pn
match pn (Abs pnt) = pNTtoPN pnt == pn
match pn (AllSubs pnt) = pNTtoPN pnt == pn
match pn (ListSubs pnt _) = pNTtoPN pnt == pn

exportedEnts (HsModule _ _ (Just ents) _ _)
= map fromJust $ filter isJust

( map (\e ->case e of
(EntE ent) ->Just ent
_ ->Nothing) ents)

exportedEnts (HsModule _ _ Nothing _ _) = []

findEntsToAdd typeConPN sels discrs constrs ents
= nub $ concatMap (match typeConPN) ents
where
match typeConPN (AllSubs pnt)

| pNTtoPN pnt == typeConPN
= concatMap snd sels ++ map snd (discrs++constrs)

match typeConPN (ListSubs pnt idents)
| pNTtoPN pnt == typeConPN
= let r1 = concatMap (\(dataCon, funs) ->

if elem (pNtoName dataCon) identNames
then funs
else []) sels

r2 = concatMap (\(dataCon, fun) ->
if elem (pNtoName dataCon) identNames
then [fun]
else []) (discris++constrs)

in r1++r2
where
identNames= map identToName idents
identToName (HsVar i) = pNTtoName i
identToName (HsCon i) = pNTtoName i

match _ _ = []

-- From textual selection to the internal (AST) representation
-- of the data type declaration.
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locToTypeDecl::String->Int->Int->HsModuleP->Either String HsDeclP
locToTypeDecl fileName row col mod
= case locToTypeDecl’ of

Nothing ->Left "Invalid cursor position. " ++
"Please place cursor at the beginning " ++
"of the type constructor name!"

Just decl ->Right decl
where
locToTypeDecl’

= find (definesTypeCon (locToPNT fileName (row,col) mod))
(hsModDecls mod)

definesTypeCon pnt (Dec (HsDataDecl loc c tp _ _))
= isTypeCon pnt && (findPNT pnt tp)

definesTypeCon pnt _ = False

-- From type constructor name to the internal (AST) representation
-- of the data type declaration.
findDataTypeDecl::String->HsModuleP->Either String HsDeclP
findDataTypeDecl typeCon mod
= case find definesTypeCon (hsModDecls mod) of

Nothing -> Left "Datatype declaration can not be found!"
Just decl’-> Right decl’

where
definesTypeCon (Dec (HsDataDecl loc c tp _ _))

= typeCon == pNTtoName (head (hsPNTs tp))
definesTypeCon _ = False

-- Fetch the declared type constructor.
getTypeCon::HsDeclP->Maybe PName
getTypeCon decl@(Dec (HsDataDecl l c tp cons d))
= Just $ pNTtoPN $ ghead "getTypeCon"

$ filter (\(PNT _ (Type _) _)->True) (hsPNTs tp)
getTypeCon _ = Nothing

-- Get the PNT representation of data constructors
-- declared by a data type declarations.
conPNTs (Dec (HsDataDecl _ _ _ cons _))
= map conPNT cons

conPNT (HsRecDecl _ _ _ i _) = i
conPNT (HsConDecl _ _ _ i _) = i



Appendix F

The HaRe API

The HaRe API, with a brief description of each function, is shown in this appendix.

The complete documentation of this API is also available from our Refactoring

Functional Programs project webpage [91]. In what follows, some frequently used

type synonyms are given before the API.

F.1 Some Type Synonyms

data NameSpace
= ValueName
| ClassName
| TypeCon
| DataCon
| Other

type HsDeclP = HsDeclI PNT

type HsPatP = HsPatI PNT

type HsExpP = HsExpI PNT

type HsMatchP = HsMatchI PNT HsExpP HsPatP [HsDeclP]

type HsModuleP = HsModuleI ModuleName PNT [HsDeclI PNT]

type HsImportDeclP = HsImportDeclI ModuleName PNT

type HsExportEntP = HsExportSpecI ModuleName PNT

type RhsP = HsRhs HsExpP
type GuardP = (SrcLoc, HsExpP, HsExpP)

type HsAltP = HsAlt HsExpP HsPatP [HsDeclP]

189
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type HsStmtP = HsStmt HsExpP HsPatP [HsDeclP]

type HsFieldP = HsFieldI PNT HsExpP

type HsTypeP = HsTypeI PNT

type EntSpecP = EntSpec PNT

type HsConDeclP = HsConDeclI PNT HsTypeP [HsTypeP]

type ENT = Ent Id

type InScopes = Rel QName (Ent Id)

type Exports = [(Id, Ent Id)]

type SimpPos = (Int, Int)

F.2 Program Analysis Functions

F.2.1 Import and Export Analysis

-- Process the in-scope relation returned from the module analysis,
-- and return a list of four-element tuples. Each tuple contains an
-- identifier name, the identifier’s namespace, the name of the module
-- in which the identifier is defined, and the identifier’s qualifier.
inScopeInfo :: InScopes

-> [(String, NameSpace, ModuleName, Maybe ModuleName)]

-- Process the export relation returned from the module analysis, and
-- return a list of three-element tuples. Each tuple contains an
-- identifier name, the identifier’s namespace, and the name of the
-- module in which the identifier is defined.
exportInfo :: Exports

-> [(String, NameSpace, ModuleName)]

-- Return True if the identifier is exported.
isExported :: PNT -> Exports -> Bool

-- Return True if an identifier is explicitly exported by the module.
isExplictlyExported :: PName -> HsModuleP -> Bool

-- Return True if the module is exported by itself either by omitting
-- the export list or by specifying the module name in its export list.
modIsExported :: HsModuleP -> Bool
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F.2.2 Variable Analysis

-- Collect the identifiers (in PName representation) in a syntax phrase.
hsPNs :: Term t => t -> [PName]

-- Collect the identifiers (in PNT representation) in a syntax phrase.
hsPNTs :: Term t => t -> [PNT]

-- Collect the data constructors that occur in a syntax phrase. The first
-- list in the result contains the data constructors declared in other
-- modules, and the second list contains the data constructors declared
-- in the current module.
hsDataConstrs :: Term t

=> ModuleName -- The name of the module that contains t.
-> t -- The given syntax phrase.
->([PName], [PName])

-- Collect the type constructors and class names that occur in a syntax
-- phrase. The first list in the result contains the type constructor/
-- classes declared in other modules, and the second list contains
-- the ones declared in the current module.
hsTypeConstrsAndClasses :: Term t

=> ModuleName
-> t
-> ([PName], [PName])

-- Collect the type variables declared in the given syntax phrase.
hsTypeVbls :: Term t => t -> [PName]

-- Collect the class instance names of the specified class which occur
-- in a given syntax phrase. In the result, the first list contains the
-- class instances declared in other modules, and the second list
-- contains the class instance names declared in the current module.
hsClassMembers :: Term t

=> String -> ModuleName -> t -> ([PName], [PName])

-- Collect the free and declared variables in the given syntax phrase.
-- The first list in the result contains the free variables, and the
-- second list contains the declared variables.
hsFreeAndDeclaredPNs :: (Term t, MonadPlus m)

=> t -> m ([PName], [PName])

-- Given syntax phrases t1 and t2, if t1 occurs in t2, then return those
-- variables which are declared in t2, and accessible to t1, otherwise
-- return [].
hsVisiblePNs :: (Term t1, Term t2, FindEntity t1, MonadPlus m)

=> t1 -> t2 -> m [PName]

-- Return all the possible qualifiers of an identifier in a module.
hsQualifier :: PNT -> InScopes -> [ModuleName]
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-- Return the identifier(s) defined by a function/pattern binding.
definedPNs :: HsDeclP -> [PName]

-- The HasNameSpace class.
class HasNameSpace t where
Methods
-- Return an entity’s name space information.
hasNameSpace :: t -> NameSpace

Instances
HasNameSpace PNT
HasNameSpace ENT

F.2.3 Property Checking

-- Return True if a string is a lexically valid variable name.
isVarId :: String -> Bool

-- Return True if a string is a lexically valid constructor name.
isConId :: String -> Bool

-- Return True if a string is a lexically valid operator name.
isOperator :: String -> Bool

-- Return True if the given identifier (represented by PName) is a
-- top-level identifier.
isTopLevelPN :: PName -> Bool

-- Return True if the given identifier is qualified.
isQualifiedPN :: PName -> Bool

-- Return True if an identifier is a function name defined in the
-- syntax phrase given by the second parameter.
isFunPN :: Term t => PName -> t -> Bool

-- Return True if an identifier is defined by a pattern binding in
-- the syntax phrase given by the second parameter.
isPatPN :: Term t => PName -> t -> Bool

-- Return True if an identifier is a type constructor.
isTypeCon :: PNT -> Bool

-- Return True if a declaration declares a type signature.
isTypeSig :: HsDeclP -> Bool

-- Return True if a declaration is a function definition.
isFunBind :: HsDeclP -> Bool

-- Return True if a declaration is a pattern binding.
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isPatBind :: HsDeclP -> Bool

-- Return True if a declaration is declares a simple pattern binding.
isSimplePatBind :: HsDeclP -> Bool

-- Return True if a declaration is a complex pattern binding.
isComplexPatBind :: HsDeclP -> Bool

-- Return True if a declaration is a function/pattern definition.
isFunOrPatBind :: HsDeclP -> Bool

-- Return True if a declaration defines a class.
isClassDecl :: HsDeclP -> Bool

-- Return True if a declaration defines a class instance.
isInstDecl :: HsDeclP -> Bool

-- Return True if a function is a directly recursive function.
isDirectRecursiveDef :: HsDeclP -> Bool

-- Return True if the two given syntax phrases refer to the same
-- occurrence in the code.
sameOccurrence ::(Term t, Eq t) => t -> t -> Bool

-- Return True if the declaration declared the specified identifier,
-- or its type signature.
defines :: PName -> HsDeclP -> Bool

-- Return True if the given syntax phrase contains any free variables.
hasFreeVars :: Term t => t -> Bool

-- Return True if the first syntax phrase is part of the second one.
findEntity :: (FindEntity a, Term b) => a -> b -> Bool

-- Find the declarations that define the specified entities.
definingDecls :: [PName] -- The entities.

-> [HsDeclP] -- A collection of declarations.
-> Bool -- Include the type signature or not.
-> Bool -- Check the local declarations or not.
-> [HsDeclP]

-- Return True if the identifier is used in the RHS of a definition.
isUsedInRhs::(Term t) => PNT -> t -> Bool

-- The HsDecls class.
class Term t => HsDecls t where
Methods
-- Return the declarations that are directly enclosed in the given
-- syntax phrase.
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hsDecls :: t -> [HsDeclI PNT]

-- Replace the directly enclosed declaration list with the given
-- declaration list.
replaceDecls :: t -> [HsDeclI PNT] -> t

-- Return True if the identifier is declared in the given syntax phrase.
isDeclaredIn :: PName -> t -> Bool

-- Return True if the given name is in scope and can be used unqualified.
isInScopeAndUnqualified :: String -> InScopes -> Bool.

F.2.4 Modules and Files

-- Return the client module and file names of the given module.
clientModsAndFiles ::(PFE0_IO err m, IOErr err, HasInfixDecls i ds,

QualNames i m1 n, Read n, Show n)
=> ModuleName
-> PFE0MT n i ds ext m [(ModuleName, String)]

-- Return the server module and file names of the given module.
serverModsAndFiles ::(PFE0_IO err m, IOErr err, HasInfixDecls i ds,

QualNames i m1 n, Read n, Show n)
=> ModuleName
-> PFE0MT n i ds ext m [(ModuleName, String)]

-- Return True if the given module name exists in the project.
isAnExistingMod ::(PFE0_IO err m, IOErr err, HasInfixDecls i ds,

QualNames i m1 n, Read n, Show n)
=> ModuleName
-> PFE0MT n i ds ext m Bool

-- From file name to module name (assume that a file only contains
-- one module).
fileNameToModName ::(PFE0_IO err m, IOErr err, HasInfixDecls i ds,

QualNames i m1 n, Read n, Show n)
=> String
-> PFE0MT n i ds ext m ModuleName

F.3 Program Transformation

F.3.1 Adding a Syntax Phrase

-- Adding a declaration to the declaration list of the given syntax phrase
-- If the second argument is Nothing, then the declaration will be added to
-- the beginning of the declaration list, but after the data type
-- declarations is there is any.
addDecl :: MonadState (([PosToken], Bool), t1) m
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=> t -- The AST.
-> Maybe PName
-> ([HsDeclP], Maybe [PosToken])
-> Bool -- The declaration is top-level or not.
-> m t

-- Add an import declaration to a module.
addImportDecl :: MonadState (([PosToken], Bool), t1) m

=> HsModuleP
-> HsImportDeclP
-> m HsModuleP

-- Add entities (given by the third argument) to the explicit entity list
-- in the declaration importing the specified module.
addItemsToImport :: MonadState (([PosToken], Bool), t1) m

=> ModuleName
-> Maybe PName
-> Either [String] [EntSpecP]
-> HsModuleP
-> m HsModuleP

-- Add entities to the export list of a module.
addItemsToExport :: MonadState (([PosToken], Bool), t1) m

=> HsModuleP
-> Maybe PName
-> Bool
-> Either [String] [HsExportEntP]
-> m HsModuleP

-- Add entities to the hiding list of an import declaration which
-- imports the specified module.
addHiding :: MonadState (([PosToken], Bool), t1) m

=> ModuleName
-> HsModuleP
-> [PName]
-> m HsModuleP

-- Add a guard expression to the RHS of a function definition (or a
-- pattern binding).
addGuardsToRhs :: MonadState (([PosToken], Bool), t1) m

=> RhsP
-> HsExpP
-> m RhsP

-- Add parameters to a function definition (or simple pattern binding).
addParamsToDecls

:: (MonadPlus m, (MonadState (([PosToken], Bool),(Int,Int)) m)
=> [HsDeclP]-> PName -> [PName]-> m [HsDeclP]
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F.3.2 Removing a Syntax Phrase

-- Remove the declaration (and the type signature if the second
-- parameter is True) that defines the given identifier.
rmDecl :: MonadState (([PosToken], Bool), t1) m

=> PName -> Bool -> [HsDeclP] -> m [HsDeclP]

-- Remove the type signature that defines the given identifier’s
-- type from the declaration list.
rmTypeSig :: MonadState (([PosToken], Bool), t1) m

=> PName -> [HsDeclP]-> m [HsDeclP]

-- Remove the specified items from the entity list in the import
-- declarations of a module.
rmItemsFromImport :: MonadState (([PosToken], Bool), t1) m

=> HsModuleP -> [PName] -> m HsModuleP

-- Remove the specified entities from the module’s exports. The entities
-- can be specified by either entity names or ASTs.
rmItemsFromExport :: MonadState (([PosToken], Bool), t1) m

=> HsModuleP
-> Either ([ModuleName], [PName]) [HsExportEntP]
-> m HsModuleP The result.

-- Remove the sub entities of the specified type constructor or class
-- from the exports.
rmSubEntsFromExport :: MonadState (([PosToken], Bool), t1) m

=> PName -> HsModuleP -> m HsModuleP

-- Remove the first n parameters of an identifier in an expression.
rmParams :: (MonadPlus m, MonadState (([PosToken], Bool), t1) m)

=> PNT -> Int -> HsExpP -> m HsExpP

-- Unqualify the uses of the given identifiers.
rmQualifier :: (MonadState (([PosToken], Bool), t1) m, Term t)

=> [PName] -> t -> m t

-- The Delete class.
class (Term t, Term t1) => Delete t t1 where

Method
-- Delete the occurrence of the given syntax phrase.
delete :: (MonadPlus m, MonadState (([PosToken], Bool), t2) m)

=> t -- The syntax phrase to delete.
-> t1 -- The contex where the syntax phrase occurs.
-> m t1 -- The result.

Instances
Term t => Delete HsExpP t
Term t => Delete HsPatP t
Term t => Delete HsImportDeclP t
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F.3.3 Updatng a Syntax Phrase

-- The Update class.
class (Term t, Term t1) => Update t t1 where

Methods
-- Update the occurrence of a syntax phrase in the given scope by
-- another syntax phrase of the same type.
update:: (MonadPlus m, MonadState (([PosToken], Bool), t2) m)

=> t -> t -> t1 -> m t1
Instances
Term t => Update HsExpP t
Term t => Update PNT t
Term t => Update HsMatchP t
Term t => Update HsPatP t
Term t => Update [HsPatP] t
Term t => Update [HsDeclP] t
Term t => Update HsDeclP t
Term t => Update HsImportDeclP t
Term t => Update HsExportEntP t

-- Rename each occurrence of the given identifier with an automatically
-- created new name if the identifier is declared in syntax phrase.
autoRenameLocalVar :: (MonadPlus m, Term t)

=> Bool -- False means only modifying the AST.
-> PName -> t -> m t

-- Rename the occurrences of the given identifier with given the new
-- name and qualifier.
renamePN ::((MonadState (([PosToken], Bool), t1) m),Term t)

=> PName -- The identifier to be renamed.
-> Maybe ModuleName -- The new qualifier.
-> String -- The new name.
-> Bool -- False means only modifying the AST.
-> t -- The syntax phrase
-> m t

F.4 Some Miscellaneous Functions

F.4.1 Parsing and Writing

-- Parse and scope analyse a Haskell module.
parseSourceFile :: ... => FilePath

-> m (InScopes, Exports, HsModuleP, [PosToken])

-- Write the refactored program to files.
writeRefactoredFiles :: ...
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=> Bool -- True means sub-refactoring.
-> [((String,Bool),([PosToken],HsModuleP))]
-> m ()

F.4.2 From Textual Selection to AST Representation

-- Find the identifier (in PNT format) whose start position is the
-- given location in the specified file.
locToPNT :: Term t

=> String -- The file name.
-> Int -- The row number.
-> Int -- The column number.
-> t -- The syntax phrase.
-> Maybe PNT

-- Given the syntax phrase (and the token stream), find the
-- largest-leftmost expression contained in the region specified
-- by the start and end position.
locToExp :: Term t

=> SimpPos -- Start position.
-> SimpPos -- End position.
-> [PosToken] -- The token stream.
-> t -- The AST.
-> Maybe HsExpP

F.4.3 Combinators for Applying a Refactoring

-- Apply a transformation to a Haskell module. If the
-- module information is provided, this function will
-- use the provided information, otherwise it will
-- parse and analysis the module to get the information.
applyRefac::(PFE2MT (PFE0State HsName.Id) Names.QName ds

(PFE2Info (SN HsName.Id), ext) m)
=> ((InScopes,Exports,HsModuleP) -> HsModuleP)
-> Maybe (InScopes,Exports,HsModuleP,[PosToken])
-> String
-> m ((String, Bool), ([PosToken], HsModuleP))

-- Apply a transformation to a collection of modules if
-- the information of these modules is explicitly given,
-- otherwise apply the transformation to all the client
-- modules of the module contained in the specified file.
applyRefac::(PFE2MT (PFE0State HsName.Id) Names.QName ds

(PFE2Info (SN HsName.Id), ext) m)
=> ((InScopes,Exports,HsModuleP) -> HsModuleP)
-> Maybe [(InScopes,Exports,HsModuleP,[PosToken])]
-> String
-> m [((String, Bool), ([PosToken], HsModuleP))]
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F.4.4 Creating New Names

-- Create a new name basing on the given prefix, starting postfix
-- integer and the collection of names which can not be taken by
-- the new name. Suppose the old name is f, then the new name
-- will have a format of f_i, where i is an integer.
mkNewName :: String -- The prefix.

-> Maybe Int -- The possible posfix.
-> [String]
-> String

F.4.5 Converting Between AST Representations

-- From PNT to PName representation of an identifier.
pNTtoPN :: PNT -> PName

-- From PNT to string representation of an identifier.
pNTtoName :: PNT -> String

-- From PName to string representation of an identifier.
pNtoName :: PName -> String

-- From expression to PNT representation of an identifier. A default
-- PNT value is returned if the expression is not a single identifier.
expToPNT :: HsExpP -> PNT

-- From pattern to PNT representation of an identifier. A default
-- PNT value is returned if the pattern is not a single identifier.
patToPNT :: HsPatP -> PNT

-- From string to PNT representation of an identifier. Default
-- location and name space information is used (the same applies
-- to the following functions in this sub-section).
nameToPNT :: String -> PNT

-- From string to PName representation of an identifier.
nameToPN :: String -> PName

-- From string to expression representation of an identifier.
nameToExp :: String -> HsExpP

-- From string to pattern representation of an identifier.
nameToPat :: String -> HsPatP
Compose a pattern from a String.

-- From PName to expression representation of an identifier.
pNtoExp :: PName -> HsExpP

-- From PName to pattern representation of an identifier.
pNtoPat :: PName -> HsPatP
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-- Transform a complex function definition (or pattern binding) into
-- a simple function definition (or pattern binding) using case and
-- conditional expressions. A function definition (or pattern binding)
-- is simple if it has only one equation, no guards, and all of its
-- formal parameters are simple variables.
simplifyDecl :: Monad m => HsDeclP -> m HsDeclP

F.4.6 Regarding to Locations

-- Change the absolute define locations of local variables to relative
-- locations in the given AST.
toRelativeLocs :: Term t => t -> t

-- Remove source the location information.
rmLocs :: Term t => t -> t

-- Return the identifier’s define location.
defineLoc :: PNT -> SrcLoc

Return the identifier’s source location.
useLoc :: PNT -> SrcLoc
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[63] R. Lämmel and S. Peyton Jones. Scrap Your Boilerplate: a Practical Design

Pattern for Generic Programming. ACM SIGPLAN Notices, 38(3):26–37,

March 2003. Proceedings of the ACM SIGPLAN Workshop on Types in

Language Design and Implementation (TLDI 2003).
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[83] H. Partsch and R. Steinbrüggen. Program Transformation Systems. ACM

Computing Surveys, 15(3), September 1983.

[84] H. A. Partsch. Specification and Transformation of Programs: a Formal

Approach to Software Development. Springer-Verlag New York, Inc., New

York, NY, USA, 1990.

[85] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical

Computer Science, 1:125–159, 1975.

[86] R. E. Harper and D. MacQueen and R. Milner. Standard ML. Technical

report, March 1986. (ECS-LFCS-86-2).

[87] R. Plasmeijer and M. V. Eekelen. The Concurrent Clean Language Report

(version 2.0). Technical report, University of Nijmegen, March 2001.



BIBLIOGRAPHY 210

[88] R. Tischler and R.Schaufler and C. Payne. Static Analysis of Programs

as an Aid to Debugging. In Proceedings of the ACM SIGSOFT/SIGPLAN

software engineering symposium on High-level debugging, pages 155–158,

1983.

[89] R. Virding and C. Wikstrom and M. Williams. Concurrent Programming in

ERLANG (2nd ed.). Prentice Hall International (UK) Ltd., Hertfordshire,

UK, UK, 1996.

[90] R.Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1997.

[91] Refactor-fp. Refactoring Functional Programs. http://www.cs.kent.ac.

uk/projects/refactor-fp/.
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[104] F. Tip, A. Kieżun, and D. Bäumer. Refactoring for Generalization Us-

ing Type Constraints. In Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA 2003), pages 13–26, Anaheim, CA,

USA, November 6–8, 2003.

[105] L. Tokuda and D. Batory. Evolving Object-Oriented Applications with

Refactorings. Technical Report CS-TR-99-09, University of Texas, Austin,

March 1, 1999.



BIBLIOGRAPHY 212
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